Mass Spectra of Alcohols R. A. FRIEDEL, 1. L. SHULTZ, and A. G. SHARKEY, JR. Bureau o f Mines,
U. S.
Department
o f the Interior, Bruceton, Pa.
IIass spectra of 69 alcohols from methanol to undecanol have been studied in order to find correlations of fragmentation patterns with molecular structure. On the basis of spectra, primary alcohols have been subclassified into (1) straight-chain and branched on or beyond the y-carbon atom, and (2) branched on the &carbon atom. Secondary alcohols are subclassified on the basis of location of the hydroxyl group on the 2-, 3-, 4-, etc., carbon atom. Tertiary alcohols are subclassified into partially symmetrical types (dimethyl) and completely unsymmetrical types (methyl ethyl, etc.). The mass spectra can be applied to the identification of unknown alcohols and to the analysis of components in mixtures of alcohols. Type analyses of complex mixtures have been carried out. The advantages of combining mass and infrared spectral data are indicated.
Table I.
Mass Spectra R-CHaO H Xorrnal and
Eth
1-Prop
F
Carbons
1
0 2
0 3
E 4
32
46
GO
71 42.3 41.0
Molecular weight
hf ass Charge
T
HE mass spectra of 69 alcohols from CI through CII have
been studied in the course of investigations on oxygenated compounds from synthetic fuels processes. Possible correlation of molecular structure with mass spectral fragmentation patterns was investigated. Correlation studies have been made by several workers on collections of spectra of hydrocarbons (1, 3, 8, 14, 17, 19), sulfur compounds (14), aliphatic acids (IS), high molecular w i g h t primary straight-chain alcohols (4), amines and a few primary alcohols (5),acetals (9), and ketones (18). Mechanism studies on mass spectra of alcohols have also been made (6,12,16). EXPERIMENTAL PROCEDURE
The spectra (Tables I, 11, and 111)were obtained on a Consolidated 21-103 mass spectrometer under the following conditions: io-volt electrons, ionizing current of 10 pa., ion source temperature of 250" C., and voltage scanning from mass 17. Because of micromanometer difficulties with alcohols above Ce, which nil1 be discussed later, all samples were measured as liquids, and spectral data are reported as chart divisions per unit liquid volume, in this instance the volume of a self-filling micropipet ( 1 1 ) , 0 00068 ml. The spectra ale thus reported as sensitivity coefficients on a liquid volume basis, and spectral peak heights are directly comparable. Sensitivities for the base peaks have also been calculated on the basis of divisions per micromole. SPECTRUM-STRUCTURE CORRELATION
Alcohols are usually considered t o be of three major typesprimary, secondary, and tertiary. Mass spectra make subclassifications desirable. Thus, the primary group contains two 6-, etc , classes: (1) normal straight-chain and ybranched (y, branched) and (2) P-branched. Secondary alcohols may be classified as 2-, 3-, 4-, etc., types. Tertiary alcohols have also been subclassified into partly symmetrical types (dimethyl, diethyl, etc.) and the completely unsymmetrical types (methyl ethyl, methyl propyl, etc.). Primary Alcohols. SORMAL AND "/-BRANCHED. Table I gives the spectra of 13 normal and 7-branched primary alcohols. I n the spectra of alcohols above CsJ one of the highest mass peaks is attributable to loss of water. This peak is always appreciable As one proceeds to lower masses, the second important peak corresponds to the loss of mass 33, either water and a methyl group or -CH20H plus two hydrogens. The third important peak represents loss of mass 46, which may signify
1-But
Veth' Sourceb
18 19
24 3 c 6 4
16.0 53.9
16.1 29.7
27 28 29 30 31 32 33
3 4 16.5 1290 156 1830dig
558 162h 626 145 2300d.Q 27.9 4.7
517i 187 480 69.7 273OdsQ 72.2 33.8
P121oc 18 4
~
685 2383 418 34.7 1160drQ _21.1 87.3
41 42 43 44 45 46
24.1 76.7 189 38.5 801 P 352
190 256h 94.8 l5,4 49.5 1.5
728 i 365 689 53.7 81.9 6.1
55 56 57 58 59 60
...
. .
9.1 1.4 25.9 6.7 289 P 192
141 996h 74.2 2.2 3.6 36
67 68 69 70 71 72 73 74
...
...
81 82 83 84 85 86 87 88
. . ...
96 97 98 99 100 101 102
.. ...
112 113 114 115 116
... ...
...
...
126 130
...
...
140 144 154 158 172 Sens. of base peak
... ...
... ..,
...
...
...
... ... ... , . .
... ,
.
...
... , . . , . .
...
,..
... ... ...
...
... ... ...
. .
... ...
.
,
...
305 156 109 212 (div. per pmole) Suffix "-anol" is omitted. b E = Eastman Kodak Co: K = Paul Kletzke, Lacrosse, Wis.; C = Columbia Chemical. F = Fisher Co.: 5 = L. F. Schmerling; 0 = purifioation by Organic Chlmistry Section of this laboratory. 0 Peak heights in divisions per li uid volume (0.00068 ml.), based on n-heptane,mass 27 = 565 divisions perliquid volume: see complete n-heptane spectrum in Table 111. d Base peaks.
926
V O L U M E 28, NO. 6, J U N E 1 9 5 6
927
a split between the p- and 7-carbon atoms plus transfer of one hydrogen, or a split between the a- and p-carbon atoms plus loss of a methyl group. For the Cs to CS.alcohols in this group, the parent molecule minus mass 46 produces an olefin-type peak that is either the base peak or a t least 40% of the base. When it ia not the base peak, the 41 peak is the base. The base peak for all but one of the primary alcohols above 1-butanol is an olefintype peak (41, 42, 56). 3,4-Dimethyl-l-pentanol has its base
peak a t 43, presumably because of splitting between the third and fourth carbon atoms. Kormal alcohols below 1-pentanol all have the base peak a t mass 31. The parent peaks in all casea, except 1-propanol and below, are small. The mass sppctra of primary alcohols may be considered to consist of fragment ions from t n o different molecular species arising from the molecule ion. One species arises from primar? dissociation of the alcohol molecule ion to produce a set of alcohol-
of Primary Alcohols R-CH20H ?-Branched ~~
1-Pent
3-1fe1-but
5
0 5
1-Hex 0 6
88
88
52 8 22.2
3-MeI-pent
I-Hept
3,4Dime1-pent
1-Oct
1-Son/ 0 9
I-Decl
2-MeI-Undecl 1-prop E E 11 4
2-Ne1-but E
8-Branched 2,2Dime2-Me1-prop 1-pent 0 C 5 6
0 6
0
s
I
4
102
102
110
116
130
144
158
172
74
88
88
32.4 22.2
23.1 20.2
30.9 29.2
41.5 12.2
43,l 13.8
23.9 8.4
11.6 3.3
17.5 1.0
4-1.0 0.8
45.6 14.9
33.4 13.2
522 20.5 706 31.4 7618 14.5 8.1
449 134 743 30.0 5420 10.3 9 3
535 133 505 23.7 5830 10.5 4.2
309 131 596 22.1 5030 8.2 2.4
440 133 450 19.2
282 56.9 232 8.0 273fl 6.1 8.9
31% 76.3 351 14.3 3390 5.5 1.6
128 40 3 150 5.7 1420 4.4 0.6
34.0 48.5 42.1 1.7 34.0g 8.8
17.1 14.0 21.9 0.9 17.00 2.3
642 128 284 32.9 8870 21.4 650
44 1 121
661 980ds1 294 42.9 61 5 5.9
---d
,J,
GO6
529 8G4 65.4 74.8 3.4
630d _389
223d 57,5d -
590 46.3 44 4 1.9
467 209 858d 46.3 55.6 2.8
493d
393 j 353 30.2 111 26.9
732 225 650 49.1 106 31.1
-
504
678
0
___
4500
7.4 2.5
628 i 151 234 21.0 9.1 11.7
455 i 498 627 33.8 25.5 6.3
628 993dsi 113 6.7 9.9 0.9
698
12.3 12.0 0 8
10.3 4.4 0.7
5.8 3.1 51.5 441h 30.9 0.9 0.8
3.5 2.3 25.0 418h 33.0 1.9 3.8
12.7 9.5 244 i 66.7 51.1 9.4 51.6 2.7
12 8 8.0 565i 43.6 40.8 8.3 10.3 3.9
... ...
