8 Mass Spectrometric Study of the
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch008
Noble Metal Oxides Ruthenium-Oxygen System
J.
H.
NORMAN,
H . G.
STALEY,
and W . E .
BELL
Gulf General Atomic Inc., John Jay Hopkins Laboratory for Pure and A p p l i e d Science, San Diego, Calif.
Mass spectrometric to
measure
RuO (g),
and RuO(g)
2
kcal./mole
at 1900°K.,
spectively.
Entropies
been determined tively,
Knudsen
4
of
as -17
the
kcal./mole
have been
species
temperature
was
ranges
also observed.
heats of formation
Noble
studied. metal
in the associated
A compilation
of Μ—Ο
metal oxides is
C t u d i e s (3, 29, 31, 33)
entropies
species
gaseous and
re have
respec
The
as measured in transpiration
discrepancies
28.4
at 1950°K.,
of these species
cell studies are found to be in good agreement
^
3
at 1250°K.,
and 85 kcal./mole of formation
used
RuO (g),
to be —20.8, —1.5, and 11.8 e.u.,
in the
RuO (g)
cell methods
heats of formation
oxide Knudsen
while
some
have been
noted.
bond energies for the gaseous
noble
presented.
of the r u t h e n i u m - o x y g e n s y s t e m i n the t e m p e r a -
t u r e r a n g e 1100° to 1800°K. a n d at o x y g e n pressures a r o u n d 1 a t m .
have shown R u 0
2
to b e the i m p o r t a n t c o n d e n s e d phase a n d R u 0
3
and
Ru0
4
to be i m p o r t a n t v a p o r species. D a t a o n the l o w e r gaseous oxides,
Ru0
2
a n d R u O , h a v e not b e e n a v a i l a b l e .
I n t h e present s t u d y , t h e r u t h e n i u m - o x y g e n system has b e e n i n v e s t i g a t e d b y mass s p e c t r o m e t r i c K n u d s e n c e l l m e t h o d s to d e t e r m i n e the i m p o r t a n t v a p o r species a n d associated t h e r m o d y n a m i c s at o x y g e n p r e s sures a r o u n d 1 0
- 4
a t m . b e t w e e n 1150° a n d 2050°K.
T h e r m o d y n a m i c values o b t a i n e d f r o m this s t u d y h a v e b e e n
com
p a r e d w i t h values f r o m t r a n s p i r a t i o n studies. I n a d d i t i o n , a r e v i e w of gaseous
n o b l e m e t a l o x i d e t h e r m o d y n a m i c s as m e a s u r e d u s i n g mass 101
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
102
MASS SPECTROMETRY
spectrometric
K n u d s e n cell techniques
I N INORGANIC
is p r e s e n t e d .
these t h e r m o d y n a m i c s are also c o m p a r e d
CHEMISTRY
Where
possible
w i t h results o b t a i n e d u s i n g
t r a n s p i r a t i o n studies.
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch008
Experimental
Procedures
A C o n s o l i d a t e d E l e c t r o d y n a m i c s C o r p . M o d e l 21-703 ( 1 2 - i n c h r a d i u s , 6 0 ° s e c t o r ) mass s p e c t r o m e t e r m o d i f i e d for K n u d s e n c e l l e x p e r i ments w a s e m p l o y e d for this w o r k . T w o different cells w e r e u s e d i n the s t u d y . A t temperatures b e l o w 1500°K., a q u a r t z K n u d s e n c e l l h a v i n g a 0 . 7 - m m . - d i a m e t e r orifice w a s u s e d . T h e c e l l , fitted at the top w i t h a q u a r t z o x y g e n - f e e d t u b e , w a s h e l d i n a close-fitting m o l y b d e n u m c u p a n d w a s c o v e r e d w i t h three layers o f t a n t a l u m . A b o v e 1500°K., a n a l u m i n a c e l l of s i m i l a r d i m e n s i o n s was used. It w a s s i m i l a r i n g e o m e t r y except that the orifice was 1.4-mm. d i a m e t e r a n d the c e l l was f e d w i t h o x y g e n t h r o u g h a n a l u m i n a t u b e i n s e r t e d t h r o u g h the base of the c e l l . T h i s c e l l also w a s m o u n t e d i n s i d e a m o l y b d e n u m c e l l . T h e assemblies w e r e h e a t e d b y e l e c t r o n b o m b a r d m e n t u s i n g t u n g s t e n filaments m o u n t e d near the side of the c e l l a n d a b o v e the c e l l as i n the a u t h o r s ' other studies ( 2 2 ) . O x y g e n flowed into the c e l l t h r o u g h a v i s cous-flow i n l e t f r o m a l a r g e reservoir. O x y g e n pressure i n the c e l l was d e t e r m i n e d b y the pressure i n the r e s e r v o i r a n d the c e l l orifice size. T e m p e r a t u r e s b e l o w 1500°K. w e r e m e a s u r e d b y t w o P t / P t - 1 0 % R h t h e r m o c o u p l e s a t t a c h e d to the i n s i d e of the m o l y b d e n u m c e l l , one n e a r the t o p a n d the other near the b o t t o m . T e m p e r a t u r e s a b o v e 1500°K. w e r e m e a s u r e d b y m a k i n g o p t i c a l p y r o m e t e r sightings of the a l u m i n a c e l l t h r o u g h s m a l l holes i n the outer m o l y b d e n u m c e l l near the t o p a n d b o t t o m of the a l u m i n a c e l l . T e m p e r a t u r e s w e r e e q u a l i z e d b y a d j u s t i n g the p o t e n t i a l a p p l i e d across the t o p - m o u n t e d tungsten filaments. I n b o t h cases the cells w e r e c h a r g e d w i t h J o h n s o n M a t t h e y ( 9 9 . 9 9 5 % p u r i t y ) r u t h e n i u m metal. Results and
Discussion
M a s s peaks a t t r i b u t a b l e to effusate
f r o m the K n u d s e n cells
were
f o u n d to c o r r e s p o n d to 0 , R u \ 0 \ R u O , R u 0 \ R u O . , a n d R u O , a c +
2
+
2
{
+
t
+
c o r d i n g to masses a n d i s o t o p i c ratios. N o other R u - c o n t a i n i n g ions w e r e observed.
