60 Diffusion in Granular Zeolites D. P. TIMOFEEV
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch060
Institute of Physical Chemistry, Academy of Science of USSR, 31 Lenin Avenue, Moscow
Three modes of vapor diffusion in granular zeolites and some results are discussed. Thefirstmode involves diffusion of adsorbate through crystals and along secondary pores. On the basis of steady-state diffusion experiments, it was concluded that diffusion within the zeolite crystals is not significant as a contribution to total diffusion of organic vapors through the granule. In the second and the third modes, diffusion to the central parts of a granule is limited to secondary pores. For these modes which differ in the ratio of diffusion rates in the crystals and in the secondary pores, approximate equations of kinetics of adsorption are derived, and their agreement with experimental data is discussed.
C y n t h e t i c zeolites often are e m p l o y e d as s p h e r i c a l o r c y l i n d r i c a l pellets ^
c o m p o s i n g the aggregate o f e l e m e n t a r y crystals. Spaces b e t w e e n t h e
crystals f o r m t h e secondary p o r o u s structure w i t h p o r e d i m e n s i o n s o f a p p r o x i m a t e l y the same o r d e r as the d i m e n s i o n s o f the crystals. B o t h t h e first
( p o r o s i t y o f crystals) a n d t h e s e c o n d a r y p o r o s i t y a r e significant t o
k i n e t i c s of a d s o r p t i o n . D i f f u s i o n coefficients i n t h e crystals d e p e n d m a i n l y o n the t y p e a n d i o n i c f o r m o f the zeolite a n d o n the nature o f the a d s o r b i n g substance (2).
D e p e n d e n c e o f t h e d i f f u s i o n coefficients i n secondary
pores o n these factors is r e l a t i v e l y l i g h t ; together, t h e y a r e significantly d e p e n d e n t o n t h e c o n d i t i o n s of mass exchange w i t h t h e a m b i e n t gas media.
A q u a n t i t a t i v e d e s c r i p t i o n o f d i f f u s i o n i n a g r a n u l e is a r a t h e r
difficult task, t h e t o t a l d i f f u s i o n coefficient b e i n g a c o m p l e x f u n c t i o n o f m a n y variables. T h e q u a l i t a t i v e side o f the process is g i v e n b e l o w , w i t h some q u a n t i t a t i v e ratios o f use i n t h e e v a l u a t i o n assessments. T h r e e modes o f d i f f u s i o n i n a g r a n u l e , s c h e m a t i c a l l y r e p r e s e n t e d i n F i g u r e 1, are possible.
T h e first m o d e ( F i g u r e l a ) i n v o l v e s d i f f u s i o n o f
American Chemical Society Ubrary
In Molecular Sieve 1155Zeolites-II; 16th St,Flanigen, N.W. E., et al.; Advances in Chemistry; Wtehinfton. American Chemical Washington, DC, 1971. D.CSociety: xme
248
MOLECULAR
SIEVE
ZEOLITES
Π
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch060
I 1 I
a Figure
c 1.
Three modes of diffusion of adsorbate in a granule
adsorbate m o l e c u l e s t h r o u g h gaps b e t w e e n t h e crystals a n d t h r o u g h the crystals. I n t h e s e c o n d a n d t h i r d m o d e s , d i f f u s i o n to c e n t r a l parts of a g r a n u l e occurs o n l y t h r o u g h s e c o n d a r y pores.
A c c o r d i n g to t h e s e c o n d
m o d e , adsorbate m o l e c u l e s penetrate easily into t h e o p e n i n g s of a d s o r p t i o n cells a n d diffuse r a p i d l y i n t o t h e crystals ( F i g u r e l b ) . T h e a d s o r p t i o n c a p a c i t y of t h e crystals p a r t i c i p a t i n g i n t h e process is p r a c t i c a l l y exhausted as t h e d i f f u s i o n flow progresses i n t o the depths of the g r a n u l e . I n t h e t h i r d m o d e ( F i g u r e l c ) , d i f f u s i o n i n t o t h e crystals is s l o w a n d causes o n l y p a r t i a l
filling.
