Mass Spectrometry Imaging, Laser Capture ... - ACS Publications

Publication Date (Web): June 25, 2017. Copyright © 2017 American Chemical Society. *E-mail: [email protected]. Cite this:J. Proteome Res. 16,...
0 downloads 0 Views 1MB Size
Article

Subscriber access provided by Arizona State University Libraries

Mass Spectrometry Imaging, Microdissection and LC-MS/MS of the Same Tissue Section Marialaura Dilillo, Davide Pellegrini, Rima Ait-Belkacem, Erik L. de Graaf, Matteo Caleo, and Liam A. McDonnell J. Proteome Res., Just Accepted Manuscript • DOI: 10.1021/acs.jproteome.7b00284 • Publication Date (Web): 25 Jun 2017 Downloaded from http://pubs.acs.org on June 29, 2017

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

Journal of Proteome Research is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Proteome Research

Mass Spectrometry Imaging, Laser Capture Microdissection and LC-MS/MS of the Same Tissue Section

Marialaura Dilillo1,2, Davide Pellegrini1,3, Rima Ait-Belkacem1, Erik L. de Graaf1, Matteo Caleo4, Liam A. McDonnell1,5* 1

Fondazione Pisana per la Scienza ONLUS, Pisa, Italy

2

Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy.

3

NEST, Scuola Normale Superiore di Pisa, Pisa, Italy

4

CNR Neuroscience Institute, Pisa, Italy

5

Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The

Netherlands

* Corresponding author and reprint requests: email: [email protected]

1 ACS Paragon Plus Environment

Journal of Proteome Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Abstract Mass spectrometry imaging (MSI) is able to simultaneously record the distributions of hundreds of molecules directly from tissue. Rapid direct tissue analysis is essential for MSI, in order to maintain spatial localization and acceptable measurement times. The absence of an explicit analyte separation/purification step means MSI lacks the depth-of-coverage of LC-MS/MS. In this work we demonstrate how atmospheric pressure MALDI-MSI enables the same tissue section to be first analyzed by MSI, to identify regions-of-interest that exhibit distinct molecular signatures, followed by localized proteomics analysis using laser capture microdissection isolation and LC-MS/MS.

Keywords: Mass spectrometry imaging, microproteomics, laser capture microdissection, molecular histology, localized microproteomics, multimodal analysis.

2 ACS Paragon Plus Environment

Page 2 of 29

Page 3 of 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Proteome Research

Introduction Matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is able to simultaneously record the distributions of hundreds of molecules directly from tissue, without prior knowledge and without labeling1. MALDI MSI is routinely aligned with histology so that molecular signatures can be extracted from distinct organs or regions of tissue. In clinical research these capabilities are exploited for the identification of biomarkers to aid patient diagnosis, prognosis, and even predict response to therapy; in pharmacological research the combination of MALDI MSI and histology is used to assess tissue levels and distributions of drugs and their metabolites2–8. The direct-tissue-analysis nature of MALDI MSI is essential to maintain the original spatial distribution of the tissue’s molecular content, as well as for the high data acquisition speeds necessary for practical experiment times (especially so given the recent developments toward higher spatial resolution analysis). The direct-tissue-analysis nature of MALDI MSI coupled with the very small number of cells that contribute to each pixel’s mass spectrum (a 100×100µm pixel of a 10µm thick tissue section contains 20X increase in the number of identified peptides, >20X increase in the number of identified proteins and protein groups. The combination of MSI with high performance microproteomics, here using label-free analysis of on-tissue digested samples and the SP3 method, is applicable to all future developments that further improve the sensitivity/depth-of-coverage of LC-MS/MS experiments. Recent reports have demonstrated how the AssayMAP Bravo automated liquid handling platform can be configured for robust and ultrasensitive phosphoproteomics and high precision relative quantitation based on multiplex isobaric labeling32,37. In the latter example 1 mm2 and 0.5 mm2 areas of tissue were microdissected from 15 µm thick kidney tissue sections (note 10 µm thick tissue sections used here) then processed using the SP3 method and on-column desalting, TMT labeling, and high pH fractionation. These 10-plex TMT isobaric labeling experiments identified

15 ACS Paragon Plus Environment

Journal of Proteome Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 16 of 29

