(241) Schug, J. C., Deck, J. C., J. Chem. Phys. 37, 2618 (1962). (242) Seiffert, W.,Angew. Chem. Intern. Et/.1,215 (1962). (243) Shamma, M., Glick, R. E., Mimma, R. O., J . Org. Chem. 27, 4512 (1962). (244’1 Sheinblatt. M.. J. Chem. Phus. ‘ 36; 3103 (1962). ’ (245) Shimisu, H., Ibid., 37, 765 (1962). (246) Singer, L. A., Cram, D. J., J. Am. Chem. SOC.85, 1080 (1963). (247) Slirhter. W. P.. J. A d . Phus. ‘ 32’. 2339 I1961 ). (248j Slomp, G.,’ J. Am. Chem. SOC.84, 673 (1962). (249) S!onim, I. Y., Russ. Chem. Rev. (English transl.) 1962, 308; Usv.Khim. 31. 809 11962): (250) Spiescke, ‘ H., Schneider, W. G., J. Chem. Phys. 35, 722 (1961). (251) Ibid., p. 731. (252) Stone, E. R., Marki, A. H., Zbid., 37, 1326 (1962). 42531 Stothers. J. B.. “.4~~licationsof
..
I
,
.
Nuclear ,lIagnetic ‘ Resohance Spectroscopy, pp. 175-260 in A. Weissberger, ed., “Technique of Organic Chemistry,” T’ol. XI, Pt. 2, Interscience, ?Jew York, 1963. (254) Strauss, H. L., Fraenkel, G. K., ‘
J. Chem. Phys. 35, 1738 (1961).
(255) Strehlow, H., “Rlagnetische Kern-
resonanz und Chemische Structur,” Dr. Dietrich Steinkoff Verlag, Darmstadt, 1962.
(256) Svanson, S. E., Acta Chem. Scand. 16, 2212 (1962). (257) Svanson, S. E., Forslind, E., Ibid., 16,2149 (1962). (258) Svanson, S. E., Forlind, E., KroghMoe. J.. J. Phus. Chem. 66. 174 (1962). ’ (259) Swalen, J. D., Reilly, C. A., J. Chem. Phys. 37,21 (1962). (260) Swinehart, J. H., Taube, H., Ibid., 37, 1579 (1962). (261) Symons, M. C. R., “Identification of Oreanic Free Radicals bv Electron Spin Resonance,” pp, 284-363 in “Ad-
vances in Physical Organic Chemistry,” Vol. I, V. Gold, ed., Academic Press, Xew York, 1963. (262) Tamura, N., J. Chem. Phys. 37,
479 (1962). (263) Tarasova, Z. N., Fogelson, M. S., Kazlov, IT.T., Kashlinskii, A. I., Kaplunov, 31. Y., Dagadkin, B. A., Viisolcomol ekul. Soedin. 4, 1204 (1962)
(English summary).
(264) Tiers, G. V. D., J . Phys. Chem. 66, 764 (1962). (265) Ibid., p. 1192. (266) Tiers, G. V. D., Lauterbur, P. C., J . Chem. Phys. 36, 1110 (1962). (2671 Turner. D. R., J . Chem. SOC.1962, 847. (268) van der Kelen, G. P., Eeckhaut, Z., J. M o l . Spectry. 10, 141 (1963). (269) van der Veen, J. M., J. Org. Chem. 28, 564 (1963).
(270) Veigele, W. J., Bevan, Jr., A. W., Rev. Sci. Instr. 34, 21 (1963). (271) Weil, J. A., Hecht, H. G.. J . C h a . - Phys. 38; 281 (1963). ’ (272) Weitkamp, H., Korte, F., Chem. Ber. 95. 2896 (1962). (273) Wdls, P.‘R., j. Chem. SOC.1963, 1967. (274) Whipple, E. B., Stewart, W. E., Reddy, G . S., Goldstein, J. W.,J. Chem. Phys. 34, 2136 (1961). (275) Whitman, D. R., Ibid., 36, 2085 (1962’1. (276) Ghitman, D. R., J . Mol. Spectry. 10, 250 (1963). (277) Wiberg, K. B., Lowry, B. R., Nist, B. J., J . Am. Chem. SOC.84,1594 (1962). (278) Williams, J. tK., U‘iley, D. W., McKusick, B. C., Ibid., 84,2210 (1962). (279) Williamson, K. L., Johnson, W. S., Ibid., 83. 4623 (19611. (280) Wilson C. W. 111, J. Polymer Sci. 61,403 (1962). (251) Yamaguchi, I., M o l . PhzJs. 6, 105 (1963). (282) Yonezawa, T., Fukui, K., Kato,
H., Ketano, H., Hattori, S., Matsuoka, S., Bull. Chem. SOC. Japan 34, 707 (1961). (283) Zhidomirov, G. M., Tsvetkov, Y. D., Lebedev, Y. S., J . Struct. Chem. ( U S S R )(English transl.) 2, 640 (1961). (284) Zurcher, R. F., Helv. Chim. Acta 44, 1380 (1961).
Mass Spectrometry Robert
M . Reese and Fredric N . Harllee, Mass Specfrometry Section, National Bureau of Standards, Washington, D. C .