I n o r d e r to v e r i f y t h e d i f f u s i o n t h r o u g h t h e crystals, w e i n v e s t i g a t e d the steady-state d i f f u s i o n of a n u m b e r of o r g a n i c v a p o r s i n granules of zeolite C a A a n d N a X ( 12, 13 ). T h e experiments w e r e c a r r i e d o u t i n the presence of carrier gas at a t m o s p h e r i c pressure. G r a n u l e s of c o m m e r c i a l zeolite samples w e r e s e c u r e d w i t h h e r m e t i z i n g paste i n t o t h e orifice of a n a l u m i n u m m e m b r a n e , a n d p o w d e r e d c r y s t a l l i c zeolite w a s pressed i n t o t h e orifice. A p u r e c a r r i e r gas w a s streamed past one face of t h e m e m b r a n e as a gas m i x t u r e c o n t a i n i n g adsorbate v a p o r s w a s s t r e a m e d over t h e other face. W h e n a steady state w a s r e a c h e d , t h e c o n c e n t r a t i o n o n t h e granule's reverse side w a s d e t e r m i n e d , a n d t h e d i f f u s i o n coefficient w a s f o u n d a c c o r d i n g t o the e q u a t i o n
where C i a n d c
2
are t h e concentrations o n the f r o n t a n d reverse side of
the m e m b r a n e (c
2
0.1 C i ) , r e s p e c t i v e l y , ν is v e l o c i t y of c a r r i e r gas,
L a n d F are t h e l e n g t h a n d cross-sectional area of t h e sample. C u r v e s of the t e m p e r a t u r e d e p e n d e n c e of the d i f f u s i o n coefficient of e t h y l a l c o h o l a n d n i t r o g e n i n a g r a n u l e of zeolite C a A - I , g r a i n size
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
60.
Diffusion
TiMOFEEV
3 m m , are represented
in Granular
Zeolites
i n F i g u r e 2.
249
Helium
(curve 2) a n d nitrogen
( c u r v e 4 ) w e r e u s e d as carrier gas i n t h e experiments w i t h e t h y l a l c o h o l . T h e d o t t e d l i n e is c o m p u t e d f o r e t h y l a l c o h o l , as a n o n a d s o r b i n g gas, o n the basis of e x p e r i m e n t a l d a t a o b t a i n e d f o r n i t r o g e n a c c o r d i n g t o t h e equation
^C H OH 2
=
5
£>N
,
2
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch060
a
(2)
' l /mi S
i
m
8
2
where d + d x
σι,2 =
di + d
2
2
,
z
>
Σ Ι
'
3
2 — '
=
M
H
M
2
Y
M
3
'
,
, , A
are the masses a n d g a s - k i n e t i c diameters of the m o l e c u l e s h e l i u m , n i t r o gen, a n d e t h y l a l c o h o l , respectively. I n t h e temperature range 5 0 ° - 1 0 0 ° C , w e m a y i g n o r e a d s o r p t i o n of n i t r o g e n , a s s u m i n g i t as a first a p p r o x i m a t i o n to b e n o n a d s o r b i n g . F i g u r e 2 shows that t h e d i f f u s i o n coefficients of e t h y l a l c o h o l e v a l u a t e d a c c o r d i n g to E q u a t i o n 2 are w e l l i n a g r e e m e n t w i t h t h e e x p e r i m e n t a l values, i m p l y i n g that t r a n s p o r t t h r o u g h t h e a d s o r p t i o n phase is of n o c o n s p i c u o u s
consequence.
n\
Figure
1
25
2 also
1
1
1
50
75
SÛO
shows
the diffusion
°C Figure 2. Effect of temperature on diffusion coefficient of nitrogen (1) and ethyl alcohol (2-4) in the granule of zeolite CaA-I Carrier gas: 1,2,3 = helium, 4 = nitrogen Curve 3 is calculated according to Equation 2
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
250
M O L E C U L A R
SIEVE
ZEOLITES
II
coefficients to b e m a r k e d l y h i g h e r i n presence of h e l i u m as a c a r r i e r gas t h a n i n presence of n i t r o g e n . T h e b u l k of substance transport occurs i n the secondary pores, since t h e change of carrier gas does n o t i n f l u e n c e the transport of adsorbate i n t h e z e o l i t e crystal.
