16 Magnetic Resonance of Oxidized Metalloporphyrins 1
HAROLD M. GOFF , MARTIN A. PHILLIPPI, ARDEN D. BOERSMA, and ANDREW P. HANSEN University of Iowa, Department of Chemistry, Iowa City, IA 52242
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch016
Iron(III) porphyrin anion complexes undergo reversi ble one-electron oxidation at platinum electrodes in apo lar media. In favorable cases, oxidized products have been isolated from supporting electrolyte in analytically pure form. Although earlier reports favored electron abstraction from a metal-centered molecular orbital to yield an iron(IV) species, the results cited here for weak-field anion complexes of iron(III) tetraphenylpor phyrins(TPP) favor predominant porphyrin-centered oxidation. This result is demonstrated by the fact that NMR hyperfine coupling constants for phenyl protons of TPPFe(Cl)(ClO ) are equivalent to those determined by ESR of known π-radical species. Mössbauer results are also consistent with little perturbation of charge at the iron center on oxidation. Unique IR bands observed for both oxidized TPPFe species and TPPZn π-cation radicals may serve to distinguish the site of oxidation. Analogous results are reported for oxidized manganese porphyrins. Low spin diimidazole adducts of oxidized iron porphyrins are spectroscopically observed at low temperature. Porphyrin radical character is also appar ent in these derivatives. The chemistry of electrochemi cally oxidized metalloporphyrins and other reported iron(IV) species is reviewed in the context of known hemoprotein oxidation reactions. 4
2+
"D
+
e v e r s i b l e o n e - or two-electron oxidation o f the iron(III) p o r p h y r i n prosthetic group occurs d u r i n g the catalytic c y c l e o f peroxidases 1
Author to whom correspondence should be addressed. 0065-2393/82/0201-0357$06.00/0 © 1982 A m e r i c a n C h e m i c a l Society Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
BIOLOGICAL REDOX COMPONENTS
358
a n d c a t a l a s e ( 1 - 3 ) . S u c h o x i d a t i o n i s a l s o p o s t u l a t e d for r e d o x p r o cesses o f o t h e r h e m o p r o t e i n s .
T h e best characterized
o x i d a t i o n se
q u e n c e s are t h o s e for h o r s e r a d i s h p e r o x i d a s e ( H R P ) , for w h i c h h y d r o gen peroxide or organic peroxides p r e s u m a b l y abstract two
electrons
from the h e m e group to g i v e C o m p o u n d I : PFe(III)
+
+
+ H 0 -> 2
PFe(IV)=0 + H 0
2
2
I
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch016
O n e - e l e c t r o n substrate reduction y i e l d s C o m p o u n d II: PFe(IV)=0
+
+ S-» PFe(IV)=0 + S
+
II I r o n ( I V ) p o r p h y r i n π - e a t i o n r a d i c a l f o r m u l a t i o n s for C o m p o u n d I o f H R P a n d c a t a l a s e w e r e s u g g e s t e d p r e v i o u s l y (4). C u r r e n t s u p p o r t for this u n u s u a l r e d o x s t r u c t u r e is b a s e d o n e l e c t r o n i c , E S R , a n d M ô s s b a u e r spectral measurements. Thus, the electronic spectrum o f H R P C o m p o u n d I exhibits a b r o a d Soret b a n d w i t h d i m i n i s h e d inten sity, a n d b r o a d , n o n d i s t i n c t i v e v i s i b l e r e g i o n b a n d s l i k e those o b served for π - e a t i o n r a d i c a l m e t a l l o p o r p h y r i n s . D e t e c t i o n o f a v e r y b r o a d g = 2 E S R s i g n a l for C o m p o u n d I a l s o s u p p o r t s a 7r-cation r a d i c a l state ( 5 ) . T h e s t r o n g e s t e v i d e n c e f a v o r i n g m e t a l - c e n t e r e d o x i d a t i o n i n b o t h C o m p o u n d s I a n d I I is f o u n d i n M ô s s b a u e r i s o m e r s h i f t v a l u e s o f v e r y n e a r 0.0 m m / s ( 5 - 7 ) . O x i d a t i o n o f aromatic or sulfur-based a m i n o a c i d residues appears to o c c u r for c y t o c h r o m e c p e r o x i d a s e ( C C P ) ( 8 ) . T w o - e l e c t r o n o x i d a t i o n o f C C P y i e l d s a s p e c i e s s p e c t r a l l y e q u i v a l e n t to H R P C o m p o u n d II, but e x h i b i t i n g a sharp E S R signal a n d E N D O R resonances inter p r e t e d as i n v o l v i n g a m e t h i o n i n e r e d o x site (9). B a s e d o n N M R r e s u l t s , s o m e r e s e a r c h e r s (10-12) s u g g e s t e d a n a n a l o g o u s f o r m u l a t i o n for H R P C o m p o u n d I i n w h i c h a n a m i n o a c i d r e s i d u e is o x i d i z e d a n d t h e i r o n ( I V ) p o r p h y r i n is i n t h e h i g h s p i n state. L a r g e i s o t r o p i c N M R shifts m a y b e e x p l a i n e d b y the w i d e l y a c c e p t e d iron(IV) p o r p h y r i n π - c a t i o n r a d i c a l e l e c t r o n i c s t r u c t u r e (13,14). A d d i t i o n a l c o m m e n t o n t h i s p o i n t is m a d e ( v i d e i n f r a ) w i t h r e s p e c t t o o u r r e s u l t s f o r o x i d i z e d m o d e l c o m p o u n d s . E v e n m o r e c o n v i n c i n g a r g u m e n t s for t h e i r o n ( I V ) π - c a t i o n r a d i c a l formulation for H R P C o m p o u n d I are f o u n d i n E N D O R spectra, w h i c h reveal radical c o u p l i n g w i t h r i n g m e t h y l - m e t h y l e n e protons a n d p y r r o l e n i t r o g e n atoms (15). H i g h o x i d a t i o n state i n t e r m e d i a t e s w e r e a l s o p o s t u l a t e d for c y t o c h r o m e P - 4 5 0 (16,17) a n d c y t o c h r o m e o x i d a s e (18 ). T h e n e t r e a c t i o n for a p o r t i o n o f t h e c y t o c h r o m e P - 4 5 0 c y c l e c a n b e s u m m a r i z e d b y : PFe(II) + 0
2
+ e" + 2 H
+
- >
PFe(IV)=0 + H 0 2
Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
16.
GOFF ET AL.
Resonance of Oxidized Metalloporphyrins
359
T h e C o m p o u n d I a n a l o g w a s n o t i d e n t i f i e d , b u t its p r e s e n c e is i m p l i c a t e d t h r o u g h g e n e r a t i o n f r o m t h e i r o n ( I I I ) state b y h y d r o g e n p e r o x i d e and
by
similar
peroxidases.
substrate
reactions
of
cytochrome
A n i r o n ( I V ) p o r p h y r i n state w a s
means o f e x p l a i n i n g the " s i l e n t " E S R c o m p o n e n t c h r o m e oxidase (18). H o w e v e r , m o r e r e c e n t
P-450
also postulated
and as
a
of o x i d i z e d cyto
findings
p r o v i d e no sup
p o r t for a h i g h l y o x i d i z e d h e m e d u r i n g t h e c y t o c h r o m e o x i d a s e c y c l e . Systematic generation a n d p h y s i c a l examination o f o x i d i z e d iron porphyrin intermediates i n isolated iron porphyrins might be parallel i n s i g n i f i c a n c e to t h e d e m o n s t r a b l y p r o d u c t i v e o x y g e n b i n d i n g s t u d i e s
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch016
of iron porphyrin m o d e l compounds
( 1 9 , 20).
I n this regard
chemistry of isolated iron(IV) porphyrin compounds
the
is c r i t i c a l l y r e
v i e w e d , w i t h e m p h a s i s o n r e c e n t r e s u l t s f r o m t h i s l a b o r a t o r y for b o t h oxidized iron and manganese porphyrin complexes. T h e
following
h i g h o x i d a t i o n state s p e c i e s a n d r e a c t i o n s w i l l b e c o n s i d e r e d : (1) i r o n p o r p h y r i n μ , - n i t r i d o d i m e r i c c o m p l e x e s , (2) c a r b e n e a n d v i n y l i d e n e c o m p l e x e s , (3) i o d o s y l b e n z e n e o x i d a t i o n s , (4) μ - p e r o x o i r o n p o r p h y r i n reactions,
(5) o t h e r
c h e m i c a l oxidations, a n d
(6) e l e c t r o c h e m i c a l l y
o x i d i z e d m e t a l l o p o r p h y r i n c o m p o u n d s , to i n c l u d e t h o s e e x t e n s i v e l y s t u d i e d b y this research
group.
