Manufacture, Properties, and Uses of Organolithium Compounds

of lithium sand was a step i n this direction. T h e use of lithium ..... (1) Aries, R. S., 130th Meeting, ACS, Atlantic City, N. J., September 1956. ...
2 downloads 0 Views 2MB Size
Manufacture,

Properties,

and

Uses

of Organolithium Compounds

DONALD L. ESMAY

Downloaded by UNIV OF ARIZONA on September 28, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch004

Lithium Corp. of America, Inc., Rand Tower, Minneapolis, Minn.

The various methods of preparing organolithium compounds and the effect on such preparations of factors such as particle size of the lithium metal, solvent, temperature, and time are reviewed. Particular emphasis is placed on some recent studies which show that lithium dispersions can be used to advantage in the preparation of organolithium compounds. For example, phenyllithium can be prepared from chlorobenzene satisfactorily by using lithium dispersions. The general physical and chemical properties of organolithium compounds of interest to commercial producers and users are covered. Comparisons of stabilities of various types of organolithium compounds are of particular interest. In general, only the aryllithium compounds are sufficiently stable in ether to allow extended storage. Even in hydrocarbon solvents, such as benzene and petroleum ether, storage of organolithium compounds at temperatures of 0°C., or lower, is recommended. A review is presented of the more important present and potential commercial uses of organolithium compounds.

Organolithium compounds have received attention as reagents for commercial use only in recent years. This is undoubtedly a reflection of the increasing amount of research that is being carried out each year on these compounds. The fact that more papers were published on organolithium chemistry in the 2-year period, 1954-1955, than had appeared altogether prior to 1949, underlines the tremendous increase in interest in this field of chemistry. Despite this increased concentration of research effort, a review of the literature on organolithium chemistry reveals that interest is still chiefly centered on the uses of these compounds. For example, although well over one hundred organolithium compounds are reported in the literature as having been prepared in solution, scarcely a dozen have been isolated as pure compounds. Even those that have been isolated have been examined only superficially. Not only is information of a fundamental nature almost nonexistent, but knowledge of a practical type is also very limited. In only a few isolated instances have systematic studies been carried out on the effect of variations in solvent, temperature, and time on the yields obtained in organolithium preparations. Optimum conditions for carrying out reactions involving organolithium 46

In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

47

ESMAY—ORGANOLITHIUM COMPOUNDS

c o m p o u n d s h a v e been d e t e r m i n e d i n e v e n fewer cases. A t p r e s e n t , t h e r e f o r e , c o n s i d ­ e r a t i o n o f t h e possible use o f a n o r g a n o l i t h i u m c o m p o u n d i n a c o m m e r c i a l process a l m o s t i n v a r i a b l y i n v o l v e s c a r r y i n g o u t a m o r e o r less e x t e n s i v e p r o g r a m o f r e s e a r c h to determine o p t i m u m conditions f o r preparing a n d using the compound. I n this p a p e r t h e a u t h o r has a t t e m p t e d t o assemble as m u c h as possible o f t h e m o s t i m p o r t a n t i n f o r m a t i o n o n t h e p r e p a r a t i o n , p r o p e r t i e s , a n d uses o f o r g a n o l i t h i u m c o m p o u n d s . H e h a s t r i e d t o stress t h e areas d e e m e d o f greatest i m p o r t a n c e t o those i n t e r e s t e d i n c o m ­ m e r c i a l uses o f these c o m p o u n d s , a n d t o i n d i c a t e areas w h e r e r e s e a r c h i s u r g e n t l y needed.

Downloaded by UNIV OF ARIZONA on September 28, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch004

Preparation of Organolithium Compounds T h e preparations of organolithium compounds can be divided into two major g r o u p s : those w h i c h use m e t a l l i c l i t h i u m a n d those w h i c h use a n o t h e r o r g a n o l i t h i u m c o m p o u n d as t h e source o f t h e l i t h i u m a t o m . I n t h e f o l l o w i n g l i s t i n g o f t h e m a i n p r o c e d u r e s w h i c h h a v e b e e n u s e d , t h e first f o u r m e t h o d s use m e t a l l i c l i t h i u m a n d t h e o t h e r s use a n o r g a n o l i t h i u m c o m p o u n d . O n l y one o r t w o t y p i c a l e x a m p l e s h a v e b e e n g i v e n i n e a c h case. O r g a n o l i t h i u m c o m p o u n d s h a v e been p r e p a r e d b y : 1. D i r e c t a d d i t i o n of l i t h i u m m e t a l t o a c a r b o n - c a r b o n u n s a t u r a t e d b o n d (52) : C H CH==CHC H5 + 2 L i - ^ 6

5

C6H CH(Li)CH(Li)C H5

6

2. M e t a l - m e t a l exchange

5

6

(22, 51, 53, 55) :

R H g + 2 L i -> 2 R L i + H g 2

R M g C l + 2 L i -> R L i + L i C l + M g 3. H y d r o g e n - m e t a l exchange