T h e same c o n c l u s i o n
f o l l o w s f r o m c o n s i d e r a t i o n of the t e m p e r a t u r e d e p e n d e n c e of t h e d i f f u s i o n coefficients. ('—' Τ
1 5
These
coefficients
increase
with
increasing
temperature
) w h i c h is characteristic of gas-in-gas d i f f u s i o n . S i m i l a r results
are o b t a i n e d w i t h zeolite N a X ( 1 3 ) . F ( E q u a t i o n 1 ) is t h e f u l l cross-sectional area of t h e sample. T a k i n g Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch060
a c c o u n t of t h e sample's p o r o s i t y , €, a n d of the tortuosity factor of t h e canals, k ( 5 ) , w e are able to find k u s i n g t h e e q u a t i o n
* = γ where D
g
Table
§
is t h e literature v a l u e of t h e gas-in-gas d i f f u s i o n coefficient. I d i s p l a y s values of k f o r g r a n u l a t e d zeolites
C a A - I I (12) a n d the pressed p o w d e r e d zeolite N a X Table I. Zeolite Substance
CaA-I Carrier Gas
Nitrogen
Helium
Ethyl Helium alcohol
Values of k
Zeolite k
Substance
2.6 B e n z o l
CaA-I and
(13).
Pressed Powdered Zeolite
CaA-II Carrier Gas
k
Substance
N i t r o g e n 2.2 B e n z o l
Carrier Gas
k
Helium
2.3
2.7 n - H e x a n e N i t r o g e n 2.0 n - H e x a n e H e l i u m
2.2
Ethyl N i t r o g e n 2.5 alcohol
n-Hexane H e l i u m
2.2
n - H e x a n e N i t r o g e n 2.5
Methyl alcohol
2.2
η-Heptane
Helium
N i t r o g e n 2.6
V a l u e s of k f o r the same zeolite s a m p l e i n experiments w i t h v a r i o u s substances p r a c t i c a l l y d o n o t differ—i.e., k is i n d e p e n d e n t of t h e n a t u r e of substance.
T h i s fact indicates t h e absence of a n y c o n s i d e r a b l e a m o u n t
of substance transport t h r o u g h crystals i n t h e i n v e s t i g a t e d systems. L e t us c o n s i d e r the second m o d e of d i f f u s i o n i n granules of zeolite. Zeolites are c h a r a c t e r i z e d b y h i g h values of a d s o r p t i o n at s m a l l values of e q u i l i b r i u m pressure, t h e c o n c e n t r a t i o n i n t h e a d s o r b e d phase b e i n g m u c h h i g h e r t h a n i n t h e gas phase. presents
a p i c t u r e of l a y e r - b y - l a y e r
filling
thus
T h e s e c o n d m o d e of d i f f u s i o n of t h e granule's a d s o r p t i o n
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
60.
Diffusion
TiMOFEEv
in Granular
251
Zeolites
c a p a c i t y , r u n n i n g f r o m the p e r i p h e r y to the center. I n the l i m i t i n g case ( a r e c t a n g u l a r i s o t h e r m ) , a s h a r p d i v i s i o n w i l l exist b e t w e e n the
filled
a n d the n o n f i l l e d parts of the g r a n u l e . F o r homogeneous a n d i s o t r o p i c g r a n u l e p o r o s i t y , the a d s o r p t i o n v a l u e is p r o p o r t i o n a l to the v o l u m e of the filled p a r t of the granule. I n this case, the r e l a t i v e a d s o r p t i o n v a l u e m a y b e expressed u s i n g the r a t i o of v o l u m e s . C o n s i d e r a s p h e r i c a l g r a n ule
of r a d i u s R, w h o s e a d s o r p t i o n f r o n t p e n e t r a t i o n is x; the r e l a t i v e
adsorption value w i l l be cited
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch060
γ
=
(14) = 3α -
°L
do
3α +
a
2
w h e r e a is the a d s o r p t i o n v a l u e at t i m e t, a
(4)
3
is the e q u i l i b r i u m v a l u e of
0
adsorption, and χ
W e h a v e s i m i l a r case for a c y l i n d e r .