T
HIS REVIEW is a continuation of the former review (493) and covers the two-year period from Sovember, 1961 through October, 1963. It is not intended to contain all papers on mass spectrometry published during that time but it is hoped that this treatment covers the subject extensively enough to indicate the directions research has taken. The compilation consists of extracting pertinent data from published articles or in some cases, titles, and necessitates similar or identical expression of information. The authors hope that enough information has been given in the text to enable the readers to select papers interesting to them. A number of reviens and complete books have appeared. LeGoff et al. (341) report on recent progress and trends in mass spectrometry and list 144 references. A bibliography on the subject appears in the Proceedings of the Second Oxford Conference on Mass Spectrometry covering the period mainly from ,January, 1958 to December, 1960. The .\ST11 Committee E-14 presents to members of the committee a compilation of papers presented a t S e w Orleans, 1962 and San Francisco, 1963. The compilations rontain bibliographies
278 R
ANALYTICAL CHEMISTRY
of 573 references for the period 19601961, and 1089 references for 1961-1962 with a few 1963 papers in the latter. Collin (126) reviews recent problems and progress in mass spectrometry, accenting very high resolution apparatus and growth of precision and sensitivity of isotopic analyses. He also examines new methods of studying ionized states obtained by electron and photon impact. Von Ubisch (666) also reviems mass spectrometry. Howlett (278) presents a synopsis of mass spectrometry in chemistry and allied subjects including general theory, techniques, ion sources, and applications. I n a chapter entitled “Mass Spectrometry as a Structural Tool,” Reed (4,91) briefly evaluates the use of mass spectrometry as a means of determining molecular weight, composition, and structure, with an indication of the major limitations of the method. Morrison (424) relates mass spectrometry to chemical problems. Liang (347) applies several new methods of analysis in organic chemistry. Miyahara (407) reviews catalysis with respect to the use of stable isotopes. McLafferty (373) presents mass spectral correlations. Schumacher (515) reviews recent work in mass spectrometry. He discusses instrumental
details and comparison of low- and highresolution machines, features of mass spectra using field-emission and electron-impact ion sources, theory of fragmentation reactions, and inorganic hightemperature mass spectrometry. Tal’roze, et al. (553) review analysis of mixtures of organic substances. The following books are presented: “Mass Spectrometry of Organic Ions” (372), “Mass Spectrometry: Organic Chemical Applications” (67), “Ion Production by Electron Impact” (490),and “Mass Spectrometry’’ (365). DESIGN AND INSTRUMENTATION
Arikawa (16) investigates and tests a mass spectrometer with regard to the properties of perfect velocity focusing and perfect direction focusing and obtains experimentally a luminous intensity greater than 95%. Kel’man and Gall (506) present a theoretical proposal for an instrument of large angular aperture without large aberration. Ke1’man and Rodnikova (307) theoretically interpret a system in which the electric and magnetic fields are located in such a way that they remain unchanged when displaced along one common direction. Hintenberger, et al. ( d 6 4 ) design an
instrument for atomic mass measurements which is double focusing for all masses along a photogyaphic plate and second-order focusing itt the center of the plate. The theoretical resolution is 2,700,000 with a n entrance slit width of 0.001 mm. Lilly, Weismann, and Lowitz (351) discuss a method for determining ion trajectories in the mid-plane of nonhomogeneous magnetic fields utilizing a computer program. They also compare the computed and experimental focusing properties of the field in the design of a double focusing instrument. Bajwa (34)designs and develops an 18-stage r.f. mass Spectrometer for use in conjunction with a 2-meter grazing incidence vacuum monochromator. At low repeller voltages, cycloidal orbits present in crossed-field ion sources can cause enormous kinetic energy discrimination effects. C'oggeshall (117), using previously-devehped differential equations for crossed-field trajectories, investigates the characteristics of these orbits by laterally sanipling the beam which reaches the detector. Bajeu, Comsa, and Gelberg (33) construct and report on the performance of two omegatron-type instruments used to analyze residual gases. An in-flight, composition-analysis mass spectrometer used in upper air measurements is described by Schaefer and Nichols (511). Charles (103) reports the design, construction, and operation of an instrument to analyze plant effluents for U23*enrichment. With a special, coinmercially-available gas detector, Schumicki, Wedler, and Suhrmann (514) are able to measure the hydrogen-deuteriuin equilibrium on metal surfaces with a 5% error. Tasman, Boerboom, snd Kistemaker (555) review the vacuum technique used in conjunction with mass spectrometry including the vacuum properties of various construction materials, properties and manufacture of permanent and demountable connections between parts of the instrument, pumps, valves, baffles, and various me1,hods of pressure measure men t . Busch, et al. (94) design a quadrupole mass separator containing four hyperbolic electrodes, which attains a resolving power of 10,000. Von Zahn (607) describes the construction of this mass filter and makes precise mass determinations in the region A > 130. Test measurements on xenon isotopes give mass ratios Xe132/Xe131 of 1.0076321 f 0.0000005 and Xe134/E:e132of 1.015730. Brubaker (86) investigates the quadrupole mass filter theoretically and experimentally and finds it well suited for satellite applications. By reducing the number of electrodes tcl two, one having a right angle cross section and the other a circular cross section, von Zahn (606) obtains a monopole spectrometer with