... ... ...
G.4 2.4
... ...
... ... ...
P
...
... ...
... ...
2.5 P 1.6
... . . ... ...
...
. . . . ... ... . .
1.5 0.9 1.3 2.0 2.5 4.1
...
...
. . .. ... . . ..
...
... .
,
. . ... ... ... ... ...
1.0 4.0 0.3
1.1
PO., . . . .
.. .. .. ..
389 68.9 467 15.1 2720 4.7 3.0
809 7661 1320dqk 52.4 75.2 1.9
864 153 141 11.9 82 8 2.6
745 67.8 344 13.4 133 2.8
603 322 1620d 61.5 67.5 1.7
70.3 45.9h 59.3 8.1 62.8 2.8
228
17.4 16.1 4.9 0.3 2.3
1.5 1.5 3.7 3.1 25.9 P 125
6.0
4.4 1.2 158 i 13.7 14.9 1.2 0.7
4.3 29.9 150 2181 17.5 0.7 1.1 0.1
2.9 22.3 72.2 20.7 8.1 0.3 0.6
0.9 6.7 19.7 13.9 3.6 1.2 14.4 0.7
...
... . . ...
0.7 5.4 6.311 3.4 0.7 6.5 1.1
0.4 12.7i 2.1
4.4 44.7 58,li 7.7 2.1 4.1
...
...
15,7h 1.7
3.6 45.01 5.8 4.9 1.2 1.0
...
...
1 3 6.2 31.Ih
... ...
...
... 0.5
... ... P
0.6
... ...
... ... P
,..
...
...
... 135
179
114
7.2i 0.8
0.4
...
, . .
...
...
...
5.2 1.0
...
...
... ...
8.7
5,1
... ..
1 .o
...
...
...
...
3.0 0.6
...
...
...
...
...
PQ:2
...
...
.,.
...
... ...
...
185
615 117 633 24.6 4890 11.2 6.0
3.8 10.7 48.6 32.7 7.1 0.4 1.7
...
156 121 182 P = parent peak. / Spectra are qualitative only. 0 Parent mass minus R . h Parent mass minus 18. i Parent mass minus 33. i Parent mass minus 46. k Parent mass minus 31. I Parent mass minus 32.
504 93 1 525 24.5 4760 10.0 5.1
12.5 46.3 129 145 25.1 1.3 6.9
... ... ...
...
...
37.6 5660 12.9 14.2
309 67.7 697 24.6 3020 5.9 2.5
20.5 77.8 240 269 41.0 2.3 13.4 0.7
, . .
...
11.2 9.1
9.7 4.2 83.1 558i 136 18.6 17.9 2.4
, . .
...
41.6 22.8
16.7 86.0 333 614i 39.0 1.7 14.5 1.0
2.0 PO.3
. .
33.2 10 4
...
...
...
2.5 5.3
...
40.7 12.7
...
,
...
E
P
... ...
...
6.1h
... ...
0.2
... ...
1.Oh
...
P (39.7)f
25.6 18.7 1-1 8
1 3 0.9
2.2 5.8
...
3 6 10 9 7.8 2.5
... 5,0 ... ...
5.6 3.0
...
...
4.3 1.0
2.9
... ...
1.9
I
.
.
0.9j
...
...
368 4471 1320d.k 59.4 4.7 0.3
562 244 1650d 72.1 79.8 2.0
563 119 536 27,5 26.3 1.0
578 275 127 9.2 29.3 1.0
E
1.9 0.4 8.2 6.3h 9.9 7.6 285 17.0
10.6 5.7 274 4121 484k 29 1 4.6 1.2
10.7 5 0 I54 5721 505k 39 0 27.7 1 7
14 8 176 113 222 41 9 9.8 2.2 0 4
... ... ... ...
... ...
... ... ... ...
3.2 P2.6
3.8 P9.5
0.9 2.1 8.8 l98h 18.5 0.9 1.3
3.5 1.3 6.7 190h 21.1 1.3 4.7 0.2
4.2 24.2 197 73.6 7.3 0.6 0.4
...
...
0.6 1.9 1.0 3.2 4.6 4.0 P1.7
0.8 13.7 91.5 18.3L 4.8k 4.4 0.6
... ...
49.4 5.4h
... ...
...
...
. .
8161
944k 50.5 42.9 6.0 2.3 0.9 11.9 3471 29.2 1.2 1.3
...
,..
...
... ...
...
. .
. .
. .
... ...
. . ... ,
.
...
...
. .
...
... ...
...
...
0.2h
...
P...
...
... . .
(9,48)/
179
:16.2)/
954d -
399 222 82.3 19.4 34.5 2.6
... ... ...
8
130
12.2 11.9 0.9
...
...
20.9 54.2 5.7 7 4 0.4
...
30 0 10.9
I:
102
44.1 34.6 24.7 2.3 1.8
... ...
...
403 33.0 30.2 1.3
106 205 14.4 10.1 0.4
...
J
"Et1-hex
102
206 217 89.2 4.2 1.5
1.2 0.9 17.3 186h 14.0 0.6 0.2 0.6
..
i92
E 10
397 424 199 9.5 4.8 0.6
1 0 1 0 d 3 i 618 530 ~281 298 186
15,s 106h 11 . 7
E 8
2-Et1-but E 6
...
...
. . ... . . . . . . ... ...
... ...
..
... .. . . .
. . . .
...
... ... ... ...
...
P'0:7
... . .
. .
. . . .
. . . .
... . .
...
. .
...
. .
...
. . ...
149
211
...
...
... ... ...
325 262 56.0 14.4 0.7
.,_
... ... ... ...
...
P . . .
...
...
..
..
. . ...
297
...
... 297
... ...
294
ANALYTICAL CHEMISTRY
928
type (31, 45: 59, etc.) and a set of alkane-type (29, 43, 57, etc.) fragments. The other species derived from the molecule ion may be considered an olefinic ion, fragmentation of which produces olefin-type (41, 42, 55, 56, etc.) and alkane-type peaks. Rate of effusion measurements (7, 10) and appearance potentials can show that an olefin does not actually form in the ionization region before ionization. However, many of the intense peaks in the alcohol spectrum are very similar to the same peaks from the corresponding olefin. This similarity is shon-n for 1-pentanol and 1-pentene in Table 11. The schematic fragmentation shown is not intended to represent the actual ionization and dissociation processes.
