Molecular fluorescence, phosphorescence, and ... - ACS Publications

Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Linda B. McGown, and Isiah M. Warner. Anal. Chem. , 1990, 62 (12), pp 255...
0 downloads 0 Views 3MB Size
Anal. Chem. 1990, 62, 371 R-381 R

Planar Chromatography Joseph Sherma Department of Chemistry, Lafayette College, Easton, Pennsylvania 18042

This is a selective review of the literature of thin-layer chromatography (TLC) and per chromatography (PC) cited in Chemical Abstracts fromgecember 26,1987, to November 27, 1989, and Analytical Abstracts from December 1987 to October 1989. Also searched directly were the following im-

TLC. Approximately 4000 papers were published in the period under review on the theory, techniques, and applications of TLC. Only a small number of papers continue to report new research in PC. The review is limited to papers in journals easily accessible to US.scientists. This eliminates coverage of man pa ers in journals published in a foreign language, especially {hinese, Japanese, Polish, and Russian. The references cited below indicate that significant advances were made in all as ects of TLC during the past 2 years, but there is clear evi ence that contemporar instrumentalized, high-performance (HP), quantitative T C especially continued to grow in popularity. Some of the most notable trends included the increasing use of bonded- hase layers for reversed-phase ( C 3 and multimodal (NH2anXCN) separations and chiral plates for separations of enantiomers; automatic spot and streak application; automated multiple, circular/anticircular, rotation or centrifugal, overpressured (OP), high pressure, and gradient development for analytical and preparative TLC; quantification with a computerized scanning densitometer or image processing system; zone identification without substance elution by coupling TLC with FT-IR and mass spectromet ;multidimensional separations of com lex mixtures by TLFcombined with gas chromato ra hy PGC), high-performance liquid chromato raphy ( H j L t ) , or supercritical fluid chromatography (SF8);linear analyzers for measuring radioactive zones; and development of the first completely automated, robotic TLC system. The greatest number of applications were reported for the analysis of drugs, lipids, amino acids, and inor anics. Historically, TLC has been used and researched more in Europe and Asia than in the USA, but interest here is now rowing ra idly, most notably in laboratories involved with Lugs, 11 i&, foods, and agricultural chemicals. This increase in p o p u h t y seems to be directly related to the availability of specialized instrumentation for HP-TLC. Although instrumentalized HP-TLC is capable of producing the maximum degree of resolution, sensitivity, specificity, accuracy, precision, and sample throu hput, many of these instruments are expensive and compfex, and their use leads to loss of the simlicity, ru gedness, and ease of performance of conventional C in o er to achieve these optimum results. It should also be realized by analysts contemplating the use of TLC that most work is still being done throughout the world with basic techni ues and relatively inexpensive equipment, and that many ?‘LC analyses that can complement HPLC and GC in solving their problems require only a supply of commercial precoated TLC plates, a micro ipet, developin chamber, sprayer, oven, optional scanning ,anI f knowledge of ood TLC laboratory practice. “he 1989 Eastern Analytical Symposium Award in Chromatography was presented to Harold McNair of Virginia Pol chnic Institute and State Universit for his accompliscenta in research and education in GC, b L C , and TLC. The 1989 EAS meeting had sessions on Modern TLC and Advances in Instrumental TLC, the former chaired by Professor McNair. Camag continues to offer periodic instrumental TLC training courses. The Second International Sym osium on Instrumental TLC/Planar Chromatography was Reld in February 1989 in Brighton, U.K.

B

E

h r i

sensitometer

0003-2700/90/0362-371R$O9.50/0

Although the title has been changed from ‘‘ThinLayer and Paper Chromatography” to “Planar Chromatography”, in recognition of contemporary nomenclature, the format of the review is the same as in past years.

GENERAL CONSIDERATIONS A. Books, Reviews, and Student Experiments. Six new volumes of the CRC Handbook of Chromatography were published in 1988 and 1989 under the senior editorship of the late G. Zweig and J. Sherma. These handbooks, which contain considerable TLC, HPLC, and GC data as well as information on sample preparation and solute detection, were devoted to plant pi -merits, drugs (four volumes), and amino acids and amines. books devoted wholly to TLC covered basic principlea and techniques ( A I ) ,recent advances (A2),the physics and physical chemistry underlying TLC (A3), TLC with flame ionization detection (A4),and R values of toxicological substances in standard systems (A!). Books on GC and LC in analytical chemistry (A6), analytical artifacts (A7), and standard methods for the analysis of fats and oils (A81 contain information on TLC. In addition to general review of TLC (A9-A15), the following subjects were reviewed: sampling (A16),in situ prechromatography derivatization (A17),fluorescence derivitization ( A B ) ,resolution and sample capacity (A19),separation of enantiomers (A20,A21), instrumentation (A22),comparison of planar and column chromato a hy in organic trace-level and IR spectrometry in analysis (A23),combination of environmental analysis (A24),analysis of natural products (A25),quantitative assay of enzymes (A26),and analysis of spirostans, spirosolanes, and solanidanes (A27). Additional reviews are cited in appropriate sections below. Student laboratory experiments were devised to illustrate the use of TLC for analysis of aspartame and its hydrolysis products in foods (A28),therapeutic drug monitoring (A29), and identification of lactose in milk (A30). An inte rated experiment involved synthesis, spectroscopy, and &C of metal acetyl acetonates (A31). B. Theory and Fundamental Studies. Equations were derived to describe solvent migration through porous layers ( B l ,E2). The role of the vapor phase in planar chromatography was studied (B3). The formation of multiple fronts when pure or multicomponent liquids flow through dry layers was described (B4). A model of band reconstruction at the beginning of TLC separation was proposed (B5).Numerical taxonomy and information content were a plied to TLC mobile-phase selection (B6).ChromatograpRic parameters were analyzed in ternary mobile-phase systems containing two polar solvents (B7).Mechanistic consequences of the binary solutions model were described (Et?). A microcomputer program was used to predict the separation of diastereoisomers on silica gel layers (B9).The quality of two-dimensional (2D) TLC separations in different systems was represented and compared by use of contour diagrams (B10). Band broadening and plate height equations for TLC were reviewed ( E l l ) . Theoretical aspects of the mechanisms of PC and silica gel and alumina TLC were studied (B12). Problems with usin TLC as a pilot technique for column LC were elaborate3 (B13). Strategies for o timizing the mobile phase in TLC and OP-TLC (B14)anicomputer-aided optimization ( B 9 were reviewed. The following studies of TLC optimization were published comparison of overlapping resolution mapping with ideal se aration to optimize mobile-phase composition for HP-TL8 (B16); use of the PRISMA optimization system (BI 7); specific surface area of an adsorbent as the parameter of optimization (B18); computer-assisted optimization of stepwise gradient elution in sandwich TLC (B19);problems of optimization in re arative LC using a sandwich chamber for continuous TL8 (B)20);application of the methodology of

E6

0 1990 American Chemical Society

371 R

PLANAR CHROMATOGRAPHY

mixtwe experiments to o timize the mu1tico:rpsnent solvent composition for HP-TL8 (B21); and some physicochemical problems with prediction of the optimal separation in adsorption TLC with mixed mobile phases (B22). Quantitative structure-retention relationshi s were reviewed (B23). The retention behavior of butyropEenones and benzimidazol-Zoneson lar and nonpolar chemically modified layers was studied (&). The effect of electrolyte content in an acetone-water mobile phase was determined for inoranic ions chromatogra hed on Sephadex G-25 layers (B25). 8tructure-retention rerationships were studied for N-substituted 1,2,4-triazoles on silica el (B261, barbiturates in systems containingcyclodextrins (%27), and 38 derivatives of 10-piperidinodibenzo[b,flthiepine in adsorption TLC (B28). The following studies were reported for adsorption TLC systems: prediction of optimal separation of mixtures in systems containing a ternary mobile phase (B29);theoretical prediction of R, values during gradient elution (B30); a new global adsorption isotherm derived from the binary solvent model (B31); influence of intramolecular interactions on some parameters characterizin substance-mobile- hase interactions (B32);a novel m e t h 4 for predicting R,va rues in systems with binary mobile phases (B33); saltin -out chromatography of organic compounds on cellulose (BMY; and separations and determination of hydrophobic constants of aromatic amino acids, biogenic amines, alkaloids, dyes, and phenols (B35). Reversed-phaseTLC was used to study distribution coefficients of several classes of drugs (B36), dispersive and inductive electrostatic interactions of polycyclic aromatic hydrocarbons (333, prediction of partition coefficients of 17j3-carbolines (B38), and determination of the lipophilicity of nitropyrene (B39) and diadamantanyl (B40) derivatives. C. Chromatographic Systems (Mobile and Stationary Phases). Silica gel continues to be by far the most widely used layer material for TLC, and this situation is not likely to change in the near future. Among the other commerciall s, the eatest increase in use has occurred witg the availablet$pe alkyl- onded si ica el layers. The pro erties and applications of modified sifica el plates (Cl,&)and impregnated layers and papers (C37 have been reviewed. The dual retention mechanism on commercial acetylcellulose was studied (C4). Antihistamines were separated on silica gel im regnated with a metal salt (C5),metal complexes on glycigoxypropyl-functionalized silica gel (CS), sulfa drugs on pyridinium tungstoarsenate impregnated silica gel (C7),and nitrogen-containing o anics on silica gel coated wth ammonium tungsto hos hate ( 8). The performance of glass powder impregnadwitE polyamide as a stationary phase was reported (C9). Layers made from azobenzene group containin cellulose were prepared and studied (ClO).Phospholi id cferivatives were chromatographed on plates containing 7J0th reversedphase and argentation zones (Cll).Surface silanol groups of silica gels and bonded phases were determined by a rapid titration method (C12). Iron(II1) diethanolamine was used for the separation of phenols (C13). cr-Chitin was investigated as a stationary phase for TLC (C14). Enantiomeric amino acids were resolved on berberine-impregnated silica el lates (C15),and enantiomers and diastereoisomers on !y&oxypropyl- and hydroxyethyl-derivatized@-cyclodextrins(C16). A new HP-TLC precoated plate for enantiomeric separations, CHIR, has a concentrating zone and reversed-phase matrix impregnated with a copper salt and o p t i d active amino acid (Cl7). Retention mechanisms on this an other TLC media were discussed (C18). Enantiomers and isomers were separated by TLC in systems with mobile phases containing /3-c clodextrin (C19)and urea-solubilized j3-cyclodextrin (C207. D. Apparatus and Techniques. A large-volume spotting apparatus was described and applied to the semiquantitative determination of organochlorine pesticides in tea (01).Instrumentation and techni ues for automated multiple devel0 ment were describedqD2). A chamber for forced-flow TLZwas modified to carry out supercritical fluid chromatogra h (03). The performance of the Iatroscan Mark IV rod $Le system fitted with a flame ionization/flame thermionic detection system in the anal sis of aquatic li ids and humic substances was described (d4). Gradient ektion in equilibrium sandwich chambers with a glass distributor (05) and miniaturized generators for continuous and stepwise

Y

3

6’

372R

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

gradients (06) were described. An automated developing chamber with a double-beam optical sensor was designed to stand alone or be connected to a laboratory robot (07). The first fully automated,robotic TLC system was reported (08).The automated TLC rocess is performed in four stages, i.e., plate dispensing, sampE application, plate development, and plate densitometry, and samples are moved sequentially among the stations by the robot. Four plates are processed simultaneously with intervening segmented schedules, yielding a 160% increase in sample throughput. The effects of dispensing speed and other factors on the accuracy of sample transfer from microliter syringes to TLC plates were studied (09). The “4 X 4” mode of 2D-TLC permits analysis of four samples simultaneously on a 10 x 10 cm plate (D10).Lipids and unsaponifiable compounds were optimally separated on very thin layers by anticircular TLC (011). Sulfonamide drugs were determined by TLC followed by pyrolysis GC of separated zones (012). The procedure for photo ra hing TLC plates in 254- and 366-nm UV light was descri%ef(013). The role of spacers (014) and the alteration of the spot profile in displacement TLC (015) were described. . Polyethylene was fractionated by molecular weight on silica gel plates and heated binary solvent pairs (016). Phytotoxic and barbiturates (018) were separated and amino acids (017) identified by temperature-gradient TLC. Three forced-flow lanar methods, rotation p l a n s TLC (RPC), high-speed TI% (HSTLC), and overpressured layer chromatography (OPLC) (019)and OPLC alone (020,021), were reviewed. Forced-flow planar chromatography was applied for the separation of enantiomers on Chiralplates (022). Off- and on-line OPLC were combined (023) and compared (024,025). Laser desorption with a special TLC cell was used to interface planar chromatography with GC (026). Direct coupling of TLC and HPLC was accom lished by spraying column effluent onto a silica gel plate (g27). The construction and characteristics of an interface for coupling narrow-bore HPLC with TLC were described (028). E. Detection and Identification of Separated Zones. Criteria for validation of analyte detection by TLC and other analytical methods were suggested (El).Densitometric absorbance ratios were used for characterization of pharmacological natural products (E2). A scheme for analysis of 81 basic and neutral drugs in an emergency toxicology setting was based on one normal-phase and one reversed-phase TLC method plus four sequential color reactions (E3). The application of liquid crystals in visualizing thin-layer chromatograms was reviewed (E4, E5). The following TLC detection reagents were described: trifluoroacetic anhypdride-sodium azide for sulfoxides and sulfimides (E6); (dimethy1amino)cinnamaldehydefor low nanogram amounts of allantoin and indican in the official AOAC method for urine reaction of Folin-Ciocalteau phenol reagent metabolites (En; K S,O,-Agwith purines, pyrimidines, and teridines (E8); NO - acetone for amines and p enols and their cferivatives (E95;reagents for indirect fluorometric (quenching) detection of nonelectrolytes (EIO)and anions ( E l l ) ;diazotized dapsone for cannabinoids (E12); acid treatment for induced fluorescence of methyltestosterone (E13); Fast Black K salt for 8adrenergic blocking drugs (E14); tosylchloramide sodium for several types of organic compounds (El5);and a gas-phase derivatization in an aluminum-aluminate reactor to produce fluorescent products with sugars (E16).The magic square method, in which a four-spot s uare results from two-dimensional TLC with preliminarykv irradiation before each development, was used to identify phenols, substituted aromatic aldehydes, ketones, and amines that form photoisomerizing derivatives (E17). A leak-proof chamber was designed in which to carry out vapor-phase fluorescence detection of organic compounds with NH,HCOS (E18). Methods for in situ FT-IR spectrometric analysis of TLC zones (E19)and experiences with different IR microsampli techni ues for TLC and HPLC (E20, E211 were reviewe? Direct%“-IR analysis of zones separated by TLC was compared to zone extraction, and better limits of detection were realized for eluted analytes (E22). Systems combining reversed-phase (E23) or size-exclusion (E24) HPLC, TLC, and FT-IR spectrometryfor analyte identification were described. A spot-transfer procedure consisting of pressing a KBr porous

K

Joseph Skuma received a B S on Chemist~ horn Upsah Colsga. East Olange. KI. m 1955 am a ph D n ana ytical chemistry

hiayene College in sept 1958 and is piesently Charles A. Dana pTo1essor and Head 01 the Demnment 01 Chemistw and is in charge oi three courses in' analyiical chemisny. Dr. Sherma independently and Wilh others has wrlIten or edited over 320 papers. chapters. books. and reviews covering chiornatographic Covering ChrOrnatograDhiC and analvticai analyiicai .. method;. His curreit methods. current research interests are in quantitative TLC. malnly mainly applied 1 100 clinical analysis. pesticide residues, and food additives. He ~e is editor for resddues and elements 01 the JAOAC.