(7) :

R C = C H + 2Li

> RC==CLi ( + L i H ) NHs(l)

4. H a l o g e n - m e t a l exchange

(7, 13, 67) : RX

+ 2Li

RLi+ LiX

5. A d d i t i o n o f a n o r g a n o l i t h i u m c o m p o u n d t o a c a r b o n - c a r b o n (51,54,64, 65): X

unsaturated bond

C=(j + RLi -^C(R)—CiLi)^ /

/

\

/

\

6. H y d r o g e n - m e t a l i n t e r c o n v e r s i o n ( m e t a l a t i o n )

(29) :

R H + R ' L i -> R L i + R ' H 7. M e t a l - m e t a l i n t e r c o n v e r s i o n (55, 68) : R H g + 2 R ' L i -> 2 R L i + R ' H g 2

2

C H CH MgCl + 2C H Li-> C H CH Li + (C H ) Mg + LiCl 6

5

2

6

6

6

6

2

6

5

2

8. H a l o g e n - m e t a l i n t e r c o n v e r s i o n (41): RX

+ R'Li -* RLi + R ' X

9. D i s p r o p o r t i o n a t i o n (66) : 2LiCH

>Li CH

3

2

2

+ CH

4

200-240°C.

O n l y t h e first f o u r m e t h o d s i n v o l v e d i r e c t p r e p a r a t i o n o f a n o r g a n o l i t h i u m c o m ­ p o u n d . M e t h o d s 5 , 6, 7, a n d 8 d e p e n d u p o n t h e use o f a n o r g a n o l i t h i u m c o m p o u n d p r e p a r e d b y one o f t h e first f o u r m e t h o d s . T h u s , while the last four methods, a n d p a r t i c u l a r l y M e t h o d 8 , a r e u s e f u l f o r t h e p r e p a r a t i o n of n u m e r o u s o r g a n o l i t h i u m c o m -

In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

48

ADVANCES IN CHEMISTRY SERIES

p o u n d s , p r i n c i p a l l y o n a l a b o r a t o r y scale, c o m m e r c i a l usefulness d e p e n d s p r i m a r i l y u p o n the feasibility of p r e p a r i n g the intermediate o r g a n o l i t h i u m c o m p o u n d . Conse­ q u e n t l y , t h e a u t h o r discusses m a i n l y M e t h o d s 1, 2 , 3, a n d 4.

Downloaded by UNIV OF ARIZONA on September 28, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch004