Iron Porphyrin-μ-Nitrido
Dimeric Complexes
I n a x y l e n e reflux, n i t r o g e n was e l i m i n a t e d from the a z i d e c o m p l e x , T P P F e N , to y i e l d t h e μ - n i t r i d o d i m e r , T P P F e - N - F e T P P (21). A n x - r a y s t r u c t u r e d e t e r m i n a t i o n c o n f i r m e d t h e f o r m u l a t i o n (22). A s s i g n i n g the b r i d g i n g nitrogen atom a - 3 charge puts formal charges o f + 3 a n d + 4 , o r a n a v e r a g e o f + 3 . 5 , o n t h e i r o n c e n t e r s . I r o n a t o m s are e q u i v a l e n t on the M ô s s b a u e r t i m e scale a n d increased charge ç n i r o n c e n t e r s is r e f l e c t e d i n a n i s o m e r s h i f t v a l u e o f + 0 . 1 0 m m / s (vs. 0 . 2 9 m m / s for T P P F e - O - F e T P P ) (21). 3
T h e μ - n i t r i d o d i m e r is o x i d i z e d c h e m i c a l l y or e l e c t r o c h e m i c a l l y ( + 0 . 1 7 V , S C E ) to y i e l d t h e m o n o c a t i o n d i m e r (23). T h e p r o d u c t is formally an iron(IV)-iron(IV) species. Solution characterization b y p r o t o n N M R r e v e a l s that, u n l i k e t h e o d d - s p i n p a r e n t d i m e r , t h e o x i d i z e d c o m p l e x exhibits little paramagnetic character, p r e s u m a b l y as a c o n s e q u e n c e o f s t r o n g c o u p l i n g t h r o u g h t h e μ , - n i t r i d o b r i d g e . T h i s finding is e v i d e n t i n l i n e w i d t h a n d s h i f t d i f f e r e n c e s for s p e c t r a i n F i g u r e s l a a n d l c . A d d i t i o n o f p y r i d i n e to T P P F e - N - F e T P P ( F i g u r e l b ) y i e l d s n o s p e c t r a l c h a n g e s o t h e r t h a n a p p e a r a n c e o f free p y r i d i n e res o n a n c e s . I n c o n t r a s t , a d d i t i o n o f p y r i d i n e to t h e o x i d i z e d d i m e r ( F i g ure Id) i n d u c e s c h a n g e s i n p o r p h y r i n resonances, a n d p y r i d i n e reso n a n c e s (not s h o w n ) are s h i f t e d u p f i e l d b y p o r p h y r i n r i n g c u r r e n t s . B o t h m o n o p y r i d i n e a n d d i p y r i d i n e l i g a t i o n are d e t e c t e d , a n d p y r i d i n e e x c h a n g e is r a p i d o n t h e N M R t i m e s c a l e at a m b i e n t t e m p e r a t u r e . T h e
Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
BIOLOGICAL REDOX COMPONENTS
360
h i g h e r o x i d a t i o n state i r o n c e n t e r s e e m i n g l y e x h i b i t s a h i g h e r b i n d i n g affinity for n i t r o g e n o u s bases t h a n does that o f the parent, n e u t r a l dimer.
Carbene and Vinylidene Complexes Combination of iron porphyrins and chlorinated hydrocarbons i n the presence o f a strong r e d u c i n g agent y i e l d s isolable iron p o r p h y r i n carbene
complexes
(24-27).
Aromatic
substituents
m a y further
stabilize the a d d u c t i n the form o f a v i n y l i d e n e c o m p l e x (25): TPPFe(II) + C l C C H A r Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch016
3
TPPFeC=CAr
2
2
-2C1-
T h i s p r o d u c t is q u i t e r e m a r k a b l y air-stable, b u t m a y b e o x i d i z e d b y a g e n t s s u c h as f e r r i c c h l o r i d e o r c u p r i c c h l o r i d e . B a s e d o n s p e c t r a l similarity o f the o x i d i z e d v i n y l i d e n e c o m p l e x a n d the s p e c t r u m o f H R P C o m p o u n d I, t h e f o l l o w i n g p r e d o m i n a n t resonance
form was
o r i g i n a l l y i n v o k e d (26, 27): TPPFe(IV)=C=CAr
2
A l t h o u g h t h e m a g n e t i c m o m e n t (μ^ = 3 . 7 B . M . ) i s c o n s i s t e n t w i t h s u c h a f o r m u l a t i o n , the u n u s u a l E S R g = 4.4 v a l u e suggests the inter m e d i a t e s p i n , S = 3/2, state o f i r o n ( I I I ) p o r p h y r i n s (28-30). T h i s i n formation a n d analogous reactions o f carbenes (generated from d i a z o a l k e n e s ) w i t h c o b a l t (31-33) a n d n i c k e l (34) p o r p h y r i n s s u g gested a n i r o n - c a r b o n - p y r r o l e n i t r o g e n - b r i d g e d a d d u c t o f the type s h o w n i n F i g u r e 2 (35). S i m u l t a n e o u s x-ray c r y s t a l l o g r a p h i c w o r k a n d N M R solution measurements demonstrated the v a l i d i t y of this b r i d g e d structure (36, 37). H e n c e , t h e u n u s u a l spectroscopic properties o f o x i d i z e d v i n y l i d e n e - i r o n p o r p h y r i n complexes result from p o r p h y r i n m o d i f i c a t i o n r e a c t i o n s r a t h e r t h a n f r o m o x i d a t i o n t o a n i r o n ( I V ) state. R e c e n t i t e r a t i v e H i i c k e l c a l c u l a t i o n s for u n o x i d i z e d v i n y l i d e n e c o m p l e x e s are inconsistent w i t h i r o n ( I V ) character (3).
lodosylbenzene Oxidations I o d o s y l b e n z e n e (38-42) [or 2 - i o d o s o - m - x y l e n e (43)] w a s a n effec t i v e o x i d i z i n g a g e n t for c o n v e r s i o n o f a l k a n e s t o a l c o h o l s a n d a l k e n e s to e p o x i d e s i n t h e p r e s e n c e o f m e t a l l o p o r p h y r i n c a t a l y s t . A 5 0 % c o n v e r s i o n o f c y c l o h e x a n e to c y c l o h e x y l a l c o h o l w a s p o s s i b l e b a s e d o n t h e i o d o s y l b e n z e n e c o n s u m e d , u s i n g T P P M n C l (40). S i m i l a r r e s u l t s w e r e r e p o r t e d i n R e f e r e n c e 41 as w a s t h e f o r m a t i o n o f s i g n i f i c a n t c y c l o h e x y l c h l o r i d e or other c y c l o h e x y l adducts o f the o r i g i n a l m a n g a n e s e ( I I I ) a n i o n i c l i g a n d . T h e s e results are p a r t i c u l a r l y n o t e w o r t h y i n v i e w o f the n e e d for m i l d - c o n d i t i o n C H b o n d a c t i v a t i o n c a t a l y s t s , a n d i n t e r m s o f
Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
16.
GOFF ET A L .
Resonance of Oxidized Metalloporphyrins
361
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch016
PYRR
solvent, 26°C, 5 m M dimer, referenced to TMS.
partial s i m u l a t i o n o f the monooxygenase action o f c y t o c h r o m e P-450. T h e p o s t u l a t e d a c t i v e o x i d a n t i n t h e s e r e a c t i o n s is t h e m e t a l - o x o c o m p l e x , w h i c h c a n b e d e s c r i b e d w i t h t h e s a m e r e s o n a n c e s t r u c t u r e as t h a t o f H R P C o m p o u n d I:
TPPM(III)X +
^ Q ^ — I P ->
1
·TPPM(IV)=0
+
+ X "+
(O^
S p e c t r o s c o p i c o b s e r v a t i o n s at r e d u c e d t e m p e r a t u r e (43) or w i t h i n s e c o n d s o f m i x i n g T P P F e C l (44) a n d i o d o s y l b e n z e n e r e v e a l a b s o r p t i o n b a n d s r e s e m b l i n g t h o s e o f H R P C o m p o u n d I. T h e c o r r e s p o n d i n g m a n g a n e s e c o m p o u n d w a s g e n e r a t e d a n d p a r t i a l l y c h a r a c t e r i z e d at l o w t e m p e r a t u r e (40-42). A m a n g a n e s e ( V ) a s s i g n m e n t b a s e d o n t h e μ ff v a l u e o f 2.9 B . M . (40) m u s t b e c o n s i d e r e d as a f o r m a l i s m r a t h e r t h a n a d e s c r i p t i o n o f the e l e c t r o n i c structure. E n h a n c e d s t a b i l i t y o f the analogous o x i d i z e d T P P C r X c o m p l e x permitted isolation and room t e m p e r a t u r e c h a r a c t e r i z a t i o n (39). A c h r o m i u m ( V ) o x i d a t i o n state w a s e
Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
BIOLOGICAL REDOX COMPONENTS
362
Ar^Ar II
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch016
Figure 2. Alternate structure for the oxidized iron porphyrin vinylidene complex.