γ
where k
x
k =
=
L/R,
=
2
(
1
+
^ )
" (
α
1
+
^ )
α
2
+
Ι
α
3
( 5 )
R a n d L are r a d i u s a n d l e n g t h of the c y l i n d e r .
If
2, t h e n E q u a t i o n 5 is the same as E q u a t i o n 4. S i n c e the m o v e m e n t of the a d s o r p t i o n f r o n t i n a g r a n u l e is r e l a t i v e l y
s m a l l , the adsorbate d i f f u s i o n i n t o the g r a n u l e m a y b e r e g a r d e d as a p s e u d o s t e a d y process. T h e a d s o r p t i o n f r o n t h a v i n g progressed for distance x, the
steady
d i f f u s i o n rate w i l l b e dt where c
0
=
R
4 x j D
(
~ χ
R
x
^
(6)
is the c o n c e n t r a t i o n o n the external surface of the granule.
The
c o n c e n t r a t i o n of adsorbate i n the n o n f i l l e d p a r t of the g r a n u l e is 0. T h e a d s o r p t i o n f r o n t w i l l t r a v e l a distance dx t o w a r d the center of the g r a n u l e i n a t i m e dt at this p a r t i c u l a r distance f r o m the center, the a d d i t i o n a l l y filled v o l u m e b e i n g
(R — x) dx. 2
4?r
t i o n a l to the a d s o r p t i o n increase dm,
T h i s v o l u m e is p r o p o r
i.e.,
dm = 4xz (R -
x) dx 2
(7)
w h e r e ζ is the c a p a c i t y of v o l u m e u n i t of adsorbent. F r o m E q u a t i o n s 6 a n d 7, w e
find
dx
dt
DRCQ z(R
— x)x
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
(8)
252
MOLECULAR
B y d i v i d i n g variables a n d i n t e g r a t i n g , w e SRx
-
2
SIEVE
ZEOLITES
II
find
2x* = K t
(9)
°
(10)
where κ
=
6
D
R
c
ζ
E q u a t i o n 9 assumes t h e f o r m
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch060
χ (3α -
2α ) = 2
ψ
(11)
2
a n d since 3α -
2α ^
3α -
2
3α + 2
α
(12)
3
w e have
Χ Ί
_
Kt
"
β
(13)
2
It f o l l o w s f r o m E q u a t i o n 13 that
χ ~
t -
(14)
Τ
and t α œ —— γίοο
(15)
w h e r e ί „ is the t i m e i n w h i c h the a d s o r p t i o n f r o n t is at the center of the granule. A f t e r i n s e r t i n g v a l u e of a i n E q u a t i o n 4, w e f i n d
ϊ — έ ~ ; ( έ ) '
+
Μ έ ) '
w h i c h approximates to
^ = έ- (έ) (έ) 2
the order of p r e c i s i o n b e i n g ^
3
3
2+
3
(17)
10%.
E q u a t i o n 17 enables us to find t i m e u s i n g o n l y 1 p o i n t of the e x p e r i m e n t a l c u r v e , e.g., y = 0.5. A c c o r d i n g to E q u a t i o n 17, a d s o r p t i o n v a l u e y = 0.5 is r e a c h e d i n the r e l a t i v e t i m e fo.eA» = 0.09; thus, the t i m e of c o m p l e t e filling of a granule ( s p h e r i c a l ) is = ίο.δ/0.09.
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch060
60.