Table 11. Schematic Fragmentation of Primary StraightChain Alcohol (Comparison of Cs alcohol and olefin spectra)
CHa-/-CH~-I-CHz-I-CHze
d
c
I- CHq- I - O H +
b
Mass 88 (O)-
e ial Mass71 13.2) I i b j M i s s 5 7 (23.9) (c) Mass43 (29.9) ( d ) Mass29 (72.0) ( 6 ) Mass15 (9.4)
a
1
a
d
c
+ mass 1 7
10.94) mass 31 (77.6)' mass 45 (6.3) (c)Mass 43 (29.9) mass 27 (53.2) mass 59 (0.93) (d)Mass 29 (72.0) + m a s s 41 (67.4) m a s s 7 3 (0.08) (6)hlass 15 (9.4) + m a s s 55 (64.1) Comparison of Olefin-Type Peaks
++ ++
mle
70 69 66 55 42 41 39 28 27 Base peak sensitirity, div. per @mole
+
t
1-Pentanol
156
I-Pentene
179
Numbers in parentheses ar? relative abundances of ions: arrows indicate increasing abundances. a
Brown (2) has pointed out that, of two fragments from splitting an olefin at a particular bond, one fragment will have the greater tendency to become the positive ion. The relative abundance figures for pairs of fragments in Table I1 indicate the relative probabilities for charge distribution betreen the fragments The probability that the alkane-type fragment carries the charge increases in abundance m-ith decreasing mass; the same occurs for the alcohol-type fragments. The average percentage of total ionization observed as mass peaks of types such as olefinic, paraffinic, and alcoholic is given for each class of alcohols in Table 111. The spectra of secondary and tertiary alcohols are not comparable with the corresponding olefins. P-BRANCHED.The six B-branched primary alcohols exhibit patterns similar to those of the other primary alcohols (Table I). The first major peak in the high mass region of the spectrum is represented by the parent molecule minus mass 18, except for 2,2dimethyl-1-propanol, which has no hydrogens on the p-carbon atom. I n contrast to the normal primary alcohols, fragmentation in the p-branched compounds is prominent betn-een the a- and P-carbons, the latter being a tertiary carbon. I n the three alcohols of lower molecular weight, this fragmentation produces a base peak of the alkane type resulting from loss of mass 31. In the three alcohols of higher molecular weight the base peak may be represented by loss of 31 plus a number of CHz groups. The alkane-type base peaks (20, 43, 57, 71) are more intense than the base peaks of other primary alcohols. Loss of mass 33 produces a peak of moderate intensity in p-branched alcohols. h mass 33 fragment ion in the spectrum of 2-methyl-1-propanol is very intense. The parent-minus-32 peaks are also intense.
The fragmentation ot a p-branched primary alcohol, 2-methyl1-butanol, is given in Table IT.', and its spectrum is compared with that of the corresponding olefin, 2-methyl-I-butene. Paraffinic-type peaks from the former are quite intense, so that the alcohol is not as closely related to the olefin as 1-pentanol is to 1-pentene. Secondary Alcohols. Table V give; data for correlation of the secondary alcohols, which are subclassified on the basis of location etc carbon atom In of the hydroxyl group on the 2-, 3-, contrast to the data obtained fiom primary alcohols, fragmentation patterns show that the first and second intense peaks below the parent peak result, respectively, from the loss of a hjdrocarbon group and from the loss of water plus the hydrocaibon group. Base peaks for the 2- and 3-type secondaiy alcohols are alcohol-type peaks and can be attributed to the loss of the larger alkyl group from the parent mass. For the 2-type alcohols investigated, the base is mass 45 (CHICHOH-) and for 3-type, mass 59 (CH,CH&HOH-). The 4- and 5-types investigated show olefin-type base peaks (55 and 69). The intensity of parent peaks for all secondary dcohols is less than 27,
+,
~
in Table T. Loss of mass 18 and of mam 33 produces large peaks, but loss of mass 31 is insignificant. The base peak may be represented by loss of 29 plus a number of CH, groups. I n this rcspect, these alcohols behave like secondary alcohols, as expected. Molecule ion intensities are greater than are found in any othrr group of alcohols. Tertiary Alcohols. The tertiary alcohol spectral correlation8 are given in Table VI for the partly symmetrical type (dimet'liyl alkyl, diethyl alkyl, etc.-e.g., dimethyl propyl carbinol) and for the completely unsyninietrical types (methyl ethyl alkyl, methyl propyl alkyl, etc.-e.g., methyl ethyl butyl carbinol). Base peaks are of the alcohol type, For the dimethyl type and for the completely unsymmetrical types the base peak results from the loss of the largc,st of the three alkyl groiip. For the dialkyl-type tertiary alcohols above the dimethyls, the base peak results from loss of one of the two identical alkyl groups-for example, a diethyl type loses an ethyl group. Dimethyl tertiary alcohols give the most intense base peaks of 311 of the types studied. Tertiary alcohols, other than the dimethyl type, have a base peak and d s o one or more other alcohol-type peaks of about the same intensity. Parent peaks are all insignificant. Fragnientation of tertiary alcohols does not produce intense olefin-type peaks (Table 111). Total Ionization. Total ionization, expressed as divisions per micromole (Table VII), w m calculated by addition of all sensitivity coefficients above mass 17. Total ionization increases continuously from GI through Cg, where it appears to start leveling off. These data agree nith the findings of Mohler, \F7illiamson, and Dean for hydrocarbons, total ionization of which and then remained constant (16). Because increased up to CLO the tot'al ion current should increase with increasing molecular weight, the constancy observed above Clo can be the result of several factors, including poor vaporization or changes in ion collection efficiency with mass distribution. Observed total ion currents of alcohol us. molecular weight exhibits discontinnities between the following pairs of carbon numbers: CZand Ca, C I and Cb, c6 and C7, and Cg and CS. Mohler's data showed a hreak only between Cg and c6 for naphthenes and olefins and for paraffins. IDENTIFICATION OF ALCOHOLS
Correlations lead to the following information, which is helpful for identification of an unknown alcohol.
Primary Alcohols General characteristics (a) At least 6% of the total ion current is observed at masses corresponding t o alcohol-type peaks (mo.;t!y mass 31).
929
V O L U M E 2 8 , N O . 6, J U N E 1 9 5 6 ( b ) Base-peak intensity is only slightly greater than intensities of other strong peaks.
Tertiary Alcohols General characteristics
Specific characteristics
(a) Base peak is of the alcohol type.
Base peak for Cd and below is maSs 31; base peak for CS and above is generally on olefin-type peak. ( b ) @-branched. Base peaks are alkane-type peaks. (a) Straight chain and ?-branched.
( b ) At least 30% of the total ion current is found at alcohol-type peaks.
Specific rhararteristics It 3
Secondary Alcohols
(a) Partially symmetrical: R~-C-R~
General characteristics
OH
(a)At least 15% of the total ion current ih observed at masse.; corresponding to alcohol-type peaks. ( b ) Base peak is usually alcohol-type. ( e ) Parent-peak intensity is less than 2% of the base peak intensity.
(1) Diinethyl(lil=R~=methyl
Base peak is at least twice as intense as any other peak; base peak results from loss of larger alkyl group (R3).
group)
(2) Diethyl(RI=R?=ethyl
(41, 42, 5 5 , 5 6 . .
Alcohol group
Olefinic
.)
Peaks, (31,45, 5 9 . . . ) .4lcoholic
(29,43, 5 7 . . . ) Paraffinic
(3) Dipropyl(Rj=R+=propyl
Base peak results from loss of propyl group (RI); there are two or more intense alcoholtype peaks.
group)
Primary Normal y-branched 8-branched
55.9 53.6 40.3
11.4 9.8 5.9
20.5 25 0 35.2
Secondarj 2-type 3-type Other
28.5 32.9 42.2
42.6 34.6 23 7
18.7 18.6 20.6
Specific characteristics One intense alcohol-tLpe peak; mass of R is identified by subtracting 30 (CHOH) from the ma33 of this peak. ( b ) Unsymmetrical
Ri--CH-R2
(
Base peak results from 103s of ethyl group (Rt); there are two or more intense alcoholtype peaks.
group)
Table 111. Total Ionization Distribution for Different Groups of Alcohols among Various Tj-pes of Mass Peaks
AH
(1) 2-type
(2) 3-typc
Two int,ense alcohol-type peaks; mass of Rz is identified by subtracting 30 (CHOH) from highest mass alcohol-type peak. Mass of R1 is identified by subtracting 30 (CHOH) from next highest mass alcoholtype peak.