T h e direct a d d i t i o n of l i t h i u m m e t a l t o a n u n s a t u r a t e d linkage ( M e t h o d 1) occurs i n o n l y a f e w s p e c i a l cases. T h i s s e v e r e l y l i m i t s a n y use o f t h i s m e t h o d , p a r t i c u l a r l y o n a c o m m e r c i a l scale. T h e m e t a l - m e t a l exchange p r o c e d u r e o f M e t h o d 2 w a s i m p o r t a n t d u r i n g t h e e a r l y investigations o n organolithium compounds b u t is largely only of historical interest n o w . M o r e c o n v e n i e n t p r e p a r a t o r y m e t h o d s are n o w a v a i l a b l e , e x c e p t i n a few s p e c i a l cases—e.g., t h e p r e p a r a t i o n o f b e n z y l l i t h i u m v i a b e n z y l m a g n e s i u m c h l o r i d e . T h e use of t h e h y d r o g e n - m e t a l exchange r e a c t i o n ( M e t h o d 3) has t o d a t e b e e n l i m i t e d t o t h e p r e p a r a t i o n of a f e w a l k y n y l l i t h i u m compounds. A t p r e s e n t t h e r e is n o p u b l i s h e d a c c o u n t o f t h e use o f t h i s p r o c e d u r e f o r the p r e p a r a t i o n o f a n a l k y l o r a r y l l i t h i u m compound. T h e m e t a l - h a l o g e n exchange r e a c t i o n o f M e t h o d 4 is t o d a y the p r o c e d u r e u s e d a l m o s t e x c l u s i v e l y i n t h e p r e p a r a t i o n of o r g a n o l i t h i u m c o m p o u n d s f r o m l i t h i u m m e t a l . I t can be c a r r i e d out conveniently a n d r a p i d l y i n r e l a t i v e l y simple equipment t o give h i g h y i e l d s o f t h e d e s i r e d o r g a n o l i t h i u m p r o d u c t . A n u m b e r o f r e v i e w s (7, 9, 18, 29, 41, 43, 45, 56, 61) o f o r g a n o l i t h i u m c h e m i s t r y c o n t a i n e i t h e r d e t a i l e d i n s t r u c t i o n s o r references t o sources o f e x p e r i m e n t a l d e t a i l s f o r t h e p r e p a r a t i o n o f specific o r g a n o ­ lithium compounds. C o n s e q u e n t l y , n o d e t a i l e d c o v e r a g e is g i v e n h e r e . I n g e n e r a l , y i e l d s o f p r i m a r y o r g a n o l i t h i u m c o m p o u n d s o f 75 t o 9 0 % are r e a d i l y o b t a i n a b l e u n d e r the proper conditions. T h e process o f M e t h o d 4 suffers f r o m t h e f a c t t h a t a n o r g a n i c h a l i d e , a n d o f t e n c o n t a i n i n g a p a r t i c u l a r h a l o g e n , i s a necessary s t a r t i n g m a t e r i a l . W h i l e s u c h c o m ­ p o u n d s are u s u a l l y o b t a i n a b l e i n a d e q u a t e s u p p l y , the p r i c e is o f t e n s u c h as t o d i s ­ courage large-scale usage, p a r t i c u l a r l y w h e n i t i s necessary t o use a n o r g a n i c b r o m i d e . I n g e n e r a l , t h e b r o m i d e s o f l o w e r m o l e c u l a r w e i g h t cost a b o u t t w i c e as m u c h as t h e c h l o r i d e s , y e t i n some i n s t a n c e s — e . g . , t h e p r e p a r a t i o n o f p h e n y l l i t h i u m — c o n v e n i e n c e i n h a n d l i n g , h i g h e r y i e l d s , c l e a n e r p r o d u c t s , etc., m a k e t h e b r o m i d e t h e reagent o f choice. P r e p a r a t i o n s o f o r g a n o l i t h i u m c o m p o u n d s c a n b e m a d e i n v a r i o u s ethers ( d i a l k y l e t h e r s , d i o x a n e , t e t r a h y d r o f u r a n , e t c . ) , h y d r o c a r b o n s o l v e n t s (benzene, c y c l o h e x a n e , p e t r o l e u m e t h e r , e t c . ) , a n d l i q u i d a m m o n i a i n t h e s p e c i a l case o f a l k y n y l l i t h i u m c o m ­ pounds. R e a g e n t s a n d s o l v e n t s s h o u l d be as p u r e as possible, a n d s h o u l d be t h o r o u g h l y dry. A b l a n k e t o f i n e r t gas ( n i t r o g e n , h e l i u m , o r a r g o n ) s h o u l d b e m a i n t a i n e d o v e r t h e r e a c t i o n m i x t u r e a t a l l t i m e s . T h e t e m p e r a t u r e at w h i c h the p r e p a r a t i o n is c a r r i e d o u t m a y v a r y f r o m — 7 5 ° t o the b o i l i n g p o i n t o f t h e s o l v e n t , d e p e n d i n g u p o n t h e p a r ­ t i c u l a r substance desired. S i m i l a r l y , the t i m e required for c a r r y i n g out the p r e p a r a t i o n w i l l v a r y f r o m a few minutes t o several hours. Y i e l d s o f a l k y l l i t h i u m c o m p o u n d s are best d e t e r m i n e d b y the m e t h o d of d o u b l e t i t r a t i o n (19). I n t h i s p r o c e d u r e o n e s a m p l e o f t h e s o l u t i o n o f o r g a n o l i t h i u m c o m ­ p o u n d is h y d r o l y z e d d i r e c t l y w h i l e a second s a m p l e is t r e a t e d w i t h b e n z y l c h l o r i d e p r i o r t o t i t r a t i o n w i t h s t a n d a r d a c i d . C a l c u l a t i o n s b a s e d o n t h e difference i n t h e t w o t i t r a ­ t i o n s give a m o r e a c c u r a t e y i e l d d e t e r m i n a t i o n t h a n does the o l d e r p r o c e d u r e of s i m p l y t i t r a t i n g t h e s a m p l e t h a t is h y d r o l y z e d d i r e c t l y . T h e s o l v e n t u s e d i n c a r r y i n g o u t the o r g a n o l i t h i u m p r e p a r a t i o n exerts a definite effect o n t h e y i e l d o b t a i n e d a n d t h e t i m e r e q u i r e d f o r t h e r e a c t i o n t o g o t o c o m p l e t i o n . I n g e n e r a l , ethers accelerate t h e r e a c t i o n w h i l e h y d r o c a r b o n s o l v e n t s t e n d t o r e t a r d t h e reaction. F o r example, w h e n the p r e p a r a t i o n of 1 - n a p h t h y l l i t h i u m b y the reaction of 1-bromonaphthalene w i t h a l k y l l i t h i u m compounds was c a r r i e d out i n v a r i o u s solvents (28), t h e r a t e o f t h e r e a c t i o n d e p e n d e d u p o n t h e s o l v e n t u s e d . T h e effectiveness o f t h e s o l v e n t s w a s f o u n d t o decrease i n t h e f o l l o w i n g o r d e r : ( C H ) 0 > (OsH-OiO > C H N ( C H ) 4

9

2

6

5

9

?