good peak shape at a resolving power of 190. Klumb and I h m (318) develop a fivestage high frequency mass spectrometer for use in gas analysis in high vacuum. Lehrle, Robb, and Thomas (342) give an account of the construction, operation, and application of a n ion source and equipment, used in conjunction with a Rendix time of flight (TOF) mass spectrometer, which can provide pulsed or continuous ion beams u p to 5 pa. It is used to study ion-molecule or neutral particle-molecule reactions. Levy, Miller, and Beggs (345) apply a T O F instrument along with a gas chromatograph to the study of catalytic cracking of nonane. Green, Pinkerton, and Ryan (237) describe a Bennett-type r.f. mass spectrometer for studying light hydrocarbons. Ehlbeck and Ruf (180) improve the signal-to-background ratio a t high total sample pressures Torr) by modulating the ion current at a low frequency. Ehlbeck, Ruf, and Schuetze (181) develop a rapid-scanning r.f. instrument for investigating the evaporation of metals. Monus and Strzondala (417) discuss construction of a Bennett-type instrument having a resolution of 40. I n discussing an omegatron as a pressure gauge, Averina (23) shows the error in measurements of partial pressures does not exceed +20% for the gas contained. Lawson (340) modifies an omegatron gauge and control circuit for use as a quantitative partial pressure device for total pressures below 1 microtorr. By coating a tungsten wire with LaB6, Margoninski, Wolsky, and Zdanuk (389) decrease the filament temperature in an omegatron ion source to 750-800" C. Ry increasing the trapping voltage in a simplified omegatron model, Masica (39'7) achieves higher ion collection efficiency a t better resolving power than previously. Marsden (392) describes a panoramic rapid scanning mass spectrometer for following gas reactions a t pressures u p to 200 mm. and temperatures to 450" C. McDaniel, Martin, and Barnes (364) develop a drift-tube mass spectrometer for studying low energy ion-molecule reactions. I n developing a T O F mass spectrometer for upper atmosphere sampling, Narcissi, et al. (428) find the oxygen-atom response to be affected mostly by the entrance geometry of the ion source while the nitrogen-atom response is hardly changed. The most sensitive variable for atom determinations in the presence of molecular atmospheric gases is the ionizing electron energy. A fully automatic instrument, capable of making a uranium isotope determination every 2.5 minutes, is described by Langdon, Evans, and Tabor (336). With an electron impact ion source and a diaphragm of 0.05 mm., Neurnann and
Ewald (435) construct a stigmatic focusing parabolic mass spectrograph with a mass resolution of about 2500 and an energy resolution (in the parabola directions) of a t least 1000. Duke (1'77) surveys the possibility of using a mass spectrometer for determining t,race impurities in solid samples and semiconductors. Barber, et al. (35) design an instrument to study gas phase chemical kinetics. Bentley, Bishop, and Leece (53) build a mass spectrometer specifically to investigate free radicals in gases a t high pressures. The inlet system is designed so that, no wall collisions occur. Bailey and Howard (32) discuss briefly the several types of resolving systems, magnetic deflection, crossed electrostatic and magnetic fields, T O F techniques, and r.f. techniques. Beckey (46) finds field ionization mass spectroscopy useful in analyzing mixtures for constituents present in small amounts, especially free radicals in kinetic studies. Based on their experiences using BF3 gas samples, Bhide and Saxena (65) discuss operational characteristics of the CEC-21103C mass spectrometer. Double dispersion in a single magnetic field is realized by introducing an ion mirror according to Noda, Omura, and hforito (440). The resolving power of their system is about twice that of single dispersion methods. Ewald, Konecny, and Opower (185) design an instrument to study the problems of the abundances of fission products, their charge states, energy spreads, and radioactive decay times. Wachsmuth and Ewald (583) construct and test a double-focusing mass spectrometer with an inhomogeneous magnetic field and vacuum condenser. Double focusing conditions are proved, and the theoretical resolving power of 10,000 is obtained with a receiving slit of 0.14-mm. width, and 50,000 with a slit width of 0.014 mm. With a two-stage magnetic mass spectrometer, Ionov and Karataev (286) demonstrate the possibility of quantitative measurements of two peaks differing from each other by one mass unit for intensity ratios up to lo7. White, Sheffield, and Rourke (593) design and construct a cascade mass spectrometer in which the ion beam traverses two successive 180" trajectories in a single magnetic field rather than in tandem magnetic fields. Wilson (59s) describes the instrument a t .\ldermaston which has two magnetic fields in tandem so that the field radii form an S shape, while Young, et al. (605) describe the main electronic features of the instrument. Particular eniiihasis is given to details of the high stability accelerating voltage scanning and magnet supplies, the mass snitching, and ion counting equipment. Finlcy, Hemmer, and Selson (191) dcsrribe a vc~satile 6-inch radius mass spectrometer for the isoVOL. 36, NO. 5 , APRIL 1964
279 R
topic analysis of substances in the range of m/e ratios of 6/7 to those of 238/235 by simply adjusting the collector slit, collector, accelerating voltage, and magnet current. Preparatory to constructing a large mass spectrometer which simultaneously collects positive and negative ions, Flesch and Svec (199) construct and test a model with an ion trajectory of ll/z inches and obtain unit resolution to mass 60. Hickam and Sweeney (261) describe the performance of a Mattauch-type double-focusing mass spectrograph for solids analysis and give experimrntal results. Areas of investigation include the use of 0l8 pressure in the instrument as an aid in identifying ionic species, the attainment of a single photographic exposure containing information equivalent to five conventional exposures, and the use of the spark source as a microprobe. McBryde and Cammon (862) describe an automatic mass spectrometer to analyze gamma quantities of lithium in 5 minutes. Five of these machines are controlled by a central console. Mamyrin and Frantsuzov (386)have an instrument which separates ions with respect to time-of-flight along a circular orbit in a uniform magnetic field; the resolving power is (28-35) X lo3 for a dispersion of 300-500 mm. per 1% of mass. Mamyrin and Shustrov (387) propose a magnetic instrument which operates on electric pulses and uses a new