5002 and 3440 protein groups from the 1 mm2 and 0.5 mm2 areas respectively, >90% of which were also quantified. The phosphoproteomics experiment used more cells, 200 000, but when projected onto tissue sections the increased sensitivity provides capabilities that approach the length scales of the ROI’s typically highlighted by MSI: assuming an average cell size of 10 µm and tissue sections 10 µm thick, 200 000 cells corresponds to a 4 mm x 5 mm sized region of tissue, thus indicating the potential for MSI-defined or histology-defined phosphoproteomics. The combination of MSI with high performance microproteomics is clearly applicable to many biomedical applications, for example to gain more insight into regions highlighted by MSI as phenotypic tumor subpopulations3, as regions were drugs cross the blood brain barrier38, or regions with distinct metabolic behavior39. It could also be applied to further improve the MSI method itself. A number of on-tissue digestion methodology investigations have been reported35,40–44. The method used here was chosen because it was previously shown to provide more complete proteolysis, lower sensitivity to the tissue’s histology, and the greatest reproducibility35,36. However to date no report has explicitly determined the proportion of the available amount of each protein that is effectively sampled by MALDI MSI. The ability to perform AP-MALDI, LCM and LC-MS/MS of the same tissue section, if combined with isotopically labeled reference peptides for absolute quantitation of both MALDI and LC-MS/MS datasets, would enable the proportion of peptides that are sampled by MALDI MSI to be determined, precisely because they are from the same localized regions of tissue. Finally Rizzo et al. recently reported a hydrogel based approach for spatially localized protein extraction and digestion prior to LC-MS/MS analysis, and demonstrated that hundreds of proteins could be identified with hydrogel diameters of just 260 µm45. This hydrogel approach represents an elegant alternative for localized proteomics but further work is necessary to

16 ACS Paragon Plus Environment

Page 17 of 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Proteome Research

ascertain its compatibility with tissue sections previously prepared for and analyzed by MALDI MSI.

Concluding remarks With suitable reference standards MSI has been used to quantify the amounts and distributions of specific target molecules. However proteome/lipidome/metabolome-wide quantitation remains an unfulfilled challenge. The very small number of cells in each pixel, and the absence of any explicit separation technique, limits MALDI MSI to the more abundant species present in the tissue. It is for these reasons that MALDI MSI is most suited as a molecular histology technique that characterizes tissues on the basis of mass spectral signatures (so-called molecular histology). Here we demonstrated that AP-MALDI-MSI, LCM and LC-MS/MS may be performed on the same tissue section with no information loss. Thus MSI may be used to investigate the molecular histology of tissues, LCM then used to isolate specific regions characterized by distinct mass spectral profiles, and LC-MS/MS used to characterize those regions with the depth of coverage and quantitative ability of modern day biomolecular mass spectrometry (while avoiding the inevitable variability that is introduced when adjacent sections are used for MSI and LCMS/MS).

Supporting Information The following files are available free of charge at ACS website http://pubs.acs.org: ProteinIDs_SP3cortex.xlsx Protein identification information from triplicate analysis of microdissected, 1mm2 area, 10 µm thick, regions of mouse brain cortex.

17 ACS Paragon Plus Environment

Journal of Proteome Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Acknowledgements This study was supported in part by AIRC (grant IG18925, M.C.) and the ERA-NET Transcan II project ARREST (number 166, LMD).

References (1)

McDonnell, L. A.; Heeren, R. M. A. Imaging mass spectrometry. Mass Spectrom. Rev. 2007, 26 (4), 606–643.

(2)

Schwartz, S. A.; Weil, R. J.; Thompson, R. C.; Shyr, Y.; Moore, J. H.; Toms, S. A.; Johnson, M. D.; Caprioli, R. M. Proteomic-based prognosis of brain tumor patients using direct-tissue matrix-assisted laser desorption ionization mass spectrometry. Cancer Res. 2005, 65 (17), 7674–7681.

(3)

Balluff, B.; Frese, C. K.; Maier, S. K.; Schöne, C.; Kuster, B.; Schmitt, M.; Aubele, M.; Höfler, H.; Deelder, A. M.; Heck, A. J. R.; et al. De novo discovery of phenotypic intratumour heterogeneity using imaging mass spectrometry. J. Pathol. 2015, 235 (1), 3– 13.

