Measurement of Polarization in Thermoplastic Elastomers with

Sep 24, 1982 - The construction of two processor-aided dielectric spectrometers designed for use in the frequency range 10-4 to 10+2 Hz are described...
0 downloads 0 Views 1MB Size
17

Downloaded via TUFTS UNIV on July 13, 2018 at 00:04:43 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Measurement of Polarization in Thermoplastic Elastomers with Application to Morphology Studies M. A. VALLANCE and S. L. COOPER University of Wisconsin—Madison, Department of Chemical Engineering, Madison, WI 53706 The measurement of electrical polarization is proposed for studying morphological heterogeneities down to the nanometer size range in segmented copolymers such as segmented polyurethanes. The technique relies on measurement of frequency-dependent, electric polariza­ tions related to frequency-dependent, electric-field redistribution in microdomains of unequal permittivity and conductivity. Due to the low overall conductivi­ ties of typical polymers, the polarizations usually become significant at subaudio frequencies. The con­ struction of two processor-aided dielectric spectrom­ eters designed for use in the frequency range 10 to 10 Hz are described. Spectra for segmented poly­ ether-polyurethanes and a polyether-polyester are compared to an adjustable model of the polarization process. From these comparisons and DSC results, a correlation between intradomain ordering and lamellar morphology is seen in such polymers. There appears to be a relation between the asymmetry of the polariza­ tions' frequency dependence and the character of the diffuse transition zones between dissimilar microdomains. -4

+2

Segmented p o l y u r e t h a n e s and r e l a t e d t h e r m o p l a s t i c e l a s t o m e r s a r e b l o c k c o p o l y m e r s w i t h ( A B ) c h e m i c a l a r c h i t e c t u r e w h e r e A and B a r e segments o f d i s s i m i l a r homopolymers. These c o p o l y m e r s a r e s y n t h e s i z e d i n one o r two s t e p s by c o n d e n s a t i o n . As an example, a t y p i c a l segmented p o l y u r e t h a n e m i g h t be f o r m e d b y r e a c t i n g e x c e s s d i i s o c y a n a t e w i t h a p o l y o l " s o f t " segment w h i c h i n t u r n c o u l d be r e a c t e d w i t h a d i o l c h a i n e x t e n d e r t o f o r m t h e " h a r d " s e g m e n t s . The r e s u l t i n g p o l y m e r i s composed o f many segments ( n a v e r a g e s 10 t o 1 0 0 ) , w h i l e t h e i n d i v i d u a l segment l e n g t h s a r e b r o a d l y d i s t r i b u t e d about a r e l a t i v e l y s h o r t average l e n g t h (number a v e r a g e segment m o l e c u l a r w e i g h t s t y p i c a l l y r a n g e 500 n

0097-6156/82/0197-0277$06.00/0 © 1982 American Chemical Society Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