compensation scheme. The distinguishing feature of the intended instrument is its ability to maintain high resolution down to very low peak levels. Stevens et al. (549) report on the Argonne 100-inch radius double-focusing mass spectrometer as a high sensitivity isotopic analyzer. Murthy and Rao (427) give design and construction details of a rugged, all-metal, double-collector type instrument whose pole faces form part of the analyzer. In hydrogen isotope analyses, samples could be compared to a precision of 0.0001 mole,% deuterium, and reproducibility over several months was within 1%. Sier, Eckelmann, and Lupton (437) modify an isotope ratio mass spectrometer which uses a battery operated emission regulator and are able to operate it over extended periods with less than 5y0 down time. Conzemius and Svec (131) increase a Siertype ion source sensitivity by a factor of three by raising the beam centering electrodes from near ground potential to about 60% of the ion accelerating voltage. h closed feedback loop of the type used to control ionization gauges is used by Giedd and Roberts (220) to provide filament emission control on an omegatron. Georgobiani (219) describes a circuit of a temperature stabilizer for the 400-1200" C. range, to be used for ion source diffusion chambers. lvhich provides continuous stabilization with an accuracy of i0.8' C. Ezoe and 280 R
ANALYTICAL CHEMISTRY
Hayashi (186) describe a d.c. high voltage supply which has a n excellent long time stability of 10-4 for 36 hours and a ripple voltage of 0.3 volt peak-to-peak a t an output of 5 kv. Using a Hall generator, Gutbier (240) is able to determine unknown mass values u p to 500 with an accuracy of +0.07%. Peterson (466) describes an all-glass heated inlet system for use at temperatures up to 350" C. which is designed around a sample cartridge containing 18 1-mg. samples in capillary tubes. Gall, et al. (214) describe a three-filament ion source in which evaporation and ionization functions are separated and which provides for a minimum amount of effort in introducing and changing samples to be analyzed. The transmission of the ion-optical system is approximately 20y0 with a small aperture angle for the ion beam. For solids analysis, Schuy and Hintenberger (516) use d.c. sparks to provide ions by vibrating two isolated electrodes with a magnetic hammer. Spark stability is improved by using a low-voltage d.c. generator. Venkatasubramanian and Duckworth (576)study the ions produced in the arc that occurs when a contact is broken in a vacuum. The energy spread of such ions is significantly smaller than for ions produced in a vacuum arc. Vance and Bailey (670) describe an ion source for low energy collision studies which produces positive or negative ion beams by electron bombardment of a jet of gas a t relatively high pressures. Stable and noise-free ion beams, having small spread in kinetic energy, are obtained nith an intensity of about ampere. Patterson and Wilson (468) design a triplefilament assembly as a thermal ionization solid source which permits analysis of two separate samples on the same filament head. The accuracy of results is improved and cross contamination is absent. Panish and Reif (457) describe a Knudsen effusion sample system which reaches 2700" K. a t a pressure of 10-6 mm. The cell is constructed of tungsten and is provided with an electrostatic shield of molybdenum. Duev (176) evaluates theoretically the use of an electron beam for local evaporation and a beam of slow electrons for subsequent ionization of the vapor, and fin& the method applicable to analyzing mild steel. By means of a high-frequency ion source with discharge in 8iCI4 and Ge14 vapors, Kozlov, Kolot, and Chei-chin (329) are able to produce Si+ and G e + ion beams up to 0.5 pa. in intensity. Barber, Farren, and Linnett (36) find that the fractionation of a gas mixture by a pinhole continuous sampling technique is independent of viscosity, and the effects of molecular weights and heat capacities can be accounted for easily. Schutten and van der Hauw (515)
describe a number of circuits for scanning mass spectra in magnetic field type instruments. A one-tube electronic circuit is proposed by Gol'denfel'd and Korostyshevskii (229) for scanning magnetically a t different speeds. For analyzing atomic and molecular beams, Herm and Hershbach (257) construct and calibrate three small iron-core electromagnets. I n using an electron velocity selector, Marmet, Morrison, and Swingler (390) decrease the fringing magnetic fields in the source region to less than 0.01 gauss by using two sets of coils and a mu-metal shield around the region. Perkins (465) modifies the mass resolving system based on a design of Mattauch and Herzog to reduce to zero both of the velocity dependent second-order aberrations. An electrostatic lens provides focusing in the direction parallel to the magnetic field. Three benefits are derived from the high mass resolving power achieved: metallic ions are distinguishable from hydrocarbon ions; many times it is possible to establish the identity of an unknown line by knowing its mass precisely; very narrow lines are obtained on phbtographic plates, allowing a visible trace of as few as 2500 ions. Craig, Green, and Waldron (237) use high resolution techniques combined with accurate mass measurement to obtain more precise information on the atomic compositions of ions. They describe a double-focusing instrument which has a resolving power in excess of 10,000 and an accuracy of mass measurement better than 1 part in lo6. Kendall (308) suggests a resolving power multiplier for the extraction and display of data from overlapping spectral peaks from a low resolution analytical mass spectrometer. By installing an electron multiplier instead of a Faraday Cage and vibrating reed electrometer for ion detection, Chastagner (205) is able to reduce the amount of actinide sample required for isotope analysis from 10 to 0.01 pg. to increase response speed, and to reduce scanning time from 0.8 to 0.15 hour. Sugiura (552) gives the details involved in acti\ ating a copper-beryllium electron multiplier for use in detecting ion currents of the order of ampere. Beske (60) describes a 17-stage, copperberyllium, Allen-type multiplier and associated electronic amplifier Bennewitz and Wedemeyer (52) describe a molecular beam detector. The beam is ionized by electron impact and the resulting ions are separated by a quadrupole mass filter and detected with an electron multiplier. The smallest detectable beam has a current density of 1.8 x lo3 molecules 'qecond mm.