A p p e a r a n c e p o t e n t i a l s m e a s u r e d for the r u t h e n i u m - c o n t a i n i n g
ions w e r e 7.7, 8.7, 10.6, 11.2, a n d 12.8 e.v. for, r e s p e c t i v e l y , R u , R u O , +
Ru0
2
+
+
, R u O ; / , a n d R u O / . N e a r v o l t a g e i o n a p p e a r a n c e thresholds the
a b o v e - l i s t e d peaks w e r e b e l i e v e d to b e p a r e n t i o n peaks.
O x y g e n pres-
sure sensitivities p r e s e n t e d b e l o w g e n e r a l l y i n d i c a t e this to be the case. B r e a k s i n the a p p e a r a n c e p o t e n t i a l curves for R u a n d R u O +
+
from R u 0
2
w e r e m e a s u r e d to o c c u r at 13.0 a n d 12.8 e.v., r e s p e c t i v e l y . I n a n e x p e r i m e n t u s i n g the q u a r t z c e l l at 1240°K., the 0
pressure
2
w a s v a r i e d . F i g u r e 1, a p l o t o f the r e s u l t i n g l o g I ( ) + ( a n d I „ o + a n d RU
3
K
2
I R U O ) VS. l o g Io + d a t a , shows a 3 / 2 slope w i t h i n the u n c e r t a i n t y of the +
data.
2
T h i s suggests that the R u O . / i o n (at m/e
152)
is f o r m e d
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
from
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch008
8.
NORMAN ET AL.
Noble
Metal
103
Oxides
Figure 1. Metal oxide ion intensity dependence on 0 ion intensity +
2
R u 0 ( g ) since the m e t a l is the s o l i d state present u n d e r the e x p e r i m e n t a l 3
conditions ( 3 ) .
T h a t is, the i m p o r t a n t v a p o r i z a t i o n r e a c t i o n is Ru(«) + 3/2 0
2
= Ru0 (g).
(1)
3
A t 1190°K., the I o + vs. Io + i s o t h e r m , also i l l u s t r a t e d i n F i g u r e 1, shows R u
3
2
a slope close to 0.5. T h i s indicates that R u 0 ( s ) was the c o n d e n s e d phase 2
i n the 0
pressure r a n g e u s e d a n d that the i m p o r t a n t v a p o r i z a t i o n r e a c -
2
t i o n is R u 0 ( s ) + 1/2 0 2
T h e v a p o r pressure of R u 0 0
2
4
2
= RuOa(g).
over R u 0 ( s ) at 1140°
as d e t e r m i n e d b y B e l l a n d T a g a m i ( 3 )
The R u 0
4
+
2
(2) a n d 10"
4
atm.
s h o u l d b e a r o u n d 10"
8
atm.
i o n was o b s e r v e d i n this w o r k b u t was not intense e n o u g h to
p e r m i t s t u d y of its t h e r m a l b e h a v i o r .
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch008
104
MASS SPECTROMETRY
RECIPROCAL
Figure 2.
Dependence
I N INORGANIC
TEMPERATURE ( ° K
of Ru0
+
3
H
Χ
I0 ) 4
intensity functions on
temperature
L o g a r i t h m i c plots of the i o n currents of R u C V times T T~
i/2
CHEMISTRY
a n d times
, / 2
as a f u n c t i o n of r e c i p r o c a l t e m p e r a t u r e are s h o w n i n F i g u r e 2 .
In
t h e e x p e r i m e n t s f r o m w h i c h these d a t a w e r e o b t a i n e d , the i n t e n s i t y of the 0
2
+
f o r m e d f r o m the K n u d s e n c e l l effusate w a s set at a constant h i g h
l e v e l . U n d e r these c o n d i t i o n s , b e c a u s e of the ΖΓ p r o p o r t i o n a l i t y to p r e s sure, the q u a n t i t i e s Ι „ ο κ
3
+
Γ
1 Λ
a n d I R „ O T " , r e s p e c t i v e l y , are p r o p o r t i o n a l 3
+
,
, / 2
to t h e e q u i l i b r i u m constants for R e a c t i o n s 1 a n d 2 . F r o m slopes of lines d r a w n t h r o u g h the t w o sets of d a t a i n F i g u r e 2 , w e c a l c u l a t e ΔΗΙ Γ>« 2
5 4 k c a l . / m o l e for Reaction 2 and Δ Η
1 2 5
ο —
=
— 1 7 k c a l . / m o l e for R e a c t i o n
1. T h e s e v a l u e s are i n g o o d agreement w i t h ΔΗ »ο 12
values of + 5 4 . 7 a n d
— 1 3 . 9 k c a l . / m o l e c a l c u l a t e d for the r e s p e c t i v e reactions f r o m d a t a r e p o r t e d b y Schâfer, S c h n e i d e r e i t , a n d G e r h a r d t ( 3 1 ) , a n d Δ Η
1 2 Γ
» ο values
of + 5 1 . 6 a n d — 1 7 . 0 k c a l . / m o l e c a l c u l a t e d for the respective
reactions
from data reported b y Bell and T a g a m i ( 3 ) . U s i n g the a l u m i n a c e l l , t h e R u O ( g ) s
species c a n b e s u p p r e s s e d b y
g o i n g to h i g h e r t e m p e r a t u r e s , b u t m o r e i m p o r t a n t , the pressures of the
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
8.
NORMAN E T AL.
Noble
Metal
l o w e r oxides c a n b e increased.