)
CHa-CH-Rs
(
bH
CH,CH&H-R*
(
13) 4- and 5-type
8, )
Base peak is at mass 45; base-peak intensity is at least four times that of any other peak; mass 45 and 19 peaks are more intense than for other alcohols; mass 31 peak is less intense than for other types of secondary alcohols Base peak is at mass 59: basepeak intensity is at least 1.5 times that of any other peak; mass 31 is 3070 or more of the base peak. Base peak is olefin-type peak (mass 55 or 69, for example) ; base-peak intensity is at least three times that of any other peak: mass 31 is 30% or more of the base peak.
( b ) Completely unsymmetrical
Base peak results from 10% of largest alkyl group (Ita) ; there are three or more intense alcohol-type peaks.
(methyl ethyl and methyl propyl types: Ri # Rz # Ra)
Table TTII is a summary of groups identifiable in a11 iiiilcnomn alcohol b y mass spectra. These findings may be compared with results obtained on alcohols by infrared spectrometry. I n infrared analysis all primary alcohols show a h i i d near 51.5 microns, secondary alcohols near 9.0, and tertiary alcohols iiear 8.5 microns. But infrared assignments are not mutually exvlusivt.; thus, :t primary alcohol also may have a Imnd :it 9.0, it secondary alcohol a band a t 9.5, etc. Infrared analysis (-an be wed more easily than mass spectrometry to identify a sill-staricc, as ;til alrohol. Hoxever, infrared nsually cannot identify alkyl siit)stitwnts on
.
Table I\. Schematic Fragmentation of Primary. 8Branched ilcohol 2-Methyl-1-butanol (Comparieon of C Salcohol ond olefin spectra)
C H3
e- I -
3Iaqs 88 (0 27)--
CH1-~-CH.-I-CII-l-CH?-I-OHd
r
--
h
.1
'I -
-
-
CHI
2
-I-e
1
C H -cH%~ (a) Mass 71 ( 3 . 1 ) ( b ) Mass 57 (98.9) ( c ) Nass 25 (100.) .\lass 1.5 (10.1)
]
m/e
70 69
56 55
i a+f mass nia?s 17 (0.97) 31(59.3)
d
-c
=
CH,
c
70 ( 3 6 4)
+ mass 59 14 5 ) ( c ) Mass 29 (100)+ mass 4 1 (90.5) + mass 73 (0.14) t {f) ] '$sg{5 ('O'') mass 55
Comparison of Olefin-Type Peaks 2-Methyl-1-butanol 36.4 1.3
42 41 39 28 Base peak sensitivity, div. per amole
85.5 23.5 16.1 90.5
29.2 12.7
185
I-Methyl-I-butene 31.0 2.9 4.4 100 32.6 27.4 33.9 4.7
149
Numbers in parentheses are relatire abundances of ions; arrows indicate increasing abundances. 'C
ANALYTICAL CHEMISTRY
930
Determinations of 1-octanol in synthetic blends were about 30 to 35% low when based on pressure sensitivities. Micromanometer measurements of known microvolumes of liquid indicated that calculated molecular weights of 1-octanol were high by about 30 to 35%. I n contrast, sensitivities based on liquid volume produced accurate determinations of 1-octanol in blends (Table X). Such analyses were made with the micromanometer in the system; therefore, the volume measurements were not adversely affected by any sorption which may occur in the micromanometer. Micromanometer measurements on alcohols up
the carbinol group; these substituents can be identified in the mass spectrum. Hence, the combination of both methods is much more powerful than the application of either method independently. QUANTITATIVE ANALYSIS OF ALCOHOLS
Pressure Measurement Errors. Sensitivity values based on micromanometer pressure were not reliable for all alcohols; difficulties were encountered with hexanols and higher alcohols.
Mass Spectra of Secondary Alcohols
Table V.
RI-CI-I-R,
bH 2-Type %Propa Source b Carbons Molecular weight Mass
2-Pent
3 60
36.1C 168
184 98.2
.. . . ..
528 117 434 27.5 520 9.7 2.0
178 25 8 122 4.8 89.5 1.7 0.8
41 42 43 44 45 46
278 62.2 304
2410dg i 55.4
85.1 42.8 231 108 1400dt i 31.6
314 157 572 284 238Od, i 54.4
455 138 606 209 2720dq i 64.4
476 177 733 209 273Odj i 61.6
55 56 57 58 59 60
60.4 29.9 84.1 15.4 482 i 16.5
223 10.1 11.3 3.8 4.9 0.4
248 19.7 48.5 14.5 25.3
1.1
112 104 123 98.8 26.4 1.4
69.3 120 143 20.9 30.6 1.4
1.0
2.7 0.7 17.9 9.6 35.4 5.4 214i 22.5
7.0 1.8 360 25.5 22.0 2.4 5.7 0.9
8.4 2.5 365 22.2 18.9 1.4 0.6
...
0.7 0.2 5.9 99.4 21.5 1.6 133 i 7.4
0.6 0.4 19.9 98.6 16.7 1.3 143 i 8.0
... ... ...
...
192 126 503 91.2 260Odvh ,__ 58.7 3.3 0.4 7.7 4.0 87.4 P 10.4C ,..
70 71 72 73 74
... ... _.. ... .. ... , . .
...
... ... ... ...
. , .
... 96 97 98 99 100 101 102
143 144
Sens. of base peak (div. per pmolel
... ...
... ... , . . , . .
...
...
... ... ... ... ... ... ... ... ...
...
293
9
5 88
9
h P a r e n t mass minus
48.2 61.6
44.4 54.7
E
... ... ... ...
3.2 2.1 30.8 P6.8
... ...
...
... ... ... ... ... , . .
... ...
. . ... ... ,.
...
...
... ...
... ... ...
... 326
...
3.8 15.7 7.0
1.1
84.91' 3.4
... ...
... ...
...
0.8 5.3 P0.6
... ...
... ...
... ... ...
0.9 5.2 15.6 P8.2
... ...
...
... ...
. . . . ... ...
0.3 19.; 14.a P 1.7
... ... ...
... ... ... ...
... ... ...
... ... ... ...
...
...
... ... ... ...
... ...
...
...
... 377
6 102
116
28.9 29.5
26.9 13.5
11.5 12.7
352 78.2 280 11.9 74.3 3.2 0.6
372 88.9 350 11.4 72.1 2 0 0 6
707 70.0 268 47.1 950i 21.8
389 144 617 114 1670dv i 39.9
369 139 415 163 2210d, i 46.3
504 88.0 196 40.6 114 3.2
377 87.9 572 93.8 85.0 2.3
433 244 367 28.8 216 5.0
60.9 505 1030d __ 45.4 26.7 0.9
268 222 223 92.6 43.3 1.7
398 132 146 37.0 14.0 0.7
85.1 31.4 172 173 2200drh 72.0
868 122 167 94.0 1130d3i 37.6
160 308 38.6 82.6 233 164 123 285 14604 i 1290dv e. 42.3 49.1
8.4 1.7 233 15.8 26.3 10.4 1.2 0.2
7.2 3.2 50.3 155
11.0 14.0 100 102 34.2 2.4 2.6 0.3
2.1 0.4 10.8 9.5 9.9 1.2 4.7 0.3
4.3 1.5 19.6 3.4 42.7 51.7, 472 7 22.1
5.0 1.0 34.3 3.5 l5,2 21.5 597 i 29 5
9.3 4.6 863 66.9 16.3 10.9 25.4 1.5
0.2
8.9 1.1 186 13.6 6.2 1.9 4.1 0.2
4.5 13.4 46.2 94., 12.3
...