> C H 3

5

> cyclohexane > p e t r o l e u m ether

In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

49

ESMAY—ORGANOLITHIUM COMPOUNDS

I n some cases a change i n t h e s o l v e n t has been f o u n d e v e n t o change t h e course of t h e r e a c t i o n . F o r e x a m p l e , t h i s effect was o b s e r v e d i n t h e r e a c t i o n o f n - b u t y l l i t h i u m w i t h / ? - b r o m o s t y r e n e (27). W i t h l o w b o i l i n g p e t r o l e u m e t h e r as t h e s o l v e n t , t h e p r o d ­ u c t w a s f o u n d t o b e β - s t y r y l l i t h i u m , whereas w h e n d i e t h y l e t h e r was u s e d , p h e n y l e t h y n y H i t h i u m was o b t a i n e d : > C H —C=CLi 6

5

(C H ) 0 2

C H —CH=CHBr + n-C H Li— 6

6

4

9

5

2

*C H —CH=CH(Li) 6

5

Downloaded by UNIV OF ARIZONA on September 28, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch004

P e t . ether

I n p r e p a r i n g organolithium compounds from l i t h i u m a n d organic halides, t h e h a l i d e a t o m p r e s e n t has been f o u n d t o affect t h e r a t e a n d e x t e n t o f r e a c t i o n m a r k e d l y . E x p e r i e n c e has s h o w n t h a t t w o of t h e m o s t c o m m o n l y u s e d o r g a n o l i t h i u m c o m p o u n d s , n - b u t y l l i t h i u m a n d p h e n y l l i t h i u m , c a n best b e p r e p a r e d f r o m t h e r e s p e c t i v e b r o m i d e s . O r g a n i c b r o m i d e s , i n g e n e r a l , h o w e v e r , cost a b o u t t w i c e as m u c h as t h e c o r r e s p o n d i n g chlorides. I t w o u l d , therefore, be beneficial f r o m a commercial standpoint i f organic chlorides could be used. I t w a s o b s e r v e d o v e r 25 y e a r s ago b y G i l m a n a n d c o w o r k e r s (36) t h a t t h e s m a l l e r t h e pieces o f l i t h i u m c o u l d b e m a d e t h e h i g h e r t h e y i e l d a n d t h e s h o r t e r t h e t i m e r e ­ quired for the organolithium preparation t o be completed. F o r m a n y years the p a r ­ t i c l e size w a s d e t e r m i n e d b y t h e p a t i e n c e o f t h e researcher i n c u t t i n g t h e m e t a l w i t h scissors, k n i v e s , p a p e r c u t t e r s , etc. H i s t a s k w a s c o n s i d e r a b l y eased a b o u t 10 y e a r s ago w i t h t h e a d v e n t o f l i t h i u m w i r e a n d r i b b o n . G i l m a n a n d c o w o r k e r s (36) also o b s e r v e d t h a t t h e n e x t s i g n i f i c a n t a d v a n c e i n m a k i n g o r g a n o l i t h i u m c o m p o u n d s m o r e accessible w o u l d p r o b a b l y c o m e w i t h a c o n ­ venient procedure f o r the preparation of l i t h i u m dust o r granules. T h e description a b o u t 9 y e a r s ago b y P e r r i n e a n d R a p o p o r t (49) o f a p r o c e d u r e f o r t h e p r e p a r a t i o n of l i t h i u m s a n d was a step i n t h i s d i r e c t i o n . T h e use of l i t h i u m s a n d r e p o r t e d l y g a v e increased yields of o r g a n o l i t h i u m compounds a n d w i t h i n a short t i m e l i t h i u m sand c o u l d be, a n d s t i l l c a n be, p u r c h a s e d o n a c o m m e r c i a l b a s i s . T h e l a t e s t a d v a n c e i n p r o d u c i n g l i t h i u m m e t a l i n s m a l l p a r t i c l e size has c o m e w i t h i n the past 2 years w i t h the development of l i t h i u m dispersions t o a point where t h e y c a n n o w b e p u r c h a s e d o n a s m a l l l o t basis. T o d a t e these d i s p e r s i o n s h a v e b e e n offered o n l y i n p a r a f f i n h y d r o c a r b o n m e d i u m s — i . e . , m i n e r a l o i l , p e t r o l a t u m , a n d w a x — although conceivably other m e d i u m s could be easily used. U p t o n o w , n o c o m p l e t e r e p o r t o f s t u d i e s o n t h e use o f l i t h i u m d i s p e r s i o n s i n t h e p r e p a r a t i o n of o r g a n o l i t h i u m compounds has appeared. S o m e w o r k has b e e n d o n e , h o w e v e r , as e v i d e n c e d b y t h e reference b y G i l m a n a n d G o r s i c h (18) i n 1955 t o u n ­ p u b l i s h e d s t u d i e s b y K . O i t a . T h e y r e p o r t e d t h a t i m p r o v e d y i e l d s o f some o r g a n o ­ l i t h i u m c o m p o u n d s were o b t a i n e d w h e n l i t h i u m d i s p e r s i o n s were u s e d . A l s o , i n 1956, H a r t a n d S a n d r i (38) r e p o r t e d t h e first successful p r e p a r a t i o n o f c y c l o p r o p y l l i t h i u m f r o m c y c l o p r o p y l c h l o r i d e t h r o u g h t h e use o f finely p o w d e r e d l i t h i u m . T o c o n f i r m t h i s s t a t e m e n t , t h e a u t h o r has c a r r i e d o u t a l i m i t e d r e s e a r c h p r o g r a m o n t h e use o f l i t h i u m d i s p e r s i o n s i n t h e p r e p a r a t i o n o f o r g a n o l i t h i u m c o m p o u n d s . A s a s t a r t i n g p o i n t he chose t h e p r e p a r a t i o n o f p h e n y l l i t h i u m f r o m c h l o r o b e n z e n e , because failure t o obtain good yields f r o m the reaction of chlorobenzene w i t h b u l k l i t h i u m i n t h e p a s t has n e c e s s i t a t e d t h e use o f t h e m o r e e x p e n s i v e b r o m o b e n z e n e . T h e results of some o f t h e r u n s are g i v e n i n T a b l e I . T h e preparations were carried out i n the usual a p p a r a t u s consisting of a f o u r n e c k e d flask e q u i p p e d w i t h a T r u - b o r e s t i r r e r , t h e r m o m e t e r , r e f l u x condenser, a n d d r o p p i n g f u n n e l a r r a n g e d so t h a t a b l a n k e t o f i n e r t gas c o u l d b e m a i n t a i n e d o v e r t h e reaction mixture. T h e d a t a i n T a b l e I show t h a t under comparable conditions, a p p r e c i a b l y higher y i e l d s o f p h e n y l l i t h i u m are o b t a i n e d w i t h l i t h i u m d i s p e r s i o n s t h a n w i t h l i t h i u m w i r e .