278

COMPUTER APPLICATIONS IN APPLIED POLYMER SCIENCE

to 5,000). I n almost a l l c a s e s thermodynamic f o r c e s d r i v e the s y s t e m t o w a r d s s e g r e g a t i o n o f A and B s e g m e n t s . However, t h e c h e m i c a l a r c h i t e c t u r e c o n s t r a i n s t h e m i c r o d o m a i n s so f o r m e d t o have d i m e n s i o n s on t h e o r d e r o f 10 nm. The r e s u l t i n g " m i c r o composite" morphology e x h i b i t s e l a s t o m e r i c p r o p e r t i e s i f the use temperature i s s e l e c t e d i n t e r m e d i a t e to the s o l i d - m e l t or g l a s s t r a n s i t i o n t e m p e r a t u r e s o f t h e two p h a s e s . In t h i s case the r i g i d , h a r d - s e g m e n t r i c h d o m a i n s a c t a s v i r t u a l c r o s s l i n k s and f i l l e r p a r t i c l e s f o r the v i s c o u s , soft-segment r i c h phase. Thermodynamic t r e a t m e n t s o f b l o c k c o p o l y m e r m o r p h o l o g y , s u c h a s t h o s e o f H e l f a n d (1,2,3) and M e i e r ( 4 ) , w h i c h a r e based on a n i o n i c a l l y p o l y m e r i z e d , m o n o d i s p e r s e segment AB and ABA t y p e block copolymers, are not a p p l i c a b l e i n the present case. The l a r g e number o f s h o r t segments i n e a c h m o l e c u l e , t h e p o s s i b i l i t y of c r y s t a l l i n i t y i n one o r b o t h p h a s e s , and t h e l i k e l i h o o d o f m e t a s t a b l e m o r p h o l o g i e s work t o g e t h e r t o p r e c l u d e the a n a l y t i c a l approaches p r e s e n t l y a v a i l a b l e . The most d i r e c t e x p e r i m e n t a l t e c h n i q u e f o r o b s e r v i n g t h e morphology i s t r a n s m i s s i o n e l e c t r o n microscopy. Although several m i c r o g r a p h s o f segmented p o l y u r e t h a n e m o r p h o l o g i e s a r e r e c o r d e d i n the l i t e r a t u r e showing n o d u l a r t e x t u r e s of r e a s o n a b l e p e r i o d i c i t y ( 5 , 6 , 7 ) , a r e c e n t m a t h e m a t i c a l a n a l y s i s has shown t h a t i n a l l p r o b a b i l i t y these t e x t u r e s are defocus a r t i f a c t s ( 8 ) . A recent s t u d y o f an OsO^ s t a i n e d , s o l u t i o n - c a s t , s e m i c r y s t a l l i n e , s e g ­ mented p o l y u r e t h a n e has p r o d u c e d m i c r o g r a p h s w h i c h show more d e ­ t a i l ( 9 ) . N o n e t h e l e s s , l a c k o f c o n t r a s t and t h e d i f f i c u l t y o f producing s u f f i c i e n t l y t h i n f o i l s w i t h r e p r e s e n t a t i v e morphologies r e n d e r TEM u n s u i t a b l e f o r g e n e r a l u s e . Measurement o f s m a l l - a n g l e x - r a y s c a t t e r i n g (SAXS) has r e c e n t ­ l y gained i n s t a t u r e f o r use i n m o r p h o l o g i c a l i n v e s t i g a t i o n s . T h i s t e c h n i q u e p r o v i d e s i n f o r m a t i o n r e g a r d i n g t h e p e r i o d i c i t y and magnitude of e l e c t r o n d e n s i t y f l u c t u a t i o n s . The t e c h n i q u e has been u s e d on segmented p o l y u r e t h a n e s and r e l a t e d p o l y m e r s t o s t u d y domain s p a c i n g , p h a s e p u r i t y , and t h e w i d t h o f t h e t r a n s i t i o n zone between d i s s i m i l a r domains ( 1 0 , 1 1 , 1 2 ) . I n t h e p r e s e n t s t u d y we have u s e d a r e l a t i v e l y new t e c h n i q u e to study the morphology of these systems. A p p l i c a t i o n o f an a l t e r n a t i n g e l e c t r i c f i e l d to a m u l t i p h a s e morphology r e s u l t s i n a frequency-dependent e l e c t r i c - f i e l d d i s t r i b u t i o n due t o t h e d i f f e r e n t p e r m i t t i v i t i e s and c o n d u c t i v i t i e s o f d i s s i m i l a r p h a s e s . M e a s u r e d p e r m i t t i v i t y i n c r e a s e s w i t h d e c r e a s i n g f r e q u e n c y V = 0)/27T, approaching a low f r e q u e n c y l i m i t e as the f i e l d d i s t r i b u t i o n t r a n s i t s from p e r m i t t i v i t y dominated t o c o n d u c t i v i t y dominated. F o r most s i m p l e t w o - p h a s e g e o m e t r i e s t h e f r e q u e n c y d e p e n d e n c e o f t h e p o l a r i z a t i o n a p p r o a c h e s a s i m p l e overdamped r e s o n a n c e : Q

e(a>) = e'(a)) - j e " ( a j ) =

+ /a> )

(1)

m

T

and

e" a r e

Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

the

17.