i n f e r r e d from the 2 . 0 5 - B . M . m a g n e t i c m o m e n t v a l u e . I R measure ments demonstrated the presence o f a C r = 0 l i n k a g e associated w i t h a 1 0 2 6 - c m " b a n d . G e n e r a t i o n o f the o x i d i z e d c h r o m i u m c o m p l e x was also p o s s i b l e u s i n g m - c h l o r o p e r o x y b e n z o i c a c i d or s o d i u m h y p o chlorite. 1
T h e o x i d i z e d i r o n p o r p h y r i n species generated i n situ was further c h a r a c t e r i z e d u s i n g i o d o s y l b e n z e n e or m - c h l o r o p e r o x y b e n z o i c a c i d as o x i d i z i n g a g e n t s (45). Reaction o f iron(III) tetramesitylporphyrin chloride ( T M P F e C l ) w i t h two-electron equivalents o f o x i d i z i n g agent y i e l d s s o l u t i o n s p e c i e s a d e q u a t e l y s t a b l e at l o w t e m p e r a t u r e s for e x amination b y N M R , v i s i b l e - U V , and M ô s s b a u e r spectroscopy. C h e m i cal properties o f o x i d i z e d products d e p e n d o n the o x i d i z i n g agent ( T a b l e I). O x i d a t i o n b y m - c h l o r o p e r o x y b e n z o i c a c i d p r o d u c e s gross c h a n g e s i n t h e p r o t o n N M R s p e c t r u m o f T M P F e C l . T h e far d o w n f i e l d p y r r o l e proton N M R signal o f the parent c o m p o u n d can be contrasted w i t h a s i g n a l u p f i e l d f r o m T M S i n t h e o x i d i z e d f o r m . T h i s p a t t e r n is consistent w i t h electron abstraction from the d - orbital. T h e surpris i n g l y l a r g e m e s i t y l p r o t o n N M R shifts a r e b e s t e x p l a i n e d b y s i g n i f i c a n t u n p a i r e d s p i n d e n s i t y at t h e m e t h i n e - c a r b o n a t o m o f a π - c a t i o n r a d i c a l iron porphyrin. Iodosylbenzene oxidation yields a similar upfield pyr r o l e p r o t o n resonance, b u t the m e s i t y l p r o t o n signals are v i r t u a l l y u n shifted from d i a m a g n e t i c positions. T h i s latter observation does not r u l e o u t r a d i c a l c h a r a c t e r , h o w e v e r , as t h e a radical type exhibits l i t t l e s p i n d e n s i t y at t h e m e t h i n e - c a r b o n a t o m (3). A n a n a l o g y is f o u n d i n o x i d i z e d m a n g a n e s e p o r p h y r i n s ( v i d e i n f r a ) , w h i c h a r e c l a s s i f i e d as π-cation radicals, but w h i c h show no significant p h e n y l proton N M R s h i f t s . M a g n e t i c m o m e n t v a l u e s a n d v i s i b l e s p e c t r a ( c o l o r ) for t h e t w o c o m p o u n d s g e n e r a t e d b y i o d o s y l b e n z e n e or m - c h l o r o p e r o x y b e n z o i c a c i d o x i d a t i o n d i f f e r s i g n i f i c a n t l y ( T a b l e I). T h a t t h e s e d i f f e r e n c e s are d u e to s p i n a n d / o r l i g a t i o n state r a t h e r t h a n o x i d a t i o n state is d e m o n strated b y i n t e r c o n v e r s i o n o f the t w o species t h r o u g h a d d i t i o n o f a c i d o r b a s e (45). Very l o w M ô s s b a u e r i s o m e r s h i f t v a l u e s c o n f i r m t h e h i g h o x i d a t i o n state o f t h e i r o n a t o m . F u r t h e r c h a r a c t e r i z a t i o n o f t h e s e s p e c i e s s h o u l d s e r v e to b e t t e r d e f i n e t h e r e a c t i o n c h e m i s t r y o f o x i d i z e d iron porphyrins. x2
y2
iu
Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Table I.
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch016
363
GOFF ET AL.
16.
Resonance of Oxidized Metalloporphyrins
Properties o f O x i d i z e d Iron Porphyrins
Iron Te trame si t y lporphyrin Chloride a
Property
Iron Te train-toly lporphyrin Chloride
Iron Tetraphenylporphyrin Chloride
b
+
R SbCl (SbCl salt)
0
Electrochem. ( C 1 0 - salt)
Oxidizing agent
ArCOOOH
Electrons transferred Proton N M R (temp.) pyrrole-H o-m ethyl m-H p-methyl
2
2
1
1
1
(-77°C)
(-73°C)
(-73°C)
(26°C)
(29°C)
- 2 7 ppm 24, 26 68 11.1
-33.5 2.4 7.6 2.8
Visible-UV
406, 645 n m (red) (green) 4.2 B . M . 2.9
p y r r o l e - H 5 66 37.6, 34.4 o-H 9 -12.4 m-H 8 29.5 p-U 8 m-methyl 3 - 4 2 0 , - 5 6 0 , 397, 530, 600, 820 -585 5.5 2.9
ArlO
0
2
(+1-Me Imidazole)
6
6
4
e
Magnetic moment Môssbauer l.S. Q.S. Reactivity toward olefins 9
0.05 mm/s 1.49 mm/s more re active
/
0.1 Ρ -0.03 1.24 2.13 less re not deter mined active Λ
0.45 1.27
66 39 -15.1 31 387, 533, 615, 750 5.1
0.40 0.55 not d e t e r m i n e d
a
Ref. 45. Ref. 48. Ref. 57. Ref. 53. Referenced to TMS, downfield shifts are given a positive sign. 'For TPP(p-OCH )Fe(Cl)(C10 ). Referenced to iron metal. Ref. 50.
b c
d
e
3
4
9
ft
Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
BIOLOGICAL REDOX COMPONENTS
364
μ-Peroxo Iron Porphyrin Reactions A μ - p e r o x o d i m e r i c iron(III) p o r p h y r i n species was generated l o w t e m p e r a t u r e s t h r o u g h d i o x y g e n attack o n iron(II) p o r p h y r i n s
at (46,
47): 2PFe(II) + 0
2
PFe(III)-0-0-Fe(III)P
A n t i f e r r o m a g n e t i c c o u p l i n g t h r o u g h t h e p e r o x o b r i d g e is s i g n i f i c a n t , w i t h 2J = - 2 6 5 K . U p o n w a r m i n g to r o o m t e m p e r a t u r e t h e i r o n ( I I I ) μ-οχο
d i m e r is f o r m e d :
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch016
2PFe(III)-0-0-Fe(III)P ^
2 PFe(III)-0-Fe(III)P +
0
2
A d d i t i o n o f t w o e q u i v a l e n t s o f n i t r o g e n o u s b a s e to t h e μ - p e r o x o d i m e r at l o w t e m p e r a t u r e g e n e r a t e s a n e w s p e c t r o s c o p i c s p e c i e s
(48):
P F e ( I I I ) - 0 - 0 - F e ( I I I ) P + 2 Β - » 2 B P F e O or B P F e - O - O - F e P B T h e u n i q u e p r o t o n N M R s p e c t r u m o f t h i s b a s e a d d u c t is s h o w n i n F i g u r e 3 a n d v a r i o u s p r o p e r t i e s are d e s c r i b e d i n T a b l e I . C u r i e l a w b e h a v i o r o f p r o t o n N M R shift values i m p l i e s that antiferromagnetic c o u p l i n g t h r o u g h a b r i d g i n g l i g a n d w o u l d h a v e to b e v e r y s m a l l ; h e n c e , t h e m o n o m e r i c s t r u c t u r e is f a v o r e d . S u c h a s t r u c t u r e is i s o e l e c tronic w i t h H R P C o m p o u n d II, B P F e ( I V ) = 0 . W i t h a magnetic mo m e n t o f 2.9 B . M . p e r i r o n a t o m the species m u s t b e i n the l o w s p i n state. R a p i d r e a c t i o n w i t h i r o n ( I I ) p o r p h y r i n s a n d o x y g e n t r a n s f e r r e a c t i o n w i t h t r i p h e n y l p h o s p h i n e (49) t o y i e l d t h e o x i d e f u r t h e r s u p p o r t t h e m o n o m e r i c f o r m u l a t i o n . T h e p a r a m a g n e t i c N M R shifts for t h i s c o m p o u n d are v e r y s m a l l , a n d m a y b e contrasted w i t h c o n s i d e r a b l y l a r g e r v a l u e s for m - c h l o r o p e r o x y b e n z o i c a c i d a n d i o d o s y l b e n z e n e o x i d a t i o n p r o d u c t s . R e l a t i v e l y s m a l l p a r a m a g n e t i c shifts a r e o b s e r v e d , h o w e v e r , for H R P C o m p o u n d I I (11 -14), a n d are r a t i o n a l i z e d b y t h e o r e t i c a l treatments that p l a c e s i z a b l e u n p a i r e d s p i n d e n s i t y o n the axial o x y g e n l i g a n d (3). M ô s s b a u e r s p e c t r a l s t u d i e s (50) f u r t h e r s u p p o r t a n i r o n ( I V ) , S = 1, c o n f i g u r a t i o n for t h e 1 - m e t h y l i m i d a z o l e a d d u c t g e n e r ated from the μ - p e r o x o species.