-

mirropyramid onto a TLC plate and developing the spot into the KRr with an appropriace solvent allowed high-sensitivity qualitative and quantitative FT-IR mensiirements (E2.5). Thr combination of direct serondmy im mass spertrmnetry (SIMSI (E261nnd fast atom bombardment mttss spertrnmetry (FAHMSI ( E 2 n with TIL' was described. A h e r micrnprnhe MS system allowed direct measurement of zones on HP plates (E.281.Glycosphingolipids (E291und tetrodotoxin (k3f.11 were idiwtified by TI,(: FABMS. nnd neostigmine and pyridostiunine bromides IEJ/I. fnod dyes rEiJ21,glyrolipids ik,',?,?~, phosphonium sult mixtures lE341.small peptides iEJ.51, and ketones and primary amines (after surface derivntirationl \ k . ' X I were idrntified by l'I.C SIMS. Layers suitulilr ior surfare-enhanced Raman scattering spertrometry were prepared by depositing silver nitrate colluidal spheres on HP silica gel rk.'.?71. Conditions were desrribed fur obtaining highly sprrifir fluoresrence s ectra, showing mulerular vibrations as in IR spectrometry, 8rectIy on a TLC plate (EA5i. Factor annlvsis nnd the adaptive Kalmnn filtrr were used for background cnrrt:ction w i t h tluorescence detection tE.?91. Methods for on.plate electrorhemiral detection were desrribed 1 F 4 0 l . F. Quantitative Analysis. HI'-1'I.C fluorodensitometric applirations were reviewed iFlL A vulidation proredure for T1.C scanners were presented. including determination of signal-to.noise ratios and instrumental sensitivity (I.21. Simplex optimizurim ( 4 densitometer parameters was employed lor maximum prrcision in quantitative TL(' rFc'jl.Evuluntion of the Kubelka-Munk theory showed a good direct pri!pnrtionality between densitometrr response and amount of substanre applied M the laver ( F 4 . The influence of flushing the plnte with nitrogen or oxygen gas prior to the fluorescence densittmetry uf some fluorobenz(ixadinzo1e-thiol derivatives wn> stiidied (b.51. lipid concentrntims were measured by denqitnmrtry ,$transparent photocnpirs uf rhromatograms \,isualized hy staining with iodine. ninhydrin. or molyhdnte (Ffil. Integration errors in the uptical densitometry nf 11) and 21) rhrumarograms nnd elertriipherorrams were discussed

cf'n.

A multifunctional two-channel sranning laser detector was developed for HI'.TLC (FXi. The efferts of instrumental parameters and properties of TLC plates on the sensitivity and rey)rnduribility of fluorometric sranning were discussed cF91. Nucleoside-polycyclic aromatic hydrncarbon adducts were quantilitd by in situ fluorescence line narrowing spectrometry \I./111. Biogenic indole rompounds were determined by dirert room temlirrature phosphorimetrv on cellult,sr or alumina plates ( F l / I . LusPr-hased photoaroustic densitometry was used with ID.\F/21 and 2l)-'l'l,C (FI3). The contribution to signal distortion in laser beam photoaroustic densitometry due to !he time cnnstnnt u i the preamplifier was studied (F141. I'wo-dimensinnul laser-based indirect fluorometry was used fur detection and quantitiration oi 7ones rF151. Automntic digital evaluation of ID and 2D chrumatoarams using vertical surfwe n h r p t i o n at tin q)timum wavelength imprnved quantitative acrurary (F161. The advuntaaes and disadvantages of electronir scanning with multielemrnt image sranners were compared to those of conventionul electromerhanical scanners ( F / 71, and a video image processing system fnr HP.TLC was described (F1Ri.

Dansylated plant polyamines were quantified by a fluorescence video scanner and image analysis (F19). Information theory and Kalman filtering methods were used to determine polyaromatic hydrocarbons (F20). An electrochromatoscanning method using a voltammetric cell in the amperometric mode was used to determine 1-nmol levels of amino acids after detection with ninhydrin (F21). Diazonaphthoquinones were quantified by TLC/diffuse reflectance FT-IR spectrometry (F22). Quantitative TLC was accomplished by laser pyrolysis and flame ionization or electroncapture detection (F23). Calibration of rod TLC/FID for fish lipid analysis was described (F24). G. Preparative Layer Chromatography and Radio Thin-Layer Chromatography. A chapter in a hook on preparative LC was devoted to preparative layer chromatography (PLC) (GI). Computer simulation and optimization of PLC were studied under isocratic and stepwise gradient elution conditions ( G 2 ) . Rotation planar chromatography (RPC) and the ROTACHROM model P instrument for RPC (G3, G4) were described. Alkaloids were separated by centrifueal PLC on an aluminum oxide laver (G5). Preoarative reve&ed-phase PLC was used to purifylong-chain, siturated, free fatty acids (G6),and phorbal diesters were purified by preparative RP-OPLC (G7). The hook cited as ref A2 contains seven papers on instruments and techniques for radio-TLC. Instruments for measuring radioactive compounds on thin-layer chromatograms were reviewed (G8, G9). Radio thin-layer chromatography (radio-TLC) and radio-HPLC were compared for ecdysteroid metabolism studies (CZO). Autoradiography with direct exposure of the TLC plate onto a sheet of photographic paper offered an easy method to make copies of chromatograms for publication and recording (GI I ) . Intracellular diacylglycerols were measured hy acetylation with radiolabeled acetic anhydride and TLC (G12). Sodium salicylate, a water-soluble fluor that is widely used with polyacrylamide gels, was also found applicable for fluorographic detection of tritium in TLC media (G13). A standard hlood collection tube was used as an inexpensive, safe, miniaturized chamber for the paper chromatography of radiopharmaceuticals (GZ4). A rapid radio-TLC method was described for assayin lipasecatalyzed esterification and interesterification of lipijs (G15). A new track etch TLC autoradiography method was applied to the quantification of 'OB-containing compounds used for neutron counting therapy (G16). APPLICATIONS Unless otherwise stated, the references below involved TLC on precoated plates or sheets. TLC plates are rarely hand coated today, unless a special layer is required that is not available commercially. TLC as applied to pesticide analysis will he reviewed by this author in the 1991 Applications Review issue of this journal. H. Acids and Phenols. The relationship between R values and mobile-phase composition for aromatic alkoxy aci& was investigated in RP and silica gel HP-TLC systems (HI). The ion-exchange chromatographic behavior of 15 physiologically important organic acids was studied on papers impregnated with hydrated SnOt (H2). The separation of 32 alkyl-substituted phenoxyalkanoic acids was studied by using adsorption and partition TLC and RP bonded-phase HPLC (H3). The mobility of some carboxy- and hydroxyhenzene derivatives on thin layers of plain and Fe(III)-impre nated silica gel was investigated ( H 4 ) . Chiral carboxylic acifs were separated, after derivatization to produce their diastereoisomeric carboxamides, by nonchiral TLC (H5). The hydrophobicity of geometric isomers of octadecanoic acid was compared by using adsorption and partition TLC (H6). Quantitative TLC was used to determine azelaic and pimelic acids detected by bromocresol green (H7); organic acid preservatives in foods as fluorescent derivatives prepared in situ prechromatography (H8);glyceryl monofatty acids by HP-TLC and fluorescence derivatization (H9); and 2methyl-2,4-thiazolidinedicarboxylicacid as a fluorescent derivative ( H l O ) . Phenolic acids and alcohols were separated by PC and TLC after derivatization with dansyl chloride ( H I I ) . TLC and centrifugal TLC was used along with column LC methods to isolate and purify phenolic acids from leaves and flowers of 1.heterantha (HI2). Polychlorinated phenols in urine were ANALYTICAL CHEMISTRY. VOL. 62. NO. 12, JUNE 15. 1990

373R

PLANAR CHROMATOGRAPHY

identified by TLC and GC (H13). RP-TLC was used to study the inclusion complexes formed between chlorophenols and a water-soluble j3-cyclodextrin (H14).,The separation of phenols and naphthols by HP-TLC was optimized by use of four different layer t es and five ostchromatography dewere rivatization methods (%). V20 an$ dichlorofluor-in used for the in situ detection o! phenols separated by TLC for disinfectant and drinking water anal sis (H16).The Cia TLC of chlorinated anisoles and veratrogs was examined in over 50 solvent systems (HI7). Multisubstituted phenols were separated on silica gel layers impre nated with ammonium molybdate ( H I S ) and olyhydric pgenols on silica gel containing silver nitrate ( i 1 9 ) . Eleven phenols were separated and identified in disinfectant formulations by TLC as coupling products with Fast Blue Salt BB on calcium carbonate impregnated silica gel plates (H20). Phenols were determined on silica gel lates impregnated with diazido-4,4’-disulfo2,2’-stilbene (fI21).Plant phenols were directly analyzed by UV spectrodensitometry on silica gel (H22). I. Amino Acids, Peptides, and Proteins. Fundamental studies were made of the interactions between amino acids by char e-transfer RP-TLC (11)and of the effect of layer H on the RP-TLC retention of L-amino acids (12) and the siEca gel retention of dansylamino acids (13). Amino acid separations were tested on silica gel layers ion exchange im re ated with various metal salts (14,15), foiE (&,and chitin layers (17). Separations of henylthiohydantoin (PTH) amino acids were reported on s & a gel with new mobile phases (18,19)and on silica gel im regnated with various metal salts (110,111). A new ninhy rin-based procedure producing different colors and good sensitivity for amino acid detection was described (112). The TLC of PTH amino acids was reviewed (113).A 1D multistep silica gel HP-TLC method was given for se aration and identification of PTH and dansylamino aci& (114). Numerous solvent systems were developed for effective separations of 2,4dinitrophenyl- (DNP) (115)and dansylamino acids (116). TLC was used to separate phosphoamino acids (117) and dinitropyridylamino acids (118). The TLC resolution of enantiomericamino acids and their derivativea was reviewed (119). The following reports of amino acid enantiomer separations by TLC were published: D- and L-tryptophan and methyltryptophan (on cellulose paper) (120); separations after derivatization with (S)-(+)-naproxen (121); ligand exchange separation of amino acids, a-hydroxy acids, and dipeptides (122);and dansylamino acids (123). TLCseparated enantiomers were determined by densitometry (124, 125). The lip0 hilicity of 21 fully rotected pe tides and amino acids was Betermined by RP-JLC (126).8LC was used for the multivariate parametrization of 20 coded and 35 noncoded amino acids (127). J. Antibiotics. The analysis of aminoglycoside antibiotics b HP-TLC and electrophoresis was described (J1).A simple cLification method for 24 antibiotics by TLC-bioautography was carried out in seven TLC systems with graded concentrations of ammonium chloride (J2).Four TLC systems were developed for the separation of vancomycin-related antibiotics and degradation products (53). D and L-penicillamine enantiomerswere separated on Chiralplates (J4).Identification of the components of bacitracin was carried out by usin normal- and reversed-phase TLC (J5). Antimycin A an! related derivatives were separated on CISbonded layers with an acetonitrile- or methanol-containing mobile phase (J6). Bleom cin complex was assayed by densitometry on RP silanizedr silica gel plates (J7).Pharmaceutical preparations containing netilmicin and four entimicins were analyzed by la ers (J8). Residual tetfluorometric densitometry on racyclines in animal tissues were &ermined by CIS SPE followed by TLC on an EDTA-treated silica gel plate and UV densitometry (J9). K. Bases and Amines. Fifty-four amines used as antioxidants and/or antiozonates for elastomers were separated on silica el plates with a benzene or benzene-eth 1acetateacetone (h51) mobile phase and N-chloro-2,6-~chloro-pbenzoquinone monoimine spray reagent (K1).&Hydroxy- and 5-methoxyindoleamines were separated and quantified by TLC (K2).Aminophenols and aromatic amines were detected by diazotization and coupling on silica gel plates impregnated with nitrite (K3). Biogenic amine dansyl derivatives were

cf

E,,

374R

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

quantified by TLC at 1-4-pmol levels (K4). N-(CAminobenzoyl)-y-oligo(L-glutamicacid)s were quantified by TLC using fluorescamine (K5).A sensitive fluorescence densitometric method was developed for the determination of carcinogenic amino imidazoazaarenes that are formed during the cookin of food (K6). Optically active amines were derivatized with (!+(+)-flunoxaprofen and determined by TLC (K7). Homologous and isomeric poly(eth leneamines) were separated by HP-TLC (K8). TLC basedlon a naphthylethylurea chiral layer was used for direct stereochemical resolution of enantiomeric amides (K9).a-Phenethylamine enantiomers were derivatized with (8)-(+)-naproxen and determined by TLC with UV densitometry (KIO). L. Carbohydrates. Mono-, di-, tri-, and oligosaccharides were separated b forced-flow silica gel TLC (LI). Unsaturated disaccharidres from chondrotin were detected as their dansylhydrazine derivatives (L2).Aminopropyl-bonded silica gel HP-TLC plates se arated oligosaccharide homologues produced by partial hyfrolysis of cellulose, starch, xylan, and chitin (L3). The quantification of sugars was optimized by studying three different layers and 11postchromatogra hy derivitization methods (L4),and the method was applie: to different sample matrices (L5).Quercetin glycosides in plant extracts were determined by sparation on silica gel, detection with aminoethanol diphenylborate and PEG 400, and densitometry at 533 nm (156). M. Dyes and Pigments. Of 29 solvent systems tested, 0.1% NaCl gave the best PC separation of seven certified food Butanol-acetic acid-water (4:1:5) mobile phase dyes (MI). separated 39 colored and fluorescent dyes (M2).Synthetic food colors in meats were screened by silica gel TLC using an isobutyl alcohol-isoamyl alcohol-pyridine-ethanol-25 % NHIOH (15:15:15:20:30) mobile phase (M3). Analysis of chrysoidine dyes in air samples was carried out by HP-TLC (M4). The separation of 17 synthetic organic food dyes was studied on cellulose and silica el layers (M5). Thirteen food dyes were determined by T L 8 on Cis RP la ers (M6).The trisodium salt of 1,3,6-pyrenetrisulfonicaciiwas quantified in D & C Green No. 8 food dye, after silica gel TLC separation, by fluorescence scanning (M7).Nine laboratories collaboratively studied a method for the separation and identification of permitted and banned color additives in foods using a Cis cartrid e and spectrophotometry or silica gel TLC, and the methof was adopted AOAC official first action (M8). Carotenoids were separated on silica gel with tertiary alcohol-petroleum ether developing solvents (M9). The lipophilicity of some photosyntheticpigments was determined by RP-TLC on silica gel, alumina, cellulose, polyamide, and kieselguhr supports with acetone and ethanol as the mobile The photosynthetic pigments of 51 species of phase (M10). tro ical and subtropical diatoms were examined by normalThe retention of chlorophylls, anfreversed-phase TLC (M11). pheophytins, and heophorbides in CIS TLC and HPLC systems was studie8 (M12).Urinary por hyrins were uantified by ion-pair TLC with fluorescence Jnsitometry (i413). Chlorophylls were determined in spruce needles by densitometry on cellulose layers (M14). N. Hydrocarbons. Several ra id methods for the compositional analysis of heavy oils by cEemically bonded rod TLC with flame ionization detection were described (N1). The relation between molecular structure and TLC retention was studied for some derivatives of fluorene and related compounds (N2).Dithia[3,3 phanes were separated on alumina and silica el layers and eteded under 254-nm W radiation (N3). A !L lC screening method for determination of benzo(a)pyrene in smoked food was evaluated by an international collaborative study (N4). The N,”-dimethylamino deriyative was suitable for the fluorescence scanning densitometric determination of l-nitropyrene at low picogram levels (N5). 0. Lipids. Acidic and neutral lycolipids were separated on biphasic amino-modified and siica gel plates (01).OPLC was applied to the separation and detection of prostaglandin esters (02) and serum lipids (03). Phosphatidylinositols and other hospholipids were separated by two-step 1D-TLC (04). 2D-d-TLC separated phosphoinositides, phosphatidic acids, and plasmalogens (05). Sensitive staining m e t h e with wheat germ glutinen were developed for detection of glycosphinggipids of neolacto series A and an liosides with a terminal N-acetylneuraminylresidue (067.Jure triglyceride species were isolated by preparative RP-TLC (07).