(4)

Buck, A.; Ly, A.; Balluff, B.; Sun, N.; Gorzolka, K.; Feuchtinger, A.; Janssen, K. P.; Kuppen, P. J. K.; Van De Velde, C. J. H.; Weirich, G.; et al. High-resolution MALDI-FTICR MS imaging for the analysis of metabolites from formalin-fixed, paraffin-embedded clinical tissue samples. J. Pathol. 2015, 237 (1), 123–132.

(5)

Prideaux, B.; Véronique, D.; Staab, D.; Weiner, D. M.; Goh, A.; Via, L. E.; Barry, C. E.; Stoeckli, M. High-sensitivity MALDI-MRM-MS imaging of moxifloxacin distribution in

18 ACS Paragon Plus Environment

Page 18 of 29

Page 19 of 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Proteome Research

tuberculosis-infected rabbit lungs and granulomatous lesions. Anal. Chem. 2011, 83 (6), 2112–2118. (6)

Prideaux, B.; Stoeckli, M. Mass spectrometry imaging for drug distribution studies. J. Proteomics 2012, 75 (16), 4999–5013.

(7)

Ait-Belkacem, R.; Sellami, L.; Villard, C.; DePauw, E.; Calligaris, D.; Lafitte, D. Mass spectrometry imaging is moving toward drug protein co-localization. Trends Biotechnol. 2012, 30 (9), 466–474.

(8)

Aichler, M.; Elsner, M.; Ludyga, N.; Feuchtinger, A.; Zangen, V.; Maier, S. K.; Balluff, B.; Schöne, C.; Hierber, L.; Braselmann, H.; et al. Clinical response to chemotherapy in oesophageal adenocarcinoma patients is linked to defects in mitochondria. J. Pathol. 2013, 230 (4), 410–419.

(9)

Balluff, B.; Elsner, M.; Kowarsch, A.; Rauser, S.; Meding, S.; Schuhmacher, C.; Feith, M.; Herrmann, K.; Röcken, C.; Schmid, R. M.; et al. Classification of HER2/neu status in gastric cancer using a breast-cancer derived proteome classifier. J. Proteome Res. 2010, 9 (12), 6317–6322.

(10)

Heijs, B.; Carreira, R. J.; Tolner, E. A.; De Ru, A. H.; Van Den Maagdenberg, A. M. J. M.; Van Veelen, P. A.; McDonnell, L. A. Comprehensive analysis of the mouse brain proteome sampled in mass spectrometry imaging. Anal. Chem. 2015, 87 (3), 1867–1875.

(11)

Théron, L.; Centeno, D.; Coudy-Gandilhon, C.; Pujos-Guillot, E.; Astruc, T.; Rémond, D.; Barthelemy, J.-C.; Roche, F.; Feasson, L.; Hébraud, M.; et al. A Proof of Concept to Bridge the Gap between Mass Spectrometry Imaging, Protein Identification and Relative Quantitation: MSI~LC-MS/MS-LF. Proteomes 2016, 4 (4), 32.

(12)

Wisztorski, M.; Desmons, A.; Quanico, J.; Fatou, B.; Gimeno, J. P.; Franck, J.; Salzet, M.;

19 ACS Paragon Plus Environment

Journal of Proteome Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Fournier, I. Spatially-resolved protein surface microsampling from tissue sections using liquid extraction surface analysis. Proteomics 2016, 16 (11–12), 1622–1632. (13)

Randall, E. C.; Race, A. M.; Cooper, H. J.; Bunch, J. MALDI Imaging of Liquid Extraction Surface Analysis Sampled Tissue. Anal. Chem. 2016, 88 (17), 8433–8440.

(14)

Swales, J. G.; Tucker, J. W.; Spreadborough, M. J.; Iverson, S. L.; Clench, M. R.; Webborn, P. J. H.; Goodwin, R. J. A. Mapping Drug Distribution in Brain Tissue Using Liquid Extraction Surface Analysis Mass Spectrometry Imaging. Anal. Chem. 2015, 87 (19), 10146–10152.

(15)

Turtoi, A.; Blomme, A.; Debois, D.; Somja, J.; Delvaux, D.; Patsos, G.; Di Valentin, E.; Peulen, O.; Mutijima, E. N.; De Pauw, E.; et al. Organized proteomic heterogeneity in colorectal cancer liver metastases and implications for therapies. Hepatology 2014, 59 (3), 924–934.