Other Chemical Oxidations A l t h o u g h h a l o g e n s a n d h a l o g e n d e r i v a t i v e s are a d e q u a t e o x i d a n t s for v a r i o u s d i v a l e n t m e t a l l o p o r p h y r i n s ( 5 1 , 5 2 ) , o n l y r e c e n t l y h a s a n o x i d i z i n g a g e n t o f g e n e r a l u t i l i t y b e e n r e p o r t e d for i r o n ( I I I ) a n d o t h e r t r i v a l e n t p o r p h y r i n s ( 5 3 ) . T h e s t a b l e p h e n o x a t h i i n c a t i o n r a d i c a l , as t h e S b C l " salt, p r o v i d e s a d e q u a t e r e d o x p o t e n t i a l for s i n g l e - e l e c t r o n oxidation o f a l l c o m m o n iron(III) p o r p h y r i n s . F u r t h e r details o f the p r e p a r a t i o n a n d c h a r a c t e r i z a t i o n o f o x i d i z e d i r o n p o r p h y r i n s are p r o 6
Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch016
16.
GOFF ET AL.
Resonance
I
I
ι
-2β
-15
-IB
of Oxidized
Metalloporphyrins
365
'
ι
I
-5
0
5
SHIFT IN PPM, FROM TMS Figure 3. Proton NMR spectrum of TPP(m-CH )Fe-0-0-FeTPP(mCH ) with excess l-methylimidazole in toluene-d at 200 K. Key: a = o-phenyl-H, h = m - and Ό-phenyl-H, c = uncoordinated l-methyl imidazole, d = pyrrole-H, and e = m-methyl-H. (Reproduced from Ref 48. Copyright 1980, American Chemical Society.) 3
3
8
v i d e d e l s e w h e r e (50). T h e c h e m i c a l oxidant generates o x i d i z e d i r o n p o r p h y r i n s w i t h e l e c t r o n i c s t r u c t u r e s e q u i v a l e n t to t h o s e p r e p a r e d b y e l e c t r o c h e m i c a l o x i d a t i o n ( v i d e infra). A l t h o u g h the r e a g e n t has b e e n u s e d to a l i m i t e d e x t e n t , z i n c p o r p h y r i n o x i d a t i o n s o c c u r w i t h t h e c a t i o n r a d i c a l p e r c h l o r a t e o f d i b e n z o d i o x i n (54). I n s p e c i a l cases t w o a d d i t i o n a l c h e m i c a l o x i d a n t s are o f v a l u e . E l e c t r o c h e m i c a l l y o x i d i z e d i r o n p o r p h y r i n s w e r e u t i l i z e d as c h e m i c a l o x i d a n t s for i r o n p o r p h y r i n s (55) or o t h e r m e t a l l o p o r p h y r i n s (52) w i t h lower oxidation potential. T h e doubly o x i d i z e d [ ( T P P F e ) 0 ] ( C 1 0 ) s p e c i e s is e s p e c i a l l y u s e f u l i n t h i s r e g a r d (55). A n a d d i t i o n a l c h e m i c a l o x i d a n t s y s t e m is v i a b l e for m e t a l l o p o r p h y r i n s w i t h l o w e r o x i d a t i o n potentials (^1.0 V , S C E ) . Thus, one equivalent o f iodine (in 2
Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
4
2
BIOLOGICAL REDOX COMPONENTS
366
c h l o r o f o r m ) a d d e d to a m e t h y l e n e c h l o r i d e s o l u t i o n o f t h e m e t a l l o p o r p h y r i n , f o l l o w e d b y a s u i t a b l e s i l v e r salt ( A g C 1 0 a c e t o n e , or A g N 0
3
or A g C F S 0
4
3
3
in
i n acetonitrile) o x i d i z e s the m e t a l l o p o r p h y r i n . T h i s
m e t h o d w a s u s e d for z i n c p o r p h y r i n s (54, 56), a n d m o r e r e c e n t l y for v a r i o u s i r o n p o r p h y r i n d e r i v a t i v e s (23,
57).
A report o f air o x i d a t i o n o f μ - ο χ ο iron(III) p o r p h y r i n d i m e r s i n the presence of strong L e w i s acids ( B F , E t O · B F , H B F , a n d H P F ) 3
z
3
4
6
was refuted b y subsequent electrochemical measurements
(58)
(59).
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch016
Electrochemical Oxidations Literature Results. W o l b e r g a n d M a n a s s e n f o u n d t h a t e l e c trochemical oxidation o f various metalloporphyrins y i e l d e d species a d e q u a t e l y s t a b l e for i n s i t u s p e c t r o s c o p i c e x a m i n a t i o n (60). I n p a r ticular, one-electron oxidation o f T P P F e ( I I I ) X gave a product w i t h a b r o a d e n e d Soret b a n d , no detectable E S R signals, a n d a solution m a g n e t i c m o m e n t o f 2.7 B . M . B a s e d o n these observations, the o x i d i z e d p r o d u c t w a s f o r m u l a t e d as a n i r o n ( I I I ) p o r p h y r i n π - c a t i o n r a d i c a l s p e c i e s . B e n z o n i t r i l e w a s e m p l o y e d as a p r e p a r a t i v e e l e c t r o l y tic solvent, u n l i k e subsequent studies where m e t h y l e n e c h l o r i d e was u t i l i z e d . T h i s solvent difference a n d the p o s s i b i l i t y o f other c o m p e t i n g reactions m a y e x p l a i n differences i n m a g n e t i c m o m e n t values ob t a i n e d b y other workers. S i m i l a r preparative scale e l e c t r o c h e m i c a l oxidations e m p l o y e d t e t r a p r o p y l a m m o n i u m p e r c h l o r a t e as a s u p p o r t i n g e l e c t r o l y t e i n m e t h y l e n e c h l o r i d e s o l v e n t (61, 62). I r o n ( I I I ) o c t a e t h y l p o r p h y r i n w a s e x a m i n e d a l o n g w i t h T P P F e C l a n d the μ - ο χ ο d i m e r forms o f b o t h synthetic iron(III) porphyrins. The singly oxidized species, ( T P P F e ) O C 1 0 , was isolated following evaporation of solvent and a h o t w a t e r w a s h to r e m o v e s u p p o r t i n g e l e c t r o l y t e salts. R e v e r s i b i l i t y o f oxidations was c o n f i r m e d v i a b o t h e l e c t r o c h e m i c a l a n d i o d i d e i o n re d u c t i o n to t h e p a r e n t i r o n ( I I I ) s p e c i e s . T h e s i n g l y o x i d i z e d μ - ο χ ο d i mers e x h i b i t e d an E S R s i g n a l n e a r g = 2, a n d a r e d u c e d m a g n e t i c m o m e n t o f 2 . 9 B . M . ( 4 0 ° C ) as a c o n s e q u e n c e o f F e - F e a n t i f e r r o m a g n e t i c c o u p l i n g . A s o l u t i o n m a g n e t i c m o m e n t o f 5.1 B . M . w a s o b t a i n e d for T P P F e C l " " . B a s e d l a r g e l y o n N M R s p e c t r a l m e a s u r e m e n t s , t h e o x i d i z e d d e r i v a t i v e s w e r e f o r m u l a t e d as i r o n ( I V ) c o m p o u n d s . T h i s i n terpretation f o l l o w e d from the r e l a t i v e l y s m a l l ( 4 - 7 p p m ) isotropic shifts for p h e n y l p r o t o n s o f T P P F e C l a n d ( T P P F e ) 0 . 2
4
1
+
+
2
Recent Results for Oxidized Iron Porphyrins.
Chemical and
electrochemical oxidation o f h i g h s p i n iron(III) porphyrins was evalu a t e d i n d e t a i l i n t h i s l a b o r a t o r y . T o s t a b i l i z e t h e o x i d i z e d state, v a r i o u s anionic ligands were synthetically incorporated i n place of usual c h l o r i d e ligands. T h e c o m p l e t e list i n c l u d e s X = F " , C l " , B r ~ , I",
Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
16.