d

PLANAR CHROMATOGRAPHY

A method for determinin li ids was based on TLC and hajor stratum corneum lipids multiple enzymic staining were screened by stepwise development of a silica gel plate using three consecutive solvent systems (09). Glycosphingoli ids were separated by an improved solvent system (010) a n i visualized by using lectin-peroxidase conjugates (011).Phenolic lipids were determined in cashew nut liquid by TLC in conjunction with flash chromatography (012). New solvent systems were described for the 1D-TLC resolution of cholesteryl esters (013,014).Cholesteryl acetate and its chloro analogues were separated on silica gel by using a hexane-ethyl acetate (66:l) mobile phase (015). TLC was used to determine cholesteryl esters synthesized in vitro (016). Triglyceride grou were se mated by RP-TLC on silanized kieeel hr (017). rangliosi$es of the GMlhtype (018) and M. t u ~ c u l o s ilipid s antigens (019)were deteded on HP-TLC plates by immunostainin techni ues. Fluorescent monodansylpiperazine and -ca&verine lerivatives were prepared in situ prior to HP-TLC (020). HP-TLC was used to determine rostaglandins in serum to study normal and asthmatic sugjects (021). Film negatives were used for the laser densitometry of hos holipids and gl colipids detected as fluorescent zones gy T k S reagent (0227. Densitometric scanning was used for the following lipid determinations: brain and myelin lipids on HP plates stained with three sequential procedures to visualize phos holipids, cholesterol, and alactolipids (023); plasmalogen, L l a c y l , and diacyl glycerop%ospholipids(02.4); cholesterol in synthetic mixtures containing tocopherol and squalene (interlaboratory trial) (025);polar hpids from cotton serum cholesterol sulfate on C 8 RP layers (027); leaves (026); synaptic plasma membrane lipids on H$ silica gel (028); hosphorus in phospholipids on silica el sintered plates (029); \S ratio in 735 amniotic fluid sampfes by 1D- and 2D-TLC ( 30); phospholipid classes on plates developed with a fluorescent reagent in the mobile phase (031);L/S ratio in gastric aspirate from newborns using an improved 1D mobile hase (032);a variety of lipids after detection with the uorescent d e Nile Red (033);phospholipids in bile, liver, and plasma (634);triglycerides separated by RP-TLC (035); brain li ids in fish with different feeding behavior (036); rosta h d i n s of the subgroups E A and B2 (037);choEster$ esters, detected by use of #ile%ed stain, in cell exand lipids and sterols in Corbicula fluminea tracts (038); clams (039). Rod TLC FID was applied for uantification of serum cholestanol 040);triglycerides (043;dimerized fatty acids (042);18-diacyl lycerol in rat heart (043);and phosphorylated acylglycercfs (044) P. Pharmaceuticals,'Drugs,and Alkaloids. The TLC of alkaloids (PI),chromato raphic methods in the German Pharmaco ia Volume 9 (E!, and preliminary tests for drugs of abuse ( 3) were reviewed.

(4.

fs

1

F?

by aspirating hydro1 ed urine specimens through a porous, 1-shcalayer locateralong the edge of a biphasic TLC plate P7). A TLC method was used to confirm EMIT benzoylec onine urine assay results (P8).5-Fluorouracil was determine8 in bulk and tablets by HP-TLC and fourth-derivative UV spectrometry (P9).Basic drugs were chromatographed on C18plates coated with sulfonic acid ion pair reanents (PIO).DiazeDam and ita metabolites were assayed in b l - d perfusion medhm and bile bv HPLC and TLC (P111.THC-COOH was detected at 5 ng/mL in a 2-mL urke k p l e by alkaline hydrolysis, hexane extraction, HP-TLC with heptane-butanol-acetic acid (90:91), and detection with diphen lamine and Fast Blue BB reagents (P12). The adsorption beiavior on alumina of 19 pyrimidine antimycoticswas correlated with biological activity (P13). A HP-TLC method for estimation of chloroquine in finger-stick blood was suitable for field use (P14). Normal- and reversed-phase TLC were used to analyze basic and quaternary drugs extracted from urine as bis(2-ethylhexyl)phosphate ion pairs (P15).TLC and UV measurement were coupled for quantification of naproxen and its main metabolite in urine (P16). The impact of urine matrix and isolation rocedure on the retention of basic drugs was investigated

"r

The following studies of drug screening by TLC were reported: opiates (P18); benzoylecgonine in urine with isolation by Cyclobond SPE (P19);tetracyclic benzo- and thienodiazepines and metabolites using corrected R, values (P20, P21);free and congugated drugs in urine usin low-toxicity reagents (P22);urinary sparteine and its meta%olitesby C RP-TLC (P23);thyrostatic drug residues in animal thyroid: usin silica Sep-Pak cartridges for extraction and cleanup (P247;and Cannabis metabohtes in urine (P25). Commercial drug preparations were identified on the basis of TLC in different solvent systems and various chemical visualization reagents (P26,P27). Two-dimensional TLC was used to se arate nore hineand car%azole phrine and metabolites as Dns derivatives alkaloids (P29)and to screen sulfonamidesin animal tissues (P30). Components of a commercial hematoporphyrin derivative (P31)and quinolizidine (P32)and tropane (P33) alkaloids were separated by OPLC. In the second study (P32), the separation by OPLC was superior to HPLC. The following compounds were quantified by TLC or HP-TLC (on silica gel layers unless otherwise noted) with absorption or fluorescence scanning densitomet : barbaloin in rat serum by measuring fluorescence produce by reaction with borax (P34);dexamethasone and its sodium hydrogen sulfate in blood and dru preparations by fully automated extraction and direct U t absorption measurement (P35); dehydroepiandrosterone enanthate and estradiol valerate in pharmaceutical preparations and blood after detection with (2,4-dinitrophenyl)hydrazine(P36);oxprenolol in blood and urine by UV densitometry at 270 nm (P37);trimetho rim and sulfamethoxazole in pharmaceutical dosage forms by b T L C (P38);thiothixene in plasma by HP-TLC with fluorescence scanning (P39);thioridazine in urine by fluorescence quenching densitometry at 254 nm and metabolites at 546 nm (P40);phenobarbital, primidone, and ethylphenylmalonamide in serum by UV densitometry at 215 nm (P41);cyclophosphamide and its principal urinary metabolites with extraction on XAD-2 resin and detection with 4-(4-nitroacid in benzy1)pyridine (P42);11-nor-AB-THC-9-carboxylic leveprotiline in plasma, after urine after cannabis abuse (P43); alkaline extraction and NBD-C1 derivatization, with fluorometric measurement at 470 nm/525 nm (P44);tetradotoxin paracetamol, caffeine, in biological fluids by TLC FID (P45); phenobarbital, and propyp enazone simultaneously in lasma (P46);balclofen and its fluoro analogue in plasma m i u r i n e after fluorescent derivatization with benoxa rofen chloride (P47);ellipticine and .derivatives by fluoroknsitometr in HP-TLC fingerprint denDMSO-impregnated plates (P48); tification of commercial ginseng drugs usin fluorescence scanning (P49,P50);narcotic drugs by OPL8 and densitopiroxicam and its metry in the UV and visible regions (P51); impurities by HPTLC/densitometry (310 nm) (P52);chlorthalidone and its impurities in bulk and dosage forms (P53); prednisone in tablets by HP-TLC/UV densitometry (P54); theophylline raw material and dosage forms at 270 nm (P55); orphenadrine citrate and acetaminophen in tablet formulation (P56);colchicine in crude drugs and pharmaceutical preparations (P57); sulfathiazole in honey after detection with Bratton-Marshall reagent (P58); propyphenazone, paracetamol, guaicol glycerol ether, caffeine, and as irin in analgesic-antipyretic preparations b reflectancerabsorption scanning (P59);sulfonamides comgined with trimethoprim in dosage forms (P60);norfloxacin in lasma by scanning natural fluorescence after enhancement \y dipping the plate in a paraffin citric acid mixture (P61);ofloxacin in lasma and pleural uid by fluorodensitometry (P62);and licfocaine in pharmaceutical preparations by fluorescence quenching measurement at 254 nm (P63). Q. Purines, Pyrimidines, and Nucleic Acids. The chromatographic behavior of purines, pyrimidines, and nucleosides on untreated and deter ent-impregnated silanized silica gel plates was studied (Q1).Lomeric purine nucleosides were separated on Chiralplates with a methanol-wateracetonitrile (505030-400) mobile phase (Q2).Purine-derivative drugs were separated on starch and cellulose layers and quantified by fluorodensitometry (Q3).Oxidatively modified 2'-deoxyguanosine-3'-monophosphatewas detected by using 32Ppostlabeling and anion-exchange PEI-cellulose TLC (84). R. Steroids. The TLC of bile acids (RI)and eicosanoids (R2)was reviewed. Ecdysteroids were separated by HP-TLC

(b)

7,

x

x

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

375R

PLANAR CHROMATOGRAPHY

with automated multi le develo ment (R3) and by RP-TLC on C bonded silica g$ plates R5). Computer generated 2D-&C normal- and reversed-phase systems for the separation of a mixture of 15 steroids were evaluated (R6).Steroid hormones and related compounds were separated by 2D silica gel TLC with methylene chloride-methanol-water (225:15:1.5) and etroleum ether-ethyl ether-acetic acid (48502) as mob& phases (R7).Anabolics in fatty tissues were identified by a method involvin dissolving of the sample in hexane, partitionin against p d 5.2 buffer, extraction with methylene chloride, ckanu of the extract on a dis osable Cl8 column, and TLC of the inal extract and standarg with two different solvents from opposite sides of an HP-TLC plate (R8). Sulfoconjugated steroids were separated in a reversed-phase, paired-ion olyamide system (R9). Ecdysteroids were identified b TLC and fast atom bombardment MS of scraped zones &IO). TLC/scanning densitometry was used for the following steroid analyses: seven ethynyl steroids in birth control pills at 220 nm (R11);androgens, corticosteroids, mineralocorticoids, and estagens by fluorescence scanning at 0.5-1 ng/spot levels (b12);anabolic steroids using image analysis techniques (R13);parts per billion amounts of anabolic estrogens in chicken muscle tissue extracts (R14);sodium estrone sulfate and sodium equilin sulfate from raw material and pharmaceutical preparations (R15);and ergosterol in food rains by fluorodensitometry after iodination to enhance horescence (R16). S, Toxins. Reviews were published on chromatographic methods of analysis of mycotoxins (SI);determination of aflatoxin M1in milk and milk products (S2); analysis of foods for aflatoxins (83);and TLC, HPLC, and immunochemical analyses of aflatoxins in corn and peanuts ( 8 4 ) . The RP-TLC of 18 mycotoxins was carried out on c18 and . and other secondary diphenyl-bonded layers (SIMycotoxins metabolites were screened for in fungal cultures by TLC and HPLC (5'6). Nonpolar bonded phases were evaluated for the cleanu of maize extracts prior to aflatoxin assay by HP-TLC (S7).four methods for the TLC determination of aflatoxins in raisins were com ared (5'8). An improved method for the determination of a8atoxin M1 in milk involved three developments in one direction followed by cutting the plate, si le development in the reverse direction, and quantificatioay fluorometry (S9). A system composed of a fully automated TLC spotter, unsaturated TLC chamber, and monochromatic densitometer was described for the HP-TLC of aflatoxins (S10).Densitometry was used to determine cyclopiazonic acid in foods after detection with Ehlich's reagent ( S l l ) ; the main phallotoxins in A. phulloides by fluorescence scannin (S12);four toxic polyphenolics from the fruits of K. humbold!iana (S13); aflatoxin in maize extracts after development in one direction followed b double development with another solvent at 180° (S14);andrterritrems A, B, and C in rice, millet, peanuts, soybeans, and wheat infected with A. terreus using two-step shca gel TLC for cleanup and analysis and fluorodensitometry at 360 nm/430 nm (S15). T. Miscellaneous Organic Compounds. TLC methods for compounds that were not easily classified in, or were omitted from, the other applications sections are reviewed in this section. B vitamins in multivitamin preparations were se arated on lain and zinc acetate,impregnated silica gel (TI). k o r b i c a n f dehydroascorbic acids were quantified in fruit juice and wine by densitometry at 494 nm of osazones formed by reaction with (2,4-dinitrophenyl)hydrazine(2'2). A solution containing 1% aminoethanol diphenyl borate and 5% PEG 400 was used as the rea ent to detect 33 flavonoids after TLC on silica gel or cellufose plates (2'3). RPTLC and HPLC using methanol, THF, and acetonitrilemobile hase modifiers were compared, and a method for establishing h P L C adient elution conditions from TLC data was discussed Methods, including TLC, for the determination of cationic surfactants in the environment were reviewed (2'5). Separation of nonionic tributyl henyl ethylene oxide oligomer h of the ethylene oxide chain surfactants according to the was carried out by alumina T C using various CC14-acetonitrile mobile phases (2'6).

(A,

54).