VALLANCE AND COOPER

Polarization

in Thermoplastic

Elastomers

279

r e a l and i m a g i n a r y p a r t s . The p a r a m e t e r s e and 0 ) a r e t h e h i g h f r e q u e n c y l i m i t o f £ and t h e "damped r e s o n a n t f r e q u e n c y " . The i m a g i n a r y component e" v a n i s h e s i n t h e h i g h and l o w f r e q u e n c y l i m i t s w h i l e p e a k i n g a t 03 = co . I f e q u a t i o n ( 1 ) i s s o l v e d f o r e" i n t e r m s e , w h e r e b y 0) d e p e n d e n c e c a n be e l i m i n a t e d , i t i s s e e n that t h e equation has t h e form o f a s e m i c i r c l e . A s w i l l be shown 9 oo> d ^ a r e i n p a r t d e t e r m i n e d by m o r p h o l o g y so t h a t experimental determination of these q u a n t i t i e s w i l l provide certain morphological insights. A complication i s the divergence of most r e a l s p e c t r a f r o m t h e d e p e n d e n c e o f e q u a t i o n ( 1 ) . A d i s c u s s i o n of a p o s s i b l e source of the divergence i s included i n the d i s c u s s i o n o f measured s p e c t r a . I n t e r f a c i a l p o l a r i z a t i o n s have been r e c o r d e d f o r many m u l t i ­ phase s o l i d - s t a t e polymer systems: s e m i c r y s t a l l i n e polyamides and p o l y u r e t h a n e s ( 1 3 ) , segmented p o l y u r e t h a n e s ( 1 4 ) , segmented p o l y e s t e r s (15,16), polyethylene o x i d e - p o l y s t y r e n e d i b l o c k c o ­ p o l y m e r s ( 1 7 ) , and s t y r e n e - b u t a d i e n e - s t y r e n e t r i b l o c k s y s t e m s (18). In g e n e r a l , due t o t h e l o w c o n d u c t i v i t i e s o f p o l y m e r i c s o l i d s , t h e p o l a r i z a t i o n s a r e f o u n d a t s u b a u d i o f r e q u e n c i e s , where s t a n d a r d b r i d g e e x p e r i m e n t s do n o t o p e r a t e . I n order to study t h e s e p o l a r i z a t i o n s two p r o c e s s o r - c o n t r o l l e d d i e l e c t r i c s p e c t r o m e t e r s have been d e s i g n e d t o o p e r a t e i n t h i s f r e q u e n c y range. One u s e s l o w - f r e q u e n c y , A.C. e x c i t a t i o n i n c o n j u n c t i o n w i t h c r o s s - c o r r e l a t i o n a n a l y s i s w h i l e t h e other uses step e x c i t a ­ tion with Laplace-transform analysis. The r e m a i n d e r o f t h i s paper i n c l u d e s d e s c r i p t i o n s o f t h e a p p a r a t u s , a t h e o r e t i c a l c o n t e x t i n w h i c h t o v i e w t h e m e a s u r e d s p e c t r a , and t h e p r e s e n t a ­ t i o n and a n a l y s i s o f some e x p e r i m e n t a l d a t a . OT