105
Oxides
A t h i g h e r temperatures a n d a n o m i n a l
electron e n e r g y of 20 e.v., the i n t e n s i t y of the R u O / s i g n a l f r o m t h e K n u d s e n c e l l effusate was f o u n d to d e p e n d d i r e c t l y o n the square of t h a t p o r t i o n of the a t o m i c O " s i g n a l a t t r i b u t a b l e to K n u d s e n c e l l effusate. T h i s suggests t h a t R u 0
2
+
is a p a r e n t i o n a n d c a n b e u s e d i n d e s c r i b i n g
the v a p o r i z a t i o n of R u 0 ( g ) i n s t u d y i n g the r e a c t i o n 2
Ru(s) + 0 - ^ R u 0 ( g ) . Downloaded by NANYANG TECHNOLOGICAL UNIV on October 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch008
2
(3)
2
A t a n o m i n a l e l e c t r o n energy of 10 e.v., the R u O
+
signal intensity was
f o u n d to b e p r o p o r t i o n a l to the i n t e n s i t y of the s h u t t e r a b l e 0 ; therefore, +
RuO
+
Ru
w e r e f o u n d to h a v e the same 0
+
is a p a r e n t i o n at this electron energy. A t 20 e.v., the R u O a n d the +
1 3 6 ) , suggesting R u O ments of R u 0 ( g ) . 2
+
( a t m/e
d e p e n d e n c e as the R u 0
2
120) a n d R u
+
( a t m/e
+
2
( at
m/e
102) w e r e f r a g -
T h e v a p o r i z a t i o n r e a c t i o n for R u O ( g )
is
Ru(s) + l / 2 0 - > R u O ( g ) .
(4)
2
A t 10 e.v., the R u p e a k is f o u n d to be i n d e p e n d e n t of the 0 +
+
signal and
thus represents the d i r e c t v a p o r i z a t i o n of r u t h e n i u m m e t a l , Ru(s) - > R u ( g ) . O b s e r v a t i o n s of the v a r i a t i o n i n intensities of the R u 0 RuO
+
a n d R u at 10 e.v. w i t h 0 +
Figure 3.
+
(5) 2
+
at 20 e.v. a n d the
i n t e n s i t y are i l l u s t r a t e d i n F i g u r e 3.
Metal ion intensity dependence on 0 intensity at 2045° K.
+
ion
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch008
106
MASS SPECTROMETRY I N INORGANIC
4.8
5.0
52
5.4
5.6
CHEMISTRY
5.8
RECIPROCAL TEMPERATURE(°KxI0 ) 4
Figure 4.
Dependence
of ruthenium species ion intensity on temperature
I f the intensities of the R u , R u O , a n d R u 0 +
+
2
+
function
ions are s t u d i e d as a
f u n c t i o n of t e m p e r a t u r e at a p p r o p r i a t e electron energies a n d at a h i g h , constant flux of o x y g e n t h r o u g h the c e l l ( P o
2
>>
P o ) , the heats of
v a p o r i z a t i o n o f the p a r e n t species of these ions m a y b e d e t e r m i n e d f r o m the slopes of i o n i n t e n s i t y functions vs. r e c i p r o c a l t e m p e r a t u r e . E x a m p l e s of these d e t e r m i n a t i o n s are p r e s e n t e d i n F i g u r e 4. F o u r s u c h d e t e r m i n a tions w e r e m a d e f o r e a c h of these species, r e s u l t i n g i n values of 28.4 ± 1 . 0 , 85 ± 5 , a n d 152 ± 3 k c a l . / m o l e for R e a c t i o n s 3, 4, a n d 5, r e s p e c t i v e l y , i n the t e m p e r a t u r e ranges 1 7 4 0 ° - 2 0 4 0 ° K . , 1 8 7 0 ° - 2 0 2 0 ° K . , a n d
1900°-
2050°K. T o estimate the p a r t i a l pressures of the gaseous species R u O , R u 0 , 2
RuOs, R u 0 , O, and 0 4
2
present i n these systems, a pressure o f
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Ru(g)
8.
Noble
NORMAN ET AL.
Metal
107
Oxides
w a s o b t a i n e d f r o m the studies of P a n i s h a n d R e i f (26) Walker and Plante ( β )
a n d of C a r r e r a ,
( t h e P a u l e a n d M a r g r a v e (27)
values differed
s l i g h t l y ) a n d u s e d as a s t a n d a r d i n the m e t h o d d e s c r i b e d b y I n g h r a m a n d D r o w a r t (13).
I n this m e t h o d , t o t a l i o n i z a t i o n cross sections a c c o r d
i n g to O t v o s a n d Stevenson (24)
were employed along w i t h multiplier
gains i n v e r s e l y p r o p o r t i o n a l to the square root of the m o l e c u l a r w e i g h t a n d the a p p e a r a n c e potentials r e p o r t e d i n this s t u d y a n d b y K i s e r
(16).
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch008
U s i n g these d a t a , e n t r o p y values for R e a c t i o n s 1, 3, a n d 4 w e r e c a l c u l a t e d to b e —20.8, —1.5, a n d 11.8 e.u., r e s p e c t i v e l y , i n the t e m p e r a t u r e ranges s t u d i e d . T h e heat of v a p o r i z a t i o n of R u 0 ( g ) ( —45.4 k c a l . / m o l e ) 4
f r o m the studies of B e l l a n d T a g a m i (3)
leads to a n e n t r o p y of
the
vaporization reaction, Ru(s) + 2 0 - » R u 0 ( g ) , 2
of —33.6 e.u. f r o m the e x p e r i m e n t a l R u 0 166 a n d a c o r r e s p o n d i n g 0
2
(6)
4
4
+
i n t e n s i t y m e a s u r e d at
m/e
i o n intensity.
+
Review of Noble Metal Oxide Vaporization
Data
O x i d e t r a n s p i r a t i o n studies h a v e b e e n m a d e b y A l c o c k a n d H o o p e r (2)
( A H ) , for the metals P t , P d , R h , I r , a n d R h . O t h e r n o b l e m e t a l oxide
t r a n s p i r a t i o n studies i n c l u d e a R u s t u d y b y B e l l a n d T a g a m i (3) a R u s t u d y b y Schâfer, T e b b e n , a n d G e r h a r d t (33) Schâfer a n d H e i t l a n d (30)
( S H ) , K u r i a k o s e a n d M a r g r a v e (17)
a n d C o r d f u n k e a n d M e y e r (8) T e b b e n (32)
(ST).