*, which corresponds to 4 X lo3 moleculeslcc. a t 8 X lo-' Torr and a time constant of 1.25 second('an. J . (333) Kuczkowski, It. L., Wilson, E. B. Phys.41,316(1963). Jr., Ibid., 85,2028 (1963). (370) McGowan, W., Kerwin, I,., J . ( ' h i m , Phys. 59,927 (1962). (334) Kupriyanov, S. E., Perov, -4..4., ( 3 i l ) McKinley, J. I)., J . Phys. C'hena. Tunitskii, S . ?;., Soviet Phys., J E T P (Enqlish 'I'mnsl.) 16, 539 (1963). 66,554 (1962). (335) Laine, S . It., Dissertation Abstr. (372) McLafTerty, F. W., ed., "Mass 23,6367 (1963). Spectrometry of Organic Ions," Ac:t(336) Langdon, A , , Evans, E. C., Tabor, dernic Press, Sew York, 1963. (373) McLafferty, F. W., Advan. ('hcni. C. I)., U. S. Atoniic Energy Comm. Rept. K-1445 (1963). Ser. 40,117 pp. (1963). (337) Laune, J., I n d . Chiin. Helge 27, (374) RlcLafTert,), F. W.!A X A L C H E n f . 248 11962). 34,2 (1962). (37.5) Ibid.. n. 16 (338) Lavrdvskaya, G. K., Markin, &I.I., Tal'roze, V. L., Tr. Konais. PO Analit. (376j Ibzd.: b. 26. Khini.,A k a d . . Y a k SSSIZ, Inst. Geo(377) McSesby, J . R., Tanalta, I., khinz. iilnalit. Khini. 13, 174 (1963). Okabe, H., J . Cheni. Phys. 36, 605 (339) Lawrey, l). M. G . , Paulson, J. F., (IYLJLJ. ~ A L CHEM. . 34,538 (1962). (378) MacDonald, C. G., Shannon, .I. S., AustrqlianJ. Chem. 15, 771 (1962). (340) Lawson, It. W., J . Sei. Instr. 39, 281 (1962). (379) Macl)onald, C. G., Shannon, J. S., (341) Legoft, P., Cossuto, A . , I h r a n d , Suyowdz, G , , Tetrahedron Letters 1963, G . ) Gourdeau, P., Gudefin, R., Pentenero, A , , ('olloq. Spectros. Intern., Qth, S., Hotta, K.,Itec. Sei. Lyons 1981 1 , 343 (Pub. 1062) (in 207 (1962). French). :r, J. .It., Adcun. Fluorine (342) Lelirle, It. S., Itobh, J. C., Thomas, C. 'r:ltllJW-, ;Hid 1). it-.,J . Sei. Instr. 39, 458 (1962). A . G. Sharpe, e&., I3utterwurtlis) 2 , 1961). (343) Lester, G. It., Brit. J . A p p l . Phys. 14,414 (1963). Majer) J. R., Patrick, C. 11., (344) Levy, E. J., Galbraith, F. J., I
~~
il,,CO\
VOL. 36, NO, 5 , APRIL 1964
293 R
(383) Majer, J. R., Patrick, C. R., Trans. Faraday SOC. 58,17 (1962). (384) I b i d . , 59, 1274 (1963). (385) Makita, T., Japan Analyst 12, 313 (1963). (386) Xfamyrin, B. A . , Frantsuzov, A. A., Pribory i Tekhn. Eksperim. No. 3, 114 (1962). (387) h h i y r i n , B. A., Shustrov, B. N., lhid..7. 13221962). (388?.ibid., 8, 122 (1963). (389) Margoninski, T . , Wolsky, S. P., Zdanuk, E. J., Vacuum 11,287 (1961). (3901 Marmet. P.. Morrison. J. D.. Swingler, D’. L.,’ Rev. Sci. ‘Znstr. 33; 239 (1962). (391) Marquart, J. R., Berkowitz, J., J . Chem. Phys. 39, 283 (1963). (392) Marsden. D. G. H.. Rev. Sci. Znstr. 33: 288 i1962‘) (393)’Marsel, ’ J., Vrhfaj, V., Croat. Cheni. Acta 34,191 (1962). (394) Martin, T. W.,Rummel, R. E., Melton, C. E., Science 138,77 (1962). (395) Martynkevich, G. AI., Zzv. Akad. Kauk S S S R . Otd. Tekhn. Sauk Met. i Toplivo 1962; 1, 127. (396) hlaschke, .4,, Lampe, F. W., J . d m . C‘hem. SOC.84,4601 (1962). (397) bfasica, B., Bull. Acad. Polon. Sca. Ser. Sci. Tech. 11,33 ( 1963). (398) Melton, C. E., J . Chem. Phys. 35, 1751 i1961). (399) f b i d . , 37,562 (1962). (400) Meyerson, S., Grubb, H. M., Vander Haar, R. W., I b i d . , 39, 1445 (1963). (401) Meyerson, S., Hart, H., J . Am. Cheni. Soc. 85,2358 (1963). (402) Meyerson, S., Kevitt, T. D., Itylander, P. K., Advan. Mass SpecI
~
\ - - - - ,
~
trometry, Proc. Conf., Ind, Oxford, 1961
2,313 (Pub. 1963). (403) Meyerson, S.,Vander Haar, R. W., J . Chem. Phys. 37,2458 (1962). (404) Miller, G. H., Pritchard, G . O., (‘hem. Znd. (London)1961, 1314. 405) Mimeault, V. J., Hansen, R. S., Vacuunz 13,229 (1963). 406) Mirkina, S. L., Gerling, E. K., Shukolyukov, Yu. A., Geochemistry ( C S S R ) (English Transl.) 1962, 8, -.145.
,
11862) \----,.
Ved, Praci, I‘ysoke Skoly Banske Ostrave
7,347 (1961). (418) hforan, T. F., Hamill; W. H., J . Chem. Phys. 39, 1413 (1963). (419) Morgan, J . E., Phillips, L. F., Sctiil’;. H. I.. Discussions Faradau Soc. 33, 11’8(1962). (420) Xforgan, J. E., Schiff, H. I., J . Cheni. Phys. 38,2631 (1963). (421) P h i , Y., Kanzaki, T., Kakihana, H., Japan Analyst 12,736 (1963). (422) 3\lorrison, C;. H., C‘ltrapurif. Semi-
cond. .\later., Proc. Cons., Boston, J l a ~ s 1961, . 267. (423) llorrison, J. D., J . Chem. Phys.
39,200 (1963).
ANALYTICAL CHEMISTRY
/
I
(438) Nikitin, 0. T., Akishin, P. A , , Dokl. Akad. ‘Vauk SSSR 145, 1294 (1962). (439) Xoble, L., Waits, R. K., ASTM, Spec. Tech. Publ. 300,210 (1961). (440) Noda, T., Ornura, I., Morito, F., Japan J . Appl. Phys. 2,128 (1963). (441) Occolowitz, J. L., White, G. L., ANAL.CHEM.35,1179 (1963). (442) Ochkur, V. I., Petrunkin, A. M., Opt. i Spektroskopiya 14, 457 (1963). (443) Ohashi, M., Wilson, J. M., Budzikiewicz, H., Shamma, M.,Slusarchyk, U’.A , , Djerassi, C., J . Am. Chem. SOC. 85,2807 (1963). (444) Okabe, H., McXesby, J. R., J . Chem. Phys. 36,601 (1962). (445) Zbid., p. 605. (446) Ibid., 37, 1340 (1962). (447) Oshima, S., Bunseki Kagaku 11, 854 (1962). (448) Oshima, S., J . Chem. SOC.Japan 84, 683 (1963). 14491 Oshima. S.. Katsumata., A.., Bunseki Kagaku 11, S50( 1962). (450) Oshima, S., Sishishita, T., Fujii, K., J . Chem. SOC.Japan 84,646 (1963). (451) Owens, E. B., Appl. Spectry. 16, 148 (1962). (452) Owens, E . B., Strauss, A. J.,
(465) Peterson. L.. ANAL. CHEM. 34, ‘ 1’781 (1962). (466) Zbid.,p. 1850. (467) Pettersson, E., Lindholm, E., Arkiv F y s i k 24,49 (1963). (468) Pham. D. H.. Compt. Rend. 255, 1724 (1962). (469) Phillips, J. K., Appl. Spectry. 17, 9(1963). (470) Phillips, L. F., Schiff, H. I., J . Chem. Phys. 36,1509 (1962). (471) Zbid.,p.3283. (472) Zbid.. 37.1233 (1962). (473) Plat,’ hl:, LeMen, J., Janot, M. M., Budzikiewiez, H., Wilson, J. M Durham, L. J., Djerassi, C., Bull. Chim. France, 1962, 11-12, (474) Pokhunkov, A. A . , Zskusstv. Sput,
I
niki Zemli (Moscow~ Akad. .Vauk S S S R ) Sb. 1962,12, 133. (475) Polyakova, A. A., Khmel’nitskii, R. A . , Zh. Obshch. Khink. 31,4059 (1961). (476) Polyakova, A. A., Khmel’nitskii, R. A . , Medvedev, F. A., Zirnina, K. I., Khim. Tekhnol. ToulC i Masel 7. 59
(1962). (477) Polyakova, A. A., Petrov, A . Zh. Obshch. Khim. 32, 1415 (1962). (478) Polyakova, A. A., Zimina, K. Khmel’nitskii, R. A., Tr. Komis Analit. Khim. ilkad. .Tauk SS Znst. Geokhim. i Analit. Khim.