In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

h

hiUm

b

y

o u r i m

n

t

o

dr

0.5

PhCl,* Mole 0.5 0.5 0.5 0.5 0.5 150

In flask 100 150 150 150 150 100

In funnel 150 100 100 100 100

Ether, M l . Temp.," °C. 39 38 39 38 - 1 0 to -20 - 1 5 to -30

Phenyllithium Preparation from

35

Time Addn. PhCl Soin., Min. 100 50 40 50 35

Chlorobenzene

65 100»»

4

Yield PhLi by Titn., Wt.% 5 5

Time after Addn., Hr. 4 4.3 1.3 4.2 4.8

5

PhCl Recovd., Wt. % 80 72 69 56 22

93/

5· 8Λ* 12 V 23 V 71 /,*

Benzoic Acid Yield, Wt.%

-

a k

1

8

6

b

u

t

c a r b o n a t e d

o

~ ^ ΐ ί ^ ^ w

t

%

o f

m i n e r a l

* a

n

d 7

w

t

-

% o f

p e t r o l a t u m i

p a r t i c l e s


OCH3

T h e halogen-metal interconversion is

I

I

+

fl-C H Br 4

9

OCH3

T h i s r e a c t i o n finds i t s greatest use i n t h e p r e p a r a t i o n o f o r g a n o l i t h i u m c o m p o u n d s w h i c h c a n n o t b e r e a d i l y p r e p a r e d b y t h e d i r e c t a c t i o n o f l i t h i u m m e t a l o n the, o r g a n i c h a l i d e . A t h o r o u g h d i s c u s s i o n o f t h e m e c h a n i s m , scope, a n d e x p e r i m e n t a l c o n d i t i o n s

In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

54

ADVANCES IN CHEMISTRY SERIES

of t h i s r e a c t i o n has been g i v e n b y J o n e s a n d G i l m a n (41). W h i l e t h e h a l o g e n - m e t a l i n t e r c o n v e r s i o n r e a c t i o n has been used w i d e l y f o r e x p e r i m e n t a l s y n t h e t i c w o r k , n o extensive use o n a c o m m e r c i a l scale has been r e p o r t e d as y e t . R a d i c a l - M e t a l Interconversion Reactions. I n this type of interconversion r e ­ a c t i o n t h e o r g a n o l i t h i u m c o m p o u n d is d e s t r o y e d as s u c h i n o r d e r t o p r o d u c e a desired end product. H y d r o l y s i s is a simple example of this t y p e of reaction: R L i + H O H -> R H + L i O H A l c o h o l s , m e r c a p t a n s , etc., e n t e r i n t o a s i m i l a r r e a c t i o n : R L i + H O R ' -> R H + L i O R / T h e cleavage o f epoxides a n d o t h e r c y c l i c ethers is a r e l a t e d r e a c t i o n (44)

Downloaded by UNIV OF ARIZONA on September 28, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch004

:

RLi

+

A s p e c i a l case of r a d i c a l - m e t a l i n t e r c o n v e r s i o n is t h a t i n v o l v e d i n the p r e p a r a t i o n of o r g a n i c h a l i d e s b y the r e a c t i o n o f o r g a n o l i t h i u m c o m p o u n d s w i t h halogens (SO) :

Li

I

T h e f o r m a t i o n o f c o u p l e d p r o d u c t s b y t h e r e a c t i o n of a n o r g a n o l i t h i u m c o m p o u n d w i t h a n o r g a n i c h a l i d e i s a n o t h e r case o f r a d i c a l - m e t a l i n t e r c o n v e r s i o n : n - C H L i + n - C H X -» n - C i I I 4

9

4

9

1 8

+ L i A'

S t u d i e s (62, 67, 69) o f t h i s c o u p l i n g r e a c t i o n h a v e s h o w n t h e i o d i n e d e r i v a t i v e s to b e t h e m o s t s u i t a b l e , because, i n g e n e r a l , t h e y r e a c t m o s t r a p i d l y .

Addition Reactions of Organolithium

Compounds

A d d i t i o n to Inorganic Reagents. T h e f o r m a t i o n of carboxylic acids b y the re­ a c t i o n o f o r g a n o l i t h i u m c o m p o u n d s w i t h c a r b o n d i o x i d e w i t h subsequent h y d r o l y s i s has been w i d e l y u s e d i n l a b o r a t o r y studies o n o r g a n o l i t h i u m c o m p o u n d s : >RC0 Li

R L i + CO-:

HOH

> RCOOII

2

T h e r e a c t i o n proceeds r a p i d l y a n d t o c o m p l e t i o n a t l o w t e m p e r a t u r e s t o f o r m t h e c a r b o x y l i c acids i n g o o d y i e l d s . W h e n t h e c a r b o n a t i o n is c a r r i e d o u t a t r o o m t e m p e r a ­ t u r e o r h i g h e r , t h e chief p r o d u c t s o b t a i n e d are ketones (5, 82, J$, 69) : C H Li + C0 e

6

> C H COOLi

2

6

CeHsLi

> (C H ) C=0 + Li 0

5

6

5

2

2

T h e p r e p a r a t i o n of h y d r o x y derivatives of organic compounds b y the reaction o f o r g a n o l i t h i u m c o m p o u n d s w i t h o x y g e n has been f o u n d t o b e s a t i s f a c t o r y , p a r t i c u l a r l y w i t h a r y l l i t h i u m a n d h e t e r o c y c l i c l i t h i u m c o m p o u n d s (47) : C H Li 6

5

0

2

HOH

> C H OLi 6

> C H OH

5

6

5

Other similar a d d i t i o n r e a c t i o n s c a n b e c a r r i e d o u t a s i l l u s t r a t e d b y t h e r e a c t i o n of phenyllithium w i t h n i t r o u s o x i d e (67) : C H L i + N 0 - * C H N = N O L i -> C H H , C H — C H , C 6 H N = N C H , etc. 6

6

2

6

5

6

5

6

f i

6

5

5

6

In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

5

ESMAY—ORGANOLITHIUM COMPOUNDS

55 T h i s type of addition reaction

A d d i t i o n to C a r b o n - C a r b o n Unsaturated Bonds. was

illustrated

i n p r e p a r a t i o n M e t h o d 5.

T h i s is presumably

the initial

reaction

i n v o l v e d i n t h e c a t a l y t i c p o l y m e r i z a t i o n o f olefins b y o r g a n o l i t h i u m c o m p o u n d s

(87).

A l t h o u g h s u c h c a t a l y t i c uses h a v e b e e n r e p o r t e d t o b e o n l y i n t h e e x p e r i m e n t a l stage, use o n a c o m m e r c i a l scale c o u l d c o n c e i v a b l y

develop. P r o b a b l y the most useful r e ­

A d d i t i o n to C a r b o n - O x y g e n Unsaturated Bonds. action

which organolithium compounds

saturated bonds.

undergo

is addition t o carbon-oxygen u n ­

T h i s is shown i n t h e following t y p i c a l reaction of a ketone

an organolithium compound

with

t o y i e l d the l i t h i u m salt of a t e r t i a r y alcohol: R C = 0 + R ' L i -> R R ' C O L i 2

2

S i m i l a r r e a c t i o n s o c c u r w i t h a l d e h y d e s , c a r b o x y l i c a c i d s , esters, a n h y d r i d e s , e t c .