Y

376R

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

Dans 1 derivatives of &amino acids were separated by 2D-TL8 on polyamide (2'7). Short-chain coenzyme A derivatives were separated by silica gel HP-TLC (2%). Seventeen diuretics were se arated and identified on the basis of their silica gel HP-TLZbehavior in neutral, basic, and acidic mobile phases (2'9). The retention and detectability of 88 EEC permitted cosmetic preservatives b silica gel and alumina TLC were investigated (2'10). T L 8 d a t a were given for 33 photographic couplers on silica gel, formamide-impreganted silica el, and RP chemically bonded silica gel layers (2'11). Biocifal2-brorno-2-nitroropane derivatives were separated on silica gel plates deve o ed with benzene-a ueous 96% ethanol (4:l) and detected) with a saturated I?I/methanol solution (2'12). Sulfur mustard and ita metabolites were resolved on preadsorbent H P silica el layers developed with chloroform-methanol (1O:l) and fetected by reaction with alkaline potassium permanganate reagent (7'13). HP-TLC was used to separate biologically active sesquiterpene lactones (2'14). TLC/FID was found to be more accurate than HPLC for determination of oxidized produds in ethyl linoleate (2'15). The retention behavior of a group of coumarins, furocoumarins, and yranocoumarins was investigated b using HP-TLC and H&LC systems consisting of silica gel anJbmary and ternary solvents containing a polar modifier (2'16) Eight closely related furocoumarins were resolved by OPLC, with preliminary optimization of the mobile phase made by using the PRISMA model (TI7). The use of densitometry was reported for the following analyses: coumarin in vanilla flavorings using preadsorbent silica el H P plates, detection b sprayin with alcoholic base, and f fuorescence scanning or etection y oversprayin the base with diazotized sulfanilic acid and scanning of the cofored zone (2'18);cinnamyl anthranilate in perfume, cologne, and toilet water by RP-TLC and fluorescence scannin (2'19); primary and secondary metabolites of N . tabucum leaf surface components with detection by sulfuric acid charrin and scannin with white light (2'20);formaldehyde in gra feaves (2'21);cLacterization of natural oils in plants using tikction on silica el with 10% vanillin in methanol and scanning at 540 nm ("22); propionic, sorbic, and benzoic acid preservatives in foods by fluorescence scanning after derivatization with dam 1semipiperazide (7'23);silybln in C. mariae by scanning HP-4LC chromatograms at 289 nm (2'24); benzalkonium chloride in liquid preparations using silica gel TLC and scanning a t 210 nm for the underivatized com ound or C1 ion-pairingTLC and scanning at 500 nm for the {romopheno! blue complex (2'25); and cucurbitin in Cucurbita seeds by extraction, column ion exchange chromatography, silica gel HP-TLC, ninhydrin visualization, and scanning (2'26). U. Inorganics and Metal-Organics. Advances in the analytical chromatography of the lanthanides were reviewed (U1). The effect of chloro substituent oup on the migration of cations in RP partition TLC was stuged (U2).Anions were separated on papers impregnated with hydrated bismuth oxide (U3) and titanium oxide (U4). The following systems were reported for general or specific TLC separations of metal ions (on silica gel layers, unless otherwise noted): dimethylamine-acetoneformic acid mobile RP-TLC of heavy metals phase for Th, U, and Zr ions (U5); on silica gel loaded with tributylamine (U6);formic acidtributylamine-alchol/ketone solvent systems for V(V) (U7); silica gel impre nated with sodium molybdate and formic a ueous sodium foracid-butanol sokents for Tl(II1) (US); mate-halogen anion solvent systems for 8d, Zn, Cu, Ni, and PEI-cellulose in HC1-ammonium thiocyanate Co ions (U9); media for 58 ions (U10); PEI-cellulose in mixed HCl-organic solvent media for 49 ions (U11); zirconium(1V) antimonoate layers for Ru(1II) (U12);aqueous a l e metal nitrate syste.ms mixed or anic solvents containing for rare earths (U13); sec-butylamine for Zn(II), Cd(Ifi, and Cu(1I) (U14); C1 bonded silica el using a-hydrox 'sobutyric acid-methano! (U15) and met%anol-lactate (16)&eloping solvents for rare earths; silica gel impre ated with hydroxybenzoic acids for transition-metal ions and silica gel impregnated with salt solutions and mobile phases containing formic acid and salt solutions for 14 ions (U18). The following studies of the TLC of metal complexes and chelates were reported (on silica gel unless othemse stated): platinum group metals complexed with ketoanils (VIS); 21 Co(II1) complexes with diamine ligands forming seven-mem-

P

B

(Ea;

%

PLANAR CHROMATOGRAPHY

bered chelate rings (U20);selenopyran derivatives (U21);trace levels of phen ltin compounds quantified by HP-TLC with densitometry (yv22);tris(alkylxanthato)cobalt(III) complexes (U23);NJV-dialkyl-N’-benzoylureachelates (U24);and normal- and reversed- hase TLC of metal complexes of monothio-j3-diketones (525). Studies of the PC of tris(biguanide)cobalt(III) ion and related Co(II1) complexes (U26) and facial and meridional isomers of Co(II1) and Cr(II1) complexes (U27)were carried out.

ACKNOWLEDGMENT The author acknowledges Chemical Abstracts Service for providing CA Selects to aid in the literature search used in the preparatin of this work. LITERATURE CITED OENERAL CONSIDERATIONS

A. Books, Rovkwr, and S t M E x p M s (Al) Hamltton, R.; Hamilton, S. Thln Layer Chromatogrmphy; Wiley: New York, 1987; 129 pp. (A2) D a h , F. A. A.; Read, H.; Ruane, R. J.; Wilson, I.D. Recent Advances In Thh, Layer Chromarcyrephy; Plenum: New York, 1988; 247 pp. (A3) QeISS, F. Fundemtale of Thk, Layer Chromatography; Huethig: New York, 1987; 400 pp. (A4) Ranny. M. 77M Layer chrometcpephy wlth Flame IonkaLlon Detecth; D R e h i : Nomdl, MA, 1087; 198 pp. (A5) Thk, Layer chrometoL*ephlc R, Vakres of Toxlcdoglcelly Relevant Substances k, Stan&Wed Sysfems; Deutsche Forschungsgemeinschaft (DFG) and the Intematknai Assoclatkm of Forenslc Toxicologists (TIAFT); Report VI1 of the DFG Commisslon for Clinical Toxlcobgicai Ananysis. Swclai Issue of the TIAFT Bulletin; VCH Publishers: Weinhelm, FRO. 1087; 223 pp. (A81 Smlth, R. M. Gas and LIQuU Chromatowatdv In AnaMlcel Chemistry; Wiley: New York, 1988; 402 pp. (A7) Mlddkdltch, M. S. Analyl/calArtlfects: GC,MS, HPLC, n C , andPC; E k v k New York, 1980; Journal of Chromatography Llbrery. Volume 44, 1028 pp. (A8) Paquot, C.; Hautfenne, A. Stended klethods for the Analysis of Olis, Fats, mndhfvat/ws; IUPAC Applled Chemistry Divisbn, Commission on Oib, Fats, and Derhretives; Blackwell: Oxford, UK, 1987; 347 pp. (AB) Studor. A. SU, Schwelz. Lab.-.?. 1989. 46, 52-54. Chem. Abstr. . 1989, 7 7 7 , 189031. (A101 Pwk, C. F.; Pwle, S. K. Anal. Chlm. Acta 1080, 276, 109-145. ( A l l ) Jaenchen, D. E.; Issaq, H. J. J. Llq. Chromatogr. 1088. 7 1 , 1941-1985. .- . . . - - -. (A12) Ebei, S. Nachr. Chem., Tech. Lab. 1988, 36, 107-114. Chem. Abstr. 1980, 770, 107324a. (A13) Donovan, J.; Gould, M.; Majors, R. E. LC-OC 1087, 5, 1024, 1026, and 1028. (A14) Wilson, I. D. Melhods Swv. B/ochem. Anal. 1088, 78, 313-320. (AIS) Poole, C. F.; Poole, S. K. Anal. Chem. 1089, 67, 1257A-l262A, 1264A, 1266A, 1288A, 126OA. (Ale) Kaiser, R. E. J. Planar Chfomatogr.-Mod. n C 1988, 7 , 182-187. (A17) Jork, H.; Funk, W.; Fischer, W.; Wimmer, H. J. Planar Chromfogr.~ o d nc . 1988, 7.280-292. (Ala) Wlntersteiger, R. GIT-Suppl. 1088 (3), 5-8, 10-11. Chem. Abstr. 1988, 709, 204104r. (Al9) Poole. C. F.; Pooh S. K. J. Planar Chromafogf.-Mod. n C 1980, 2, 185- 188. (A20) Mack, M.; Muck, H. E. Chromafoorephla 1988, 26, 197-205. (A21) Febma, K. G.; Drenth, 8. F. H. pherm. Weekbl. Scl. Ed. 1088 10, 1-11, (A22) Touchstone, J. C. J. Chrometogr. Sci. 1988, 26,645-649. (A23) Brinkman, U. A. T. J. Planar Chromatogr.-Mod TLC 1088, 7 , 150-160. (A24) Hellmann, H. Fresenlus’ 2. Anal. Chem. 1988, 332, 433-440. Chom. Abstr. 1089, 770, 146865~. (A25) Kubeczka, K. H. GIT Fa&. Lab. 1988, 32, 241-242, 244-246, 248-250. (A26) Van den Eeckhout. E. G. J. Planar Chromafogr.-Mod. n C 1989, 2, 106-118. (A27) Osman, S. F. I n Anal. Sterols Other Bid. Smlf. SteroMs; Nes, W. D., Parish, E. J., Eds.; Academic Press: San Diego, CA, 1989; pp 107-118. (A281 Conklin, A. R. J. Chen?. Educ. 1987, 64, 1065-1066. (A29) Corkill, J. A. J. Chem. Educ. 1988, 65,551-553. (A301 Smith, C. A.; Dawson, M. M. B/ochem. Educ. 1087. 75,211-213. (A31) Gildeweii, C.; McKechnie, J. S. J. Chem. Educ. 1988, 65, 1015-1017. B. Theory a d Fundamontal Sttudhr

(81) poole, c. F. J. Plenar chrometogr.-Mod. nc 1089, 2 , 95-98. (82) Gim@son, V. G.; Befezkin, V. 0. J. LQ. chromefogf. 1988, 7 1 , 2199-2212. (83) GOISS, F. J. Planar chrometogr.-~od. nc 1988, 7. 102-115. (84) Velayudhan, A.; Liiiig, 8.; Horvath, C. J. ChKWnatogr. 1988, 435, 307-4 18. (85) w t o v , s. L.; Levkakii, A. J. Planar chmatogr.-Mod. 1988, 7 , 325-328. (86) MdC-Seric, M.; Saric. S.; Maysinger, D. Acta pherm. Jugosl. 1989, 39, 1-16.

nc

(87) OsCkMendyk, 8. J. LQ. Chromew. 1989, 72,891-906. (88) Kowalska, T. Fat Scl. Technd. 1988, 90,222-228. (89) Palamareva, M. J. Chfomatogr. 1988, 438,219-224. (810) Steinbrunner, J. E.; Maik, D. J.; Nurok. D. I-RC CC,J. HJgb Resdut. Chromafogr. Chromatogr. Commun. 1987, 70, 560-563. (811) pwle, c. F. J . Planar Chromatogr.-M. nc 1988, 7 , 373-378. (812) Ravindhranath, K.; Janardhan, P. 8. koc. Indlan Nafl. Scl. Aced., Parf A 1987. 53,650-669. (813) Rozylo, J. K.; Janicka, M. Symp. Bbl. Hung. 1088, 37, 345-357. (814) Nurok, D. Chem. Rev. 1089. 89,363-375. (815) Nurok, D. LC-GC 1988, 6, 310-314, 316, 318, 320, 322. (816) BeYW, C. K.; Ma, C. Y. J . Liq. ChfOfMtogr. 1989, 72. 235-248. (817) Nyiredy, S.; Dailenbach-Toelke, K.; Sticher, 0. J. Planar Chromatogr.-Mod. nc 1088, 7,336-342. (818) Royzio, J. K.; Malinowska, I.; Kolodzlejczyk, H. Symp. Bbl. Hung. 1088, 37,359-373. (819) Soczewinski, E.; Matysik. G.; Markowski, W. Chem. Anal. (Warsaw) 1988. 33,353-381. (820) Wawrzynowicz, T.; Soczewinski, E.; Giowniak. K. Symp. Bid. Hung. 1088. 34,617-627. (821) Bayne, C. K.; Ma, C. Y. J. Liq. Chromafogr. 1087, 10, 3529-3546. (822) Rozylo, J. K.; Chojnacka. 0.; Osck-Mendyk, 8.; Kolodziejczyk, H. J. Liq. Chromafogr. 1980, 12. 247-260. (823) Kaiiszan, R. Chem. Anal. ( N Y ) 1987, 93,303 pp. (824) Dingenen, J.; Pluym, A. J. Chromatogr. 1080, 475,95-112. (825) Shibukawa, M.; Ohta, N.; Koya, T. J. Chromafogr. 1088. 26, 325-330. (826) Thomas. J. J. C h r ~ t o g r 1087, . 404, 73-85. (827) Szejtli, J.; Cserhati, T.; Bordas, 8.; Bojarski, J. Kontakte (Dannstadt) 1988, (2)30-35. (828) Perina, 2.; Sarsunova, M.; Zemanova. E.; Prothra, M. phamzk, 1089, 44, 125-128. Chem. Abstr. 1989, 770, 2 2 5 0 0 6 ~ . (829) Rozyio, J. K.; Kolodziejczyk, H.; Kusak, R. Chem. Anal. (Warsaw) 1088. 33, 123-132. (830) Rozyio, J. K.; Malinowska, I.; Koldzlejczyk, H. J. Planar Chfomatogr. -AM. nc 1988, 7,24-28. (831) Kowaksak, T. Acta Chlm. Hung. 1988, 725,465-472. (832) Chojnacka, 0.; Oscik, J.; Kusak, R. J. Llq. Chromafogr. 1987, 70, 3547-3556. (833) Kowaiska, T. J. Planar Chromatogr.-Mod. n C 1989, 2, 44-48. Lederer, M. J. Chromafogr. 1987, 406, 389-404. (834) Kuhn, A. 0.; (835) Kuhn, A. 0.; Lederer, M. J. Chromatogr. 1988, 440, 165-182. (838) Jack, D. 8.; Hawker, J. L.; Rooney. L.; Beerahee, M.; Lobo, J.; Patel, P. J . ChrOmatOgr. 1088, 452,257-264. (837) Lammrczvk. H.: Ochocka. R. J. ChmtoufaDhla 1088.25.643-646. (838) Pletkgrande, M. C.; Bores, P. A.; Lodi, G, Bighi, C. Chrohtogmphh 1987, 23, 713-716. (839) Cserhati, T.; Klss-Tamas, A.; Mikite, Gy. Chromatographla 1988, 25, 82-SS. (840) TsantiiCKakouiidou, A.; Antoniadou-Vyza, A. J. Chromatogr. 1988, 445,317-326.