m

f

m

f

e

e

a

n

Q

m

Dielectric

Spectrometers

D i e l e c t r i c s p e c t r o s c o p y c a n be c a r r i e d o u t by o b s e r v i n g a m a t e r i a l ' s s t e a d y - s t a t e r e s p o n s e t o an o s c i l l a t i n g e l e c t r i c f i e l d o r by o b s e r v i n g t h e t r a n s i e n t r e s p o n s e t o a s i n g l e e v e n t s u c h a s a s t e p change i n f i e l d . The s i m p l e s t sample g e o m e t r y i n e i t h e r case i s t h a t o f t h e d i e l e c t r i c i n a p a r a l l e l - p l a t e c a p a c i t o r . Edge e f f e c t s a r e m i n i m i z e d b y t h e u s e o f a t h r e e - t e r m i n a l , g u a r d r i n g c o n f i g u r a t i o n . T y p i c a l d i s k - s h a p e d s a m p l e s measure 1.5 cm i n d i a m e t e r and 0.01 cm i n t h i c k n e s s . The e x p e r i m e n t i s s e t up so t h a t t h e sample r e s i d e s i n a vacuum o r a d e s i c c a t e d n i t r o g e n atmosphere, thus m i n i m i z i n g water r e g a i n i n h y d r o s c o p i c polymer s y s t e m s . Good p r a c t i c e d i c t a t e s t h e a p p l i c a t i o n o f i n t e g r a l m e t a l l i c , u s u a l l y gold, coatings to thef l a t surfaces of the sample. T h i s p r o v i d e s f o r low-impedance e l e c t r i c a l c o n t a c t . The a p p a r a t u s u s e d , w i t h s l i g h t m o d i f i c a t i o n s , i s t h e same for both experiments. The p r o c e s s o r i s a DEC L S I 11/3 w i t h 64K b y t e s o f RAM. C o m m u n i c a t i o n w i t h t h e p r o c e s s o r i s done u s i n g a CRT t e r m i n a l . A p a i r o f d o u b l e - d e n s i t y , f l e x i b l e - d i s k d r i v e r s a r e u s e d f o r s t o r a g e o f s o f t w a r e and d a t a . Other system components i n c l u d e a 1 MHz p r o g r a m m a b l e t i m e r , 1 2 - b i t A/D a n d

Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

COMPUTER APPLICATIONS IN APPLIED POLYMER SCIENCE

280

D/A c o n v e r t e r s , and a d i g i t a l p l o t t e r . A Nicolet Explorer I I I d i g i t a l o s c i l l o s c o p e capable of high-speed data a c q u i s i t i o n i s i n t e r f a c e d t o t h e p r o c e s s o r v i a 45 TTL l i n e s w h i c h p r o v i d e h i g h speed d a t a t r a n s f e r i n b o t h d i r e c t i o n s . The o s c i l l o s c o p e i s used p r i n c i p a l l y f o r h i g h frequency ( 1 0 " t o 1 0 Hz) t e s t i n g and s e r v e d o n l y a s b a c k - u p i n t h e p r e s e n t c a s e s . For transducing c u r r e n t s i n t h e n a n o - t o p i c o a m p e r e r a n g e a K e i t h l y 427 c u r r e n t a m p l i f i e r i s u s e d w i t h a d j u s t a b l e r i s e t i m e down t o 10 y s . 2

+ 3

Steady-State Experiment. A simple harmonic s i g n a l i n t h e f r e q u e n c y r a n g e 20 Hz and down i s s y n t h e s i z e d by s t e p p i n g t h e o u t p u t a t a D/A c o n v e r t e r a t e q u a l l y s p a c e d i n t e r v a l s up t o 5,000 t i m e s p e r c y c l e . The a m p l i t u d e i s s e l e c t e d up t o 10 v o l t s . The r e s u l t i n g s i g n a l , w h i c h i s somewhat n o t c h y , i s smoothed by low pass f i l t e r i n g ( f o u r t h - o r d e r B u t t e r w o r t h ) . Figure 1 i s a schematic of the experiment. The f i l t e r e d s i g n a l i s a p p l i e d t o the sample c e l l w h i l e t h e sample's c u r r e n t r e s p o n s e i s m o n i t o r e d a t t h e g u a r d e d measurement e l e c t r o d e . B e c a u s e o f t h e l o w - l e v e l c u r r e n t s i n v o l v e d , s h i e l d e d c a b l e and s h o c k m o u n t i n g a r e u s e d throughout t h e system. R e m a i n i n g n o i s e c a n be e l i m i n a t e d by s e l e c t i o n of a s u i t a b l y h i g h r i s e time on t h e c u r r e n t a m p l i f i e r . P r o p o r t i o n a l v o l t a g e o u t p u t o f t h e c u r r e n t a m p l i f i e r and t h e f i l t e r e d d r i v i n g s i g n a l a r e s i m u l t a n e o u s l y s a m p l e d o v e r one c o m p l e t e c y c l e a t up t o 5,000 e q u a l l y s p a c e d i n t e r v a l s o n c e s t e a d y s t a t e r e s p o n s e i s a t t a i n e d . The v o l u m e - a v e r a g e e l e c t r i c f i e l d f(cot) and t h e v o l u m e - a v e r a g e c u r r e n t d e n s i t y t h r o u g h t h e s a m p l e i(cot) c a n be r e p r e s e n t e d a s f ( o ) t ) = F cos(o)t + a )