495 (1963). (479) Popova, I. I., Polyakova, A. Zimina, K. I., f b i d . , 13,490 (1963). (480) Porter, R. F., Bidinosti, D. Ralterson, K. F., J . Chem. Phys. 2104 (1962). (481) Pottie, R. F., Lorquet, A. Hamill, W.H.. J . Am. C‘hem. Soc. 529 (1961). ’ (482) Pottie, R. F., Lossing, F. P., Ibid..83.4737(1961). (483) ibid.’,8-5,269-(1963). (484) Ptushinskii, Y. G., Chiukov, B. A., Radiotekhn. i Elektron. 7,687 ( I 962). (485) Pupezin, J., Ciric, SI.,Lazarevic, D.. Bull. Boris Kidrich Znst. Sucl. Sci. 13: 77 11962). (486) RabinoGitch, B. S., Current, J. H., J . Chem. Phys. 35,2250 (1961). (487) Radbill, J. It., Sunderland, R. J., U. S. Dent. Comrn., Off. Tech. Serv., PB Rept. i47505 (1960) (4881 RastreDin. A. B.. Zolototrubov. I. ‘M., Bug’ai,’k’u. P., I r v . Akad. ‘Yauk SSSR 27,1110 (1963). (489) Rau, F., Ewald, H., 2. Anal. Chem. 197, 106 (1963). (490) Reed, R. I., ed;; “Ion Production by C‘ltrapurif. Semicond. Mater., Proc. Electron Imoact. Academic Press. Conf., Boston, Mass. 1961,340. Kew York, 1962. (453) Palmer, T. F., Lossing, F. P., (491) Reed, It. I., “hlass Spectrometry Can. J . Chem. 41,4212 (1963). as a Structural Tool, Advances in (454) Palmer, T. F., Lossing, F. P., Organic Chemistry: Methods and ReJ . Am. Chem. SOC.84,4661 (1962). sults,” Vol. 3, Interscience, Kew York, (455) I b i d . , 85, 1733 (1963). 1963. (456) Panish, M. B., J . Chem. Eng. Data (492) Reed, R. I., Reid, W. K., Wilson, 6,592 (1961). J. M., Advan. Mass Spectrometry, (457) Panish, M. B., Reif, L., Rev. Sci. Proc. Conf., Ind, Oxford 1961 2, 416 Znstr. 32,831 (1961). (Pub. 1963). (458) Patterson, H., Wilson, H. W., (493) Reese, R. M., ANAL. CHEM. 34, J . Sci. Instr. 39, 84 (1962). 243R (1962). (459) Paulett, G. S., Ettinger, R., J . (494) Rice, W. R., U. S.Atomic Energy Chem. Phys. 39,825 (1963). Comm. Rept. Y-1415,15 pp. (1963). (460) Pavlenko, V. A , , Ozerov, L. N., (495) Rider, B. F., Peterson, J. P. Jr., Rafal’son, -4. E., Shutov, M. D., Ruiz. C. P.. iVucE. Sci. Ena. 15. 284 Znd. Lab. ( U S S R ) (English Transl.) (1963). 28,1634 (1963). (496) Robins, J. L., Can. J. Phys. 41, (461) Pelah, I., Dattner, J., Fischler, 1385 (1963). J., Rev. Sci. fnstr. 34,865 (1963). (497) Roboz, J., Dissertation Abstr. 24, (462) Pelah, Z., Kielczewski, M. A., 5324 (1963). Wilson, J. M., Ohashi, M., Budzikie(498) Itosenstock, H. AI., Krauss, M., wicz, H., Djerassi, C., J . Am. Chem. Advan. Mass Spectronzetry, Proc. cons., Soc. 85,2470 (1963). Znd,Ozford 1961 2,251 (Pub. 1963). (463) Perkins, G. O., C O ~ ~ OSpectros. Q. (499) Rosholt, J. N., Shields, W. P., Intern., 9th Lyons, 1961 3, 586 (Pub. Garner, E. L., Sczence 139,224 (1963). 1962). (500) Rothe, E. R., M a p o , L. Id., (464) Petegheni, A. P. Van, Vanderkelen, Xeynaber, R. H., Truj~llo, S. M., G., Corrosion Anti-Corrosion 11, 41 Phys. Rev. 125,582 (1962). (1963). \ - - - ,
407) Miyahara, K., Shokubai (Tokyo) 4,268 (1962). 208) Mohler, F. L., U. S. Dept. Comm., OR. Tech. Serv., PB Rept. 161632 (1962). (409) Momigny, J., Bull. Soc. Chim. Belges 70,241 (1961). (410) f b i d . , p. 291. (411) Momiyny, J., LVature 191, 1089 (1961j . (412) I b i d . , 199,805 (1963). (413) Ibid.,p. 1179. (414) Momigny, J., Brakier, L., D’Or, L., Bull. (‘lasse Sci. Acad. Roy. Belg. 48, 1002 (1962). (415) Moniigny, J., Wirtz-Cordier, hl. A . , Ann. Soc. Sci. Bruxelles, Ser. Z , 76, 164 (1962). (416) Monahan, J. E., Stanton, H. E., J . Chem. Phys. 37, 26ij4 (1962). (417) Rlonus, P., Strzondala, V., Sb.
294 R
(424) Morrison , J. D., Rev. Pure A p p l . Chem. 12,117 (1962). (425) Munson, M. S. B., Field, F. H., Franklin, J. L., J. Chem. Phys. 37, 1790 (1962). (426) Munson, M. S. B., Franklin, J. L., Field. F. H.. J . Phvs. Chem. 67. 1542 (1963). (427) h h r t h y , P. V. K., Rao, B. S. P., Indian J . Pure Appl. Phys. 1,73 (1963). (428) Narcissi, R. S., Schiff, H. I., Morgan, J. E.. Cohen, H. A , . AFCRL-63437’ (Deut. Chem.. McGill Univ.) Mar. i963’. (429) Natalis, P., Bull. SOC.Chim. Belges 72,264 (1963). (430) f b i d . , p. 374. (431) Zbid., p. 416. 1432) Natalis. P.. ,Yature 197.73 11963). (433) f b i d . , p.’284. (434) Xeumann, K. K., Erdol Kohle Erdgas. Petrochemie 16,697 (1963). (435) Neumann, S., Ewald, H., 2. Physik 169,224 (1962). (436) Nicholson, A. J. C., J . Chenz. Phys. 39,954 (1963). (437) X e r , A. O., Eckelmann, W. R., Lupton, R. A , , AKAL.CHEM.34, 1358
~
~
1
.