(BT);
( S T G ) ; I r studies b y
G r i m l e y , B u r n s , a n d I n g h r a m (10)
vestigated the gas phase O s 0
4
(KM),
( C M ) ; a n d a P t s t u d y b y Schâfer a n d —> O s 0
3
+
1/2 0
2
( G B I ) have i n -
equilibrium in a K n u d -
sen c e l l mass s p e c t r o m e t r i c a l l y , a n d N o r m a n , Staley, a n d B e l l (20, 21, 22, 23)
h a v e s t u d i e d the oxides of R u , I r , R h , P t , a n d P d u s i n g mass spec-
t r o m e t r i c K n u d s e n c e l l techniques. a n d N i k o l s k i i a n d R y a b o v (19) information.
Schâfer, T e b b e n , a n d G e r h a r d t
(33)
h a v e presented r e v i e w s of some of this
T h e heats of f o r m a t i o n f r o m these studies are g i v e n i n
T a b l e I., w h e r e the c o m p i l a t i o n of C o u g h l i n ( 9 )
(C)
w a s u s e d to d e -
scribe the heat of f o r m a t i o n of O s 0 ( g ) . I n T a b l e I a l l of the heats h a v e 4
b e e n e x t r a p o l a t e d to 1500°K. b y e m p l o y i n g , i n the absence of s t r u c t u r a l i n f o r m a t i o n o n the oxides, H - H o d a t a f r o m the J A N A F tables (14) T
the a p p r o p r i a t e gaseous tungsten oxide K e l l e y s (15)
Os0
4
except for
tetroxides,
for
where
heat c a p a c i t y f o r m u l a was e x t r a p o l a t e d to 1500°K.
T h e error m a d e b y u s i n g the heat capacities of these gaseous c o m p o u n d s to describe the same M O . , . ( g ) species for other metals at the
moderate
temperatures i n v o l v e d s h o u l d b e rather s m a l l , except w h e r e the q u e s t i o n of l i n e a r i t y of the M O » ( g ) molecules L
is i n v o l v e d — a 1
v a r i a n c e . A p p r o p r i a t e d a t a for the c o n d e n s e d
cal./deg.-mole
metals a n d o x y g e n
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
were
108
MASS SPECTROMETRY I N INORGANIC
t a k e n f r o m the J A N A F tables (14), et al. (12).
The R u 0
2
CHEMISTRY
Stull and Sinke (35), and H u l t g r e n ,
d a t a of A l c o c k a n d H o o p e r (2)
were
corrected
to t a k e i n t o a c c o u n t that R u 0
2
their conditions.
was t a k e n as the gaseous r h o d i u m oxide
Also, R h 0
2
w a s the c o n d e n s e d phase present u n d e r
present i n t h e i r studies. T h e d a t a of K u r i a k o s e a n d M a r g r a v e (17) t a k e n to a p p l y to the r e a c t i o n I r ( s ) +
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch008
Table I.
Reference°
Os
GBI C NR Β
Ir
2
-»
were
IrO (g). s
Heats of Formation of the Gaseous Noble Metal Oxides at 1 5 0 0 ° K . (kcal./mole)
Element
Ru
3/2 0
NSB AH STG BT NR Β NSB AH CM SH KM Β
MO(g)
M0 (g) 2
b
M0 (g)
Present (46) (39 ± 20) 86.7 ± 5
29.7 ± 1
MO (g)
3
k
-11.8 ± 1 -81.5 (-25) -17.0 ± 2 -16.5 -13.5 -16.7 ± 2
(40) (47 ± 15) Present
49.7 ± 1.0
-42.8 -45.4 ± 3 -43.1 ± 2
6.2 ± 1.5 4.8 4.2 4.0 7.1 ± 1.9
(48 ± 15)
Rh
NSB AH Β
91 ± 5
42.0 ± 2.0 45.6 ± 0.6 (27 ± 20)
Pt
NSB AH ST Β
102.3 ± 5
37.8 ± 2.3 39.4 ± 0.3 39.9 (43 ± 8)
Pd
NSB Β
80.0 ± 1.0 (41 ± 25)
" Authors' initials indicate pertinent works. Values in parentheses are estimated. h
T h e agreement of the e x p e r i m e n t a l values r e p o r t e d i n T a b l e I is i n d e e d g r a t i f y i n g . It w o u l d seem to g i v e c r e d e n c e to a l l of the d a t a r e p o r t e d . T h e agreement b e t w e e n the mass s p e c t r o m e t r i c a n d the t r a n s p i r a t i o n results s t r o n g l y suggests t h a t the same species are b e i n g e x a m i n e d i n the t w o different m e t h o d s , a n d other e v i d e n c e substantiates
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
8.
NORMAN ET AL.
Noble
Metal
109
Oxides
this. T h a t is, the mass s p e c t r o m e t r i c studies h a v e not r e v e a l e d p o l y m e r s b u t i n d i c a t e t h e presence of the m o n o m e r species a s s u m e d i n the t r a n s p i r a t i o n studies. W h i l e the o x y g e n pressures u s e d i n these t w o types of studies are q u i t e different, this has little to d o w i t h the P M O / P M O J , ratios X
—i.e., i f Ρ Μ Ο Χ
V
w e r e i m p o r t a n t i n the t r a n s p i r a t i o n studies, this species
υ
p r o b a b l y w o u l d h a v e been d e t e c t e d mass s p e c t r o m e t r i c a l l y . It appears, t h e n , t h a t a l l these studies, w i t h the possible exception of the Ir studies Downloaded by NANYANG TECHNOLOGICAL UNIV on October 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch008
of K u r i a k o s e a n d M a r g r a v e (17),
i n d i c a t e o n l y the presence of
mono-
m e r i c v a p o r species of the n o b l e m e t a l oxides. O n e m i g h t q u e s t i o n w h e t h e r t r a n s p i r a t i o n studies are a p p r o p r i a t e for systems as c o m p l e x as these.
N o t e , h o w e v e r , that the possible p r e s
ence of several species i n the t r a n s p i r a t i o n studies does not seem to h a v e a d v e r s e l y affected the results. F o r instance, B e l l a n d T a g a m i o b t a i n e d thermodynamic information on both R u 0
8
and R u 0
4
by interpreting
r u t h e n i u m transport to b e c a u s e d b y b o t h species. Brewer (5) oxides at 0 ° K .