(2)

i(oot) = I cos(cot + 3)

(3)

C r o s s c o r r e l a t i o n i s u s e d t o c a l c u l a t e F, I , and $-a w h i l e simultaneously p r o v i d i n g d i g i t a l f i l t e r i n g of higher harmonics (19). r2TT

Fexp(-ja)

= (1/TT)

f (a)t)exp(j03t)d(a)t)

(4)

i ( a ) t ) exp ( j t o t ) d (a)t)

(5)

0

I e x p ( - j B ) = (1/TT) 0 The

algorithms f o r these

Fexp(-ja)

* (2/n)

integrations are

n £ f k=l k

exp ( j cot,) k

Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

(6)

17.

VALLANCE AND COOPER

Polarization

in Thermoplastic

Elastomers

n I e x p ( - j g ) * (2/n) I i exp(jO)t,) k=l *

281

(7)

R

where and a r e t h e f i e l d and c u r r e n t d e n s i t y measurements a t t i m e t^. when n s a m p l e s h a v e been c o n v e r t e d o v e r one c y c l e . S y s t e m a t i c i n s t r u m e n t a l p h a s e s h i f t s and a m p l i t u d e d i s t o r t i o n s a r e c o m p e n s a t e d by s u b s e q u e n t r e p e t i t i o n o f t h e e x p e r i m e n t w i t h t h e sample c e l l r e p l a c e d by a l o s s - f r e e , p r e c i s i o n , a d j u s t a b l e capacitor. The c o m p l e x p e r m i t t i v i t y £ i s e a s i l y c a l c u l a t e d f r o m t h e r e l a t i o n (20) ( G e n e r a l i z e d c o m p l e x p e r m i t t i v i t y fj should f o r m a l l y r e p l a c e complex p e r m i t t i v i t y £ i n t h i s e x p r e s s i o n , a s w i l l be e x p l a i n e d i n t h e n e x t s e c t i o n ) : e = £

?

- j e " = - ( j I / c o F ) e x p [ j (g-a) ]

(8)

The e x p e r i m e n t must be r e p e a t e d a t e v e r y f r e q u e n c y o f i n t e r e s t . E x p e r i m e n t a l a c c u r a c y a n d r e s o l u t i o n a r e b e t t e r t h a n 0.25% i n | eI and 0.001 r a d i a n s i n CHJv^ NCOCH CH_CH CH 0)

Q

V

Z

Q

0

z

z

z

0

z

0

x

(CH CH CH CH 0) ] O

z

O

z

O

z

o

z

y

n

Samples were p u r i f i e d by s w e l l i n g i n a S o x h l e t e x t r a c t o r f o l l o w e d by d r y i n g i n vacuum. D i s k s were c o m p r e s s i o n m o l d e d a t 250°C f o r 5 m i n u t e s f o l l o w e d by a i r q u e n c h i n g o f t h e m o l d . Two s a m p l e s were s u b s e q u e n t l y a n n e a l e d a t 80° i n vacuum f o r 36 h o u r s f o l l o w e d by s l o w - c o o l i n g t o t h e t e s t t e m p e r a t u r e 24°. UET48-1

Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

17.