0.9 0.6 6.1 8.7 10.1 0.7 0.5
0.3 0.1 2.5 3.5 6.4 0.6 5.3 0.3
1.9 0.5 6.4 5.7 10.6 25.1 388i 21,l
0.2 10.7 14.6 11.0 2.0 43.81' 3.3
...
...
59.4 3.0
0.1 5.6
1,s
8.7 1.8 252j 13.8
... ...
...
...
...
...
107
19.5 10.7 1.8
6.5
2.9
...
106 9.4 0 9 0 4 1.8 0.4
...
.. ...
... ... ...
... ... ...
... ... ...
1.5 P3.8
... ...
...
... ...
...
...
188
531 137 511 33.7 507 7.9 1.8
-~
...
508
G 102
300 62.3 434 15.3 35,7 2.7 0.4
0.6 1.3 6.5 P4.5
499
K
46.2 12.8
...
...
E 7
K
22.4 35.0
... ... ...
... ... ...
3-Hept
E
29.1 32.7
0.8 5.5 P 17.5
,..
3-Pent
28.5 42.1
7.4 0.4 3 2 8.0 P1.2
...
E 8 130
28.0 47.0
...
2-0ct
102
102
0.4
K
%Type 2-Me3-Hex 3-pent
5 88
6
541 I52 434 19.1 135 4.3 2.5
3-Me2-hex 7 116
6
201 - - --
See footnotes in Table I. Spectrum determined b y Stanolind Oil and Gas Co. R, where R I = RP. i P a r e n t mass mjnus Rz (in R i C H O H R d . j P a r e n t mass minus R i ,
a,b, e , &
5 88
2-Hex E 6 102
4-Xe- 3,3-Dime%pent 2-but E E
2-But E 4 74
E
Charge 18 19
3-Me2-but
...
324
48:oi 1.5
...
...
516
-
...
0.4 1.2 2.2 7.1 11.3 P 1.9
... ... ... ...
...
...
... ... ...
...
... ... ... ...
-
...
...
,..
,..
...
~
0.4 17.7 9.6 PO.4
...
6.1 6.7 Pi 8
0.2 1.8 32.9 3.7 1.5 2.7 0.3
...
... ...
... ... ...
0.6
...
...
0.2
...
, . .
...
... . .
2.5 P6.4
...
...
...
...
... ...
... ...
...
348
617 76.0 318 81.6 152 4.0
...
207
, . .
...
... ...
...
...
... 266
...
268
-
V O L U M E 28, NO. 6, J U N E 1 9 5 6
931
to the hexanols were quite reliable, and operation a t elevated temperatures should raise this limit. Type Analyses. The mass spectral method is applicable to mixtures for type analysis by which the two types of primary alcohols and secondary plus tertiary alcohols can be determined ( 3 , 8). Table I11 gives data on total ionization for various groups of mass peaks in the various types of alcohols. Appropriate groups of peaks for type analyses were selected on the basis of these data, and results of type analyses are given in Table IX. The matrix given in Table IX includes all alcohols
Table V.
above Cd. Furthermore, the 2-type secondary alcohols can be analyzed by means of mass peaks 45 and 19. A simple means has been found for estimating Cg to Ca primary alcohols in products from synthetic fuel processes. The 31 and 27 mass peaks of these compounds are nearly equal; also the 27 peaks of paraffins and olefins in the Fame fractions are approximately the Eame as the 27 peaks of these three alcohols. Therefore, the alcohol content can he estimated from the ratio of the 31 to the 2 i peak. This determination checks the infrared type analysis for total alcohols.
Mass Spectra of Secondary Alcohols (Continued) RI-CH-Rz AH
3-Type (Contd.) 4-Me 3-0ct 3-hept 3-Non
K
K 8
K
4-Hept
2-Me3-hex
4-Typ0 2.4-Dime3-pent 4-0ot
K
K
130
9 144
9 144
Cyclohex E 6 100
22.4 21.7
15.7 14.9
24.6 13.3
23.0 8.3
450 93.6 355 23.2 278 5.7 3.6
517 108 424 20 5 249 4 4 5 1
A36 i25 415 25 8 203 7 8 104
387 113 327 12.8 180 11.5 5.2
427 128 623 37.0 236 6.6
525 90.1 556 125 122 3.5
686 82.7 542 112 242 5.8
E 7
K 7
E
130
9 144
116
116
20. 8.
20.4 8.9
20.4 6,l
24.6 36.8
462 104 548 20.9 348 4.2 1.9
496 122 562 25.2 361 8.8 1.5
339 399 17.7 259 10.0 0 9
434 181 514 79.5 10 6 1.9
604 115 456 60.4 130 3 6
116
K 8 130
38.2 28.2
10.8 14.8
570 91.4 355 14.8 365 6.3 5.3
496 94.4 288 15.9 292 8.8 20.9
332 95.7 386 65.6 53.8 1.5
344 77.9 809 160 123 3.4
331 75.7 774 106 173 4.1
474 464 243 162 271 518 85.4 125 7 8 4 ~ 1i ~ 1170d1i 26.2 39.7
663 111 197 88.6 858dS i 28.6
1530d 1270d ~146 89.6
---
116 20.3 22.2 1.6
10.1 10.1 70.8 47.1 96.7 93.2 34.4 2.4
11.2 12.0 69.3 77.1 133 40.6 49.5 4.5
11.7 10.3 120 41.8 45.1 33.6 43.1 2.2
5,s 7.0 295 45.9 19.7 3.7 12.2 0.4
16.4 5.6 703 53.5 12.9 3.2 7.2 0.4
6.5 9.9 21.4 21.0 31.2 5.0 3.0
0.5 3.1 1.7 66.8 14,5 l58i 12.3
0.3 18.0 3.2 17.4 17.0 2401' 18.0
8.6 333 33.2 6.4 3.7 7.4 0.9
17.2 1.6 0.4 9.7 0.8
... ... ...
...
2.3 17.5 9.4 1621' 14.1
...
23.6
8 130
...
1.2
16 0 P 11.7
4.1 P 2.0
...
...
,.. 182
... 27 1
111
...
7
719d 109
K 8
4-hTon
5-Son
114
114
7 114
17.5 12.4
30.1 9.3
117 11.1
18.7 7.8
380 115 453 22.2 130 8.1 0.2
462 190 384 29.1 172 9.4 0.8
400 145 344 31.3 120 8.5 0.5
350 104 299 16 6 126 28.5 0.8
366 158 382 29.4 106 8.0
...
372 109 551 99.2 58.3 2.1
560 75.2 269 107 137 4.4
425 I59 261 468 07.8 3.0
410 189 278 246 90.9 3.3
396 225 292 257 41.2 2.3
443 134 194 222 39.6 1.8
717d 122 135 88.1 29.6
133 60 9 225 52.7 18.2 0.7
162 188 l5lOd 124 14 0 0.8
305 75 5 770d 138 10 8 0.6
315 76 8 440 54.7 10.8 0.8
309 121 442 24.8 1.5
141 453 58.3 97.6 306 55.7 5.6 1.0
95.8 120 64.4 92.1 - 7 x 46.7 5.1 1.1
93.3 103 31.9 253 114 9.9 13.1 1.3
357 38.t 25.3 fig 43 4 37.7 1.9
385 3.5.1 11.6 3 .3 7.6 12.0
...
...
295 26.9 1.9 9.4 3.1 2.8 0.7
248 39.8 1.9 20.0 2.6 2.6 0.9
...
1.7 8.1 P87.2 7.0
13.8 P8.8
, . .
...
