Article pubs.acs.org/jmc
Multiparameter Optimization in CNS Drug Discovery: Design of Pyrimido[4,5‑d]azepines as Potent 5‑Hydroxytryptamine 2C (5-HT2C) Receptor Agonists with Exquisite Functional Selectivity over 5‑HT2A and 5‑HT2B Receptors R. Ian Storer,*,†,# Paul E. Brennan,†,∞ Alan D. Brown,†,# Peter J. Bungay,§,# Kelly M. Conlon,‡ Matthew S. Corbett,∥ Robert P. DePianta,∥ Paul V. Fish,†,× Alexander Heifetz,⊥ Danny K. H. Ho,† Alan S. Jessiman,† Gordon McMurray,‡,# Cesar Augusto F. de Oliveira,∥ Lee R. Roberts,† James A. Root,‡ Veerabahu Shanmugasundaram,∥ Michael J. Shapiro,∥ Melanie Skerten,† Dominique Westbrook,‡ Simon Wheeler,† Gavin A. Whitlock,† and John Wright‡ †
Discovery Chemistry, ‡Discovery Biology, and §Pharmacokinetics, Dynamics and Metabolism, Sandwich Laboratories, Pfizer Global Research and Development, Ramsgate Road, Sandwich, Kent CT13 9NJ, United Kingdom ∥ Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States ⊥ Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, United Kingdom S Supporting Information *
ABSTRACT: A series of 4-substituted pyrimido[4,5-d]azepines that are potent, selective 5-HT2C receptor partial agonists is described. A rational medicinal chemistry design strategy to deliver CNS penetration coupled with SAR-based optimization of selectivity and agonist potency provided compounds with the desired balance of preclinical properties. Lead compounds 17 (PF-4479745) and 18 (PF-4522654) displayed robust pharmacology in a preclinical canine model of stress urinary incontinence (SUI) and no measurable functional agonism at the key selectivity targets 5-HT2A and 5HT2B in relevant tissue-based assay systems. Utilizing recent advances in the structural biology of GPCRs, homology modeling has been carried out to rationalize binding and agonist efficacy of these compounds.
■
INTRODUCTION
A recent industry-wide search for potent and selective 5HT2C agonists led to the discovery of lorcaserin (2) (APD-356) which gained FDA approval in 2012 for the treatment of obesity (Figure 1).4 At the time of carrying out the studies described herein, vabicaserin (3) (SCA-136) was also in clinical trials for the treatment of schizophrenia.5 In addition, multiple other small molecule 5-HT2C agonists have been reported to be
Sertonin, 5-hydroxytryptamine (5-HT) (1), is the endogenous agonist of at least 14 receptor subtypes, classified into seven families, 5-HT1−7. The 5-HT2 class has three members 2A, 2B, and 2C. Although 5-HT2A and 5-HT2B receptors are known to also be expressed peripherally, the expression of 5-HT2C receptors is believed to be restricted to the central nervous system (CNS). The 5-HT2C receptor has been viewed as an attractive drug target for many years with potential application for the treatment of a number of medical conditions including obesity, psychiatric disorders, sexual dysfunction, and urinary incontinence.1 More recently, selectivity over agonism of 5HT2A and 5-HT2B receptor subtypes has become a major imperative; 5-HT2A agonists are known to cause hallucinations and drive adverse cardiovascular (CV) effects,2 while 5-HT2B agonists have been associated with chronic irreversible cardiac valvulopathy and pulmonary hypertension, as illustrated by the market withdrawal of the unselective serotonergic agonist FenPhen in 1997.3 © XXXX American Chemical Society
Figure 1. Selected 5-HT2C agonists. Received: March 1, 2014
A
dx.doi.org/10.1021/jm5003292 | J. Med. Chem. XXXX, XXX, XXX−XXX
Journal of Medicinal Chemistry
Article
and amines (5−11) led to improvements in both potency at 5HT2C and selectivity over both 5-HT2A and 5-HT2B (Table 1). Interestingly, these selectivity improvements were also broadly coupled with an unexpected decrease in Emax of agonism efficacy at 5-HT2C. Additionally, compounds containing aliphatic 4-amino substituents (8−11), were generally subject to P-glycoprotein (P-gp) mediated efflux as measured using an in vitro MDCK cell line transfected with P-gp.11 As efflux by Pgp at the blood−brain barrier has been well characterized as a mechanism that restricts entry of drugs into the CNS, it was recognized that in vivo functional efficacy of compounds acting as P-gp substrates may be limited by impairment of CNS penetration.12 The in vitro MDCK-MDR1 cultured cell monolayer assay has been demonstrated to be able to distinguish P-gp substrates from non-P-gp substrates by measuring efflux ratio (ER), whereby compounds with ER > 2.5 are considered to be significant substrates of P-gp.11,13 Compound 7 (R = MeO, non-P-gp substrate with low Emax of 22%) and compound 8 (R = MeHN, P-gp substrate with moderate Emax of 40%) exhibited the requisite levels of subtype selectivity of >100-fold over 5-HT2B and presented different levels of agonist Emax. As a result, both 7 and 8 were tested in an established human efficacy correlated preclinical in vivo canine model of stress urinary incontinence (SUI). This peak urethral pressure (PUP) model was used to measure dose-dependent increases in urethral tone relative to prototype lead compound 4 (Figure 3a).10 Refer to the Supporting Information for a detailed description of the PUP model and its translation to human disease. This dog model was used to inform on in vivo efficacy for the 5-HT2C mechanism and as a translatable efficacy surrogate for a range of diseases including SUI, obesity, erectile dysfunction, and psychotherapeutic disorders.6h Compound 7 did not exhibit increases in PUP to a degree viewed as biologically meaningful in comparison to PUP increases elicited at clinically relevant exposures of duloxetine and reboxetine, despite being freely CNS penetrant, as assessed by measuring unbound concentration in plasma and cerebrospinal fluid (CSF/free plasma ratio of 0.6, suggesting