(501)Rudolph, P. S., Lind, S. C., Melton, C. E . , J . Chem. Phyj.. 36,1031(1962). (502)Rvhage, - . R . ., ;Lrkiv Kemi 20, 185 ' (lb62j. (503)Rylander, P. N., hfeyerson, S., Eliel, E. L., McColluni, J. D., J . A m . Chem. SOC. 85,2723(1963). (504)Saalfeld, F. E., Dissertation Ahstr. 22,3428(1962). (505)Saalfeld, F. E.! Svec, H. J., Inorg. C'heni. 2.46 (1963). (506)Ibid., p.'50. (507) Sandoval, A. ,I.,hloser, H. C., Kiser, R. W.,J . l'hys. Chem. 67, 124 (1963). (508)Sandulescu, D., Hanes, A , , Bulaceanu. It.. Rev. Ctim. (Bucharest) 13. 735 (1962j. (509)Sazhinov, Y.G., Kupriyanov, S. E., Zh. F i t . Khim. 36,1969(1962). (510)Schaefer, E:. J , J . Geophys. Res. 68, 1175(1963). (511)Schaefer, E. J., Nichols, M. H., A m . Rocket SOC.J . 31,1773 (1961). (512)Schnoes, H. K.: Burlingame, A. L., Biemann., K.., l'etra,'tedronLetters. 1962. 22.993. (5??j -Schurnacher, E., Helv. Chim. Acta 46,1295 (1963). (514)Schumicki, G.,Wedler, G., Suhrmann. R.. 2. Ancl. Chem. 190. 138 (1962). (515) Schutten, J., t a n der Hauw, T., Appl. Scz. Res. QB,393 (1963). (516)Schuy, K . D., Hintenberger, H., Z. .\aturforsch. 18a,95 (1963). (517)Seibl, J., Gaumann, T., 2. Anal. Chem. 197,33(1963 . (518)Setser, D.W., Rabinovitch, B. S., SDittler. E. G.. J Chem. Phus. 35. ,
I
' 1963,13,801: (522)Shannon, J. S.,hIacDonald, C. G . , Courtney, J. L., Ihid , 1963,4,173. (523)Shapiro, I., Wilson, C. 0. Jr., U t t e r , J. F., Lehrlr.ann, W. J., Advan. Chem. Ser. 32,127 (1961). (524)Shchukarev, S.,I.,Semenov, G. A , , Ratkovskii, I. A,, Zh. Prikl. Khim. 35, 1454(1962). (325)Shenkel, R . C . , Hobrock, B. G., Kiser, R. W., J . Pliys. Chem. 66, 2074 (1962). (526)Shields, W. R , Garner, E . L., Hedge, C. E., Goldich, S. S., J . Geophys. Res. 68,2331(1963). (527)Shields, W. R., Murphy, J. J., Garner E I,., Dibeler, V. H., J . A m . ('hem. boc.'84, 1519 (1961). (528)Sholette, W. F'., Porter, R. F., J . Phys. ('hem. 67,177 (1963). (529)Sidorov, L. N., Akishin, P. A . , Dokl. Akad. .\auk S S S R 151.136 (1963). (530) Singh, S . L., Js.in, 1).'C., Can. j . Phys. 40,520(1962). (531)Smith, A . J., Cambey, L. A., Marshall, D. J., J A p p l . Phys. 34, 2489 (1963). (532)Snedden, R., Advan. Mass Spectrometry, Proc. L'onf., 2nd, OxJord 1961 2,456(Pyb. 1963). (533)Solov ev. E. E.. Il'in. R. N.. Oparin, V. ' A , , Fedorenko, S . V.; Sovzei Phys. JE'I'P (English l'ransl.) 15, 459 (1962). (534)Spiteller, G.,dfonatsh. 92, 1147 (1961j. ( 52 5) Soiteller, G., 2. Anal. Chem. 197. 1 (1963j. (536)Spiteller, G.,BiunnB, C., Heyne, K.. Grutxmacher. H F.. 2 . LVaturforsch. 178.856 11962). ' (537)Spiteller, G.,Spiteller-Friedmann, A I . , Monatsh. 93,632c1962). (838) Spiteller, G., Splteller-Friedmann, hl., lhzd., 94,742 (1963). ~
(539)Ihid., 94,779(1963). (540)Spiteller, G., Spiteller-Friedmann, M., TetrahedronLetters 1963,3,147. (541)Ihid., p. 153. (542)Steele, W. C., Nichols, L. D., Stone. F. G. A,. J . Am. Chem. SOC. 84,1154(1962). ' (543)Ihid., p. 4441. (544)Steele, UT.C., Stone, F. G. A,, I h i d . , 84,3450(1962). (545)Steggerda, C. A , , Rev. Sci. Instr. 33.244(1962). (546)'Stenhagen, E., 2. Anal. Chem. 181, 462 (1961). (547)Stern, M., Dissertation Ahstr. 23, 1949( 1962). (548)Stevens, C. M.,ASTM, Spec. Tech. Puhl. 308,58 (1961). (549)Stevens, C. M., Terandy, J., Lobell, G., Wolfe, J., Lewis, R., Beyer, N., Advan. Mass Spectrometry, Proc. Conf., Znd, Oxford, 1961 2, 198 (Pub. 1963). (550) Streitwieser, A., J . Phys. Chem. 66, 368 (1962). (551) Studier, M. H., Sloth, E. N., Moore, L. P., Ihid., 66,133(1962). (552)Sugiura, T.,Bull. Chem. SOC. Japan 35,1257 (1962). (553)Tal'roze, V. L., Zimina, K. I., Polyakaova, A. A , , Tantsyrev, G. D., Tr. Komis, p o Analit. Khim., Akad. Sauk SSSR. Inst. Geokhim. i Analit. Khim. 13,456(1963). (554)Tantsyrev, G. D., Karpov, G. V., Tal'roze, V. L., Prihory z Tekhn. Eksperim. 8 , 118 (1963). ( 5 5 5 ) Tasman, H. A , , Boerboom, A. J. H., Kistemaker, J., Vacuum 13,33(1963). (556)Taubert, R., Lossing, F. P., J . A m . Chem. SOC.84,1523(1962). (557)Terenin, A. N., Kurbatov, B. L., Vilesov, F. I., Tr. p o Khim. i Khim. Tekhnol. 4,181 (1961). (558) Thieme, G., Vacuum 13,137 (1963). (559)Traylor, T. G., J . A m . Chem. SOC. 85.2411 (1963).