-
136 13.3 10.8 2.4
230 76.7 24.5 1.0
9.7 3.2 32.3 13.1 89.2 127 1120h 50.1
5.0 1.8 23.1 6.9 61.3 191 1230h 59.7
9.0 3.9 41.7 70.5 112 152 1390dnh 61.4
9.6 7.2 714 59.8 86.4 54.3 573 i 26.0
13 2 8.8 1320d 83.0 33.9 33.3 681 i 31.8
9.3 10.7 30.9 30.9 168 50.4 410i 19.0
1 1
0.3 3.4 0.6 1.: l., 16.7 0.8
1.3 0.3 9.6 1.1 1.9 1.2 9.1 0.5
2.7 1.5 16.5 17.6 25.7 3.9 4.8
1.4 1 5 12.3 5.9 56.9 52.6 376 1' 20.0
1.1 0.5 5.8 2 9 16.8 136 582 i 31.0
10.1 8.6 338 28.5 7.4 33.7 9.3 0.4
2.6 4.4 17.0 20.2 19.7 56.8 734h 39.0
...
...
0.7 1.4 1.0 2.9 1.8 3.6 0.4
...
. .
0.7 7.4 5.3 67.8 18.8 153i 11.9
15.1 7.6 2.4 3.2 4.6 0.5
0.3 1.7 3.0 20.1 P48.5 5 7 1.0
...
...
0.9
10.6
4.6 1.7 2.4 0.3
2.1 1.4 3.0 2.4 0.4 0.6
...
...
...
...
P8 7
P...
...
12.2
. . , ,
..
0.6
...
1.1 0.5 4.9 P0.7
...
...
P'3:o
...
262
29 6 4.0 0.4 0.2
... ...
... ... 319
1.3 0.2 4.7 2.2 5.4 0.6
,..
...
Iti 3 1 1 ,..
... ...
2.2
...
...
16.6 P7.1
P 2.9
...
, . .
...
287
6.2 0.8
168
-~
2.3
... 307
pMecyclohex
E 7
313 62.0 281 37.2 123 4 1
-
Naphthenic m-Mleo-.\Iecyclocyclohex hex
E 7
615 134 278 43.9 101 4.6
... ...
221
5-Type 2-1Ie7 3-hept
1.5
0.5 1.8 0.2 4.7
15.0 10.9
125Od 94.9 19.8 2.5 3.4 0.7
1.6
0.9 1.7 15.9
..,
1. o
...
44.4
20.4 3.0
... ...
- 280 20 6 29.0 20.5 175 97.0 5.1
2.3 65,2 614 49.1 1.9 12 8 0.8
... ...
,..
...
... ...
... ...
E
0.6
...
...
...
... ...
267 24.7 1.7 5.1 2.3 3.1 0.9 3.7 10.7 P34.1 1.9
...
...
...
14.2 P4.2 184
322
234
138
143
199
ANALYTICAL CHEMISTRY
932 Table VI.
Rlass Spectra of Tertiary Alcohols R1 I
R.--C
-RJ
OH
Source b Carbons Molecular rreipht .\lass
Dimethyla 2,3-Dime2-Me?-hex 2-but
K G 102
7 116
110
2-Me2-hept K 8 130
45 6 I? 9
69.1 9.9
39.8 5.0
31.0 8 6
34.8 6.9
:382 85.9 313 11.5 448 8 7 2.2
40 1 88.8 "2 91' 357
334 72.8 I57 5.7
387 103 327
2883 50.1
85, 86 7 369
183 88 :3
627 43.8 323 883
440 72.5 050 24.9 749 17 0
548 75 I 655 29.8 229 5.4
443 28 7 45 3 30.:3 140061i 47 0
70.7 37.1 6 7 . ii 70 3 2180d, i 73.8
104 10.8 56.8 60.3 22OOds 72 fi
4
1
74
88
2-5fe?-pent E 6 102
30.6c 9.1
54.1 23.2
227 59.0 257
2-Me2-propo
2-1Ie-
0
E
%brit
K
%,&Dime2-pent K I
2,S-Dime2-llex K 8 130
3-Me3-hex K
7 11G
Methyl Ethyl. 2,3-Diine3-Me3-pent 3-hept K K 8 7 130 116
Cllarge 18 15
9.0 668 11.1 2.7
41 42 43 44 45
443 88.1 368 28.6 21.1
46
0.8
33.6 33.1 209 14.1 2050& h f18.6
55 56
57 58 59 60
.. . . ...
1.3
...
P . . . f
1 1 .:i 21 8
;
92
.I
785" 33,1
..
81
87 88
. . .. ...
96 97 98 99 100 101 102
0 7
. .
...
... ... ...
112 113 114
. .
115 116
, . .
...
g
18.3 12 1
2 0 1 0 P . . .
86
I
2.3 147 9.8 '3. 2.i 8.2 1.2 1.5
...
82 83 84 8.5
9 9
2 ,3 0 9
I
74
7.8 2.0
. .
39.0 3 6 489Qzi "6 7 0 1 0 3 7.4 2.1 2 1 3 .1 P0.4
295 G O :3 . 3
7.4 1.1
378 02.5 570 .,3 5 319 154
81.5 1
1.2 0.4
1 .i 1.1 64.3 12 9
41 3 4 4 540011
29.1
...
...
. .
28.3 3.8
5.0 5.1 0.5 3560, i 26.0
0.6
-'3. 0 3.1 1.6
103 7.2 26.; 1 ,
...
0.1 1.1 14.5 4.6
16.1 198Q,i
14.8
. . . .. ,
... ... ...
. .
... I58 Sen*. of base peak ( d i r . per 224 403 284 +mole) a, b , c , d , e SeefootnotesinTable I . 0 RI Rs. h Parent mass minus R , n h e r e R = RI = Rz = Ha. i Parent mass minus Ra.
... ...
...
...
...
403
.
...
. .
140 143 144
. . . .
P . . .
. .
... ...
55 1 30.3 826 19.1
147 137 2360dj i 79.0
288 128 274 81.4 2230d, i 69.3
37G 29.8 I59 41.5 17G 7.2
7.8 4.7 64.3 48.2 79 3 5 3 16.1 1.8
12.2 7.0 88 3 49.9 161 10 7 14.3 1. 0
8.9 2.9 119 22.1 37.6 19.0 1150d2 i 50.9
202 20.2 49.3 32.4 1070d8 i 48 4
3.2 3.7 14.9 5.3 6 7
1.5 0.8 24.1 1.9
2.4 0.7 31 2 2 8
4 "
8 0 7.2 24.8 3.8 11 0 1 3 3.6
O,?
0 2
19.7
1 3
. .
1.8
... 0.9 P ...
71.2 2.3
1 3
... ...
... . .
22 , 3 165 4 ti 322 IO:!
1: 1 I 5 18.6 1.9
2 li 0 . :3 72.2 5.7 5.6 0.3 "I
316 54.0
553
430 77 7 558
3 6 1.1
131
14.2 8.0
6.8 44.8 9.3 31.7 5 1 12.9 3.8
465 91.5 357 12.1 183 4.6 0 9
1 8
07.6
.5 . 7
327
38ti
2120d, i
241Ods i 81 2
70.2 289 8.0 170
248 6 0
108 109 2.57 120
93.8 182
29:s 15.5
11.3
117 liO.2 717 24 0 128 3.2
8 4
13 6 3.0 306 20.0 37.0 11.6
2.4 7.5 P0.8
0.7 210 4 3 1 8
10.5
335
. .
151
25.4 4.5
0 .3 42.7 10.2 3.2 1 1 5.8 0.5
4.6 117 12.8 8.5 2.5 3.1
4.1 3.9
13.1 10.7
0 5
...
, . .
...
P ...
. .
,..
...
.
... ... . .
443
...