Diffusion in Granular Zeolites
TIMOFEEV
253
y
Οβ
0,6 oh 0,2\ 20
40 60 80
iQ0 4&1'4C~16C •
*t
}
Figure 3.
m in
Experimental data plotted according to Equa tion 19; Zeolite CaA-II
a) n-Hexane (t, °C: 1 = 200°, 2 — 100% 3 = 20°; c = 10 mg/l) b) Ethyl alcohol (t, °C: 1 = 200°, 2 = 100°, 3 = 20°; c = 20 mg/l) c) n-Dodecane ft, °C, c mg/l: 1 = 195 and 7.1; 2 = 204 and 6.8; 3 = 111 and 9.8; 4 = 107 and 9.4; 5 = 110 and 8.9) If the d i f f u s i o n coefficient is k n o w n , t i m e t^ m a y b e f o u n d a c c o r d i n g to t h e e q u a t i o n zR
2
6Dc
(18) 0
w h i c h f o l l o w s f r o m E q u a t i o n 13 after u s i n g t h e assumptions a = γ =
1.
T h e reverse
experimental value i A
x
similar mode
1 and
is e q u a l l y possible—i.e., e v a l u a t i o n of D b y a n . of s h e l l p r o g r e s s i v e
combustion
d e s c r i b e d b y P . B . W e i s z a n d R . D . G o o d w i n (18)
coke
has
and W . J. Blinow
been (4).
E q u a t i o n 17 has b e e n c h e c k e d against e x p e r i m e n t a l d a t a i n a n u m b e r of investigations (1,16,17).
R e f . 17 dealt w i t h t h e k i n e t i c s of a d s o r p t i o n
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
254
MOLECULAR
of v a p o r s of n-hexane,
η - o c t a n e , n-decane,
SIEVE
ZEOLITES
Π
n-dodecane, ethyl alcohol,
p r o p y l a l c o h o l , a n d d i e t h y l ether f r o m a c a r r i e r gas flow ( n i t r o g e n ) zeolite C a A - I I w i t h i n the t e m p e r a t u r e range 2 0 ° - 2 0 0 ° C .
by
Measurements
w e r e c a r r i e d o u t w i t h single granules b y the g r a v i m e t r i c m e t h o d u n d e r d y n a m i c c o n d i t i o n s . T h e flow s p e e d w a s chosen so that the k i n e t i c w a s c o n t r o l l e d b y the rate of i n t e r n a l d i f f u s i o n . Z e o l i t e granules u s e d i n these experiments w e r e i n the f o r m of c y l i n d e r s w h o s e lengths a n d diameters were equal. Some results of experiments are s h o w n i n F i g u r e 3 a c c o r d i n g t o the Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch060
l i n e a r f o r m of E q u a t i o n 17.
(1 - 2)ΐ/3 Γ
χ_ A .
=
(19)
t
F i g u r e 3 shows that e x p e r i m e n t a l d a t a are i n satisfactory w i t h E q u a t i o n 19. F o r values ( 1 — γ ) 2
t i v e a d s o r p t i o n values γ >
1 / 3
t Assuming a =
~ , the a p p r o x i m a t e degree of filling of crystals
near the g r a n u l e surface w i l l b e
"
γ
= 3
τ Ϋπ, ' α'= M*{
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
(31)
258
M O L E C U L A R SIEVE ZEOLITES
II
whence a' y = 9A f
(a 1
a) (1 -
(32)
a) da 2
ο
B y i n t e g r a t i n g , w e find Y
9A ( 0 . 5 « * - I
(33)
+
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch060
or (34) where Β
and
β
(35)
2
It f o l l o w s f r o m E q u a t i o n 34 that the a d s o r p t i o n rate i s i n f l u e n c e d b y d i f f u s i o n coefficients i n t h e c r y s t a l a n d secondary p o r o s i t y b y t h e d i m e n -
15 , Ζ Kurve Figure 5.
Curves γ — τ for various values of Β according to Equation 34 Dotted lines represent experimental data Curves 1-5 as in Figure 4
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
60.