i62j Tsuchiya, T., J . Chem. Phys. 36, 568 (1962). f5631 Ihid..'39. 828(1963) (564) Tunhskb, X . ~N., 'Kupriyanov, S. E., Perov, A. A . , I z v . Akad. .Vauk S S S R , Old. Khim. AVauk1962,1945. (565)Turnbull, A . H., At. Energy Res. Estab. (Gt. Brit.) Rept. AERE-R4295, 23 pp. (1963). (566)Ubisch. H. von. Instr. Meas.. Chem. Anal., Elec. Quant., 'Vucl. Procesi Control, Proc. Intern. Conf., Stockholm 1,245(1960). (567)Ueda, Yo., Kagaku S o Ryoikz 16, 665 (1962). J . Chem. SOC.1963,3460. (568) Urch, I).S., (569)Vainshtein, L. A,, Opt. i Spektroskopiya 11,301(1961). (570) Vance, 1). W., Bailey, T. L., Rev. Sci. Instr. 34,925(1963). (571)Van Langermeersch, A , , Chim. Anal. (Parzs)44,148 (1962). (572) Van Ilaalte, I)., Harrison, A. G., Can. J . Chem. 41,2054(1963). (573)Vastel, J., ('olloq. Spectros. Intern. Qth, Lyons, 1961 3, 612 (Pub. 1962) (in French). (574)VeliSek, J., Chem. Listy 57, 689 (1963). (575)Venkatasubramanian, V. S.,Duckworth, H. E., Can. J . Phus. 41, 234 (1963). (576)Verhaegen, G., Ihowart, J., J . Chem. Phys. 37,1367 (1962). (577)Verhaecen. G.. Stafford. F. E.. Ackerman,- hi., Ihowart, J:, ,Yature 193.1280 (1962). ( 5 7 8 ) 'Vestai,-MI'L., Rosenstock, H. M., J . Chem. Phys. 35,2008(1961). ~
(579)Vestal, M. L., Wahrhaftig, A. L., Johnston, W. H., Ihid., 37,1276(1962). (580) Vetter, W., Longevialle, P., Khuong-Huu-Laine, F., Khuong-Huu, Q., Goutarel, R., Bull. SOC. Chim. France 1963,1324. (581)Vilesov, F. I., Akopyan, M. E., Prihory i Tekhn. Eksperim. 7, 1009 (1963). (582) Vinogradov, A. P., Grinenko, V. A., Ustinov, V. I., Geokhimiya 1962,10,851. (583)Wachsmuth, H. W., Ewald, H., 2. Aaturforsch. 18a,389 (1963). (584)Wada, Y.,Kiser, It. W., J . Phys. Chem. 66,1652(1962). (585)Walther, V., Hintenberger, H., Z. Salurforsch. M a , 843 (1963). (586)Wanless, G. G., J . Polymer Sci. 62,263(1962). (587)Wapstra, A. H.,,Vucl. Phys. 28, 29 (1961). (588) Warnecke, J. R. Jr., Colloq. Spectros. Intern., 9th Lyons, 1961 1, 179 (Pub. 1962). (589)Weiershausen, W., Advan. Mass Spectrometry, Proc. ('onf., 2nd, Oxford, I961 2,38(Pub. 1963). 1,590)Wendt. J. F.. Canibel. A. B.. , J . ' A p p l . Phys: 34,176 (1963). ' (591)Weygand, F., Prox, *4., Konig, W., Fessel, H. H., Anaew. Chem. 75, 724 (1963j. (592)White, D.,Sommer, A , , Walsh, P. S . , Goldstein, H. W., Advan. Mass Spectrometry, Proc. Conf., 2nd, Oxford, 19/312,110(Pub. 1963). (593)White, F. A,, Shefield, J. C., Itourke, F. M., A p p l . Spectry. 17, 39 (1963). (594)U'hite, F. A., Shefield, J. C., Itourke, F. M., J . A p p l . Phys. 33, 2915 (1962). (595) Willardson, R. K., Ultrapurif., Seniicond. Mater., Proc. Conj., Boston, Mass. 1961,p. 316. (596)Williams, D. H.,Wilson, J. M., Budzikiewicz, H., Ujerassi, C., J . A m . Chem. SOC.85,2091(1963). (597)Wilmenius, P., Lindholm, E., Arkiv Fysik21,97(1962). (598) Wilson, H. W.,Advan. Mass Spectrometry, Proc. Conf., 2nd, Oxford, 1861 2,206(Pub. 1963). (599)Wilson, H. W., Daly, N . R., J . Sci. Instr. 40.273 11963). (600)Wince], H., ,Vukleonika 7,25 (1962). (601) Wolfsberg, M., J . Chem. Phys. 36, 1072 (1962). (602)Wolstenholme, R. A,, Appl. Spectry. 17,51(1963). (603)Woodcock. A. H.. Friedman., I.., ' J,'Geophys. Rei. 68,4477(1963). (604)Wulfson, N. S.,Stepanov, V. M., Puchkov, V. A,, Zjakun, A . M., I z v . Akad. S a u k Ser. Khim. 1963,8,1524. (605)Young, W. A. P., Silver, 1). E. P., Hitchcock, A . J., Wilson, H. W., iVucl. Inslr. Methods 22,169 (1963). (606)Zahn, U. von, Rea. Sei. Inslr. 34, 1 (1963). (607)Zahn, U. von, 2. Physik 168, 12'3 (1962). (608)Zandberg, E. Y., Ionov, S . I., Dokl. Adad. >Yauk S S S R 141, 139 (1961). (609)Zazula, P., Wilhelmsson, H., Arkiv Fysik 24,511(1963). (610)Zhuravlev, L. T.,Kiselev, A. V., Saidina, 1'. P., Polyakov, A . L., Zh. F i t . Khim. 37,2054(1963j. (611)Zlotowski, I., Wince], H., Isotopen Tech. 2,321(1962). (612)Zmbov, K. F.,Knezevic, Z. V., Bull. Inst. .Yucl. Sei. Boris Kidrich (Belgrade)11, 141 (1961). (613)Zmbov, K. F.,Ilibnikar, S. V., Ibid., 11, 145(1961). (614)Zubkov, V. I., Ivanov, A . hi., Pribory a Tekhn. Eksperim. 8 , 182 (1963). I
VOL. 36, NO. 5 , APRIL 1964
-
295 R