... ,
515
379
71.1
233 7 6 104 3.3 0 7
319 45 3
63'' 36.4
43 1
9 8
37G "7.3 170 14.,
97.7 3 .4 12.2
-'> . j
7.8 12.0 546 1 29.8 0 3
10.2 5.4 4.7 0.5 162k 12.0
1.0 4.6 4.3 1.9 96.2k 7.3
. .
,.. , . .
...
...
... ...
...
P . . .
...
...
0.6 P . .
520
1
No. of Carbons 1
1 3 45
1
2
;
225
603 i 27 843 i 70 1006 zt 35
6 7 8 5
8.9 8.3 28.8 37.9 62.7 32.8 I57Od, _ _i 70.2 3.1
2.3 96.0 8.3 8.1 1.4 2.5
... ... 14.6 1.1 2.3 3.6 5167 38.6 4.5 2.8
...
158k 13.5
...
. . ...
,
...
.
239
219
Rz # Rs.
No. of
Isomers Included 11 11 16 6
578 42.0 216 46.2 204 6.8
,..
Parent mass minus R , where R = RI =
No. of Carbons
320 49.1 609 23.3 457 10.5
...
(Variation with carbon number shows stepwise character) Average Total Ionization above Mass 17 (Div. per FMole) 280
12.7 131 2.8 0.8
I' . . .
Table VII. Total Ionization of Aliphatic Alcohols s o . of Isomers Included 1
462 101 461
. .
i Parent mass minus R2
k Parent mass minus R I .
24.9 12 9
, . ,
...
...
507
2.4 526 i 28.1
2.1 149Qt1 13.7 P...
2494, j
21 . ?
. . ...
4.4
17.: 14,
1264 zt 55 1300 i 76 1475 i. 106 1533 =!= 171
363
V O L U M E 28, N O . 6, J U N E 1 9 5 6
933
~~
Table YI. -Mass Spectra of Tertiary Alcohols (Continued) R2
Ri-C-RI OH Methyl Ethylo (Contd.) 3,5-Dime3-Me3-hex 3-art I( I< 8 9 130 144
4-Me4-oct K 9 144
3-Et3-pent E 7 116
Diethyl. 3-Et3-hex K 8 130
Dipropylo 2,3,4-Trime3-pent
K
K
K
4-Me4-hept K
8 130
8 130
8 130
130
2-Me-3-et3-pent
2,3-Dime3-hex
8
nHeptane Phillips 7 100
33.3 12.2
:i 1 .6
10.5
23 4 12.8
31.4 8.7
22 1 7 6
27.6 12 0
2-1.3 9.8
32.5 8 2
29.0 18.3
25.5 10.8
35.4 16.7
...
374 60.1 309 10.0 97.6 2.9 0.6
-110 86 6 ,502 13.1 103 3 6 0 8
425 98.6 366 10.6 101 4.6 0.6
383 71.2 248 7.7 77.3 7.3 0 6
278 51.0 281 7.6 51.0 1.6
515 116 519 17.6 252
433 70.4 202 7.5 83.9 :j ;. 0.3
,'3 6 8 54 1 146 4.7 61.4 1.6
1.0
,520 127 639 25.7 263 6.4 1.6
476 R2.6 285 9.1 122 3.7 0.6
565 146 589 12.7
...
534 L17 088 23.9 205 3.7 1.1
355 60.0 802 28.4 245 6.0
324 71.4 649 27.1 338 8.2
412 57.7 599 39.2 1040d 23.1
48tj 64.0 783 34.3 818 19.4
279 57.4 504 30.6 589 13.4
444 46.4 356 16.6 1270 27.7
397 50.1 374 19.7 584 12.7
393 n8.2 369 18.9 855d 18.6
505 G7 G 747 64.3 1230 27.6
554 68.1
447 66.4 687 34.4 1360 30.2
656 294 114Od
369 29.8 347 76.0 336 11.4
D39 44.1 I52 134 Kil -1 5
234 57.6 170 95.0
283 57.0 78.8 161 62.2
310 26.2 286 25.7 678 22.1
176 35.2 612 51 7 515 16 9
157 12 5 102 47.7 90.8 3.4
179 19.7 120 11.1 92.7 3.0
131 299 541 '3.3 0.4
7.7
105 25.5 330 26 1 69.5 2.4
68.5 32.1 93.8 84.3 68.7
4.9
126 53,i 319 102 313 10.8
3 0
. .
12.2 4.5 28.9 32.0 59.6 26 4 141Odm i 62.8
10.3 3 4 118
19.5 7.6 179 19.8 67.7 4 2 25.4 1.7
9.8 5.8 108 23.1 88.8 7.3 19.1 0.9
13,5 5.7 313 25.6 14.1 4.0 27.4 1 . .5
12.4 9.6 111 16.8 55.1 17.5 8.3 0.9
15.6 4.8 111 3.3 40.4 4.2 16.2 1.3
15.6 6.4 314 38.1 127 11.4 53.5 3.5
15.0
13.9 6.8 209 37.9 83.6 5.4 48.1 3.1
. .
7G.1
12.5 5.4 186 18.1 72.0 27.5 28 6 2.9
4.5 7.3 17.6 3.8 15.7 2.5 10.1 0.8
3.9 1.7 80.6 31.1 20.8 10.8 945 i 50.3
3.8 4.2 79.8 19.4 38.7 12.2 952dn I 49.0
4.3 5.8 32.7 15,s 13.3 10.9 704d. i 36.9
1.3 0.5 10.3 1 2 7.2 11.0 1480d.h 79.8
3.7 3.2 104 13.8 14.; 11.i 706 1 36.9
3.0 1.3 60.2 9.4 17.2 63.4 537 i 28.4
2,9 2.0 li,3 2.8 8.8 25.5 1500dsl 83.0
4.2 1.3 13.6 2.1 9.8 21.7 1570d~ ___ 84.8
0.3 8.0 1.7 3.3 8.4 040 i 46.7
0 5 3.0 1.4 2.5 4.2 jO5i 37.0
2.5 39.0 11.1 8.3 2.6 11.0 1.0
... ...
'7'1
0 8
329 1 24.5
3.3 54.0 7.0 4.6 1.9 8.1 0.8
0.6 19.6 2.7 6.9 5,s 17.3 1.6
2.9 1.5
...
3.1 2.4 63.7 5.6 25.9 2.1 2.3
... 0 3 0.4 1.5 3.4
10.8
90:6k 7 8
... ... P ... ... .,.
-
115
(io, 2
114 47.1 1690dt i
...
. .
0.4 1.3
...
5.5 427 i 36.7
3.3
1 6
0.2
...
4.7 131k 12.7
'i31k 12.9
3.8 91.2k 8.9
...
...
...
...
P...
...
...
P'i.8
...
...
267
a,d See footnotes In Table I. h Parent mass minus R where
Parent mass minus
R1
R
0.9
2.9 73.2.k 7 9
P ..,
246 =
RI
=
R2
199
=
7 2 5.9 1.1 8.9 0.6
...
... p'i:2
...
3 . I
-.
0.7 4.4 6.0 852d,l 61.6
...
__
-
.,.
...
32.9 436 9.9
9.0 489 57.4 205 26.1 IF9 8.2
5.7 1.7 83'8% 7.4
... P b'.4
P 2' 8
0.2 PO.1
. .
...
. .
... . .
...
. .
...
...
195 1
...
. .
... ,.. ...
T8T 0.8
...
...
4.0 203 519 27.5 0.9 0.4
. .
...
..
2 '1 23.4 1 3
. . ...
... . . ... P '168
4.6 2.3
...
...
0.6 P .
.. ...
. .
. . . . . . ...
. .
. . . . ... . .
...
349
...
7.5 0.4 2.8 1.5 6.0 0.6
46:3i 13.5
...