VALLANCE AND COOPER

Polarization

in Thermoplastic

291

Elastomers

applied ^^phase I field

j

11 1 .5

1

1

i

3

\ ^ ^

v, =0.6 v = 0.1 v = 0.3 2

3

1 1 1

1

1

11

—s,/s, = 0.01

\\ r\ , — — 0 0.5 .1 J ?

.4

^

.3 —



.2

\



1 0 0

1

.1

1 .2

I I I " .8 .9 1.0

1 1 1 11

.3

4

.5 .6 v eVe 2

.7

2

Figure 7. Calculated complex permittivity maps jor a three-phase multilayered laminate jor different ratios oj conductivity in the third (transition zone) and first (soft) phases. For all curves s /s = 0 and e = e — e . For s = s thefirstand third phases are equivalent and the resulting arc is a semicircle. 2

t

t

2

s

3

t

Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

292

COMPUTER APPLICATIONS IN APPLIED POLYMER SCIENCE

was t e s t e d i n t h e a n n e a l e d and u n a n n e a l e d s t a t e s . Samples were d e s i c c a t e d i n h i g h vacuum w h e r e g o l d e l e c t r o d e s were subsequently applied. A l l samples were s u b j e c t e d t o a 150-hour, 24°C, s t a b i l i z a t i o n p e r i o d p r i o r t o t e s t i n g a t 24°C. F i g u r e 8 shows t h e t h r e e d e c a y f u n c t i o n s w h i c h a r e a c t u a l l y t h e n o r m a l i z e d d e p o l a r i z a t i o n c u r r e n t s i / F . The d e p o l a r i z a t i o n s f o r t h e UET48-1 s y s t e m s o c c u r o v e r a l o n g e r p e r i o d (100 t o 700 s) t h a n t h a t f o r HET49-1 (~30 s ) , and t h e UET48-1 d e p o l a r i z a t i o n c u r r e n t s are h i g h e r i n magnitude. F i g u r e 9 shows t h e t r a n s f o r m e d e s p e c t r a ; t h e e" s p e c t r a a r e n o t shown. A G e n e r a l R a d i o 1620-A b r i d g e a s s e m b l y was u s e d t o e v a l u a t e k* and k" as w e l l as t o p r o v i d e t h e h i g h f r e q u e n c y ( 1 0 - 10 * Hz) d a t a . The two UET48-1 s a m p l e s show l a r g e p o l a r i z a t i o n s o f s i m i l a r s t r e n g t h and shape a l t h o u g h t h e p o l a r i z a t i o n f o r t h e a n n e a l e d p o l y m e r i s s h i f t e d about 0.7 l o g a r i t h m i c d e c a d e s h i g h e r i n f r e q u e n c y . HET49-1 shows o n l y s l i g h t p o l a r i z a t i o n i n t h i s f r e q u e n c y r e g i m e , a s s e e n i n F i g u r e s 8 and 9. The HET49-1 s p e c t r u m f l a t t e n s o u t a t a b o u t 0.1 Hz. The f r e q u e n c y s h i f t c a u s e d by a n n e a l i n g UET48-1 i s r e l a t e d t o h i g h e r s o f t p h a s e c o n d u c t i v i t y , w h i c h i n t u r n r e s u l t s f r o m d e p r e s s i o n o f t h e g l a s s t r a n s i t i o n due t o annealing. S u c h a change w o u l d n e c e s s a r i l y c a u s e a f r e q u e n c y s h i f t , t h o u g h i t need n o t c a u s e a change i n p o l a r i z a t i o n strength. The l a c k o f a l a r g e d i s t i n c t p o l a r i z a t i o n i n HET49-1 i s s u g g e s t i v e of a n o n - l a m e l l a r morphology. C r y s t a l l i z a t i o n of HET49-1 i s hampered by t h e p r e s e n c e o f t h r e e d i s t i n c t c o n f i g u r a t i o n a l isomers i n the d i i s o c y a n a t e used to form t h i s polymer. In f a c t a 20°/min DSC s c a n r e v e a l s a t w o - p h a s e m o r p h o l o g y w i t h e n d o t h e r m i c d i s r u p t i o n o f t h e h a r d p h a s e o c c u r r i n g a t 78°C, i n d i c a t i n g a l a c k of s t r o n g o r d e r i n g i n those domains. Thus t h e r e a p p e a r s t o be a c o r r e l a t i o n between t h e f o r m a t i o n o f h a r d segment c r y s t a l l i n i t y and l a m e l l a r m o r p h o l o g y i n t h e s e s h o r t - b l o c k segmented c o p o l y m e r s . T h i s i s not to say t h a t l a m e l l a r morphologies occur only f o r s e m i c r y s t a l l i n e polymers. In t o t a l l y amorphous AB and ABA b l o c k c o p o l y m e r s , s u c h a s p o l y s t y r e n e - p o l y b u t a d i e n e d i b l o c k s , l a m e l l a r m o r p h o l o g i e s can a l s o form, d e p e n d i n g on r e l a t i v e f r a c t i o n s o f t h e two b l o c k s and c a s t i n g parameters. f

