Microwave-Assisted Cross-Polarization of Nuclear Spin Ensembles

3 days ago - Further, slight changes in the cross-relaxation rate as a function of the wait time between successive repetitions of the transfer protoc...
0 downloads 3 Views 3MB Size
Letter Cite This: Nano Lett. XXXX, XXX, XXX−XXX

pubs.acs.org/NanoLett

Microwave-Assisted Cross-Polarization of Nuclear Spin Ensembles from Optically Pumped Nitrogen-Vacancy Centers in Diamond F. Shagieva,* S. Zaiser, P. Neumann, D. B. R. Dasari, R. Stöhr, A. Denisenko, R. Reuter, C. A. Meriles,† and J. Wrachtrup Institute for Quantum Science and Technology (IQST), University of Stuttgart, Third Institute of Physics, Stuttgart 70569, Germany S Supporting Information *

ABSTRACT: The ability to optically initialize the electronic spin of the nitrogenvacancy (NV) center in diamond has long been considered a valuable resource to enhance the polarization of neighboring nuclei, but efficient polarization transfer to spin species outside the diamond crystal has proven challenging. Here we demonstrate variable-magnetic-field, microwave-enabled cross-polarization from the NV electronic spin to protons in a model viscous fluid in contact with the diamond surface. Further, slight changes in the cross-relaxation rate as a function of the wait time between successive repetitions of the transfer protocol suggest slower molecular dynamics near the diamond surface compared to that in bulk. This observation is consistent with present models of the microscopic structure of a fluid and can be exploited to estimate the diffusion coefficient near a solid−liquid interface, of importance in colloid science. KEYWORDS: NV center in diamond, dynamic nuclear polarization, NOVEL, spin-locking, hyperpolarization, color centers in diamond, Hartmann−Hahn condition, external spin bath polarization, proton hyperpolarization

T

ature 13C spin polarization at low3−8 (i.e., TCP, and it remains constant for any further increases in TR. However, at faster diffusion rates (TD ≪ TCP), the cross-polarization rate averages to zero, thereby reducing the transfer efficiency for any TR. Hence, regardless of the repetition rate, high diffusive fluids such as water cannot be polarized efficiently through this technique without the formation of a near-surface layer featuring sufficiently slow molecular dynamics. The discussion above can be formally extended to nuclear (H) spins in solids if T(H) D is replaced by the spin diffusion time TS ≈ (rd − rs)2/DS, where DS ≈ (μ0/4π)(0.1γH2ℏ/rH−H) is the spin diffusion coefficient32 and rH−H is the internuclear distance. This process, however, is inherently slow: Even for strongly coupled nuclear systems such as protons, we calculate DS ≈ 2 × 10−4 nm2/μs, orders of magnitude smaller than the selfdiffusion coefficient of most fluids. The rapid polarization of neighboring nuclei thus prevents further transfer, the so-called “blockade”, hence leading to negligible NOVEL contrast. Naturally, the contrast can be made nonzero by periodically cycling the sign of the starting NV− spin, though at the expense of a net polarization gain in the nuclear spin reservoir. By the same token, nonzero contrast is expected in the limit of exceptionally short nuclear spin−lattice relaxation times, precisely the condition throughout our NOVEL transfer experiments to protons in a PMMA film (Section 4 in the Supporting Information). In summary, we demonstrated microwave-assisted crosspolarization from optically pumped shallow NVs to protons in



ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.8b00925. Creation of the NV centers; numerical simulation of the detection volume; bare diamond measurements; laser ablation of PMMA; power stability of the amplifier; effect of inhomogeneous couplings and spin-diffusion on the polarization dynamics of NV electron spin (PDF)



AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected]. ORCID

F. Shagieva: 0000-0003-4881-8365 P. Neumann: 0000-0003-2146-0412 C. A. Meriles: 0000-0003-2197-1474 Present Address †

CUNYCity College of New York, New York, 10031 New York, United States.