(16)

Tikka, S.; Monogioudi, E.; Gotsopoulos, A.; Soliymani, R.; Pezzini, F.; Scifo, E.; UusiRauva, K.; Tyynelä, J.; Baumann, M.; Jalanko, A.; et al. Proteomic Profiling in the Brain of CLN1 Disease Model Reveals Affected Functional Modules. NeuroMolecular Med. 2016, 18 (1), 109–133.

(17)

Dilillo, M.; Ait-Belkacem, R.; Esteve, C.; Pellegrini, D.; Nicolardi, S.; Costa, M.; Vannini, E.; Graaf, E. L. de; Caleo, M.; McDonnell, L. A. Ultra-High Mass Resolution MALDI Imaging Mass Spectrometry of Proteins and Metabolites in a Mouse Model of Glioblastoma. Sci. Rep. 2017, 7 (1), 603.

(18)

Becker, J. S.; Niehren, S.; Matusch, A.; Wu, B.; Hsieh, H. F.; Kumtabtim, U.; Hamester, M.; Plaschke-Schlütter, A.; Salber, D. Scaling down the bioimaging of metals by laser microdissection inductively coupled plasma mass spectrometry (LMD-ICP-MS). Int. J.

20 ACS Paragon Plus Environment

Page 20 of 29

Page 21 of 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Proteome Research

Mass Spectrom. 2010, 294 (1), 1–6. (19)

Wu, B.; Niehren, S.; Becker, J. S. Mass spectrometric imaging of elements in biological tissues by new BrainMet technique—laser microdissection inductively coupled plasma mass spectrometry (LMD-ICP-MS). J. Anal. At. Spectrom. 2011, 26, 1653.

(20)

Wu, B.; Becker, J. S. Bioimaging of metals in rat brain hippocampus by laser microdissection inductively coupled plasma mass spectrometry (LMD-ICP-MS) using high-efficiency laser ablation chambers. Int. J. Mass Spectrom. 2012, 323–324, 34–40.

(21)

Sussulini, A.; Becker, J. S. Application of laser microdissection ICP-MS for high resolution elemental mapping in mouse brain tissue: A comparative study with laser ablation ICP-MS. Talanta 2015, 132, 579–582.

(22)

Lorenz, M.; Ovchinnikova, O. S.; Kertesz, V.; Van Berkel, G. J. Laser microdissection and atmospheric pressure chemical ionization mass spectrometry coupled for multimodal imaging. Rapid Commun. Mass Spectrom. 2013, 27 (13), 1429–1436.

(23)

Cahill, J. F.; Kertesz, V.; Van Berkel, G. J. Characterization and Application of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging with Sub-micrometer Spatial Resolution. Anal. Chem. 2015, 87 (21), 11113–11121.

(24)

Cahill, J. F.; Kertesz, V.; Van Berkel, G. J. Laser dissection sampling modes for direct mass spectral analysis. Rapid Commun. Mass Spectrom. 2016, 30 (5), 611–619.

(25)

Cahill, J. F.; Kertesz, V.; Weiskittel, T. M.; Vavrek, M.; Freddo, C.; Van Berkel, G. J. Online, Absolute Quantitation of Propranolol from Spatially Distinct 20- and 40-µm Dissections of Brain, Liver, and Kidney Thin Tissue Sections by Laser MicrodissectionLiquid Vortex Capture-Mass Spectrometry. Anal. Chem. 2016, 88 (11), 6026–6034.

21 ACS Paragon Plus Environment

Journal of Proteome Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(26)

Römpp, A.; Guenther, S.; Schober, Y.; Schulz, O.; Takats, Z.; Kummer, W.; Spengler, B. Histology by mass spectrometry: Label-free tissue characterization obtained from highaccuracy bioanalytical imaging. Angew. Chemie - Int. Ed. 2010, 49 (22), 3834–3838.

(27)

Spraggins, J. M.; Rizzo, D. G.; Moore, J. L.; Noto, M. J.; Skaar, E. P.; Caprioli, R. M. Next-generation technologies for spatial proteomics: Integrating ultra-high speed MALDITOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis. Proteomics 2016, 16, 1678–1689.