__

C. Chromatographic Syrtemr (MOWand Statlonary Phaaos) (Cl) Jost. W.; buck, H. E. Adv. Chromatogr. (NY) 1087, 27, 129-165. (C2) GrassinCStrazza, G.; Carunchlo, V.; Girelli, A. M. J. Chromafogr. 1080, 466, 1-35. (C3) JOSt, W.; buck. H. E. GIT-Suppl. 1988, (3),70-72, 74-77. (c4) Gasparlc, J. J. ChfOmafogr.1088, 454. 352-356. (C5) Bhushan, R.; Reena; Chauhan, R. S. Bbmed. Chromatogr. 1989, 3 , 46-47. (C6) @Ill, 8.; Gespanlni, F.; Mlsiti, D.;Natile, G.; Paimieri, 0. J. Chromatogr. 1987, 409 377-382. (C7) Jain, A. K.; Gupta, V. K.; Kumar, A. J. Planar Chr0matogr.-Mod. n C 1988, 7 , 367-368. (C8) Lepri, L.; Coas, V.; Desideri, P. 0. J. Planar Chromatogr.--Mw. n C 1088, 7 , 170-173. (C9) Gocan, S.; Konnert, C. Stud. Unlv. Babes-&&ai, Chem. 1988, 37, 13-18. Chem. Abstr. 1087, 707, 51104~. (C10) Arai, K.; Udegawa, H. Makromol. Chem., Rap@ Commun. 1988, 9, 797-800. (C11) Kenneriy, D. A. J. Chromafogr. 1988, 454,425-431. (C12) Khurana. A. L.; Ho, C.-T. J. L i q . Chfomatogr. 1988, 7 7 , 3205-3211. (C13) Slngh, D. K.; Mehrotra, P. J. Llg. Chfomatogf. 1988, 1 7 , 1415-1432. (C14) Rozyio, J. K.; Gwis-Chomicz, D.; Malinowska, I. J. Planar C h m a togr.-Mod. nc 1988, I , 235-238. ((215) Bhushan, R.; Aii, I.Fresenlus’ 2.Anal. Chem. 1088, 329,793. (C16) Armstrong, D. W.; Faulkner, J. R., Jr.; Hen. S. M. J. Chromafogr. 1988, 452,323-330. (C17) Mack, M.; Hauck. H. E.; Herbert. H. J. Planar Chromafogr.-Mod. nc 1988, I , 304-308. (C18) Mack, M.; Muck, H. E. ChrOmatOgrePhh 1988, 26, 197-205. (Cl9) Armstrong, D. W.; He, F. Y.: Han, S. M. J. Chromafogr. 1988, 448, 345-354. (C20) Hinze, W. L.; Pharr, D. Y.; Fu, 2. S.; Burkert, W. 0. Anal. Chem. 1989, 61, 422-42s. D. Apparatus and TwhnIqcHI (Dl) Wan, H. J. Chfomatogr. 1989, 469,403-405. (D2) Jaenchen, D. E. Am. Lab. (FakMU, CT) 1988, 20,66,68, 70, 72, 73. (D3) Kalasz, H.; Gulyas, A. Symp. Bbl. Hung. 1088. 37, 269-273. (D4) Parrish. C. C.; Zhou. X.; Herche, L. R. J. Chromatogr. 1088, 435, 350-356. (D5) Soczewinski, E.; Matysik. 0. J. Planar Chromatogr.-Mod. n c 1988, 7 , 354-356. (D6) Matysik, 0.; Soczewinski, E. J. Chrometogr. 1988, 446, 275-282. (D7) Omori, T. J. Planar Chromatogr.-Md. nc 1088, 1, 66-69.

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

377R

PLANAR CHROMATOGRAPHY

(D8) Lkrdse , J. S.: Corkan, L. A.; Erb, D.; Powers, 0. J. Rev. sci. Insbun. 1988, 58: 940-950. (D9) Roeraade, J. J. Chromatogr. 1988, 447, 367-671. (D10) De habander, H. F.; Smets, F.; Pottie, G. J. Planar Chmmtogr,~ o d nc . 1988, 7 , 389-371. (D11) Studer. A.; Sache, P.; Traler, H. GIT Fa&. Lab, 1988. 32, 196- 198. (012) ACSayegh, A. J.; Lyle. S. J. J. Anal. Appl. WO&S/S 1989, 74, 323-330. ._. .~ (D13) Hahn-Deinstrop, E. GIT-Suppl. 1989, (3), 29-31. Chem. Abstr. 1989. 1 7 1 . 186621s. (D14) kahsz; H. J. Llq. chrometogr. 1988. 7 7 , 1371-1386. (D15) Kaln82, H.; BeW,M.; Nagy; J. clwomstogephk, 1989,27, 253-256. (016) A m o n g . D. W.; Yaw, X. F. J. chrometog.1988, 456,440-443. (D17) Merutdu. C.; Serbu, C.; Viassa. M. Anah#& 1987, 75. 508-510. (018) m e a n , E.; Roman, L.; crackmeanu, R.; Batintabscu, A. UU/UIA.W. 1987, 60, 168-172. chem.Absir. 1988, 708, 156566~. (Dl9) Tylhek, E.; MhcWvlcs, E. J. Plenar chnmbtog.--Mod. n C 1988, 7 , 6-19. 020) Vaw, J.; Lelsztner, L; Pick, J.; Ahn-Tuan, N. Chromatograph& 1988, 27, 152-156. (021) Tyihek, E.; Mlncsovics, E.; Szekely, T. J. J. Chromatog. 1989, 477, 375-388. (D22) Nykedy, S.; DallenbachToeike, K.; Sticher, 0. J. Chmatogr. 1988, 450, 241-252. @23) MhrCSoVlcs, E.; Tylhek, E. J. Plenaf chnunetog.--Mod. n C 1988, 7 ,

(D25)

Zogg,G..C.; Nyiredy, S.; Sticher, 0. J. Planar Chromatogr.-Mod.

nc 1088.

7,351-354. (D26) zhu, J.; Yeung, E. S. Anal. Chem. 1989. 67, 1906-1910. (027) JaenChen, D. GIT-Sup@. 1988, (3),79-82. Chem. Abstr. 1989, 770, 50454m. (D28) Hobtreat, J. W.; M o m , S.; Van de Nesse,R. J.; Brlnkran, U. A. T.; (koijer, C.; Ventrorst, N. H. J. Planar Chromatogr.--Mw. TLC 1988, 7 , 220-226.

E. Dotoetion and Idontl(lcatlon of Separated Zones (€1) De Rub, W. 0.; Stephany, R. W.; Dljkstra, 0. J. Assoc. Off. Anal, them. 1989, 72, 487-490. (€2) Wakrsh, M. 1.; Saiama, 0. M.; Bishr, M. M. J. C h m t o g r . 1989, 469, 390-396. - - - -... (€3) Harper, J. D.; Martel, P. A.; O'Donnell, C. M. J. Anal. Toxicol. 1989, 73,31-36. (€4) Bhdek, J. J . C h r O ~ t o g r1988, . 437, 131-137. (€5) Wltkiswlcz, 2. J . Chrometogf. 1989, 466, 37-87. (E6) Dfabowlcz, J.; Kotynak), A.; Kudzin, 2. H. J. Chmatogr. 1988, 447, 225-229. (€7) Ferrcwe, R. s.; Boese, J. L.; Thrasher, J. J. J. Assoc. Off. Anal. Chem. 1988, 77, 855-856. (€8) Ikawa, M.; Doliard, C. A.; Schaper, T. D. J. Agrlc. FoodChem. 1988, 36, 309-311. (€9) Khulbe, K. C.; Mann, R. S. Fmsenb' 2.Anal. Chem. 1988, 330. 642. (€10) Ma, Y.; Yeung, E. S. J. @romtogr. 1988, 455, 382-390. ( E l l ) Ma. Y.; Yeung, E. S. Anal. Chem. 1988, 60, 722-724. (€12) Mali, 8. D.; Paruiekar, P. P. J. Chrometogr. 1988, 457, 383-386. (€13) MetwawY, M. E. S.; Honlgberg, I. L. J. Plenar chrometugr.--Mod. nc 1989, 2, 83-85. (€14) Ojanpera, I.; Ruohanen, A. J. Anal. Toxlcd. 1988, 72, 108-110. (€15) Thbiennann, H. F m n i u s ' 2.Anal. Chem. 1988, 337, 758. Chem. Abstr. 1989, 7 7 7 , 16914~. (€16) Rieder, R. I.; Kaiser, R. E. J. Planar Chromatogr.--Mod. n C 1980, 2, 62-64. (E17) Kerzhner. 8. K.; Kofanov. V. L.: Vrubel. T. L. J. Lia. Chromatom. ' lS88, 7 7 . 3091-3102. (€18) Maxwell, R. J. J. plenar chromarogr.--~od. nc 1988, 7,345-346. (€19) Brown, P. R.; Beauchemin, B. T., Jr. J. Liq. Chromatogr. 1988. 7 7 , 1001-1014. . . . .. .. (€20) Otto. A.; Bode, U.; Heise, H. M. Fresenlus' 2. Anal. Chem. 1988, 337. 376-382. (€21) 'Bode, U.; Heise, H. M. Mikrochim. Acta 1987 (Pub. l988), 7 , 143- 147. (€22) Bush, S. G.; Breaux, A. J. Mlkmchim. Acta 1987 (Pub. 1988). 7 , 17-20, (€23) Fujimoto, C.; Morita. T.; Jinno, K.; Shafer, K. H. HRC CC, J. High Resdur. hkometogr. Chromatogr. Commun. 1988, 11, 810-814. (E241 Fujlmoto, C.; Morlta, T.; Jlnno, K. J. Chromatogr. 1988, 438. 329-337. (€25) twaoke, T.; Tsutsuml, S.; Tada, K.; Suzuki, F. Sankyo Kenkywho Mnpo 1988. 40, 39-46. Chem. Abstr. 1989. 7 7 7 , 36035q. (€26) Stanley. M. S.; Duffin, K. L.; Doherty, S. J.; Busch, K. L. Anal. Chim. Acte 1987, 200, 447-458. (€27) T a m , J.; Sakemoto,S.; Kubota, E. Anahfsls 1988, 76, LXIV-LXIX. (€28) Fhney, R. W.; Read, H. J. chrometogv. 1989. 477, 389-396. (€29) Pahlsson, P.; NlkSOn, B. Anal. Biochsm. 1988, 768. 115-120. (E301 Nagashlma, Y.; W o . S.; Nogushi, T.; Arakawa, 0.; Kanoh, S.; Hash Imoto, K. Anal. &bchem. 1 9 0 , 775, 258-262. (€31) sta&y, M. s.; Busch, K. L.; Vincre, A. J. plenarChrometogr.--Mod. nc 1~188,7. 78-78. (E321 Mewde,K.; Harada. K. Suzukl. M.; Oka. H.;Kawamwa, N.; Yamada, M. Org. Mess Specbwn. 1989, 24, 74-75. (€33) Kushi, Y.: Rokukawa. C.; Handa, S. Anal. Biochem. 1988, 775, 167-1 76. (€34) Duffin, K. L.; B w h , K. L. J. Planar C h i n ~ t o g . - - M o d . n C 1988, 7 , 349-351.

-

378R

ANALYTICAL CHEMISTRY. VOL. 62, NO. 12, JUNE 15. 1990

(€35) Dunphy, J. C.; Busch, K. L. &kmed. Envkon. Mess S p e c m . 1988, 77, 405-410. (€36) Brown, S. M.; Busch, K. L. Anal. CMm. Acta 1989, 278, 231-239. (€37) Kwlin, E. J. Mol. Stnrct. 1986. 773, 369-376. (E38) Hofstraat, J. W.; Gmijer, C.; Velthwst, N. H.Appl. Spectrosc. 1988, 42, 614-619. (E39) *ow, D. D.; Rutan. S. C. A w l . Chem. 1988. 60. 847-852. (€40) Brown, G. N.; Blrks. J. W.; Koval, C. A. Anal. Lett. 1989, 22, 507-518. F. Quantltatlve Anaiyrk

(F1) Baeyens, W. R. G.; Ling. B. L. J. Planar Chrcwnetop.--Mod. TLC 1988, 7 , 198-213. (F2) Aliwahn, J.; €bel, S. J. Planar ChrOmatogr.--Mod. n C 1989, 2, 71-75. (F3) Haky. J. E.; Sherwood, D. A.; Brennan, S. T. J. Liq. Chromato@. 1989, 72, 907-917. (F4) Huf, F. A. J. Phnar Chromatog.-Mod. TLC 1988, 7 , 46-49. (F5) Ling, 8. L.; Baeyens, W. R. 0.; Strag&, K. M C CC, J . tiigh ResoM. C h r m t o g r . Chromatogr.Commim. 1989, 72, 345-347. (F6) Nagata, T.; Poulsen, L. L.; Ziegler, D. M. Anal. E/ochem. 1988. 777, 248-255. (F7) Pollek. V. A. J . I&. ChrOmtOg. 1988, 7 7 , 1403-1413. (F8) Belen'kil, B. G.; Adamovlch, T. 6.; Lobazov, A. F.; Mostovnikov, V. A.; Necheev, S. V.; Salonenko, M. G. Roc. Int. Conf. Blochem. Sep.. 2nd 1988. 29-33. Chem. Abstr. lS89, 7 1 7 , 49635k. (F9) Berkhan, E. W. J. Planar chromatogr.--Mod. n C 1988, 7 , 81-85. (F10) Cooper, R. S.; Jankowiak, R.; Hayes, J. M.; Lu, P.; Small, 0. J. Anal. Chem. 1988, 60, 2692-2694. (F11) Kuroda, N.; Nota, H.; Okura, Y. Anal. Chim. Acta 1987, 797, 169- 176. (F12) Kawezumi, H.; Yeung, E. S. Appl. Spectrosc. 1988, 42, 1228-1231. (F13) Kawezumi, H.; Yeung, E. S. Appl. Spectmsc. 1989, 43, 249-253. (F14) Uchlyama, K.; Ohsawa, K.; Yoshimura, Y.; Arai, K.; Imaeda, K. Anal. SCi. 1988, 4 , 675-676. (F15) Ma, Y.; Koutny, L. R.; Yeung, E. S. Anal. Chem. 1989, 67, 1931-1933. (F16) Taube, D.; Neuhoff, V. J. C h r m t o g . 1988, 437, 411-421. (F17) Pollak, V. A.; SchulreClewing, J. J. Chromatogr. 1988, 437,97-107. (F18) Belchamber. R. M.: Read. H.: Roberts. J. D. M. Anal. froc. (London) 1987, 24, 358. (F19) Wettiaufer, S. H.; Weinstein, L. H. J. Chromatogr. 1988, 447, 361-3138. - - . - - -. (F20) Rutan, S. C.; b r o w , D. D.; Hartmann, G. Chemom. InteU. Lab. Syst. 1988. 3, 61-71. (F21) Yoshimura, T.; Okazaki. S. Chrmtcgaphia 1988, 25, 781-785. (F22) Beauchemin, 8. T.. Jr.; Brown, P. R. Anal. Chem. 1989, 67, 615-618. (F23) Zhu. J.; Yeung, E. S. J. C h r m t c g r . 1989, 463, 139-145. (F24) Whitsett. J. F.; Kennish, J. M. J. Chromatogr. 1988, 435, 343-349. '