E

DOI: 10.1021/acs.nanolett.8b00925 Nano Lett. XXXX, XXX, XXX−XXX

Letter

Nano Letters Author Contributions

electron and nuclear spins in diamond. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 96, 054101. (12) Falk, A. L.; Klimov, P. V.; Ivády, V.; Szász, K.; Christle, D. J.; Koehl, W. F.; Gali, A.; Awschalom, D. D. Optical polarization of nuclear spins in silicon carbide. Phys. Rev. Lett. 2015, 114, 247603. (13) Ajoy, A.; Liu, K.; Nazaryan, R.; Lv, X.; Safvati, B.; Wang, G.; Arnold, D.; Li, G.; Lin, A.; Raghavan, P.; Druga, E.; Pagliero, D.; Reimer, J. A.; Suter, D.; Meriles, C. A.; Pines, A. Orientationindependent room-temperature optical 13C hyperpolarization in powdered diamond. Science Adv. In press. (14) Wood, J. D. A.; Tetienne, J.-P.; Broadway, D. A.; Hall, L. T.; Simpson, D. A.; Stacey, A.; Hollenberg, L. C. L. Microwave-free nuclear magnetic resonance at molecular scales. Nat. Commun. 2017, 8, 15950. (15) Henstra, A.; Dirksen, P.; Schmidt, J.; Wenckebach, W. Nuclear spin orientation via electron spin locking. J. Magn. Reson. 1988, 77, 389−393. (16) Liu, G.-Q.; Jiang, Q.-Q.; Chang, Y.-C.; Liu, D.-Q.; Li, W.-X.; Gu, C.-Z.; Po, H. C.; Zhang, W.-X.; Zhao, N.; Pan, X.-Y. Protection of centre spin coherence by dynamic nuclear spin polarization in diamond. Nanoscale 2014, 6, 10134−10139. (17) Staudacher, T.; Shi, F.; Pezzagna, S.; Meijer, J.; Du, J.; Meriles, C. A.; Reinhard, F.; Wrachtrup, J. Nuclear magnetic resonance spectroscopy on a (5nm)3 volume of liquid and solid samples. Science 2013, 339 (6119), 561−563. (18) Pham, L. M.; DeVience, S. J.; Casola, F.; Lovchinsky, I.; Sushkov, A. O.; Bersin, E.; Lee, J.; Urbach, E.; Cappellaro, P.; Park, H.; Yacoby, A.; Lukin, M. D.; Walsworth, R. L. NMR technique for determining the depth of shallow nitrogen-vacancy centers in diamond. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 93, 045425. (19) Slichter, C. P. Principles of Magnetic Resonance, 3rd ed.; Springer Series in Solid-State Sciences 1; Springer-Verlag: Berlin, 1990. (20) Laraoui, A.; Meriles, C. A. Approach to dark spin cooling in a diamond nanocrystal. ACS Nano 2013, 7 (4), 3403−3410. (21) Henstra, A.; Wenckebach, W.Th. The theory of nuclear orientation via electron spin locking (NOVEL). Mol. Phys. 2008, 106 (7), 859−871. (22) Meriles, C. A.; Jiang, L.; Goldstein, G.; Hodges, J.; Maze, J.; Lukin, M. D.; Cappellaro, P. Imaging mesoscopic nuclear spin noise with a diamond magnetometer. J. Chem. Phys. 2010, 133, 124105. (23) Aslam, N.; Pfender, M.; Neumann, P.; Reuter, R.; Zappe, A.; Fávaro de Oliveira, F.; Denisenko, A.; Sumiya, H.; Onoda, S.; Isoya, J.; Wrachtrup, J. Nanoscale nuclear magnetic resonance with chemical resolution. Science 2017, 357 (6346), 67−71. (24) Pagliero, D.; Laraoui, A.; Meriles, C. A. Imaging nuclear spins weakly coupled to a probe paramagnetic center. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91, 205410. (25) Ajoy, A.; Bissbort, U.; Lukin, M. D.; Walsworth, R. L.; Cappellaro, P. Atomic-Scale Nuclear Spin Imaging Using QuantumAssisted Sensors in Diamond. Phys. Rev. X 2015, 5, 011001. (26) Staudacher, T. M.; Raatz, N.; Pezzagna, S.; Meijer, J.; Reinhard, F.; Meriles, C. A.; Wrachtrup, J. Probing molecular dynamics at the nanoscale via an individual paramagnetic center. Nat. Commun. 2015, 6, 8527. (27) Thompson, P. A.; Troian, S. M. A general boundary condition for liquid flow at solid surfaces. Nature 1997, 389, 360−362. (28) Lauga, E.; Brenner, M. P.; Stone, H. A. Microfluidics: The NoSlip Boundary Condition. In Handbook of Experimental Fluid Dynamics; Tropea, C., Yarin, A., Foss, J., Eds.; Springer: New-York, 2007; Chapter 19, pp 1219−1240. (29) Ortiz-Young, D.; Chiu, H.-C.; Kim, S.; Voitchovsky, K.; Riedo, E. The interplay between apparent viscosity and wettability in nanoconfined water. Nat. Commun. 2013, 4, 2482. (30) Abrams, D.; Trusheim, M. E.; Englund, D.; Shattuck, M. D.; Meriles, C. A. Dynamic nuclear spin polarization of liquids and gases in contact with nanostructured diamond. Nano Lett. 2014, 14 (5), 2471−2478. (31) Broadway, D. A.; Tetienne, J.-P.; Stacey, A.; Wood, J. D. A.; Simpson, D. A.; Hall, L. T.; Hollenberg, L. C. L. Quantum probe

P.N. conceived of the presented idea. F.S. carried out the experiment. A.D. and R.R. contributed to the sample preparation. S.Z., P.N., C.A.M., and J.W. supervised the project. D.B.R.D. and C.A.M. developed the theory and performed the numerical and analytical simulations. All authors have given approval to the final version of the manuscript. Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS The authors acknowledge support from the Max Planck Society, the DFG, ERC Advanced Grant SMeL, BW-Stiftung, and BMBF. F.S. expresses the gratitude to Jochen Scheuer for the help with the Qudi software suite installation35 and Nabeel Aslam and Matthias Pfender for fruitful discussions. C.A.M. acknowledges support from the National Science Foundation through grants NSF-1619896 and NSF-1401632, from the NSF CREST-IDEALS HRD-1547830, and from Research Corporation for Science Advancement through a FRED Award. The authors dedicate this work to the memory of Professor Charles Pence Slichter.