GOFF ET A L .
ClOr,
Resonance of Oxidized Metalloporphyrins
367
S O / , NO3- N " , N C S " O P h " , Ο Ac", p - C H C e H S 0 - , H S 0 ~ , a n d C F 3 S O 3 " ( 6 3 ) . Q u i t e s u r p r i s i n g l y , t h e first o x i d a t i o n p o t e n t i a l for t h e T P P F e X c o m p l e x e s w a s i n v a r i a n t at 1.10 ± 0 . 0 2 V ( S C E , 0.1 M B u N C 1 0 , C H C 1 ) . T h i s o b s e r v a t i o n is c o n s i s t e n t w i t h ( b u t d o e s n o t p r o v e that) e l e c t r o n a b s t r a c t i o n is f r o m a p o r p h y r i n - b a s e d rather than a metal-centered m o l e c u l a r orbital. -
s
3
4
3
4
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch016
4
4
2
2
O x i d a t i o n p o t e n t i a l s are d i m i n i s h e d a n d s t a b i l i t y o f t h e o x i d i z e d p r o d u c t is c o n s i d e r a b l y e n h a n c e d v i a i n c o r p o r a t i o n o f e l e c t r o n r e l e a s i n g substituents i n the p o r p h y r i n structure. T h e o x i d i z e d i r o n ρ - m e t h o x y t e t r a p h e n y l p o r p h y r i n derivatives are m o r e r e a d i l y isolated a n d s h o w m o r e f a v o r a b l e s t a b i l i t y w i t h r e s p e c t to a u t o r e d u c t i o n . M o d i f i c a t i o n o f t h e s y n t h e t i c p r o c e d u r e s i n R e f e r e n c e s 61 a n d 62 p e r mitted isolation of o x i d i z e d c o m p o u n d s of analytical purity i n favorable cases ( 5 7 ) . O x i d i z e d i r o n t e t r a p h e n y l p o r p h y r i n , o c t a e t h y l p o r p h y r i n , etioporphyrin, and natural-derivative porphyrin compounds were p r e p a r e d i n b o t h t h e m o n o m e r i c a n d μ-οχο d i m e r i c * f o r m s . I s o l a b l e t w o - e l e c t r o n o x i d i z e d μ-οχο d i m e r c o m p o u n d s w e r e r e a d i l y g e n e r a t e d . C h a r a c t e r i z a t i o n o f o n e s u c h s p e c i e s is d e m o n s t r a t e d i n F i g u r e 4 , through N M R m o n i t o r i n g o f a titration o f ( T P P F e ) 0 into a solution o f (TPPFe) 0 (55). U p o n a d d i t i o n o f one e q u i v a l e n t o f ( T P P F e ) 0 , the s p e c t r u m for t h e s i n g l y o x i d i z e d c o m p l e x ( w h i c h m a y b e p r e p a r e d d i r e c t l y ) is o b t a i n e d . C o n t i n u a l a d d i t i o n o f ( T P P F e ) 0 y i e l d s s p e c t r a a p p r o a c h i n g that o f the parent ( T P P F e ) 0 . S u c h m e a s u r e m e n t s d e m onstrate b o t h r a p i d i n t r a m o l e c u l a r a n d i n t e r m o l e c u l a r e l e c t r o n trans fer, as w e l l as t h e r e v e r s i b i l i t y o f e l e c t r o c h e m i c a l o x i d a t i o n s . P e a k a s s i g n m e n t s are a l s o f a c i l i t a t e d b y s e q u e n t i a l s p e c t r a l o b s e r v a t i o n . 2
2 +
2
2
2
2
Proton N M R spectra are l i k e w i s e o b t a i n e d for oxidized m o n o m e r i c c o m p l e x e s , a n d s p e c t r a l assignments are l i s t e d i n T a b l e I ( 5 3 , 5 7 ) . L a r g e p h e n y l p r o t o n i s o t r o p i c shifts d i f f e r f r o m t h o s e r e p o r t e d e a r l i e r ( 6 1 , 6 2 ) , p e r h a p s as a c o n s e q u e n c e o f e l e c t r o n e x c h a n g e w i t h c o n s i d e r a b l e amounts o f r e d u c e d m a t e r i a l . A strong case c a n b e m a d e for π - c a t i o n r a d i c a l c h a r a c t e r o f t h e o x i d i z e d i r o n p o r p h y r i n b a s e d o n the alternation i n d i r e c t i o n a n d m a g n i t u d e o f p h e n y l p r o t o n shifts. T h u s , t h e E S R c o u p l i n g c o n s t a n t o f 0 . 3 2 G a u s s for t h e p h e n y l p r o t o n s o f T P P Z n C 1 0 π - c a t i o n r a d i c a l (64) m a y b e t r a n s l a t e d as a n N M R i s o t r o p i c s h i f t o f 2 3 p p m , or as o b s e r v e d c h e m i c a l s h i f t v a l u e s o f 3 1 p p m d o w n f i e l d or - 1 5 p p m u p f i e l d from T M S . C o r r e s p o n d e n c e o f t h e s e v a l u e s e x p e c t e d for a p o r p h y r i n r a d i c a l a n d t h o s e m e a s u r e d for T P P F e ( C l ) ( C 1 0 ) is c o m p e l l i n g e v i d e n c e for t h e i r o n ( I I I ) π - c a t i o n r a d ical nature of oxidized iron p o r p h y r i n complexes containing weakfield a n i o n i c l i g a n d s . T h e s a m e c o n c l u s i o n is r e a c h e d for t h e c h e m i c a l l y o x i d i z e d T P P F e C l species (53). 4
4
O f t h e t w o p o s s i b l e p o r p h y r i n r a d i c a l states ( 3 ) , t h e T P P F e ( C l ) ( C 1 0 ) c o m p l e x m u s t b e representative o f the a type. This radical 4
2u
Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
BIOLOGICAL REDOX COMPONENTS
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch016
368
Figure 4. Proton NMR titration of [(TPPFe) 0](Cl0 ) by (TPPFe) 0; oxidized dimer originally 5 m M in 0.5 mL of CD Cl , 26°C. Moles of(TPPFe) 0 added ( χ 10 ): a, 0.0; h, 1.05; c, 2.50; d, 3.91; and e, 5.00. (Reproduced from Ref. 55.Copyright 1979, American Chemical Society.) 2
4 2
2
2
2
6
2
t y p e is e x p e c t e d to e x h i b i t l a r g e u n p a i r e d r a d i c a l s p i n d e n s i t y at m e t h i n e carbon positions. T h e O E P F e ( C l ) ( C 1 0 ) d e r i v a t i v e , on the o t h e r h a n d , is b e t t e r d e s c r i b e d as a n a r a d i c a l t y p e . A l t h o u g h c a l c u l a t i o n s p r e d i c t n o u n p a i r e d s p i n d e n s i t y at m e t h i n e c a r b o n a t o m s for t h i s radical, E S R m e a s u r e m e n t s r e v e a l a m e t h i n e proton c o u p l i n g constant o f 1.48 G a u s s for O E P M g C 1 0 ( 3 ) . A s h i f t o f t h e O E P F e C l m e t h i n e p r o t o n N M R s i g n a l f r o m —54 to —18 p p m u p o n o x i d a t i o n ( 5 7 ) is n o t r a t i o n a l i z e d b y the 1.48-Gauss c o u p l i n g constant o f k n o w n a radicals. H o w e v e r , a d i r e c t c o r r e s p o n d e n c e is n o t n e c e s s a r i l y e x p e c t e d , b e cause the m e t h i n e proton experiences a large a n d v a r i a b l e s p i n d e n s i t y transfer f r o m the i r o n center (65). A h i g h s p i n c o n f i g u r a t i o n 4
lu
4
lu
Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
16.
GOFF ET AL.
369
Resonance of Oxidized Metalloporphyrins
is i n d i c a t e d b y s o l u t i o n m a g n e t i c
moments
o f 5.5 B . M . for b o t h
T P P ( p - O C H ) F e ( C l ) ( C 1 0 ) a n d O E P F e ( C l ) ( C 1 0 ) (57). 3
Môssbauer
4
results
4
for b o t h
chemically a n d electrochemically
o x i d i z e d c h l o r o c o m p l e x e s also s h o w l i t t l e p e r t u r b a t i o n o f c h a r g e at t h e i r o n c e n t e r as c o m p a r e d w i t h p a r e n t s p e c i e s ( T a b l e I). I s o m e r s h i f t v a l u e s o f 0.4 m m / s f o r p a r e n t i r o n p o r p h y r i n c h l o r o c o m p l e x e s a r e c h a n g e d b y n o m o r e t h a n 0 . 0 5 m m / s u p o n o x i d a t i o n (53, 57), i n c o n trast t o t h e a p p e a r a n c e o f v e r y l o w i s o m e r s h i f t v a l u e s for m o n o m e r i c c o m p l e x e s p r e s u m a b l y c o n t a i n i n g a n oxo l i g a n d . I R s p e c t r o s c o p y a l s o p r o v i d e s a d i a g n o s t i c t o o l for d e t e c t i n g p o r p h y r i n 7r-cation r a d i c a l c h a r a c t e r (66).