( B ) has e s t i m a t e d the dissociation energies for the d i I n T a b l e I., his values h a v e b e e n c o n v e r t e d into heats of
f o r m a t i o n at 1500°K. f o r c o m p a r i s o n w i t h the e x p e r i m e n t a l values, w h e r e a v a i l a b l e . W h i l e there are discrepancies u p to 20 k c a l . / m o l e , B r e w e r s estimates are w i t h i n his stated uncertainties. T h e heat of f o r m a t i o n d a t a g i v e n i n T a b l e I c a n b e c o n v e r t e d i n t o b o n d e n e r g y i n f o r m a t i o n . T a b l e I I presents the heats of f o r m a t i o n of the gaseous oxides p e r oxygen a t o m i c oxygen.
a t o m at 1500°K. f r o m gaseous m e t a l a n d
F o r self-consistency, the K n u d s e n c e l l values are u s e d
w h e r e a v a i l a b l e . D a t a u s e d i n c o n s t r u c t i n g this t a b l e i n c l u d e the heat of d i s s o c i a t i o n of o x y g e n molecules at 1500°K. as p r e s e n t e d i n the J A N A F tables (14)
a n d heats of v a p o r i z a t i o n of the n o b l e metals at 1500°K. as
g i v e n b y S t u l l a n d S i n k e ( 3 5 ) , H u l t g r e n , et al. (12), p e r i m e n t a l d e t e r m i n a t i o n s (6, 22, 25, 26, 27).
a n d / o r recent ex
T h e s e selected heats of
v a p o r i z a t i o n are also i n c l u d e d i n T a b l e I I . O n e n o t e w o r t h y o b s e r v a t i o n c o n c e r n i n g the b o n d energies p r e s e n t e d i n T a b l e I I is t h a t t h e y e x h i b i t a degree of agreement w i t h a n a d d i t i v i t y rule.
T h e system w i t h the most extensive p e r t i n e n t d a t a w o u l d b e the
r u t h e n i u m oxides. I n this case, 127 k c a l . are associated w i t h the b o n d i n g of the first g r a m a t o m of o x y g e n , w h i l e o n l y 89 k c a l . are associated w i t h the f o u r t h — 0 . 7 of the v a l u e for the first g r a m a t o m . W h i l e this does not i n d i c a t e c o m p l e t e agreement w i t h the a d d i t i v i t y r u l e , this decrease f r o m 1 to 0.7 of the first b o n d energy across the w h o l e series seems a r a t h e r s m a l l change
a n d indicates near a p p l i c a b i l i t y of the r u l e .
Observed
deviations for O s , R u , a n d I r are i n the o r d e r of d e c r e a s i n g b o n d strength w i t h a d d i t i o n a l b o n d s , w h i l e R h a n d P t seem to e x h i b i t a reverse t r e n d b y a c c e p t i n g a s e c o n d g r a m a t o m of o x y g e n s o m e w h a t m o r e e n e r g e t i c a l l y t h a n the
first.
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
110
MASS SPECTROMETRY I N INORGANIC
T a b l e II.
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch008
Element Os Ru Ir Rh Pt Pd
CHEMISTRY
Heats of Formation per Oxygen A t o m of the Noble Metal Gaseous Oxides at 1 5 0 0 ° K . from Atomic Oxygen and M ( g ) (—kcal./mole) Reference
M(g)
(6, 26) This study {25,27) (12, 35) (12, 35) (22)
185 152 156 131 134 89
MOJ2
127
122 114 105 109
101 92 70
MOJ4
MOJ3
MO
127(C) 110
145 ( G B I ) 117 111
N i k o l s k i i a n d R y a b o v ( 19 ) q u e s t i o n the G r i m l e y , B u r n s , a n d I n g h r a m v a l u e u s e d b y Schâfer, T e b b e n , a n d G e r h a r d t (33)
(10)
c a l c u l a t e —66.2 k c a l . / m o l e for Δ Η °
2 9 8
of O s O n ( g ) .
i n t h e i r r e v i e w to
T h i s v a l u e is r e l a t e d
to the degree of d e p a r t u r e f r o m a d d i t i v i t y of O s — Ο b o n d s .
Indeed, the
G B I 1 8 - k c a l . / m o l e difference i n o x y g e n average b o n d energies for the t w o h i g h e r oxides of o s m i u m p r e s e n t e d i n T a b l e I I is l a r g e , b u t i t is diffi c u l t to s h o w that i t is too l a r g e , a n d i t seems u n n e c e s s a r i l y p r e c l u s i v e to argue this q u e s t i o n f r o m c o n d e n s e d state t h e r m o d y n a m i c s .
It seems
best to accept this a p p a r e n t l y excellent d e s c r i p t i o n of the O s O s — 0 — 2
Os0
4
e q u i l i b r i u m b y r e p o r t i n g the G B I heat of f o r m a t i o n of
m i n u s that of O s O ( g ) . s
Δ Η ° 2 9 8 for O s 0
2
N i k o l s k i i a n d R y a b o v (19)
Os0 (g) 4
h a v e also p r e d i c t e d
a n d R u 0 . T h e r e is no e x p e r i m e n t a l i n f o r m a t i o n c o n 2
cerning O s 0 , and their O s 0 2
difficulties as is t h e i r O s 0
3
2
estimate c e r t a i n l y is subject to the same
estimate. T h e i r R u 0
estimate, c o n v e r t e d to
2
1 5 0 0 ° C , w o u l d b e 9 k c a l . / m o l e h i g h e r t h a n the e x p e r i m e n t a l v a l u e . T h e n o b l e metals are p r e s e n t e d i n T a b l e s I a n d I I essentially i n the o r d e r of the s t a b i l i t y of t h e i r oxides a n d t h e i r heats of v a p o r i z a t i o n . T h e r e l a t i o n of these properties a n d t h e i r p o s i t i o n i n the p e r i o d i c t a b l e is evident. A l t h o u g h the n o b l e m e t a l o x i d e e x p e r i m e n t a l heats of
formation
f r o m the mass s p e c t r o m e t r i c a n d t r a n s p i r a t i o n t e c h n i q u e s are i n g o o d agreement, w h e r e t h e y c a n b e cross-checked, the v a p o r pressures deter m i n e d u s i n g the t w o m e t h o d s differ c o n s i d e r a b l y .