REFERENCES

(1) Hu, K.-N.; Bajaj, V. S.; Rosay, M. M.; Griffin, R. G. High frequency dynamic nuclear polarization using mixtures of TEMPO and trityl radicals. J. Chem. Phys. 2007, 126, 044512. (2) Doherty, M. W.; Manson, N. B.; Delaney, P.; Jelezko, F.; Wrachtrup, J.; Hollenberg, L. C. L. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 2013, 528 (1), 1−45. (3) London, P.; Scheuer, J.; Cai, J.-M.; Schwarz, I.; Retzker, A.; Plenio, M. B.; Katagiri, M.; Teraji, T.; Koizumi, S.; Isoya, J.; Fischer, R.; McGuinness, L. P.; Naydenov, B.; Jelezko, F. Detecting and polarizing nuclear spins with double resonance on a single electron spin. Phys. Rev. Lett. 2013, 111, 067601. (4) Fischer, R.; Bretschneider, C. O.; London, P.; Budker, D.; Gershoni, D.; Frydman, L. Bulk nuclear polarization enhanced at room temperature by optical pumping. Phys. Rev. Lett. 2013, 111, 057601. (5) Fischer, R.; Jarmola, A.; Kehayias, P.; Budker, D. Optical polarization of nuclear ensembles in diamond. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 125207. (6) Pagliero, D.; Koteswara Rao, K. R.; Zangara, P. R.; Dhomkar, S.; Wong, H. H.; Abril, A.; Aslam, N.; Parker, A.; King, J.; Avalos, C. E.; Ajoy, A.; Wrachtrup, J.; Pines, A.; Meriles, C. A. Multispin-assisted optical pumping of bulk 13C nuclear spin polarization in diamond. Phys. Rev. B: Condens. Matter Mater. Phys. 2018, 97, 024422. (7) Wunderlich, R.; Kohlrautz, J.; Abel, B.; Haase, J.; Meijer, J. Optically induced cross relaxation via nitrogen-related defects for bulk diamond 13C hyperpolarization. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 96, 220407. (8) Alvarez, G. A.; Bretschneider, C. O.; Fischer, R.; London, P.; Kanda, H.; Onoda, S.; Isoya, J.; Gershoni, D.; Frydman, L. Local and bulk 13C hyperpolarization in nitrogen-vacancy-centred diamonds at variable fields and orientations. Nat. Commun. 2015, 6, 8456. (9) King, J. P.; Jeong, K.; Vassiliou, C. C.; Shin, C. S.; Page, R. H.; Avalos, C. E.; Wang, H.-J.; Pines, A. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond. Nat. Commun. 2015, 6, 8965. (10) Scott, E.; Drake, M.; Reimer, J. A. The phenomenology of optically pumped 13C NMR in diamond at 7.05 T: Room temperature polarization, orientation dependence, and the effect of defect concentration on polarization dynamics. J. Magn. Reson. 2016, 264, 154−162. (11) Green, B. L.; Breeze, B. G.; Rees, G. J.; Hanna, J. V.; Chou, J.-P.; Ivády, V.; Gali, A.; Newton, M. E. All-optical hyperpolarization of F

DOI: 10.1021/acs.nanolett.8b00925 Nano Lett. XXXX, XXX, XXX−XXX

Letter

Nano Letters hyperpolarisation of molecular nuclear spins. Nat. Commun. 2018, 9, 1246. (32) Lowe, I. J.; Gade, S. Density-matrix derivation of the spindiffusion equation. Phys. Rev. 1967, 156, 817. (33) Schlipf, L.; Oeckinghaus, T.; Xu, K.; Dasari, D. B. R.; Zappe, A.; Fávaro de Oliveira, F.; Kern, B.; Azarkh, M.; Drescher, M.; Ternes, M.; Kern, K.; Wrachtrup, J.; Finkler, A. A molecular quantum spin network controlled by a single qubit. Sci. Adv. 2017, 3 (8), e1701116. (34) Cai, J.; Retzker, A.; Jelezko, F.; Plenio, M. B. A large-scale quantum simulator on a diamond surface at room temperature. Nat. Phys. 2013, 9, 168−173. (35) Binder, J. M.; Stark, A.; Tomek, N.; Scheuer, J.; Frank, F.; Jahnke, K. D.; Müller, C.; Schmitt, S.; Metsch, M. H.; Unden, T.; Gehring, T.; Huck, A.; Andersen, U. L.; Rogers, L. J.; Jelezko, F. Qudi: a modular python suite for experiment control and data processing. SoftwareX 2017, 6, 85−90.

G

DOI: 10.1021/acs.nanolett.8b00925 Nano Lett. XXXX, XXX, XXX−XXX