2

1

Summary L a r g e p o l a r i z a t i o n s a r e seen t o o c c u r i n m u l t i p h a s e polymer s y s t e m s , p r i n c i p a l l y due t o t h e d i f f e r e n t c o n d u c t i v i t i e s i n t h e d i s s i m i l a r microdomains. Due t o t h e l o w o v e r a l l c o n d u c t i v i t i e s of t h e s e polymers, the p o l a r i z a t i o n s o c c u r a t low, o f t e n subaudio, frequencies. I n o r d e r t o s t u d y t h e s e p r o c e s s e s two c o m p u t e r a i d e d d i e l e c t r i c s p e c t r o m e t e r s have b e e n d e v e l o p e d . They d i f f e r i n the type of e x c i t a t i o n used: A.C. v e r s u s s t e p . E a c h s p e c t r o m e t e r has c e r t a i n a d v a n t a g e s i n t e r m s o f a c c u r a c y , r e s o l u t i o n and c o n v e n i e n c e . A n a l y t i c a l m o d e l l i n g i s used to compare m e a s u r e d s p e c t r a t o p r o p o s e d m o r p h o l o g i e s . Although

Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

.

Polarization

VALLANCE AND COOPER

i

1E+3

CO

CD +

+

UJ

\

Elastomers

1E+2

1E+1

1E+1

\

.JJET4) M(80° : anneal £•*•»..

o o

HET

\

\ *9-f \

CO

m





o

e

CD



lE-3

293

+

1E+2 8.

1E+0

Q

in Thermoplastic

1E+0

1E-1 UET48

• * •

fl

>



1E-2

e e

o

1E-3

• 1E-4

1E-4

Time (s) Figure 8. Measured polarization decay junctions at 24° C jor three segmented polyether-polymethanes. HET49-1 is tested after annealing at 80 °C followed by stabilization at 24°C. VET48-1 is tested with and without annealing. The decay function is the depolarization current density normalized by the electric field value used for polarizing.

Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

294

COMPUTER APPLICATIONS IN APPLIED POLYMER SCIENCE

Figure 9. Transformed e' spectra at 24°C for three segmented poly ether-poly methanes. Key: O, UET48-1 (80°C anneal); •, UET48-1; and A , HET49-1 (80°C anneal).

Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

17.

VALLANCE AND COOPER

Polarization

in Thermoplastic

Elastomers

295

p r e c i s e f i t s of models t o e x p e r i m e n t a l s p e c t r a i s d i f f i c u l t f o r complex m o r p h o l o g i e s , t h e experiment c a n l e a d t o u s e f u l morphological i n s i g h t s , p a r t i c u l a r l y i n comparative studies. A c k n o w l e d g ement The a u t h o r s w i s h t o a c k n o w l e d g e p a r t i a l s u p p o r t o f t h i s r e s e a r c h by G r a n t # DMR 81-06888 o f t h e P o l y m e r s S e c t i o n o f NSF's D i v i s i o n o f M a t e r i a l s R e s e a r c h . The a u t h o r s a l s o w i s h t o thank I n t e r n a t i o n a l Harvester f o r p r o v i d i n g a f e l l o w s h i p t o M i c h a e l A. V a l l a n c e f o r work o n t h i s p r o j e c t .

Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.

Helfand, E.; Macromolecules 1975, 8, 552. Helfand, E.; Wasserman, Z. R. Macromolecules 1976, 9, 879. Helfand, E.; Wasserman, Z. R. Macromolecules 1978, 11, 961. Meier, D. J.; "The Solid State of Polymers" (Eds. Geil, P. H.; Baer, E.; Wada, Y.), Marcel Dekker, New York, 1974. Wilkes, G. L.; Samuels, S. L.; Crystal, R. J. J. Macromol. Sci., Phys. 1974, 10, 203. Koutsky, J. A.; Hein, N. V.; Cooper, S. L. J. Polym. Sci., Polym. Letters 1970, 8, 353. Cella, R. J. J. Polym. Sci., Part C 1973, 42, 727. Roche, E. J.; Thomas, E. L. Polymer 1981, 22, 333. Fridman, I. D.; Thomas, E. L. Polymer 1980, 21, 388. Clough, S. B.; Schneider, N. S.; King, A. O. J. Macromol. Sci., Phys. 1968, 4, 641. Chang, Y. J. P.; Wilkes, G. L. J. Polym. Sci., Polym. Phys. 1975, 13, 455. Bonart, R.; Müller, E. H. J. Macromol. Sci., Phys. 1974, 10, 177. Hiroto, S.; Saito, S.;Nakajima, T. Kolloid Z.Z. Polym. 1966, 213, 109. Dev, S. B.; North, A. M.; Reid, J. C. "Dielectric Properties of Polymers" (Ed. Karasz, F. E.), Plenum, New York, 1972, 217. North, A. M.; Pethrick, R. A.; Wilson, A. D. Polymer 1978, 19, 923. Lilaonitkul, A.; Cooper, S. L. Macromolecules 1979, 12, 1146. Pochan, J. M.; Crystal, R. G. ''Dielectric Properties of Polymers" (Ed. Karasz, F. E.), Plenum, New York, 1972, 313. North, A. M.; Pethrick, R. A.; Wilson, A. D. Polymer 1978, 19, 913. Massa, D. J.; Schrag, J. L. J. Polym. Sci., A2 1972, 10, 71. Bottcher, C. J. F.; Bordewijk, P. "Theory of Electric Polarization", Vol. II, 2nd ed., Elsevier, Amsterdam, 1978. Vallance, M.; Faith, III, D. C.; Cooper, S. L. Rev. Sci. Instrum. 1980, 51, 1338. Hyde, P. J. Proc. IEE 1970, 117, 1891.

Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

296

23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.

COMPUTER APPLICATIONS IN APPLIED POLYMER SCIENCE

van Beek, L. K. H. Progress in Dielectrics 1967, 7, 69. Brown, Jr., W. F. J. Chem. Phys. 1955, 23, 1514. Sillars, R. W. J. Inst. Elect. Engrs. 1937, 80, 378. Fricke, H. J. Phys. Chem. 1953, 57, 934. Saito, S.; Sasabe, H.; Nakajima, T.; Yada, K. J. Polym. Sci., A2 1968, 6, 1297. Harrel, Jr., L. L. Macromolecules 1969, 2, 607. Flory, P. J. "Polymer Chemistry", Cornell, Ithaca, 1953, 568. Lilaonitkul, A.; Cooper, S. L. Rubber Chem. Technol. 1977, 50, 1. Davidson, D. W.; Cole, R. H. J. Chem. Phys. 1951, 19, 1484. Fong, F. K.; Smyth, C. P. J. Phys. Chem. 1963, 67, 226. Maxwell, J. C. "Electricity and Magnetism", Vol. 1, Clarendon, Oxford, 1892, 452.

RECEIVED May 4, 1982.

Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.