0. Preparative Layer Chromatography and Radlo Thln-Layer Chromatography

(Gl) BMlingmeyer, 8. A. Preparative L!quM Chromatography. J. chrometogr. Libr., Elsevier: New York, 1987; Vol. 38, 341 pp. (G2) Markowski, W.; Socrewinski, E.; Czapinska, K. L. Chromtopaphia 1989, 27, 123-127. (a) Nyiredy, S.; Meszaros, S. Y.; DallenbachToelke, K.; Nyiredy-Miklta, K.; Sticher, 0. J. Pbnar Chromatogr.-Mod. n C 1988, 7 , 54-60. (a) Nyiredy. S.; Bok, L. Sticher, 0. J. plenar Chromatogr.-Mud. n C 1989, 2, 53-61. (G5) Ferrari, M.; Verotta, L. J. Chromatogr. 1988, 437, 328-332. (G6) Longmuir, K. J.; Haynes, S. J. Chromatogr. 1988, 454, 438-443. (G7) Erdelmeler, C. A. J.; Van Leeuwen, P. A.; Kinghorn, A. D. Planta Med. 1988, 54. 71-75. (G8) 3, Rock. 127-130. C. 0.; Jackowski, S.; Shulman, S. D. BioChromatography 1988, (G9) Kessler. M. J. Am. Lab. (FaiffieM. C T ) 1988, 20 (8). 76-81. (G10) Wilson. I. D.; Morgan. E. D.; Robinson, P.;Lafont, R.; Blais, C. J. Insect. physid. 1988, 34, 707-711. (G11) Sugimoto, Y.; Ohta, Y.; Tamadti, B. J . Labe/ledCompd. Radbphsnn. 1988, 25, 805-808. (G12) Hosklns, J. A.; Evans, C. E. J. Chromatogr. 1989, 490. 439-443. (G13) Lucher, L. A.; Lego, T. Anal. B m m . 1989, 778,327-330. (G14) Coupal, J. J.; Shih, W. J.; Ryo, U. Y. J. Nut/. Med. Technol. 1988, 76, 116-118. (015) Schuch, R.; Mukherjee, K. D. J. C h r m t o g r . 1988, 450, 448-451. (018) Schremmer, J. M.; Naonan, D. J. Med. phys. 1987, 14, 818-824. APPLICATIONS H. AcMs and Phenols

(Hl) BiibIgloy. M. Symp. Blol. Hung. 1988, 34, 453-460. (H2) 22, Dabral, 61-69.S. K.; Muktawat, K. P.; Slngh, R.; Rawat, J. P. Anal. Lett. 1989, (H3) DavMkova. P.; Gasparic. J. J. Chromatogr. 1987, 410, 53-76. (H4) Hadzi/a, 0.;ISkric, S.; Tonkovlc, M. J. Chromatogr. 1989, 464, 220-222. (H5) Slegel, P.; VerecrkeyDonath, 0.; Ladanyi, L.; Toth-Lawitz, M. J. pherm. Biomed. A M I . 1987, 5, 665-673. (H6) . . SBwok. J.: Kowalska. T.: Pvka. A. J. Planar C h r m t m . - M u d . n C 1988, 7 , 169-170. (H7) Bounias, M.; Jorand, J. P. Analusis 1988, 76, 107-109. Chem. Abstr. lB88. 108. 179312b. (Ha) &ensel; W.; Sboemmer, R. GIT-Suppl. 1988. ( 4 ) . 50-53. Chem. Abstr. 1989, 770, 22367s.

-

PLANAR CHROMATOQRAPHY ( ~ 9 ~ e n w r ,B.; wenz, K. J . mnar chrometogr.--Mw’. nc 1989, 2 , 14-27 (HIO) W W ,L.; Tllllan, H. M.; Gubitz. 0.M . Sci. Res. 1988, 76, 641-642. (H11) Wdaki, T,; Goklewlcz, W.; Bartuzi, G.; Lobarzewski, J. Symp. Bioi. HUng.1988, 34, 659-671. (HI21 Hasan, A.; Waterman. P.; Iftikhar, N. J. chmmetogr. 1989, 466, 399-402. (H13) Balkova, M.; Novakova. E.; Kohlkek, J. J. Chromatogr. 1988, 437, 431-437. (H14) CBerhatl, T.; Szejtii, J.; Fenyvesi. E. J. Chromatogr. 1988, 439, 393-403. (H15) Mffmann, A.; Funk, W. GIT-Suppl. 1988, (3), 12, 14-15, 18-19. Chem. Abstr. 1989, 710, 87707~. (H16) Klaus, R.; Flscher. W.; Bayer, H. J . Chromatogr. 1987, 398, 300-308. (H17) Knuutlnen, J.; Klein, P. Chromatographla 1989, 2 7 , 142-146. (H18) Thkbmenn, H. Fresenius’ Z. Anal. Chem. 1988, 330. 531. Chem. Abstr. 1988, 709, 2041262. (Hl9) Thlelemann, H. Fresenlus’ Z. Anal. Chem. 1988, 332. 371. Chem. Abstr. 1989, 7 7 7 , 49646q. (H20) Thlelemann, H. Fresenlus’ Z. Anal. Chem. 1988, 332, 372. Chem. Abstr. 1989, 7 7 7 , 12582q. (H21) Thlelemann, H. Fresenius’ Z. Anal. Chem. 1987, 329, 55. Chem. Abstr. 1988, 708, 123812~. (H22) Bounlas, M.; Durade, M. H.; Lizzl, Y. Analusis 1989, 77, 201-204. Chem. Abstr. 1989, 717, 111796~.

I. Amlno ACME, Peptldsr, and P l d e l ~ (11) C-tl, T.; SZOWI. M. J . Chrometm. 1988, 434, 455-463. (12) I l k , Z.;CSemet, T. J. Plenar chrometogr.-Mod. n C 1989, 2 , 92-94. (13) Ilks, Z.;Cswhatl, T. J . Plenar Chromatogr.--Mod. n C 1988, 7 , 231-234. (14) Bhudran, R.; Aii, I. J . Ll9. Chromatogr. 1987, 70, 3647-3652. (15) Bhushan, R.; Chauhan, R. S.;Aii, R.; All, I.J . LIq. Chromatogr. 1987, 70, 3653-3657. (16) Hlrsdrberg, K.; Faust, H.; Balint, A. Isotopenpraxis 1987, 2 3 , 153-155. chcmr.Ab&. 1987, 707, 232392k. (17) Rozyb, J. K.; Mallnowska, I.; Gwls-Chomicz. D. Roc. Int. Conf. 810cham. Sep., 2nd1088, 169-173. Chem. Abstr. 1989, 7 7 7 , 89523d. (18) . . Bhushan. R.; Mahesh, V. K.; Mallikharlun, P. V. Blamed. Chromatogr. 1989, 3, 43-45. (19) Bhushan, R.; Reddy, K. R. N. J. Planar Chromatogr.-W. n C 1989, -2. 79-02. . - _-. (110) Bhushan, R.; Reddy, 0.P. Anal. Lett. 1988, 2 7 , 1075-1084. ( I l l ) Bhushan. R.; Reddy, G. P. Analyst(London) 1987. 772, 1467-1469. (112) Laskar, S.; Basak. 8. J. Chromatogr. 1988, 436, 341-343. (113) Bhushan, R.; Reddy, 0.P. J. Liq. Chromatogr. 1987, 10, 3497-3528. (114) Qanklna, E. S.; Malakhova, I. I.; Kostyuk, I.0.; Belen’kll, B. G. J . Planar Chrometogr.-Mod. nc 1988, 1,364-366. (115) Bhushan, R.; Reddy, G. P. Chromatographla 1988. 2 5 , 455-456. (116) Bhushan, R.; Reddy, 0.P. J. Liq. Chromatogr. 1988, 17. 3163-3170. (117) NeufeM, E.; (kren, H. J.; Boland, D. Anal. Biochem. 1989, 777, 138- 143. (118) Lepri, L.; Deslderi, P. G.; Coas, V. J. Chromatogr. 1987, 405, 394-400. (119) Bhushan, R. J. Llq. chmmetogr. 1988, 71, 3049-3065. (120) Kuhn, A. 0.; Lederer, M.; Sinibaldi, M. J . Chromatogr. 1989, 469, 253-260. (121) Buyuktimkln. N.; Buschauer. A. J . Chromatogr. 1988, 450, 281-283. (122) Ouenther, K. J . Chromet4gr. 1988, 446, 11-30. (123) Slnlbaldi, M.; Messina, A.; Gkelii, A. M. Analyst (London) 1988. 773, 1245-1247. (124) h - t h e r , K.; Schlckedanz. M. QIT-Suppl. 1987, (3), 27-28. 30-32. Chem. Abstr. 1988. 708. 48487a. (125) Guenther, K. A&lusIs 1988. 16, 514-518. Chem. Abstr. 1989. 7 7 7 . 70077q. (126) CserhaB, T.; Bordas, B.; Osapay, 0. Chromatographie 1987, 2 3 , 184- 188. (127) Erksson, L.; Jonsson, J.; Sjrtsstroem, M.; Wold, S. Frog. Ciin. Bioi. Res. 1989, 291, 131-134.

.

J. Antlbbtltr (JI) Allwohn, J.; Ebel, S.;Kang, J. S . J . Planar Chromatogr.-Mod. 7LC 1988, 1. 50-53. (J2) Kondo, F. J. FoodROt. 1988, 57, 786-789. (J3) Thomas, A. H.; Newland, P. J. Chrometogr. 1987. 470, 373-382. (J4) Kovacs-Hadady, K.; Kiss, I.T. Chromatographla 1987. 24. 677-679. (J5) oka, H.; Ikai, Y.; Kawamura, N.; Yamada, M.; Harada, K.; Yamazaki, Y.; SUZUkl, M. J . c h m m e t w . 1988, 449, 448-454. (J6) Abidl, S.L. J. Chromatogv. 1989, 464, 453-458. (J7) Dam, K.; Roy, S. K.; Das, S. K. J. Llq. Chromatogr. 1989, 72, 949-956. (J8) Kunz. F. R.; Jork, H. Fresenius’ 2.Anal. Chem. 1988, 329, 773-777. (J9) Ikai, Y.; oka,H.; Kawamura, N.; Yamada. M.; Harada, K.; Suzukl, M. J. chnwnetogr. 1987, 4 7 7 , 313-323.

(K4) Eaton, J. L.; Mullins, D. E. Anal. Bkchem. 1988, 172, 484-487. (K5) Skwa. E.; Krzyzanowskl. L.; Rzeszotarska, B. J . Chromatog. 1988, 442, 420-423. (K6) Stoermer. F. C.; Alexander, J.; Becher, G Carcinogene& (London) 1987, 8, 1277-1280. (K7) Spahn, H. J . Chroma-. 1988, 427, 131-137. (K8) Premecz, J. E.; Ford, M. E. J . Liq. chnwnetogr. 1987, 70, 3575-3584. (K9) Brunner, C. A.; Wainer. 1. J . Chromatogr. 1989, 472. 277-283. (K10) Tosunogiu. S.; Buyuktimkln, N. Acta pherm. Twc. 1989, 31, 33-36. Chem. Abstr. 1989, 7 7 1 , 121012~. L. Carbohydrates

(L1) Vajda. J.; Pick, J. J. Planar Chromatogr.-Mod. n C 1988. 7 , 347-348. (L2) Shinomlya, K.; Hoshl, Y.; Imanarl, T. J . Chromatogr. 1989. 462, 471-474. (L3) Doner, L. W. Methods Enzymoi. 1988, -160, 176-180. (L4) . . Patzsch, K.: Netz, S.;Funk, W. J. Planar Chromatogr.-Mod, n C 1988, 7,39-45. (L5) Patzsch, K.; Netz, S.; Funk, W. J. Planar Chromatogr.--Mod. n C 1988, 7 , 177-179. (L6) Brasseur, T.; Wauters, J. N.; Angenot. L. J . Chmmatogr. 1988, 437, 260-264. M. Dyes and Pigments

(Ml) Markow. P. G. J . Chem. €duc. 1988, 6 5 , 899-900. (M2) Allison, R. T.; Garrett, N. J. M .Lab. Sci. 1989, 46, 113-119. (M3) Egginer, R. Fleischwirtschatt 1988, 68, 41-42. Chem. Abstr. 1988, 709, 21765n. (M4) Foster, R. D.; Groves, J. A. Analyst (London) 1988, 773, 1613-1623. (M5) Meyer, R. A.; Gruendig, F.; Schaefer, R.; Schnelder, J. &hrung 1989. 33, 261-268. Chem. Abstr. 1989, 7 7 7 . 172546). (M6) Oka, H.; Ikai, Y.; Kawamura, N.; Yamada. M.; Inoue, H.; Ohno, T.; Inagaki, K.; Kuno. A.; Yamamoto, N. J. Chromatogr. 1987, 477, 437-444. (M7) Sherma, J.; Mahn, M.; Foliweiier, J. J. Planar Chromatogr.-Mod. n C 1988, 7 , 65-66. (M8) Young, M. L. J. Assoc. Off. Anal. Chem. 1988. 77, 458-461. (M9) Francis, G. W.; Isaksen, M. J. FoodSci. 1988, 53, 979-980. (M10) Cserhati, T. Chromatographie 1988, 2 5 , 908-914. (M11) Stauber, J. L.; Jeffrey, S. W. J. Physiol. 1988. 2 4 , 158-172. (M12) Suzuki, N.; Saltoh, K.; Adachl, K. J . Chromatogr. 1987, 408, 181-190. (M13) Junker-Buchheit, A.; Jork, H. J . Planar Chromatogr.-Mod. n C 1968, 1, 214-219. (M14) Helmier, D.; Mlcheioui, M.; Bcddi, V. Chromatographla 1989, 2 8 , 148-1 50. N. Hydrocarbons

(Nl) Yamamoto, Y. Sekiyu Gakkaishi 1988, 37, 351-362. Chem. Abstr. 1968, 109, 152791r. (N2) Olteanu, I.; Paiu, F.; Farcasan, V. Stud. Unlv. Babes-Bolyai, Chem. 1987, 3 2 , 74-76. Chem. Abstr. 1989, 770, 17861~. (N3) Kus. P. J . Chromatogr. 1988, 436, 338-340. (N4) Grimmer, G.; Jacob, J. Pure Appl. Chem. 1987, 5 9 , 1735-1738. (N5) Dean, T. A.; Pooie, C. F. J . Planar Chromatogr.--Mod. n C 1988, 1, 70-72. 0. Lipids