For k n o w n zinc and cobalt T P P
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch016
- 1
radical complexes a n intense n e w b a n d appears i n the 1 2 8 0 - c m re g i o n . T h i s b a n d is a l s o p r e s e n t i n b o t h o x i d i z e d m o n o m e r i c a n d d i m e r i c T P P F e s p e c i e s , as w e l l as i n o x i d i z e d T P P M n C l
complexes
d i s c u s s e d later. L i k e w i s e , o x i d a t i o n o f O E P c o m p l e x e s o f i r o n ( I I I ) , c o b a l t ( I I I ) , a n d z i n c ( I I ) is a s s o c i a t e d w i t h t h e a p p e a r a n c e o f a d i a g n o s tic b a n d i n the 1 5 5 0 - c m
- 1
region.
Various reactions o f o x i d i z e d iron p o r p h y r i n s w e r e
investigated
(67). F o r e x a m p l e , s t o i c h i o m e t r i c a c i d c l e a v a g e o f t h e o x i d i z e d μ - ο χ ο dimers yields expected (oxidized) monomeric derivatives. Addition o f n i t r o g e n o u s b a s e s at r o o m t e m p e r a t u r e r e d u c e s t h e i r o n p o r p h y r i n . A t - 5 0 ° C , on the other h a n d , N M R spectral m o n i t o r i n g o f i m i d a z o l e a d d i tion to o x i d i z e d m o n o m e r i c iron porphyrins demonstrates diligation o f t h e i m i d a z o l e g r o u p as a p r e f e r r e d e q u i l i b r i u m c o n d i t i o n . A l a r g e u p field
a n d d o w n f i e l d s p r e a d o f p h e n y l p r o t o n s i g n a l s is c o n s i s t e n t w i t h a
l o w s p i n i r o n ( I I I ) π - c a t i o n r a d i c a l f o r m u l a t i o n , as d e s c r i b e d for t h e h i g h s p i n iron(III) p o r p h y r i n radicals. A solution magnetic
moment
v a l u e o f 2.8 B . M . s u p p o r t s a l o w s p i n S = 1 (or S = I + S = i) c o n f i g u r a t i o n . π - C a t i o n r a d i c a l c h a r a c t e r is s t r o n g l y i n d i c a t e d b y t h e s p r e a d o f TPPFe
p h e n y l proton signals, b u t n o significant
antiferromagnetic
c o u p l i n g b e t w e e n r a d i c a l a n d i r o n ( I I I ) is a p p a r e n t . T h i s s i t u a t i o n i s a n a l o g o u s t o t h a t o f H R P C o m p o u n d I for w h i c h
antiferromagnetic
c o u p l i n g b e t w e e n i r o n ( I V ) a n d r a d i c a l s p i n s is v e r y s m a l l . A p o r p h y r i n r i n g m e t h y l s i g n a l a t 1 3 3 p p m ( 2 2 2 K ) for t h e d i i m i d a z o l e c o m p l e x o f o x i d i z e d i r o n e t i o p o r p h y r i n (67) e x p l a i n s t h e l a r g e r i n g m e t h y l shifts o f H R P C o m p o u n d I as b e i n g d u e t o r a d i c a l s p i n d e r e a l i z a t i o n r a t h e r t h a n t h e s u g g e s t e d h i g h s p i n i r o n ( I V ) f o r m u l a t i o n (10-12). Oxidized
Manganese
benzene-oxidized
species
Porphyrins. discussed
Aside
from
previously,
the
iodosyl-
manganese(IV)
p o r p h y r i n s have b e e n p r e p a r e d i n basic a q u e o u s solution t h r o u g h the a c t i o n o f h y d r o g e n p e r o x i d e o r s o d i u m h y p o c h l o r i t e (68-73). T h e d i o x y g e n - m a n g a n e s e ( I I ) a d d u c t h a s b e e n f o r m u l a t e d as a p e r o x o m a n g a n e s e ( I V ) c o m p l e x (74-76). W e p e r f o r m e d p r e p a r a t i v e - s c a l e
elec
t r o c h e m i c a l o x i d a t i o n r e a c t i o n s for m a n g a n e s e ( I I I ) p o r p h y r i n s as d e -
Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch016
370
BIOLOGICAL REDOX COMPONENTS
s c r i b e d for i r o n p o r p h y r i n s . S i m i l a r o x i d a t i o n p o t e n t i a l s a n d s o l ubilities permit analogous oxidation a n d isolation procedures. O x i d a tions w e r e t y p i c a l l y p e r f o r m e d u s i n g a p l a t i n u m w o r k i n g e l e c t r o d e i n m e t h y l e n e c h l o r i d e s o l u t i o n c o n t a i n i n g 1.0 m g o f m a n g a n e s e p o r p h y r i n / m L a n d 0.1 M i n t e t r a p r o p y l a m m o n i u m p e r c h l o r a t e s u p porting electrolyte. T h e counterelectrode a n d reference electrode w e r e s e p a r a t e d f r o m b u l k s o l u t i o n b y fine glass frits. T h e c u r r e n t flow w a s a l l o w e d to d r o p to 1% o f t h e o r i g i n a l v a l u e at w h i c h t i m e t h e electrolysis was stopped. Oxidation was m o n i t o r e d b y U V - v i s i b l e s p e c t r a l m e a s u r e m e n t s , as s h o w n i n F i g u r e 5. T h e o x i d i z e d m a t e r i a l m a y b e r e v e r s i b l y r e d u c e d b y t e t r a b u t y l a m m o n i u m i o d i d e s a l t (a l a r g e e x c e s s m u s t b e a v o i d e d or t h e m a n g a n e s e ( I I I ) i o d i d e c o m p l e x is formed). Oxidation potentials measured b y cyclic voltammetry approxi m a t e t h o s e for c o r r e s p o n d i n g i r o n ( I I I ) p o r p h y r i n s (1.1 V v s . S C E for T P P M n C l ) . C y c l i c v o l t a m m e t r i c scans o f the o x i d i z e d p r o d u c t s w e r e e q u i v a l e n t to t h o s e for t h e i n i t i a l c o m p l e x , t h u s i n d i c a t i n g n o i r r e v e r -
0.8h
0.6h
nm Figure 5. Electronic spectra of manganese porphyrins, approx. 9 x J O " M - Key: a, TPPMnCl, reduced product of in spectrum b and b, TPPMn(Cl)(Cl0 ). 5
CH Cl , material 2
4
Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
2
GOFF ET A L .
16.
Resonance
of Oxidized
Metalloporphyrins
371
sible modification o f the p o r p h y r i n r i n g . Isolation o f o x i d i z e d p r o d u c t w a s a c c o m p l i s h e d b y first e v a p o r a t i n g t h e m e t h y l e n e c h l o r i d e s o l u tion, w i t h slow addition o f benzene. T e t r a p r o p y l a m m o n i u m perchlorate is i n s o l u b l e i n b e n z e n e a n d w a s s e p a r a t e d b y zene
solution containing oxidized manganese
filtration.
The ben
p o r p h y r i n was
then
s u b j e c t e d to s l o w r o t a r y e v a p o r a t i o n w i t h a d d i t i o n o f h e p t a n e .
The
solid product m a y be separated room temperature.
by
filtration
Oxidized compounds
a n d v a c u u m d r i e d at
prepared
i n this
manner
include TPPMn(Cl)(C10 ), TPP(p-OCH )Mn(Cl)(C10 ), and O E P M n 4
3
4
(C1)(C10 ). 4
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch016
P r o t o n N M R s p e c t r a for m a n g a n e s e ( I I I ) p o r p h y r i n s w e r e r e p o r t e d p r e v i o u s l y ( 7 7 ) . T h e s p e c t r u m for T P P M n C l is f o u n d i n F i g u r e 6 a .