T o demonstrate this
p r o b l e m , a l l of the c o m p a r a b l e cases are p r e s e n t e d i n T a b l e I I I . W h i l e several of the values u s e d cannot b e c o n s i d e r e d w e l l e s t a b l i s h e d , t w o cases, I r O * a n d P t 0 , s t a n d o u t as reasonable tests. T h r e e t r a n s p i r a t i o n 2
studies, w h e n e x t r a p o l a t e d , g i v e 1.7 ( ± 0 . 2 ) pressure at 2033°K. a n d 1 a t m . 0
2
X 10" a t m . as the I r 0 3
3
vapor
pressure i n the presence of the m e t a l .
T h e c o r r e s p o n d i n g v a l u e f r o m the mass s p e c t r o m e t r i c m e t h o d is 3.5 10" , a factor of five l o w e r . 4
χ
I n the p l a t i n u m oxide t r a n s p i r a t i o n studies
c i t e d , the e x t r a p o l a t e d v a p o r pressure of P t 0 ( g ) 2
i n 1 a t m . o x y g e n over
the m e t a l at 2018°K. was d e t e r m i n e d to b e 1.0 ( ± 0 . 1 ) X 10" a t m . T h e 4
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
8.
Noble
NORMAN ET AL.
Metal
111
Oxides
mass s p e c t r o m e t r i c s t u d y leads to a v a l u e of 8.5 X 10" a t m . , a f a c t o r of 6
11 s m a l l e r . T h e R u 0
3
case is not q u i t e as clear. T h e t w o t r a n s p i r a t i o n
results at 1779°K. a n d 1 a t m . 0 c o m p a r e d w i t h 4.1 X
2
o v e r t h e m e t a l g i v e 4.8 (d=3)
χ
10"
2
10~ o b t a i n e d mass s p e c t r o m e t r i c a l l y i n this case, 3
a f a c t o r of f o u r to 20 l o w e r . I n the single c o m p a r i s o n of R h 0
2
pressures,
the mass s p e c t r o m e t r i c v a l u e is c o n s i d e r a b l y l o w e r t h a n i n t h e other cases. I n the P d O case, n o r e a l c o m p a r i s o n c a n b e m a d e except to say Downloaded by NANYANG TECHNOLOGICAL UNIV on October 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch008
t h a t A l c o c k a n d H o o p e r ( 2 ) b e l i e v e , b a s e d o n t h e i r t r a n s p i r a t i o n studies, that P d O pressures s h o u l d b e h i g h e r t h a n w e r e m e a s u r e d s p e c t r o m e t r i cally b y N o r m a n , Staley, a n d B e l l (22).
T h e one r e m a i n i n g c o m p a r i s o n
also is not w e l l e s t a b l i s h e d since, i n the case of R u 0 ( g ) , n o mass spectro 4
m e t r i c heats w e r e o b t a i n e d a n d the t r a n s p i r a t i o n results w e r e b a s e d o n a m i n o r species d e t e r m i n a t i o n . I n this s i n g l e case, h o w e v e r , t h e mass s p e c t r o m e t r i c pressures w e r e h i g h e r t h a n the t r a n s p i r a t i o n pressures. Table I I I .
Noble Metal Oxide Comparative Vapor Pressures (atm.)
Gaseous
Mass Spec. (NSB)
Species
T(°K.)
Ru0
1729
4
T JT ^ M0
0
Transpiration T
a
(2 Χ 10" ) max 2
M
0
J ?
0
^
Transpiration a
Mass Spec.
3.5 Χ 10" ( S T G ) 1.1 Χ 10~ ( B T )
(0.5-0.05)
6.9 X 10" ( S T G ) 2.7 Χ ΙΟ" ( B T )
20-5
1.6 Χ 10" ( A H ) 1.6 Χ ΙΟ" ( S H ) 1.9 X I O - ( C M )
5
1.4 Χ 10" ( A H )
50
8.9 Χ 10" ( A H ) 1.1 Χ 10" ( S T )
13-10
(4 X 10"«) ( A H )
(40)
3
3
RuO
1729
s
4.1 Χ 10"
3
2
2
Ir0
2033
3
3.5 Χ 10"
4
3
3
3
Rh0 Pt0
2
2
2000
3 Χ ΙΟ"
2018
8.5 X 10"
6
4
6
5
4
PdO
1900
1.0 X 10"
6
* Po = atm. 2
T h e s e results, t h e n , suggest that g e n e r a l l y a n u n d e r e s t i m a t i o n of m e t a l o x i d e pressures is m a d e i n the mass s p e c t r o m e t r i c studies or a n o v e r e s t i m a t i o n is m a d e i n the t r a n s p i r a t i o n studies. I t is difficult to b e l i e v e that i n the t r a n s p i r a t i o n m e t h o d mass t r a n s p o r t was grossly o v e r e s t i m a t e d or d i f f u s i o n a l effects w e r e not p r o p e r l y a c c o u n t e d for.
For
reasons m e n t i o n e d p r e v i o u s l y , i t is also difficult to b e l i e v e that p o l y m e r s cause the differences i n the t w o m e t h o d s , a l t h o u g h u n d e r u n u s u a l c i r cumstances M 0 x
2
c o u l d b e c o n s i d e r e d to b e M 0
s t u d y , g i v i n g excessively h i g h M 0
2
2
i n the t r a n s p i r a t i o n
pressures. It seems m u c h m o r e l i k e l y
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
112
MASS SPECTROMETRY
I N INORGANIC
CHEMISTRY
t h a t t h e c r u x of this p r o b l e m is i n c o n v e r t i n g mass s p e c t r o m e t r i c i o n i n tensities to c e l l species pressures. I n d e e d , questions c o n c e r n i n g the v a l i d i t y of e m p l o y i n g the cross sections of O t v o s a n d Stevenson (24)
and
t h e a d d i t i v i t y of these q u a n t i t i e s h a v e b e e n b r o u g h t u p ( 7 , 1 8 , 28). f o r d (34)
Staf
has p r o p o s e d u s i n g cross sections d e r i v e d f r o m G r y z i n s k i ' s
c a l c u l a t i o n a l scheme.