(01) Aivarez, J. G.; Touchstone, J. C. J . Chromatogr. 1988, 436. 515-516. (02) Bruno, P.; Caselli, M.; Trainl, A. J. Planar Chr0matogr.-Mod. n C 1988, 7 , 299-303. (03) Pucsck. J.; Kovacs, L.; Zaika. A.; Dobo, B. Clln. Blochem. 1988, 2 7 , 81-85. (04) Medh, J. D.; Weigei, P. H. J. Lipid Res. 1989, 30, 761-764. (05) Sun, G. Y.; Lin, T. N. Life Sci. 1989, 4 4 , 689-696. (06) Higashi, H.; Sugli, T.; Kato, S. Biochim. Mphys. Acta 1988, 963, 333-339. (07) AmMzhin, B. Riv. Ital. Sostanze & a s s 1987, 64, 273-275. Chem. Abstr. 1988, 709, 145533e. (08) Artiss. J. D.; Bozlmowskl, D.;Mcenroe, R. J.; Zak, 8. U.S. US 4, 784,945 (CI. 435-25;C12q1/26). 15 NOV 1988, Appl. 925, 720, 30 Oct 1986, 8 pp. Chem. Abstr. 1989, 7 7 7 . 190991e. (09) Meinik, B. C.; Hollmann, J.; Erler, E.; Vehoeven, B.; Plewig. G. J . Invest. Dermatol. 1989. 9 2 , 231-234. (010) Ogawa, K.; Fujlwara, Y.; Sugamata, K.; Abe, T. J . Chromatogr. 1988, 426, 188-193. (011) Leskawa, K. C.; Schulte, B. A.; Hogan, E. I.J. Chromatogr. 1987, 4. 1. 1. ,. 393-399. - - - - - -. (012) Tyman. J. H. P.; Tychopouios, V. J. Planar Chromatogr.-Mod. n C 1988. 7. 227-230. (013) Hung, G. ii. C.; Harris, A. 2. Microchem. J. 1989, 40, 208-215. (014) Hung, 0.W. C.; Harris, A. Z. Microchem. J. 1988, 37, 174-180. (015) Bhat. H. K.; Ansari, G. A. S. J. Chromatogr. 1989, 462, 467-470. (016) Rejskova. D.; Hradec, J. J. Chromatogr. 1989. 466, 448-448. (017) 283-291. Nikolova-Damyanova, B.; Amidzhin. B. J. Chromatogr. 1988, 446,

K. B a w r a d A m l n e a

(Kl) Alraudo, C. B.; Gayte-Sorbier, A.; AuJoulat. P.; Mercier, V. J. Chromat-. 1988, 437, 59-82. (K2) Arque, J. M.; Senano, J.; De Leiva, A.; Segura, R. Anal. Biochem. 1988, 774, 275-279. (K3) Dhlllon. R. S.;Slngh, J.; Gautam, V. K.; Chhabra. B. R. J. Chromatogr. 1988, 435, 256-257.

(018) Muething, J.; Muehlradt, P. F. Anal. Blochem. 1988, 773, 10-17. (019) Mlnnkln. D. E.; Ridell. M.; Partlett, J. H.; Bolton, R. C. FEMS M/cr&iol. Len. 1987, 48, 175-177. (020) Junker-Buchheiit, A.; Jork, H. Fresnius‘ 2.Anal. Chem. 1988, 331, 367-393. Chem. Abstr. 1989. 770. 127795h. (021) Bruno, P.; Carino, M.; Ca&lll. M.; Macchla, L.; Fornelli, A.; Traini, A,; Ambrosi, L.; Tursi. A. Anal. Lett. 1988, 2 7 , 1155-1164. ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

379R

PLANAR CHROMATOGRAPHY (022) Cdarow L . P in, E.; Wulllemler, D. J . plenar Chromatogr.--Mod.

nc 1988, i , ib-8

(023) D1 Blase, A.; Glvati, S.; Serlupi Crescenzi, G. Newochem. Res. 1989, 14, 153-158. (024) Dembitskli, V. M. J . Chromatogr. 1988. 436. 467-473. (025) Dammann, V.; Donnevert, G.; Funk, W. J . Planar Chromtogr.--Mod. 1988, 1,79-80. (028) Reine, A. H.; Stegink, S. J. J . Chromatogr. 1988,437, 211-219. (027) Serlzawa, S.; Nagai. T.; Sato, Y. J . Invest. hrmatol. 1987, 8 9 , 580-587. (028) Wood, W. G.; Cornwell, M.; Williamson, L. S. J . L/pMRes. 1989,30, 775-779. (029) Terabayashi, T.; Ogawa, T.; Kawanishi, Y.; Ishii. J. J . Chromatogr. 198SP454, 432-437. (030) SpiUman, T.; Cotton. D. E.; Gohtnski, E. Ciin. Chem. (Winston-Salem, NC) 1988,34, 1978-1982. (031) Colarow, L. J . Planar chrometogr.--Mod. TLC 1989. 2 , 19-23. (032) Serrano de la Cruz, D.;Santlllana, E.; Mingo, A.; Fuenmayor, G.; Pantoja, A.; Fernandez, E. Ciin. Chem. (Wnston SaEem, NC) 1988, 3 4 , 736-738. (033) Fowler, S. D.; Brown, W. J.; Warfel, J.; Greenspan, P. J. L/pHRes. 1987,2 8 , 1225-1232. (034) Masella, R.; Cantafora, A. Clin. Chim. Acta 1988, 176, 83-70. (035) AmMzhin, B.; Nikoiova-Damyanova, E. J . Chromatogr. 1988,446, 259-266. (036) Radl, A. A. R.; Matkovics, E. Symp. Bbl. Hung. 1986,34, 289-310. Chem. Abstr. 1988? 108, 53117~. (037) Amin, M. Fresenlw' Z . Ami. Chem. 1987,329, 600-802. (038) Brown, W. J.; Warfel, J. Qreenspan, P. Arch. Pathol. Lab. Med. 1988, 112, 295-297. (039) Duncan, M.; Fried, B.; Sherma, J.; Hoskin, G. P. Comp. Biochem. PhySbl. 1987,878, 881-883. (040) Michalec, C.; Ranny, M. J . Chromatogr. 1988,452, 543-547. (041) Fraser, A. J.; Taggart, C. T. J . Chromatogr. 1988,439, 404-407. (042) Frltz, D. W.; Amore, F.; Rashmawi, K. J A W S , J . Am. Oil Cbem. SOC. 1988, 65, 1488-1492. (043) Okumura, K.; Hashimoto, H.; Ito, T.; Ogawa, K.; Satake, T. LiipMs 1988, 2 3 , 253-255. (044) ftanny, M.; Sedlacek, J.; Svec, P. J . Planar Chromatogr.--Mod. TLC 1988, 7 , 35-38.

nc

P. Pharmacrutlcrb, Drugs, and Alkaloids Svendsen, A. E. J . Planar Chromatogr.-Mod. nc 1989,2,8-18. Surmann, P. pherme Techno/. J . 1988,8 , 8-8. Sunshine, I.Ciin. Chem. (Wkrston-Salem, NC) 1988, 3 4 , 331-334. Qlnberg, N.; Bicker, 0.; Tway, P.; Baiano, J. A. J . Liq. Chromatogr. 1988, 1 7 , 3183-3204. (P5) Jain, R.; Bhatia, A. J . Chromatogr. 1988,447, 454-457. (Pa) Vanderkop. P. A.; MacNeii, J. D. J . Assoc. Oft. Anal. Chem. 1989, 72. 735-738. ._ (P7) King, D.-L.; Gabor, M. J.; Martel, P. A. Clin. Chem. (Winston-Salem, NC) 1989,35, 183-188. (Pa) Kogan, M. J.; Plereon, D. J.; Durkin, M. M.; Wilson, N. J. J . Chromatogr. 1989,490, 238-242. (P9) QusgUa, M. 0.; Carlucci, 0.; Maurizi, G.; Maueo, P. Pharm. Acta Helv. 1988,63,347-349. (P10) Ruane. R. J.; Wilson, I.D. J . Chromatogr. 1988,447, 355-360. (Pll) St.-Plerre, M. V.; Pang, K. S. J . Chromatogr. 1987,427, 291-307. (P12) Meatherall, R. C.; Ganlott, J. C. J . Anal. Tox/coi. 1988,72, 136-140. (P13) Szucsova. S.; Perina, 2.; Sarsunova, M.; Vosatka, V. PharmazEe 1987, 42, 513-516. Chem. Abstr. 1988. 108, 208v. (P14) Mount, D. L.; Patchen, L. C.; Churchill, F. C. J . Chromarogr. 1988, 428, 198-202. (P15) Ojanpera, 1.; Vuori, E. J . Llq. C h r m t o g r . 1987, 70, 3595-3604. (Pl8) AbdeCMcety, E. M.; AI-ObaM, A. M.; Jado, A. I.; LoRi, E. A. EW. J . DNg. Mstab. Pherrnacoklnet. 1988, 73,267-271. (P17) Franke, J. P.; De Zeeuw, R. A.; Wiljsbeek, J. J . Pharm. Biomed. Anal. 1988, 6, 415-420. (PIE) Patzsch, K.; Funk, W.; Schuetz, H. GIT-Suppl. 1988,(3),83-86, 89-91, Chem. Abstr. 1988, 109. 206295~. (P19) Sherma, J.; Bernardo. J. E.; Higgs, M. H. J . Liq. Chromatogr. 1988, 7 1 , 3135-3143. (P20) Schuetz, H.; Borchert, A.; Holland, E. M.; Schnelder, W. R.; Schoelermann, K. Beltr. oerlchtl. Med. 1988,46, 149-153. Chem. Abstr. 1989, 710, 19456q. (P21) Borchert. A.; Schnelder, W. R.; Schuetz, H. Beitr. Gerichtl. Med. 1987,45. 193-201. Chem. Abstr. 1987, 107. 230710~. (P22) Daldrup, T.; Rlckert. A. Fresenius' 2. Anal. Chem. 1989. 334, 349-353. Chem. Abstr. 1989, 1 7 1 , 110455~. (P23) Ebner, T.; Meese, C. 0.; Eicheibaum, M. Ther. Drug Monit. 1989, 7 1 , 214-218. (P24) Moretti, 0.;Amici, M.; Cammarata, P.; Fracassi, F. J. Chromatogr. 1988.442. 459-463. (P25) Haensel, W.; Stroemmer, R. QIT Fachz. Lab. 1988.3 2 , 156-158. Chem. Abstr. 1988, 109. 123866~. (P28) Frank, H.; Hehlsch, G.; Mueller, A. Sci. Pharm. 1987,55, 237-245. Chem. Abstr. 1988, 109, 11800f. (P27) Frank, H.; Heinkch, G.; Neugebauer, E. Scl. Pharm. 1987, 55, 247-254. Chem. Abstr. 1988, 109, 11801g. (P28) Ryan, P. J.; Lesicki, R.; Roberts, J. J . Chromaragr. 1989, 465, 448-450. (P29) Chowdhury, E. K.; Rai, P. P.; Bhattacharyya, P. Chromatographb 1987,2 3 , 205-206. (P30) Wyhowski. de Bukanski, E.; Degroodt, J. M.; Beernaert, H. 2. Lebensm.-Unters. Forsch. 1988, 187, 242-245. (PI) (P2) (P3) (P4)

_.

380R

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

(P31) Detolle, S.; Postaire, E.; Prognon, P.; Likforman, J.; Pradeau, D. J . Planer chrometogr.--Mod. nc 1988. 7.371-372. (P32) Petit-Paw. G.; Pothler, J.; Montagu. M.; Galand, N.; Chenieux, J. C.; Rideau, M.; Viei, C. ffm. Int. Conf. Biochem. Sep., 2nd 1988, 767-168. Pick, J., Vajda, J., Eds.; Hungarian Biochemical Society: Budapest, Hungary. Chem. Abstr. 1989, 110, 227903k. (P33) Bob, L.; Szabo, L. G. J . Planar Chfomatogr.--Mod. TLC 1988. 1 , 85-87. (P34) Ishii, Y.; Tanizawa, H.; Takino, Y. Chem. Pharm. Bull. 1987, 35, 4642-4844. (P35) Amin, M. Fresenius' Z . Anal. Chem. 1988,329, 778-780. (P36) Amin. M. Pharm. Ind. 1989,57, 109-112. (P37) Bernhard, W.; De la Vigne, U.; Jeger, A. N. J . Planar Chromatogr.Mod. TLC 1989, 2 , 153-155. (P38) Dana, K.; Das, S. K. J . Liq. Chromarogr. 1988, 1 7 , 3079-3089. (P39) Davis, C. M.; Harrington, C. A. Ther. Drug. Monit. 1988, 70, 2 15-223. (P40) De la Vigne, U. Laborffaxis 1989, 73 (Speck/),44,53-55. Chem. Abstr. 1989, 1 7 7 , 126341r. (P41) De la Vigne, U. SLZ, Schweiz. Lab.-.?. 1988,45, 214-216. Chem. Abstr. 1988, 709, 162789k. (P42) Haddi, A. H. F. A.; Idle, J. R. J . Chromatogr. 1988,427, 121-130. (P43) Haensel, W.; Stroemmer, R. GIT-Suppl. 1988,(3), 45-50; Chem. Abstr. 1989, 710, 2309w. (P44) Horne, C.; Spahn, H.: Mutschler, E. Arzneim.-Forsch. 1987, 37, 1179- 1181. (P45) Ikebuchi, J.; Suenaga, K.; Kotoku, S.; Yuasa, I.; Inagaki, 0. J . Chromatogr. 1988, 432, 407-406. (P46) Kosmeas, N.; Clerc, J. T. Pharm. Acta He&. 1989,6 4 , 2-7. Chem. Abstr. 1989, 170, 1279242. (P47) Krauss, D.; Spahn, H.; Mutschler, E. Arzneim.-Forsch. 1989, 38, 1533- 1536. (P48) Montagu, M.; Leviliain, P.; Chenieux, J. C.; Rldeau, M. J . Chromatogr. 1987,409, 428-432. (P49) Peishan, X.; Yuzhen, Y. HRC CC,J . H@h Re&&. Chromatogr. Chromatogr. Commun. 1987, 70, 607-613. (P50) Pelshan, X.; Yuzhen, Y. J . Planar Chromarogr.-Mod. TLC 1988. 7 , 258-260. (P51) Pradeau, D.; Prat, J. J.; Deivordre, P.; Prognon. P. Ann. F a M . E m . Chim. Toxicol. 1988, 81, 229-241. Chem. Ab&. 1989, 710, 34902a. (P52) Quaglia, M. G.; Capitani, F.; Nociii, F.; Grande, M. Pharm. Acta He&. 1989,64,86-89. (P53) Queglia, M. G.; Mazzeo, F. A.; Fanali, S. J . Chromatogr. 1988. 456, 435-439. (P54) Saffar, M. F.; Saffar, L. Ann. Pharm. Fr. 1988,46, 27-34. Chem. Abstr. 1988, 709, 135089a. (P55) Salama, 0. M.; Walash, M. I. Anal. Left. 1989. 2 2 , 827-839. (P56) Salem, M. A. S.; Alkaysi, H. N.; Gharaibeh, A. M. Anal. Lett. 1989, 2 2 , 585-596. (P57) Sarg, T. M.; El-Domiaty, M. M.; Bishr, M. M.; Salama, 0. M.; EIGindy, A. R. Analyst (London) 1989, 774, 575-578. (P58) Sherma, J.; Bretschnelder, W.; Dittamo, M.; DiBiase, N.; Huh, D.; Schwartz, D. P. J . Chromatogr. 1989,463, 229-233. (P59) Tomankova, H.; Vasatova, M. Pharmazie 1989, 44, 197-198. Chem. Abstr. 1989, 7 1 7 , 12592t. (P80) Tomankova, H.; Vasatova, M.; Zyka, J. Anal. Left. 1988, 21, 2227-2240. (P61) Warlich, R.; Krauss, D.;Mutschler, E. Arzneim.-Forsch. 1989, 39, 656-658. (P62) Warlich, R.; Mutschler, E. J . Chromatogr. 1989,490, 395-403. (P63) Zivanovic, L.; Zlvanov-Stakic, D.; Radulovic, D. J . Pharm. Biomed. Anal. 1987 (Pub. 1988),6, 809-812. Q. Purines, Fyrlmldlnes, and Nucleic Acids