(28)

Enthaler, B.; Bussmann, T.; Pruns, J. K.; Rapp, C.; Fischer, M.; Vietzke, J. P. Influence of various on-tissue washing procedures on the entire protein quantity and the quality of matrix-assisted laser desorption/ionization spectra. Rapid Commun. Mass Spectrom. 2013, 27 (8), 878–884.

(29)

Koestler, M.; Kirsch, D.; Hester, A.; Leisner, A.; Guenther, S.; Spengler, B. A highresolution scanning microprobe matrix-assisted laser desorption/ionization ion source for imaging analysis on an ion trap/Fourier transform ion cyclotron resonance mass spectrometer. Rapid Commun. Mass Spectrom. 2008, 22 (20), 3275–3285.

(30)

Paschke, C.; Leisner, A.; Hester, A.; Maass, K.; Guenther, S.; Bouschen, W.; Spengler, B. Mirion-a software package for automatic processing of mass spectrometric images. J. Am. Soc. Mass Spectrom. 2013, 24 (8), 1296–1306.

(31)

Hughes, C. S.; Foehr, S.; Garfield, D. A.; Furlong, E. E.; Steinmetz, L. M.; Krijgsveld, J. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 2014, 10, 757.

(32)

de Graaf, E. L.; Pellegrini, D.; McDonnell, L. A. Set of Novel Automated Quantitative Microproteomics Protocols for Small Sample Amounts and Its Application to Kidney

22 ACS Paragon Plus Environment

Page 22 of 29

Page 23 of 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Proteome Research

Tissue Substructures. J. Proteome Res. 2016, 15 (12), 4722–4730. (33)

Zhou, P.; Altman, E.; Perry, M. B.; Li, J. Study of matrix additives for sensitive analysis of lipid a by matrix-assisted laser desorption ionization mass spectrometry. Appl. Environ. Microbiol. 2010, 76 (11), 3437–3443.

(34)

Smirnov, I. P.; Zhu, X.; Taylor, T.; Huang, Y.; Ross, P.; Papayanopoulos, I. A.; Martin, S. A.; Pappin, D. J. Suppression of α-Cyano-4-hydroxycinnamic Acid Matrix Clusters and Reduction of Chemical Noise in MALDI-TOF Mass Spectrometry. Anal. Chem. 2004, 76 (10), 2958–2965.

(35)

Heijs, B.; Tolner, E. A.; Bovée, J. V. M. G.; Van Den Maagdenberg, A. M. J. M.; McDonnell, L. A. Brain Region-Specific Dynamics of On-Tissue Protein Digestion Using MALDI Mass Spectrometry Imaging. J. Proteome Res. 2015, 14 (12), 5348–5354.

(36)

Erich, K.; Sammour, D. A.; Marx, A.; Hopf, C. Scores for standardization of on-tissue digestion of formalin-fixed paraffin-embedded tissue in MALDI-MS imaging. Biochim. Biophys. Acta - Proteins Proteomics 2017, 1865 (7), 907-915.

(37)

Post, H.; Penning, R.; Fitzpatrick, M. A.; Garrigues, L. B.; Wu, W.; Mac Gillavry, H. D.; Hoogenraad, C. C.; Heck, A. J. R.; Altelaar, A. F. M. Robust, Sensitive, and Automated Phosphopeptide Enrichment Optimized for Low Sample Amounts Applied to Primary Hippocampal Neurons. J. Proteome Res. 2017, 16 (2), 728–737.

(38)

Liu, X.; Ide, J. L.; Norton, I.; Marchionni, M. A.; Ebling, M. C.; Wang, L. Y.; Davis, E.; Sauvageot, C. M.; Kesari, S.; Kellersberger, K. A.; et al. Molecular imaging of drug transit through the blood-brain barrier with MALDI mass spectrometry imaging. Sci Rep 2013, 3, 2859.

(39)

Sugiura, Y.; Taguchi, R.; Setou, M. Visualization of spatiotemporal energy dynamics of

23 ACS Paragon Plus Environment

Journal of Proteome Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

hippocampal neurons by mass spectrometry during a kainate-induced seizure. PLoS One 2011, 6 (3), 1–10. (40)

De Sio, G.; Smith, A. J.; Galli, M.; Garancini, M.; Chinello, C.; Bono, F.; Pagni, F.; Magni, F. A MALDI-Mass Spectrometry Imaging method applicable to different formalin-fixed paraffin-embedded human tissues. Mol. Biosyst. 2015, 11 (6), 1507–1514.