Diffusion
TiMOFEEV
in Granular
Zeolites
259
sions of crystals a n d granule. B y v i r t u e of assumptions 26 a n d 3 1 , E q u a t i o n 32 is v a l i d u p to γ «
0.1-0.2.
F i g u r e 5 d i s p l a y s curves, p l o t t e d i n a c c o r d a n c e w i t h E q u a t i o n 34 f o r v a r i o u s values of B. It also shows e x p e r i m e n t a l d a t a o b t a i n e d i n e v a c u a t e d systems a n d f r o m a d s o r p t i o n f r o m a carrier gas (15).
flow
(nitrogen)
T h e e x p e r i m e n t a l plots f o l l o w t h e same p a t t e r n as t h e c o m p u t e d
ones. A c c o r d i n g to E q u a t i o n 35, the d i f f u s i o n coefficient
i n crystals is
given b y Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch060
D
l
= ^
(36)
E q u a t i o n 36 p r o v i d e s a basis f o r assessing t h e v a l u e D i f r o m e x p e r i m e n t a l d a t a w i t h g r a n u l a t e d zeolites. V a l u e Β a n d ratio τ/t are f o u n d b y y — t plot. Assuming r =
2.10" c m , w e o b t a i n t h e f o l l o w i n g values of D i f o r 4
the d a t a of F i g u r e 5: η-heptane, 1 0 0 ° C - 1.5 Χ 3.7 χ
10" ; p r o p y l a l c o h o l , 0 ° C - 1.6 Χ 14
5 0 ° C - 6.9 χ 1 0 , 0 ° C - 3.4 χ 1 0 14
15
10"
14
10"
18
cm /sec, 20°C2
c m / s e c ; d i e t h y l ether, 2
c m / s e c . T h e s e values are a c c e p t a b l e 2
limits.
Literature Cited (1) Alekseeva, Ν. I., Timofeev, D. P., Sharifova, Ε. M., Zh. Fiz. Khim. 1966, 40, 238. (2) Barrer, R. M., Trans. Faraday Soc. 1949, 45, 358. (3) Barrer, R. M., Ibitson, D. Α., Trans. Faraday Soc. 1944, 40, 206. (4) Blinow, W. J., Dokl. Akad.Nauk1946, 52, 511. (5) Carman, P. C., "Flow of Gases through Porous Media," Butterworths, London, 1956. (6) Clarke, J. K., Ubbelohde, A. R.,J.Chem. Soc. 1957, 2050. (7) Cummings, G. Α., Ubbelohde, A. R.,J.Chem. Soc. 1953, 3751. (8) Fischer, J.C.,J.Appl. Phys. 1951, 22, 74. (9) Frischat, G. Η., Z. Angew. Phys. 1967, 22, 281. (10) Fuller, Ε. N., Schetter, P. D., Giddings, S. C., Ind. Eng. Chem. 1966, 5, (11) Le Claire, A. D., Phil. Mag. 1951, 42, 468. (12) Ponomarev, A. S., Sharifova, Ε. M., Timofeev, D. P., Dokl. Akad. Νauk 1967, 177, 395. (13) Ponomarev, A. S., Timofeev, D. P., Sbornik "Tseolity, ikh sintez, svoistva i primenenie". Izd. "Nauka", 1965. (14) Timofeev, D. P., Zh. Fiz. Khim. 1965, 39, 2735. (15) Timofeev, D. P., Tverdokhleb, Ν. Α., Sbornik Trudov 3-go Soveshchaniya po Adsorbentam, 1969 (in print). (16) Timofeev, D. P., Tverdokhleb, Ν. Α., Zh. Fiz. Khim. 1966, 40, 2351. (17) Timofeev, D. P., Tverdokhleb, Ν. Α., Sharifova, Ε. M., Zh. Fiz. Khim. 1968 42 2899. (18) Weisz, P. B., Goodwin, R. D.,J.Catalysis 1963, 2, 397. RECEIVED January 30,
1970.
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.