(01) Lepri, L.; Coas, V.; Deslderi, G.; Zocchi, A. J . Plenar Chr0matogr.Mod. TLC 1988p1 , 317-324. 0 2 ) Feldberg, R. S.; Reppucci, L. M. J . Chromatogr. 1987,410, 226-229. (Q3) Popovic, M.; PerisicJanjic, N. Chromtographia 1988,2 6 , 244-248. (04) Rosier, J.; Van Peteghem. C. J . Chromatogr. 1988, 434, 222-227. R . SteroMs

(Rl) Street, J. M.; Setchell, K. D. R. Bbmed. Chromatogr. 1988, 2 , 229-241. (132) Granstroem, E. TrAC, Trends Anal. Chem. (Pers. Ed.) 1989, 8 . 67-71. (R3) Wilson, I . D.; Lewis, S. J . Chromatogr. 1987,408, 445-448. (R4) Wilson, I.D. J . Planar Chromatogr.--Mod. TLC 1988, 7 , 118-122. (R5) Wlson, I.D. J . Chromatogr. 1988,438, 419-422. (R6) Habibl-Goudarzi, S.; Ruterbories, K. J.; Steinbrunner, J. E.; Nurok, D. J . Planar Chromatogr.--Mod. TLC 1988, 7 , 161-167. (R7) Brown, J. W.; Carbaiieira, A.; Fishman, L. M. J . Chromatogr. 1988, 439, 441-447. (RE) Van Look, L.; Deschuytere. P.; Van Peteghem, C. J . Chromtogr. 1989, 489, 213-218. (R9) Brind, J. L.; Kuo, S.; Chewinsky, K.; Orentreich, N. Steroids 1988, 5 2 , 561-570. (R10) Wilson, I. D.;Lafont, R.; Wail, P. J . Planar Chromatogr.--Mod. TLC 1988, 7, 357-359. (R11) Berndt, J. A.; Poole, C. F. J . Planar Chromatogr.--Mod. TLC 1988, 7 , 174-1 77. (R12) Oolf, S. W.; Graef, V.; Schiller, J. T.; Hischer, H.; Funk, W. Bbmed. Chromatogr. 1987.2 , 189-192. (R13) Jansen, E. H. J. M.; Van den Bosch. D.;Stephany, R. W.; Van Look, L. J.; Van Peteghem, C. J . Chromtogr. 1989,489, 205-212. (R14) Medina, M. B.; Schwartz, D. P. Food AWit. Contam. 1987, 4 , 415-427.

AMI. Chem. 1990, 62,381 R-39413 (R15) Novakovk, J.; Agbaba, D.; Zlvanov-Staklc, D.; olisovic, L. J . phann. &be1888, 44, 230-234. (RIB) Sashldher, R. 6.; Sudershan, R. V.; Ramakrlshna. Y.; Nahdi, S.; Bhat, R. V. Analyf (London) 1988, 113. 809-812.

8. Toxkrr (SI) BetIna, V. J . ChrOmetOgr. 1989, 477, 187-233. (S2) Scott,P. M. F w d A m . Ccntam. 1888, 6,283-305. (S3) Shepherd, M. J.; Mortlmer, D. N.; Gilbert, J. J . Assoc. Public Anal. 1987, 25. 129-142. (54) Wilson, D. M. Arch. Envkon. Contam. Toxlcol. 1989. 18, 308-314. (55) Abramson, D.; Thorstelnson, T.; Forest, D. Arch. Envkon. Contam.

-.

raxlm. . -. -. . iaaa. .- - 18.327-330 .- , - -. - - -. (S6) Frisvad, J. C.; Flltenborg, 0.; Thrane, U. Arch. Envkon. Contam. Toxicd. 1888. 18. 331-335. (57) Tomllns, K.'I.; Jewers, K.; Coker, R. D. C h f ~ f o g r 8 p h l e1888, 27. 67-70. (S8) Boyacioglu, D.; Gonul, M. J . Assoc. Off. Anal. Chem. 1888, 7 1 , 280-282. (S9) Kublcek. E. M.; Franz, K.; Hober, H. G. Emehrung (Vknna) 1988, 12, 302-305. (SIO) Coker. R. D.; Jewers, K.; TomHns, K. I.; Biunden. G. Chromefop8phia 1888, 2 5 , 875-880. 6 1 1 ) Anon. (Swk.) SU, Schwek. Lab.-.?. 1987, 44, 473-474. Chem. Abstr. 1888, 108, 73902d. (512) Enjalbert, F.; Bouvier, M. J.; Andary, C. J. chromefogr. 1989, 462, 442-447. (S13) (3uenero. M.; Pineyro, A.; Waksman; N. Toxicon 1887, 25, 565-568. 614) Tomllns, K. I.; Jewers, K.; m e r , R. D.; Nagler, M. J. chromatogrephle 1888. 27. 49-52. (SI@ Wang. Y . C.; Yang, C. K.; Ling, K. H. J. Clin. Blochem. Soc.1987, 16, 47-53. T. Mbcrllaneow Orgnnk Compounds

Bhushen, R.; Aii, 1. Arch. -rm. (Welnheim, Oer.) 1987, 320, 1186-1 187. (T2) Mandrou, 6.; Charlot, C.; Tsobze, A. D. Ann. Feklf. Expert. C h h . TOXlcol. 1888, 81, 323-332. chem.AbStr. 1889. 110, 55866g. (T3) Brasseur, T.; Angonot, L. Bull. Llakon-(;roupe polyphenols 1986, 13, 139-141. Chem. Abstr. 1988, 108, 4408W. (T4) Dondi, F.; OrasslnCStrazza, G.; Kahie, Y. D.; Lodi, 0.; Pletrogrande. C.; Reschlgilan, P.; Blghi, C. J . Chfomatogr. 1989, 462, 205-217. (TS) Klotz, H. Tern&, Swfactanfs, Detefg. 1887, 2 4 , 370-373. Chem. Abstr. 1988, 108, 160593~. (T6) Csefhatl, T.; Somogyi, A. J . Chromatogr. 1888, 446, 17-22. (T7) Nishkata, M. J. Chromatcgr. 1987, 408, 449-452. (T8) De Splegeber, B. M. J.; Llevens, D.; Siegers, G.; Van den Bossche, W.; De Moerloose, P. J . Plenar Chromfogr.--Mod. nc 1888, 7 , 148-149. (T9) De Splegeleer, 8. M. J.; De Moerloose, P. J. Planar Chromafcgr.m. nc 1888, i,61-64. ( T l O ) De KrujH, N.; Rijk, M. A. H.; Pranoto-Soetardhi, L. A.; Schouten, A. J . chrometoqr. 1887, 410, 395-411. ( T i l ) Davldkova, P. J. Inf. Rec. Meter. 1888, 16, 121-132. (T12) K m . D.; Hartmann, M.; Stein, A.; Schnabelrauch, M.; Spangenberg, S.; (3rOSs. M.; Kiepei, M.; Jumar, A. J . C h l o g r . 1888. 438, 122-125. (T13) Munavaill, S.; Panneila, M. J . Chromatogr. 1988, 437, 423-428. Tetenyi, P. Acta phann. Hung. 1887, (T14) Kery, A.; Turlak, 0.; Zambo, I.; 57, 228-238. (TI51 Ranny, M.; Pokorny, J. J. Pianar Chfom8fogr.-Mod. n C 1988, 7 , 255-257. (T16) Bkg8nowsk8, M. L.; Glowniak, K. Chromatographla 1888, 2 5 , (TI)

. .-.

I.l.l .- 1 1 8

(T17) Zogg, G.; Nyiredy, S.; Stlcher, 0. J. Li9. Chromatcgr. 1987, 10, 3605-3621. (TIS) Sherma, J.; Schafer, S. L.; Morris, K. J. Liq. Chromafogr. 1887, 70, 3585-3593.

(T19) Shema, J.; Pilgrim, M. J . Plenar chromefogr.--Mod. TLC 1988, 1 , 360-3131, (T20) Lawson, D. R.; Danehower, D. A. J . Chromafogr. 1988, 463, 429-440. (T21) Juhasz, 0.; Kozma, P.; Urbanyi Sesztak, M. Roc. Inf. Conf. Role Formahhy& B M . Sysf., 2nd 1987. 203-207. Chem. Abstr. 1888, 109, 20283s. (T22) Heimler, D.;VMrich. V. J . Chromafogr. 1888, 448, 301-305. (T23) Haensei, W.; Stroemmer, R. Msch. Lebensm.-Rundsch. 1987, 83. 315-319. Chem. Abstr. 1988, 708, 36371). (T24) Funk, W.; Heinz. B.; Michel, H.; Vonderheid. C. GIT-Suppl. 1987, ( 3 ) , 4-6, 9-11. Chem. Abstr. 1988, 108, 27007t. (T25) ECAgamy, R.; Hofmann, H.; Seifert, G. phann. Ztg. 1888, 733, 87-89. Chem. Abstr. 1888, 109, 79818~. (T26) Duez. P.; Chamart, S.; Hanocq, M.; Sawadogo, M. J . Plenar chrometogr.-Mod. nc 1888, 7,313-316. U. Inorganic8 and Molal-Organla (UI) Robards, K.; Clarke, S.; Patsalides, E. Analyst (London) 1888. 113. 1757-1779. (U2) Deshmukh. I.; Kharat, R. B. J . Liq. Chromafogr. 1888. 72, 937-947. (U3) Dabrai, S. K.; Muktawat, K. P. S.; Rawat, J. P. Anal. Left. 1988, 2 1 , 6 13-620. (U4) Nath, K. V. S.; Tendon, S. N. J . Liq. Chromefogr. 1988, 7 7 , 1433- 1439. (US) Mohammad, A.; Fatima, N. c h f ~ f o g r 8 p h k r1988, 2 5 , 536-538. (U6) Ajmai, M.; Mohammad, A.; Fatima, N.; Khan, A. H. J. Planer ChromafOgr.-Mod. n C 1988, 1 , 128-134. (U7) Ajmai, M.; Mohammad. A.; Fatima, N.; Ahmad. J. J . Planar Chromafogr.-Mod. n C 1988. 1 , 239-245. (U8) AJmal, M.; Mohammad, A.; Fatima, N. Indian J . Chem., Sect. A 1888, 28A, 91-92. (U9) AJmai, M.; Mohammad, A.; Fatima, N. Mlwmhem. J . 1988, 37, 314-321. (UIO) Shimizu, T.; Suzuki, Y.; hose, C. Chromatogfephia 1987, 2 3 ,

----.

R A R R50 -1-

(U1I ) Shlmizu, T.; Arikawa. N.; Mlyazak, T.; Nonaka, K. J . Plenar Chromatogr.-Mod. nc 1980,2,90-92. (U12) Rajput, R. P. S.; Misra, A. K.; Agrawal, S. J . Planar Chromatcgr.Mod. TLC 1988. 1 . 349-350. (U13) Ninomlya, S.; Takeda, N.; Ish&, K. Fresenlus' 2.Anel. Chem. 1888, 332, 798-801. (U14) Mohammad, A.; Fatima, N. Chromafogf8phia 1987. 2 3 , 653-656. (U15) Kuroda, R.; Ishlmaru, S.; Oguma, K. Anel. Sci. 1988, 4 , 667-669. (Ul6) Kuroda, R.; Adachi, M.; Oguma, K. ChfOm8fOgraphia 1988, 25, 989-992. (U17) HadzlJa, 0.; Tonkovlc, M.; Iskric, S. J. Li9. Chromatcgr. 1987, 10. 3673-3679. (U18) Ajmai, M.; Mohammad, A.; Fatima, N.; Ahmad, J. J . Pkrnar Chromatogr.--Mod. nc 1988, 1,329-335. (U19) Upadhyay, R. K. Chromatcgraphia 1888, 2 5 , 324-326. (U20) Vuckovic, G.; Mailnar, M. J.; Celap, M. B. J . Chromafogr. 1888, 454, 362-366. (U21) Bottura, G.; Pavesi, M. A. Mlcrmhem. J. 1887, 35, 223-226. (U22) Tomboullan, P.; Walters, S. M.; Brown, K. K. Mi&rochim. Acfa 1987, 2 , 11-19. (U23) Vuckovic, G.; Juranlc, N.; Celap, M. B. J . Chromafogr. 1988. 367, 217-221. (UG) Sihuster, M.; Koenig, K. H. Fresenius' 2.Anel. Chem. 1988, 331, 383-386. Chem. Abstr. 1989, 110, 17771q. (U25) Haworth. D. T.; Lunkenheimer, J. K.; Das, M. J . Liq. Chromafogr. 1987, 10, 1327-1348. (U26) Ray, R. K.; Kauffman, G. 8. J. Chromafogr. 1988, 442, 381-385. (U27) Janjic, T. J.; Tesic, 2. L.; Vuckovic. G. N.; Celap, M. B. J . Chromatwf. 1887, 404, 307-312.

Size Exclusion Chromatography Howard G. Barth* and Barry E. Boyes Du Pont Company, Central Research & Development Department, Experimental Station, P.O. Box 80228, Wilmington, Delaware 19880-0228

INTRODUCTION Size exclusion chromatography (SEC), also referred to as gel permeation chromatography (GPC)or gel filtration chromatography if aqueous mobile phases are used, is the premier technique for rapidly determinin the molecular weight distribution of macromolecules. Unfike other liquid chromatogra hic techniques, solutepacking interactions are absent and t i e separation mechanism is based on molecular size. 0003-2700/90/0362-381R$O9.50/0

During this review period, several ma'or trends have become apparent with respect to SEC. There has been less emphasis on theory and band broadenin and more attention placed on the use of molecular-wei Et-sensitive detectors (light scattering and viscometry) for fetermining absolute molecular weight distributions and for measuring polymer branching. By employing information-rich detectors or multidimensional chromatographic approaches, SEC is now being used more often for the characterization of copolymers, as well as for biopolymers. The development of new analytical SEC 0 1990 American Chemical Society

381 R