Downloaded by UNIV OF ARIZONA on September 28, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch004

T h i s t y p e o f r e a c t i o n h a s b e e n u s e d i n t h e p r e p a r a t i o n o f s y n t h e t i c v i t a m i n A (60) b y the reaction of m e t h y l l i t h i u m w i t h β-ionylidenecrotonic acid t o y i e l d o n hydrolysis the desired ketone intermediate, I : CH

^CH

3

CH

3

I.CH LI

3

HC 2

I

I

2

C-CH=CH-C=CH-CH=CHCOOH

HC ^C^ ^cr ^CH I

CH3 /CH

3

2. H 0

I

CH

3

HC I

I

H C. Χ . ^ C ^ ^CH I

\\

Ο

2

3

H2

3

H2

β-Ionylidenecrotonic a c i d A d d i t i o n to C a r b o n - N i t r o g e n h a v e been

3

/

C-CH=CH-C=CH-CH=CHC

2

2

CH

3

I

found

I

Unsaturated

Bonds.

to a d d readily to carbon-nitrogen

Organolithium

double

following is a n example of a d d i t i o n t o a carbon-nitrogen double b o n d

+

RLi

compounds

a n d t r i p l e bonds. T h e (71, 72):

>-

A O r g a n o l i t h i u m c o m p o u n d s a d d r e a d i l y t o c a r b o n - n i t r o g e n t r i p l e b o n d s as i l l u s ­ t r a t e d i n t h e f o l l o w i n g r e a c t i o n (24) :

CH 0--C-C H 3

6

5

-

V CH 0-^^C-C H 3

N—Li

6

5

Ο

A l t h o u g h the reactions i n v o l v i n g a d d i t i o n of o r g a n o l i t h i u m compounds t o c a r b o n n i t r o g e n u n s a t u r a t e d b o n d s h a v e beeen u s e d w i d e l y f o r s t u d i e s o n a l a b o r a t o r y scale, n o use o n a c o m m e r c i a l scale i s k n o w n a t p r e s e n t . I n t h e d i s c u s s i o n o f uses o f o r g a n o l i t h i u m c o m p o u n d s , o n l y a v e r y b r i e f m e n ­ t i o n h a s b e e n m a d e o f e a c h o f t h e m a j o r uses k n o w n . M a n y a d d i t i o n a l e x a m p l e s a n d d e t a i l e d discussions c a n b e f o u n d i n g e n e r a l references (3, 13, 21, 28, 29, 41y 48, 45, 56, 61). Miscellaneous Organolithium Reactions. S o m e r e c e n t l y r e p o r t e d uses o f o r g a n o ­ l i t h i u m c o m p o u n d s i l l u s t r a t e f u r t h e r t h e w i d e r a n g e o f p o s s i b l e r e a c t i o n s w h i c h these compounds can undergo. Of importance i n synthetic w o r k is t h e report c e r t a i n sulfide l i n k a g e s w i t h e a s e :

CO

(48) t h a t b u t y l l i t h i u m

S—CH

«

3

o c ;

+

HC=CH

In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

cleaves

ADVANCES IN CHEMISTRY SERIES

56

Certain sulfoxides also can be cleaved readily to yield interesting and useful products (81 ) :

HOOC

çf\

COOH

Q \

Downloaded by UNIV OF ARIZONA on September 28, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch004

Phenyllithium has been found to catalyze cyclization reactions of the following types (6):

CH 6

5

Use of this procedure for preparing 9-phenylanthracene derivatives is reportedly superior to other methods now known. Literature Cited (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38)

Aries, R. S., 130th Meeting, ACS, Atlantic City, N . J., September 1956. Austin, P. R., J. Am. Chem. Soc. 54, 3726 (1932). Bartlett, P. D., Friedman, S., Stiles, M., Ibid., 75, 1771 (1953). Birch, S. F., J. Chem. Soc. 1934, 1132. Bluhm, H . F., Donn, H . V., Zook, H . D., J. Am. Chem. Soc. 77, 4406 (1955). Bradsher, C. K., Webster, S. T., Ibid., 79, 393 (1957). Braude, Ε. Α., in Cook, J. W., "Progress in Organic Chemistry," pp. 172-217, Academic Press, NewYork,1955 Brook, A. G., Gilman, H., Miller, L. S., J. Am. Chem. Soc. 75, 4759 (1953). Coates, G. E., "Organo-metallic Compounds," Wiley, New York, 1956. Ellis, L . M., U . S. Patent 2,212,155 (Aug. 20, 1940). Fleming, R. F., Ibid.,2,386,452 (October 1945). Friedlander, J. N . , Oita, K., 130th Meeting, ACS, Atlantic City, N . J., September 1956. Gilman, H., "Organic Chemistry, An Advanced Treatise," 2nd ed., Vol. II, p. 489, Wiley, New York, 1943. Gilman, H . coworkers, J. Am. Chem. Soc. 71, 1499 (1949). Gilman, H., Bailie, J. C., J. Org. Chem. 2, 84 (1937). Gilman, H., Clark, R. N., J. Am. Chem. Soc. 69, 1499 (1947). Gilman, H., Gerow, C. W., Ibid., 78, 5435 (1956). Gilman, H., Gorsich, R. D., Ibid., 77, 3134 (1955). Gilman, H., Haubein, A. H., Ibid., 66, 1515 (1944). Gilman, H., Jacoby, A. L., Ludeman, H., Ibid., 60, 2336 (1938). Gilman, H., Jones, R. G., Ibid., 62, 2357 (1940). Ibid., 63, 1439, 1441 (1941). Ibid., 68, 517 (1946). Gilman, H., Kirby, R. H., Ibid., 55, 1265 (1933). Ibid., 58, 2074 (1937). Gilman, H., Langham, W., Jacoby, A. L., Ibid., 61, 106 (1939). Gilman, H., Langham, W., Moore, F. W., Ibid., 62, 2327 (1940). Gilman, H., Moore, F. W., Ibid., 62, 1843 (1940). Gilman, H., Morton, J. W., "Organic Reactions," Vol. VIII, Wiley, New York, 1954. Gilman, H., Nobis, J. F., J. Am. Chem. Soc. 67, 1479 (1945). Gilman, H., Swayampati, D. R., Ibid., 79, 208 (1957). Gilman, H., Van Ess, P. R., Ibid., 55, 1258 (1933). Gilman, H., Woods, L . Α., Ibid., 70, 550 (1948). Gilman, H., Wu, T. C., Ibid., 75, 3762 (1953). Gilman, H., Young, R. V., J. Org. Chem. 1, 315 (1936). Gilman, H., Zoellner, Ε. Α., Selby, W. M., J. Am. Chem. Soc. 55, 1252 (1933). Hanford, W. M., Roland, J. R., Young, H . S., U. S. Patent 2,377,779 (June 5, 1945). Hart, H., Sandri, J . M., Chem. & Ind. (London) 1956, 1014. In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