197
Parent mass minus
...
...
...
, , .
2.6 1.5 9.6 5.9 7.9 12.8 1630dJ 88.7
3.9 1.4 0.7 34.6; 3.0
P b'.9
. .
Ra.
681
2.1 2.1 1.6 4.9 0.6
2.4
... . . ...
302
0.6
_7 1- . 7-
6.2 1.0 7.2 4.8 459k 33.5
. .
3.2
~
...
...
365
379
. . 200
Rz.
k Parent mass minus RI. 1
Table VIII. Primary (normal) Primary (8-branched)
...
,..
P'b:4
429
~
0 3 7.9 3481' 30.1
...
, . .
...
325
I
R I ethyl Propylo 2,4-Dime4-Me4-hept 4-non K K 9 10 144 158
Parent mass minus R where
R
= RI =
Rs
# RI.
Summary of Groups Identifiable in Unknown Alcohol by Mass Spectra
CCCC-OH CCC-OH Secondary (4-type)
C
Secondary (2-type)
-_CCCCC
Secondary (3-type)
_- CCCCC I
AH
OH
(Masses of both groups on carbinol are identifiable) (Masses of both groups on carbinol are identifiable)
-CCCCC
(Masses of both groups on carbinol are identifiable) OH C
Tertiary
__4 C C AH
ANALYTICAL CHEMISTRY
934 Component Analyses. Table X illustrates the analyses of three different blends of 1-butanol and 1-octanol, and the analysis of a four-component CS to CS alcohol blend. Such analyses are straightforward when no unknown interfering compounds are present. ACKNOWLEDGiVIENT
Table IX.
Mass Spectral Type Analyses of CS to Ce Alcohols (Calibration data include all alcohols above C,) Blend 1 KO. of
Primary, normal 42+56+70+ andy-branched Primary,@-branched 43 57 71 45 59 73
+ + + .. .. .. + +
n e la d a ,y r y1
The authors wish to acknowledge the help of A. F. Logar, B. 31. Thames, and Joseph Malli.
LITERATURE CITED
+
Matrix: Z 42+56+70+ Z 43+57+71+ z 45+59+73+
Bloom, E. G., Rfohler, F. L., Tengel, J. €I., Wise, C. E . , J . Research hratZ. Bur. Standards
Table
...
...
...
I
.
5 2
Primary P\-ormal and y-branched 8-branched 1379 897 918 1848 102 173
(1949).
Friedel, R. A., Sharkey, A. G., Jr., Humbert, C. R., A A ~ L . CHEM.21,1572 (1949). Friedman, L., Turkevlch, J., J . Am. Chem. SOC.74, 1666 (1952). Happ, G. P., Stewart, D. W., Ibid., 74, 4404 (1951). Kinney, I. W., Jr., Cook, G. L., ANAL.CHEM.24, 1391 (1952). hfcnlurry, H. L., Thornton, V.,J . Chem. Phys. 19, 1010 (1951). Mohler, F. L., Williamson, L., Dean, H. M., J . Research Natl. Bur. Standards 4 5 , 2 3 5 (1950) O’Neal, RI. J., J r . , Wier, T. P.. Jr.. AXAL.CHEM.23, 830 (1951). Sharkey, A. G., Jr., Shultz, J. L., Friedel, R. A , , ANAT..CHEM. 28. 934 (1956).
Secondary and Tertiary
218 856 2270
%
I-Butanol
I-Octanol
31.3 30.4 31.8
68 7 69.6 68.2
M.S. 2
71.7 71.7 71.0
28.3 28 3 29 0
Syn. M.S. 1 M.S. 2
88.0 89.7 87.9
12.0 10.3 12.1
Syn.
M.S. 1
M.S.2 Blend €3 Syn.
M.S. 1
Blend D
72.4 75.4 27.6 22.4 0.0 2 2
Blends
Volume Blend A
5 2 0
X. Mass Spectral -4nalyses of Alcohol Synthetic
Blend C
(1951).
Friedel, R. .i.,Logar, A. F., Shultz, J. L., A p p l . Spectroscopv 6 , No. 5 , 24 (1952). Friedel, R. A , , Sharkey, 4. G., Jr., ANAL.CHEM.28, 940 (1956). Friedel, R. A , . Sharkey, A. G , Jr., J . Chem. Phys. 17, 584
64.2 65.0 21.7 18.6 14.1 16.4
.
4 1 , 129 (1948)
Brown, R. A., American Society for Testing Rlaterials, Committee E-14, Mass Spectrometer IIeeting, Yew Orleans, La., May 1954. Brown, R. A4., AXAI,.CHEM.2 3 , 4 3 9 (1951). Brown, R. A., Young, W. S., Ibid., 2 6 , 1653 (1964). Collin, J., Bull. soc. chim. Belges 63, 500 (1954). Cummings, C. S., Bleakney, W., Phys. Rev. 58, 787 (1940). Eden, hi., Burr, B. E., Pratt, A. W.. ANAL. Cmar. 23, 1735
7 lume % FoSyn. Anal. in blend Syn. Anal.
alcohols in blend
Mass peaks
Type
Blend 2
No, of alcohols
Syn.
M.S.
I-Pentano
I-Hexanol
I-Heptanol
40.6 39.2
30 0 30.3
19.7
19.6
1-Octanol
9.7
10 9
(19) Washburn, H. W., in “Physical Methods in Chemical Analysis,” p. 592, W. G. Berl, ed., Academic Press, New York, 1950. RECEIVEDfor review November 5 , 1955. Accepted March 20, 1956. Presented a t Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, Pittsburgh, P a . , March 1952. Contribution of Branch of Coal-to-Oil Research, Bureau of Mines, Region V, Bruceton, P a .
Mass Spectra of Ketones A. G. SHARKEY, JR., J. L. SHULTZ, and R. A. FRIEDEL Bureau
of Mines,
U. S. Department of Interior,
Bruceton,
Mass spectra of 42 ketones, ranging in molecular weight from 58 (2-propanone) to 198 (2-tridecanone), have been obtained. Fragmentation peaks can be correlated with molecular structures. Three or more rearrangement peaks are found in the spectra of all aliphatic ketones. Rearrangement peaks from higher molecular weight ketones appear at the parent masses of lower molecular weight ketones. In many instances these pealis are more intense than the parent peaks of the lower molecular weight ketones and can cause errors in analysis of mixtures. Empirical ru1,es have been derived relating fragmentation peaks and rearrangement peaks to molecular structures, and analytical procedures for identifying pure ketones are illustrated.
C
ORRELATIONS of mass spectra have been carried out on various classes of hydrocarbons (1, 2, 6, IO, 12, I S ) .
Happ and Stewart (9) have studied aliphatic acids and Friedel
Pa.
and Sharkey (6) have correlated spectra of acetals. The mass spectra of ketones have been investigated in an effort to extend the usefulness of the mass spectrometer in analyzing oxygenated products from synthetic liquid fuels processes. Information has been obtained concerning peculiarities in the mass spectra of ketones that could lead to analytical errors. The 42 ketones examined range from 2-propanone to 7-tridecanone. PROCEDURE
Mass spectra were obtained on a Consolidated Model 21-103 mass spectrometer equipped with a modified Charlet-type (3) mercury-orifice system. A4constant volume pipet (0.00068 cc. ) was used to introduce all samples. Rlicromanometer ressure measurements were found to be in error for the higher getones. These errors have been discussed in another paper on alcohols (8); data in the tables are therefore given in terms of peak height per unit of liquid volume introduced (volume sensitivities). Thus, spectral peak heights for various ketones are directly comparable. Calculated sensitivity factors on the basis of divisions per micromole are also given in Tables I, 11, and 111. Compounds were used as obtained, without further purification; infrared and mass