I n s e v e r a l studies ( I , 4, 36)
(11)
attempts w e r e m a d e
to a v o i d the use of c a l c u l a t e d cross sections.
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch008
S o m e p r o b l e m s are associated w i t h pressure e s t i m a t i o n u s e d i n the mass s p e c t r o m e t r i c m e t h o d .
M a s s s p e c t r o m e t r i c i o n intensities are c o n
v e r t e d to pressures or e q u i l i b r i u m constants b y e m p l o y i n g ratios of i n tensities. O n e e i t h e r considers a d i m e n s i o n l e s s pressure r a t i o as a n e q u i l i b r i u m constant o r establishes the pressure of a species of interest b y c o m p a r i s o n w i t h a n a v a i l a b l e pressure s t a n d a r d . F o r the n o b l e m e t a l M0
gaseous
2
=
PMO /PO 2
2
species,
ΚΙ*ιοζ/Ιθ2
it was
indeed
sionless reactions s u c h as M ( s ) + the 1 / 2 0
2
reasonable
to
use
the
K
P
=
r e l a t i o n s h i p . I n other cases, one c a n u t i l i z e d i m e n 2 0
2
-» M 0
3
+
Ο w h e r e , i n a sense,
- » Ο e q u i l i b r i u m is e m p l o y e d to c a l i b r a t e the system.
Often
the n o b l e m e t a l pressure m a y b e u s e d as a c a l i b r a t i n g agent, or s o m e a d d i t i v e to the s y s t e m , s u c h as silver, m a y be u s e d i n the c a l i b r a t i o n . W h i l e these p r o c e d u r e s a p p e a r s o u n d a n d b e y o n d q u e s t i o n , t h e y d o n o t c i r c u m v e n t the necessity of e s t i m a t i n g r e l a t i v e cross sections a n d detector sensitivities. O n e is often c o n f r o n t e d
w i t h the p r o b l e m of the e x p e r i m e n t a l l y
i n d e t e r m i n a t e q u e s t i o n of h o w efficiently ions of a p a r t i c u l a r t y p e c a n b e m a d e f r o m specific n e u t r a l species. and
D r o w a r t (13)
T h e method described by Inghram
for e s t i m a t i n g ratios of t o t a l i o n i z a t i o n efficiencies
accepts O t v o s a n d Stevenson's
(24)
t o t a l i o n i z a t i o n cross sections a n d
a d d i t i v i t y of these cross sections. T h e m e t h o d also accepts a l i n e a r r e l a t i o n s h i p b e t w e e n cross section a n d i o n i z i n g e n e r g y of the e x c i t i n g elec trons a b o v e a t h r e s h o l d v a l u e to p r o v i d e these ratios of t o t a l i o n i z i n g efficiencies.
S p e c i f i c c r i t i c i s m s o f the u n i v e r s a l i t y o f this f o r m u l a m a y
be directed at: 1. T h e t o t a l a t o m i c cross section values themselves. 2. A d d i t i v i t y of these values to get m o l e c u l a r cross sections. 3. T h e s i m p l i c i t y of the a s s u m e d a p p r o a c h t o w a r d the m a x i m u m cross s e c t i o n a l v a l u e s as a f u n c t i o n of e l e c t r o n energy. 4. T h e a p p l i c a t i o n of these values to cases w h e r e u n d e t e c t e d f r a g m e n t a t i o n m a y b e significant. Q u e s t i o n s of d i v i s i o n of t r a n s f e r r e d e n e r g y i n t o e x c i t a t i o n a n d i o n i z a t i o n , e l e c t r o n i c s t r u c t u r e of atoms a n d m o l e c u l e s , a n d other b a s i c p r o p erties are i n v o l v e d . F o r instance, Stafford's (34)
p r o p o s e d cross sections
differ i n m a n y cases f r o m n o r m a l i z e d O t v o s a n d Stevenson v a l u e s b y a factor of t w o or three.
H i s values s h o w d e v i a t i o n f r o m e x p e r i m e n t a l l y
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
8.
NORMAN ET AL.
Noble
Metal
113
Oxides
d e t e r m i n e d cross sections, a l t h o u g h not as often as d o the n o r m a l i z e d O t v o s a n d Stevenson values. L e t us c o n s i d e r the situation for the n o b l e m e t a l o x i d e measurements. I o n i z a t i o n cross sections for o x y g e n m o l e c u l e s as e m p l o y e d
i n these
studies seem to agree w i t h e x p e r i m e n t a l values—i.e., the r a t i o of 0
2
to M
cross sections at the voltages e m p l o y e d is i n l i n e w i t h e x p e r i m e n t a l cross section ratios of 0
2
a n d H g at the e m p l o y e d voltages. I f H g cross section
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch008
a g r e e m e n t c a n b e t a k e n as i n d i c a t i n g n o b l e m e t a l agreement, t h e n the pressure d i s c r e p a n c y p r o b l e m seems to b e c o n c e r n e d w i t h the i o n i z a t i o n cross section o f M O * c o m p a r e d w i t h M a n d / o r u n d e t e c t e d f r a g m e n t a t i o n of M O * .