ESMAY—ORGANOLITHIUM COMPOUNDS (39) (40) (41) (42) (43) (44)

Downloaded by UNIV OF ARIZONA on September 28, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch004

(45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72)

57

Hein, F., coworkers, Z. anorg. Chem. 141, 161 (1924). Johnson, O. H., Nebergall, W. H., J. Am. Chem. Soc. 71, 1720, 4022 (1949). Jones, R. G., Gilman, H., "Organic Reactions," Vol. VI, Wiley, New York, 1951. Karten, M., Levine, R., 130th Meeting, ACS, Atlantic City, N . J., September 1956. Krause, E., Grosse, A. von, "Die Chemie der metall-organischen Verbindungen," Borntraeger, Berlin, 1937. Letsinger, R. L., Traynham, J. G., Bobko, E., J. Am. Chem. Soc. 74, 399 (1952) ; 75, 2649 (1953). Lithium Corp. of America, Minneapolis, Minn., "Annotated Bibliography on Use of Organolithium Compounds in Organic Synthesis," 1949; Supplement 1, 1950; No. 2, 1952; No. 3, 1954; No. 4, 1956. Oita, K . , Gilman, H., J. Am. Chem. Soc. 79, 339 (1957). Pacevitz, Η. Α., Gilman, H., Ibid., 61, 1603 (1939). Parham, W. E., Stright, P. L., Ibid., 78, 4783 (1956). Perrine, T. D., Rapoport, H., Anal. Chem. 20, 635 (1948). Rogers, M. T., Young, Α., J. Am. Chem. Soc. 68, 2748 (1946). Schlenk, W., Bergmann, E., Ann. 463, 1 (1928). Ibid., p. 72. Ibid., 464, 1 (1928). Ibid., 479, 78 (1930). Schlenk, W., Holtz, J., Ber. 50, 262 (1917). Sidgwick, Ν. V., "Chemical Elements and Their Compounds," Vol. I, p. 67, Oxford Univ. Press, London, 1950. Small, L., Rapoport, H., J. Org. Chem. 12, 284 (1947). Sommer, L . H., Tyler, L . J., J. Am. Chem. Soc. 76, 1030 (1954). Tegner, C., Acta Chem. Scand. 6, 782 (1952). van Dorp, D . Α., Arens, J. F., Rec. trav. chim. 65, 338 (1946). Wittig, G., "Newer Methods of Preparative Organic Chemistry," p. 571, Inter­ science, New York, 1948. Ziegler, K., coworkers, Ann. 473, 1 (1929). Ibid., p. 31. Ibid., p. 36. Ibid., 479, 150 (1930). Ziegler, K., coworkers, Ger. Patent Application Z. 4846 IV b/120 (1956). Ziegler, K., Colonius, H., Ann. 479, 135 (1930). Ziegler, K., Dersch, F., Ber. 64, 448 (1931). Ziegler, K., Dersch, F., Wolltham, H., Ann. 511, 13 (1934). Ziegler, K., Gellert, H . G., Ibid., 567, 179, 185, 195 (1950). Ziegler, K., Zeiser, H . Ibid., 485, 174 (1931). Ziegler, K., Zeiser, H., Ber. 63, 1847 (1930). RECEIVED for review May 10, 1957. Accepted June 1, 1957.

In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.