CDHCh
PYRROLE
PPM
-20
•40
•60
Figure 6. Proton NMR spectra of manganese porphyrins, CD Cl solvent, 29°C, TMS reference. Key: a, TPPMnCl and b, TPPMn(Cl)(Cl0 ); X = salt and benzene impurities. 2
4
Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
2
BIOLOGICAL REDOX COMPONENTS
372
T h i s s p e c i e s is i s o e l e c t r o n i c w i t h a n i r o n ( I V ) p o r p h y r i n , b u t t h e p y r r o l e p r o t o n r e s o n a n c e is far u p f i e l d r a t h e r t h a n d o w n f i e l d as is o x i d i z e d T P P F e ( C l ) ( C 1 0 ) . T h i s o b s e r v a t i o n f u r t h e r s u p p o r t s t h e 7r-cation r a d i c a l f o r m u l a t i o n for o x i d i z e d i r o n p o r p h y r i n s . A p r o t o n N M R s p e c t r u m for T P P M n ( C l ) ( C 1 0 ) is s h o w n i n F i g u r e 6 b . N o gross s p e c t r a l c h a n g e s are n o t e d u p o n o x i d a t i o n , a n d the large s p l i t t i n g o f p h e n y l signals does n o t o c c u r . T h e m a j o r s p e c t r a l c h a n g e is f o u n d i n b r o a d e n i n g a n d u p field s h i f t o f t h e p y r r o l e p r o t o n r e s o n a n c e . C h e m i c a l s h i f t v a l u e s for O E P M n ( C l ) ( C 1 0 ) a r e as f o l l o w s ( w i t h t h o s e for O E P M n C l l i s t e d i n p a r e n t h e s e s ) : m e t h i n e , 7 0 P P M (52); C H , 16.3 (22.8); a n d C H , 2.7 (2.6). 4
4
4
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch016
2
3
E l e c t r o n s p i n r e s o n a n c e s p e c t r a a r e o b s e r v e d for t h e o d d - s p i n , o x i d i z e d m a n g a n e s e c o m p l e x e s , as m a y b e s e e n i n F i g u r e 7. A b r o a d g = 2 . 0 f e a t u r e is c o m m o n t o a l l s p e c i e s , w i t h l i n e w i d t h s r a n g i n g f r o m 3 0 0 G a u s s for O E P M n ( C l ) ( C 1 0 ) t o 5 0 0 G a u s s for T P P ( p - O C H ) M n ( C l ) ( C 1 0 ) . A w e a k e r g = 3.0 c o m p o n e n t is a p p a r e n t for O E P M n (C1)(C10 ). V a r i a b l e appearance o f this s e c o n d signal a n d different l i n e w i d t h s m a y r e f l e c t d i f f e r e n t m a g n i t u d e s a n d m e c h a n i s m s for r a d i c a l - m a n g a n e s e s p i n - s p i n interactions a m o n g diverse p o r p h y r i n s t r u c t u r a l types. T h e s e spectra differ from those o f k n o w n or s u g g e s t e d m a n g a n e s e ( I V ) c o m p o u n d s (73-75, 78) i n e x h i b i t i n g m u c h b r o a d e r a b s o r p t i o n s l a c k i n g a n y h y p e r f i n e s t r u c t u r e . T h e b e s t e x p l a n a t i o n is b a s e d o n t h e m a n g a n e s e ( I I I ) 7r-cation r a d i c a l f o r m u l a t i o n . T h e g = 2 s i g n a l is m o s t l i k e l y d e r i v e d f r o m t h e r a d i c a l , w i t h c o n s i d e r a b l e e l e c tronic relaxation from the paramagnetic metal center. T h e m a g n e t i c m o m e n t v a l u e o f 4.7 B . M . for T P P M n ( C l ) ( C 1 0 ) is i n v a r i a n t w i t h t e m perature ( - 5 0 ° to 2 9 ° C ) , i n d i c a t i n g that a n y antiferromagnetic b e h a v i o r is e i t h e r v e r y s t r o n g o r v e r y w e a k . T h e m a n g a n e s e m u s t b e h i g h s p i n , b u t t h e m a g n e t i c m o m e n t v a l u e is n o t o t h e r w i s e p a r t i c u l a r l y elucidating i n terms of possible " s p i n - o n l y " formulations. 4
3
4
4
4
A s s i g n m e n t o f the manganese(III) π - c a t i o n r a d i c a l electronic s t r u c t u r e is c o n s i s t e n t w i t h t h e b r o a d e n i n g a n d i n t e n s i t y loss o f S o r e t bands, a n d a general increase i n intensity i n the l o n g w a v e l e n g t h s p e c t r a l r e g i o n . A b s e n c e o f l a r g e i s o t r o p i c p h e n y l p r o t o n N M R shifts is i n d i c a t i v e o f l i t t l e u n p a i r e d s p i n d e n s i t y at t h e m e t h i n e p o s i t i o n , a n d is r e a d i l y e x p l a i n e d b y a s s u m i n g that an a t y p e r a d i c a l is f o r m e d . O x i d i z e d m a n g a n e s e p o r p h y r i n s are i s o e l e c t r o n i c w i t h H R P C o m p o u n d I , b u t a d m i t t e d l y d i f f e r i n s p i n state. Xu
Conclusion A variety o f p h y s i c a l e v i d e n c e demonstrates the r a d i c a l character of electrochemically oxidized iron and manganese porphyrins. This formulation m u s t b e q u a l i f i e d , h o w e v e r , b y n o t i n g that these species
Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
GOFF ET AL.
373 Resonance
of Oxidized
Metalloporphyrins
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch016
16.
Figure 7. ESR spectra of oxidized manganese porphyrins, 2 raM in 1:1 methylene chloride-toluene, 77 K, 50-5050 Gauss sweep. Key: a, OEPMn(Cl)(Cl0 ) and b, TPP(p-OCH )Mn(Cl)(Cl0 ). 4
3
4
Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
374
BIOLOGICAL REDOX COMPONENTS
are associated with only weak-field anionic ligands. The wellrecognized role of oxo ligands in stabilizing high oxidation state metal ions seems to apply for the oxidized metalloporphyrins generated by iodosylbenzene oxidation or μ,-peroxo dimer cleavage reactions. The role of a frans-imidazole or similar strong-field ligand in dictating and/or stabilizing metal-centered oxidation remains to be elucidated.
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch016
Acknowledgments Support from N S F Grant C H E 79-10305 and N I H Grant G M 28831-01 is gratefully acknowledged. We thank R. E . Cofrman of this Department for assistance with E S R determinations, and D . N . Hendrickson of the University of Illinois for providing Môssbauer mea surements. Literature
Cited
1. Hewson, W. D.; Hager, L. P. In "The Porphyrins;" Dolphin, D., Ed.; Academic: New York, 1979; Vol. 7, pp. 295-332. 2. Dunford, H. B.; Stillman, J. S. Coord. Chem. Rev. 1976, 19, 187. 3. Hanson, L. K.; Chang, C. K.; Davis, M. S.; Fajer,J.J.Am. Chem. Soc. 1981, 103, 663. 4. Dolphin, D.; Forman, Α.; Borg, D. C.; Fajer, J.; Felton, R. H. Proc. Natl Acad. Sci. USA 1971, 68, 614. 5. Schulz, C. E.; Devaney, P. W.; Winkler, H.; Debrunner, P. G.; Doan, N.; Chiang, R.; Rutter, R.; Hager, L. P. FERS Lett. 1979, 103, 102. 6. Harami, T.; Maeda, Y.; Morita, Y.; Trautwein, Α.; Gonser, U. J. Chem. Phys. 1977, 67, 1164. 7. Moss, T. H.; Ehrenberg, Α.; Bearden, A. J. Riochemistry 1969, 8, 4159. 8. Yonetani, T.; Schleyer, H.; Ehrenberg, A. J. Biol. Chem. 1966, 241, 3240. 9. Hoffman, Β. M.; Roberts, J. E.; Brown, T. G.; Kang, C. H.; Margoliash, E . Proc. Natl. Acad. Sci. USA 1979, 76, 6132. 10. Morishima, I.; Ogawa, S.J.Am. Chem. Soc. 1978, 100, 7125. 11. Morishima, I.; Ogawa, S. Biochem. Biophys. Res. Commun. 1978, 83, 946. 12. Morishima, I.; Ogawa, S. Biochemistry 1978, 17, 4384. 13. La Mar, G. N.; de Ropp, J. S.J.Am. Chem. Soc. 1980, 102, 395. 14. La Mar, G. N.; de Ropp, J. S.; Smith, K. M.; Langry, K. C. J. Riol. Chem. 1981, 256, 237. 15. Roberts, J. E.; Hoffman, B. M.; Rutter, R.; Hager, L. Ρ. J. Biol. Chem. 1981, 256, 2118. 16. Chang, C. K.; Dolphin, D. In "Bioorganic Chemistry;" Van Tamelen, Ε. E., Ed.; Academic: New York, 1978; Vol. 4, pp. 37-80. 17. Moore, G. R.; Williams, R. J. P. Coord. Chem. Rev. 1976, 18, 125. 18. Seiter, C. Η. Α.; Angelos, S. G. Proc. Natl. Acad. Sci. USA 1980, 77, 1806. 19. Traylor, T. G.; Chang, C. K.; Geibel, J.; Berzinis, Α.; Mincev, T.; Cannon, J.J.Am. Chem. Soc. 1979, 101, 6716. 20. Reed, C. A. In "Metal Ions in Biological Systems;" Sigel, H., Ed.; Dekker: New York, 1978; Vol. 7, pp. 277-310. 21. Summerville, D. Α.; Cohen, I. A.J.Am. Chem. Soc. 1976, 98, 1747. 22. Scheidt, W. R.; Summerville, D. Α.; Cohen, I. A.J.Am. Chem. Soc. 1976, 98, 6623. 23. Kadish, Κ. M.; Rhodes, R. K.; Bottomley, L. Α.; Goff, Η. M. Inorg. Chem. 1981, 20, 3195. 24. Mansuy, D. Pure Appl. Chem. 1980, 52, 681.
Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch016
16.
GOFF ET AL.
Resonance of Oxidized Metalloporphyrins
375
25. Mansuy, D.; Lange, M.; Chottard,J.-C.J.Am. Chem. Soc. 1978, 100, 3213. 26. Mansuy, D.; Lange, M.; Chottard,J.-C.J.Am. Chem. Soc. 1979,101, 6437. 27. Mansuy, D.; Chottard, J.-C.; Lange, M.; Battioni, J. P. J. Mol. Catalysis 1980, 7, 215. 28. Maltempo, M. M. J. Chem. Phys. 1974, 61, 2540. 29. Reed, C. Α.; Mashiko, T.; Bentley, S. P.; Kastner, Μ. Ε.;Scheidt,W. R.; Spartalian, K.; Lang, G. J. Am. Chem. Soc. 1979, 101, 2948. 30. Gott, H.; Shimomura, E. J. Am. Chem. Soc. 1980, 102, 31. 31. Johnson, A. W.; Ward, D.; Batten, P.; Hamilton, A. L.; Shelton, G.; Elson, C. M. J. Chem. Soc., Perkin Trans. I 1975, 2076. 32. Johnson, A. W.; Ward, D. J. Chem. Soc., Perkin Trans. I 1977, 720. 33. Batten, P.; Hamilton, A. L.; Johnson, A. W.; Mahendran, M.; Ward, D.; King, T.J.J.Chem. Soc., Perkin Trans. I 1977, 1623. 34. Callot, H.J.;Tschamber, T.; Chevrier, B.; Weiss, R. Angew. Chem., Int. Ed. Engl. 1975, 14, 567. 35. Goff, H. M.; Phillippi, M. A. Inorg. Nucl. Chem. Lett. 1981, 17, 239. 36. Chevrier, B.; Weiss, R.; Lange, M.; Chottard, J.-C.; Mansuy, D. J. Am. Chem. Soc. 1981, 103, 2899. 37. Latos-Grazynski, L.; Cheng, R.-J.; La Mar, G. N.; Balch, A. L.J.Am. Chem. Soc. 1981, 103, 4270. 38. Groves, J. T.; Nemo, T. E.; Myers, R. S.J.Am. Chem. Soc. 1979, 101, 1032. 39. Groves, J. T.; Kruper, W.J.J.Am. Chem. Soc. 1979, 101, 7613. 40. Groves, J. T.; Kruper, W.J.;Haushalter, R. C.J. Am. Chem. Soc. 1980, 102, 6375. 41. Hill, C. L.; Schardt, B.C.J.Am. Chem. Soc. 1980, 102, 6374. 42. Willner, L.; Otvos, J. W.; Calvin,M.J.Chem. Soc., Chem. Commun. 1980, 964. 43. Chang, C. K.; Kuo,M.-S.J.Am. Chem. Soc. 1979, 101, 3413. 44. Groves, J. T.; Kruper, W. J.; Nemo, T. E . ; Myers, R.S.J.Mol. Catalysis 1980, 7, 169. 45. Groves,J.T.; Haushalter, R. C.; Nakamura, M.; Nemo, T. E.; Evans, B.J.J. Am. Chem. Soc. 1981, 103, 2884. 46. Chin, D.-H.; La Mar, G. N.; Balch, A. L. J. Am. Chem. Soc. 1980, 102, 4344. 47. Chin, D.-H.; Del Gaudio,J.;La Mar, G. N.; Balch, A.L.J.Am. Chem. Soc. 1977, 99, 5486. 48. Chin, D.-H.; Balch, A. L.; La Mar, G.N.J.Am. Chem. Soc. 1980, 102, 1446. 49. Chin, D.-H.; La Mar, G. N.; Balch, A.L.J.Am. Chem. Soc. 1980, 102, 5945. 50. Reed, C. Α., Chapter 15 in this book 51. Fajer, J.; Borg, D. C.; Forman, Α.; Felton, R. H.; Vegh, L.; Dolphin, D. Ann. N.Y. Acad. Sci. 1973, 206, 349. 52. Fajer, J.; Borg, D. C.; Forman, Α.; Adler, A. D.; Varadi, V. J. Am. Chem. Soc. 1974, 96, 1238. 53. Gans, P.; Marchon, J.-C.; Reed, C. Α.; Regnard,J.-R.Nouv.J.Chimie 1981, 5, 203. 54. Shine, H.J.;Padilla, A. G.; Wu, S.-M. J. Org. Chem. 1979, 44, 4069. 55. Phillippi, Μ. Α.; Goff, Η.M.J.Am. Chem. Soc. 1979, 101, 7641. 56. Barnett, G. H.; Smith, K. M. J. Chem. Soc., Chem. Commun. 1974, 772. 57. Phillippi, Μ. Α.; Goff, Η. M., submitted for publication. 58. Wollman, R. G.; Hendrickson, D. N. Inorg. Chem. 1977, 16, 723. 59. Cohen, I. Α.; Lavallee, D. K.; Kopelove, A. B. Inorg. Chem. 1980, 19, 1098. 60. Wolberg, Α.; Manassen, J. J. Am. Chem. Soc. 1970, 92, 2982. 61. Felton, R. H.; Owen, G. S.; Dolphin, D.; Fajer,J.J.Am. Chem. Soc. 1971, 93, 6332. 62. Felton, R. H.; Owen, G. S.; Dolphin, D.; Forman, Α.; Borg, D. C.; Fajer, J. Ann. N.Y. Acad. Sci. 1973, 206, 504.
Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch016
376
BIOLOGICAL REDOX COMPONENTS
63. Phillippi, Μ. Α.; Shimomura, E. T.; Goff, H. M. Inorg. Chem. 1981, 20, 1322. 64. Fajer,J.;Borg, D. C.; Forman, Α.; Dolphin, D.; Felton, R.Η.J.Am. Chem. Soc. 1970, 92, 3451. 65. Budd, D. L.; La Mar, G. N.; Langry, Κ. C.; Smith, K. M.; Nayyir-Mazhir, R.J.Am. Chem. Soc. 1979, 101, 6091. 66. Shimomura, E. T.; Phillippi, Μ. Α.; Goff, H. M.; Scholz, W. F.; Reed, C. Α., J. Am. Chem. Soc. 1981, 103, 6778. 67. Phillippi, Μ. Α.; Goff, Η. M., submitted for publication. 68. Loach, P. Α.; Calvin, M. Biochemistry 1963, 2, 361. 69. Tabushi, I.; Kojo, S. Tetrahedron Lett. 1974, 1577. 70. Tabushi, I.; Kojo, S. Tetrahedron Lett. 1975, 305. 71. Tabushi, I.; Koga, N. Tetrahedron Lett. 1978, 5017. 72. Tabushi, I.; Koga, N.J.Am. Chem. Soc. 1979, 101, 6456. 73. Boucher, L. J. Coord. Chem. Rev. 1972, 7, 289. 74. Weschler, C. J.; Hoffman, B. M.; Basolo, F.J.Am. Chem. Soc. 1975, 97, 5278. 75. Hoffman, B. M.; Szymanski, T.; Brown, T. G.; Basolo, F.J.Am. Chem. Soc. 1978, 100, 7253. 76. Hanson, L. K.; Hoffman, B. M.J.Am. Chem. Soc. 1980, 102, 4602. 77. La Mar, G. N.; Walker, F. A.J.Am. Chem. Soc. 1975, 97, 5103. 78. Richens, D. T.; Sawyer, D. T.J.Am. Chem. Soc. 1979, 101, 3681. RECEIVED for review June 2, 1981. ACCEPTED August 11, 1981.
Kadish; Electrochemical and Spectrochemical Studies of Biological Redox Components Advances in Chemistry; American Chemical Society: Washington, DC, 1982.