O n e or b o t h m i g h t w e l l b e the root of the pressure d i s c r e p a n c i e s
p r e s e n t e d here. It appears that a l t h o u g h Stafford's (34)
a p p r o a c h c o u l d h e l p the
cross section p r o b l e m s o m e w h a t , c o n s i d e r a b l e d o u b t w i l l r e m a i n e v e n after s u c h a n analysis of cross sections of n o b l e m e t a l oxides. T h e o r e t i c a l l y , t h e f r a g m e n t a t i o n p r o b l e m s h o u l d not b e severe since one s h o u l d r e c o g n i z e fragments a n d account for t h e i r presence. H o w e v e r , i n the r e a l case, t h e p o s s i b i l i t y of t r a n s m i s s i o n p r o b l e m s o f ions b o r n w i t h h i g h k i n e t i c e n e r g y ( n o t c o n s i d e r e d i n this s t u d y ) a n d the i n a b i l i t y to r e c o g n i z e f r a g m e n t peaks b u r i e d u n d e r l a r g e system peaks cause c o n s i d e r a b l e u n c e r t a i n t y r e g a r d i n g the degree of f r a g m e n t a t i o n . A d d e d to this u n c e r t a i n t y , m u l t i p l i e r sensitivities are g e n e r a l l y e s t i m a t e d . A c c o r d i n g l y , t h e n , i t seems that mass s p e c t r o m e t r i c pressures u s i n g estimated values s h o u l d b e t r e a t e d w i t h some c a u t i o n . T h e p u r p o s e of this p o r t i o n of the p a p e r is not to i m p l y that mass s p e c t r o m e t r i c K n u d s e n c e l l studies p r o v i d e i n a d e q u a t e t h e r m o d y n a m i c s , b u t to p o i n t out that some c a u t i o n s h o u l d b e e m p l o y e d w h e n u s i n g mass s p e c t r o m e t r i c a l l y d e t e r m i n e d e q u i l i b r i u m constants b a s e d o n e s t i m a t e d cross sections, etc. T h e authors are c o n v i n c e d that, i n g e n e r a l , m e a s u r e ments of this t y p e p r o v i d e a n d w i l l c o n t i n u e to p r o v i d e the best a v a i l a b l e e x p e r i m e n t a l h i g h t e m p e r a t u r e gaseous system t h e r m o d y n a m i c s .
The
authors are also c o n v i n c e d , because of the uncertainties associated w i t h t h e e q u i l i b r i u m constant " e s t i m a t i o n , " that g o o d mass s p e c t r o m e t r i c a l l y d e t e r m i n e d second l a w heats h a v e c o n s i d e r a b l e m e r i t w h e n c o m p a r e d w i t h t h i r d l a w heats for c o m p l e x systems as r e p o r t e d here.
Literature
Cited
(1) Ackermann, R. J., Rauh, E. G., Thorn, R. J., Cannon, M. C., J. Phys. Chem. 67, 762 (1963). (2) Alcock, C. B., Hooper, G. W., Proc. Roy. Soc. (London) A254, 551 (1960). (3) Bell, W. E., Tagami, M., J. Phys. Chem. 67, 2432 (1963). (4) Berkowitz, J., Marquart, J. R.,J.Chem. Phys. 39, 275 (1963).
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch008
114
MASS SPECTROMETRY IN INORGANIC CHEMISTRY
(5) Brewer, L., U. S. At. Energy Comm. Rept. UCRL-8356, Univ. of Calif. Radiation Lab., July 1958. (6) Carrera, Ν. J., Walker, R. F., Plante, Ε. R., J. Res. Natl. Bur. Std. 68A, 325 (1964). (7) Cooper, J. L., Pressley, G. Α., Stafford, F. E., J. Chem. Phys. 44, 3946 (1966). (8) Cordfunke, Ε. P. H., Meyer, G., Rec. Trav. Chim. 81, 495 (1962). (9) Coughlin, J. P., U. S. Bur. Mines Bull. 542 (1954). (10) Grimley, R. T., Burns, R. P., Inghram, M . G., J. Chem. Phys. 33, 308 (1960). (11) Gryzinski, M., Phys. Rev. 138, A305, A322, A336 (1965). (12) Hultgren, R., Orr, R. L., Anderson, P. D., Kelley, Κ. K., "Selected Values of Thermodynamic Properties of Metals and Alloys," John Wiley and Sons, New York, 1963. (13) Inghram, M. G., Drowart, J., in Proc. Intern. Symp. High Temp. Technol., Asilomar Conf. Grounds, Calif., October 1959 (1960). (14) JANAF Thermochemical Tables, The Dow Chemical Co., Midland, Mich., 1963. (15) Kelley, K. K., U. S. Bur. Mines, Bull. 584, U. S. Govt. Printing Office, 1960. (16) Kiser, R., U. S. At. Energy Comm. Rept. TID-6142, University of Kansas, June 20, 1960. (17) Kuriakose, A. K., Margrave, J. L., "Kinetics of Oxidation of Iridium at High Temperature," Summary Tech. Rept. No. 2, Rice University (no date). (18) Lampe, F. W., Franklin, J. L., Field, F. H., J. Am. Chem. Soc. 79, 6129 (1957). (19) Nikolskii, A. B., Ryabov, A. N., Zh. Neorgan. Khim. 10, 1 (1965). (20) Norman, J. H., Staley, H. G., Bell, W. E., J. Chem. Phys. 42, 1123 (1965). (21) Norman, J. H., Staley, H. G., Bell, W. E.,J.Phys. Chem. 68, 662 (1964). (22) Ibid., 69, 1373 (1965). (23) Ibid., 71, 3686 (1967). (24) Otvos, J. W., Stevenson, D. P.,J.Am. Chem. Soc. 78, 546 (1956). (25) Panish, M. B., Reif, L., J. Chem. Phys. 34, 1915 (1961). (26) Ibid., 37, 128 (1962). (27) Paule, R. C., Margrave, J. L., J. Phys. Chem. 67, 1896 (1963). (28) Pottie, R. F.,J.Chem. Phys. 44, 916 (1966). (29) Schäfer, H., Gerhardt, W., Tebben, Α., Angew. Chem. 73, 27, 115
(1961). (30) Schäfer, H., Heitland, H. J., Z. Anorg. Allgem. Chem. 304, 249 (1960). (31) Schäfer, H., Schneidereit, G., Gerhardt, W., Z. Anorg. Allgem. Chem. 319, 327 (1963). (32) Schäfer, H., Tebben, Α., Ζ. Anorg. Allgem. Chem. 304, 317 (1960). (33) Schäfer, H., Tebben, Α., Gerhardt, W., Z. Anorg. Allgem. Chem. 321, 41 (1963). (34) Stafford, F. E., J. Chem. Phys. 45, 859 (1966). (35) Stull, D. R., Sinke, G. C., ADVAN. C H E M . SER. 18, 1956.
(36) White, D., Seshadri, K. S., Dever, D. F., Mann, D. E., Linevsky, M. J., J. Chem. Phys. 39, 2463 (1963). RECEIVED October 24, 1966. Supported i n part by U . S. Atomic Energy C o m mission, Contract A T ( 0 4 - 3 ) - 1 6 4 .
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.