(41)

Diehl, H. C.; Beine, B.; Elm, J.; Trede, D.; Ahrens, M.; Eisenacher, M.; Marcus, K.; Meyer, H. E.; Henkel, C. The challenge of on-tissue digestion for MALDI MSI— a comparison of different protocols to improve imaging experiments. Anal. Bioanal. Chem. 2015, 407, 2223–2243.

(42)

Powers, T. W.; Jones, E. E.; Betesh, L. R.; Romano, P. R.; Gao, P.; Copland, J. a; Mehta, A. S.; Drake, R. R. Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry Work fl ow for Spatial Pro fi ling Analysis of N ‑ Linked Glycan Expression in Tissues. Anal. Chem. 2013, 85, 9799–9806.

(43)

Casadonte, R.; Caprioli, R. M. Proteomic analysis of formalin-fixed paraffin-embedded tissue by MALDI imaging mass spectrometry. Nat. Protoc. 2011, 6 (11), 1695–1709.

(44)

Galli, M.; Pagni, F.; De Sio, G.; Smith, A.; Chinello, C.; Stella, M.; L’Imperio, V.; Manzoni, M.; Garancini, M.; Massimini, D.; et al. Proteomic profiles of thyroid tumors by mass spectrometry-imaging on tissue microarrays. Biochim. Biophys. Acta - Proteins Proteomics 2017, 1865 (7), 817-827

(45)

Rizzo, D. G.; Prentice, B. M.; Moore, J. L.; Norris, J. L.; Caprioli, R. M. Enhanced Spatially Resolved Proteomics Using On-Tissue Hydrogel-Mediated Protein Digestion. Anal. Chem. 2017, 89 (5), 2948–2955.

24 ACS Paragon Plus Environment

Page 24 of 29

Page 25 of 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Proteome Research

Figure 1. Comparison AP-MALDI MS spectra of BSA digest from glass vs. PEN-coated slides. The total signal intensity for both mass spectra is approximately 1e2. BSA tryptic peptides denoted with asterisks. Note the lower background and absence of interfering peaks from the polymeric coating in the mass spectrum from the PEN coated slide.

25 ACS Paragon Plus Environment

Journal of Proteome Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 26 of 29

Figure 2. Experimental workflow for assessing the impact of AP-MALDI-MSI on quantitative LCM-MS/MS of microdissected regions of tissue. 1) Consecutive tissue sections were each mounted onto PEN coated slides and subject to on-tissue digestion using trypsin. 2) One set of tissue sections (top row) were then coated with α-CHCA matrix and analyzed by AP-MALDI MSI. 3) Regions of interest were then defined on the basis of the MSI data, and projected on to the control set of tissue sections, not analyzed by AP-MALDI MSI (bottom row). 4) The ROIs were isolated from the MSI and non-MSI tissue sections and compared using AP-MALDI mass spectral profiling and quantitative LC-MS/MS.

26 ACS Paragon Plus Environment

Page 27 of 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Proteome Research

Figure 3. Comparison of the AP-MALDI mass spectra of extracts from the MSI analyzed and control microdissected tissue samples. Selection of ROIs for LCM was based on the intensities of the peptide ions detected at m/z 1131.57 (TTHYGSLPQK from myelin basic protein

10

) and

m/z 1025.50 (ADLAEEYSK from Ubiquitin conjugating enzyme10), from which small 1.0 mm2 regions were isolated and are indicated with colored squares.

27 ACS Paragon Plus Environment

Journal of Proteome Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 28 of 29

Figure 4. Numbers of proteins and peptides identified by LC-MS/MS. A) and B) compare the numbers of protein groups and peptide groups, respectively, identified from microdissected locations of the MSI-analyzed, on-tissue digested tissue section and the control (not prepared for MSI or analyzed by MSI), on-tissue digested tissue section. C) Summary of the LC-MS/MS results from the mouse cortex microdissected tissue using on-tissue digestion (MSI analyzed and control tissues). D) Summary of the LC-MS/MS results from the mouse cortex microdissected tissue using SP3 method. * indicates p < 0.05 using a F-test and a t-test.

For TOC only 28 ACS Paragon Plus Environment

Page 29 of 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Proteome Research

29 ACS Paragon Plus Environment