in early clinical development or undergoing preclinical evaluation.6 Previously, Pfizer has disclosed several selective 5-HT2C receptor agonists, 7 including compounds containing a pyrimido[4,5-d]azepine template that led to the selection of compound 4 as a first generation lead from this series (Figure 2).8 Although compound 4 delivered favorable levels of efficacy
Figure 2. Compound 4 showed measurable 5-HT2B agonism.8a
and safety in preclinical studies, a weak signal for 5-HT2B agonism was observed in in vitro human colon tissue studies at high concentration.9 Considering potential safety risk implications of chronic dosing of a compound with even weak 5-HT2B agonism, further medicinal chemistry effort was focused toward design of a CNS penetrant 5-HT2C agonist candidate molecule with improved selectivity over 5-HT2B. At the same time it was necessary to retain good preclinical in vivo efficacy determined using a canine model of stress urinary incontinence (SUI) for clinical dose-prediction.10 This article describes the compound design rationale and results of these studies.
■
RESULTS AND DISCUSSION Designing Increased Subtype Selectivity: 4-Substituted Pyrimidines. Initial work focused on the incorporation of small heteroatom-containing groups at the synthetically enabled 4-position of the pyrimidine to target directional polar electrostatic interactions. On the basis of previous knowledge of structure−activity relationships (SARs) for related templates, it was postulated that such modifications would retain agonist activity at 5-HT2C and lead to enhanced receptor subtype selectivity. In accordance with the hypothesis, the introduction of small heteroatom linked substituents such as alkoxyethers Table 1. 4-Substituted Pyrimidine Derivatives
compd
R
log D
5-HT2C EC50, nM (Emax)a,b
5-HT2C binding Ki, nM
5-HT2B EC50, nM (Emax)a,c
5-HT2A EC50, nM (Emax)a,d
MDCK-MDR1 ERe
>10000 (41%), n = 14
3400 (51%), n = 12
1.2
NTf
NTf
3.0
NTf
NTf
NTf
1.0
190 {164, 224} (75%), n = 19 160 {135, 209}, n = 19 1460 {1204, 1685} (12%), NTf n=4 >10000 (20%), n = 4 958 {458, 6483}, n=2 51 {29, 68} (22%), n = 6 36 {24, 53}, n = 5
>10000 (10000 (10000 (10000 (10000 (20% in the dog correlates with clinically relevant exposures and efficacy in humans for both compounds.10,14 (b) Recombinant, stably expressed human 5-HT2C CHO K1 cell line, FLIPR agonist dose−response curves illustrating differences in efficacy Emax.
sufficient CNS exposure). The lack of relative effect was likely due to low functional agonism (Emax = 22%, Figure 3b), rendering this compound a weak partial 5-HT2C agonist in vivo; it is plausible that this compound could act as a functional antagonist in the presence of a full agonist in vivo, although this has not been investigated. Compound 8 exhibited greater agonist efficacy (Emax = 40%, Figure 3b) and was able to elicit an increase in PUP but only at high plasma concentrations and also exhibited appreciable variability between animals, with some individuals not responding to compound treatment. Compound 8 was also a P-gp substrate (ER = 10) and likely to have restricted CNS penetration (CSF/free plasma ratio of 0.1), requiring higher plasma concentrations to achieve sufficient occupancy of 5-HT2C receptors in the CNS. Although these investigations halted the progression of both compounds 7 and 8, they provided key information to guide future design objectives by defining an acceptable target efficacy Emax of >40% in the FLIPR assay and confirmed the need for ER of 95% purity. LRMS (ESI, APCI) m/z 405 [M + H]+.
■
Article
AUTHOR INFORMATION
Corresponding Author
*Phone: +44 (0)1304 641854. E-mail: ian.storer@pfizer.com. Present Addresses #
R.I.S., A.D.B., P.J.B., G.M.: Pfizer Neusentis, The Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom. ∞ P.E.B.: Structural Genomics Consortium, Target Discovery Institute, Nuffield Department of Medicine, Oxford, OX3 7BN, United Kingdom. × P.V.F.: UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom. Notes
The authors declare no competing financial interest.
■
ACKNOWLEDGMENTS We acknowledge the Primary Pharmacology Group for screening data, Hau Gao for the cMDR efflux model, and support from Laure Hitzel and Juliette Love in the Separation and Analytical Services group for chiral analysis and preparative chromatography. We also thank Jianmin Sun for coordinating the collection of HRMS data on selected compounds.
■
ABBREVIATIONS USED ADME, absorption, distribution, metabolism, and excretion; Boc, tert-butyloxycarbonyl; BBB, blood−brain barrier; Ceff, efficacious concentration; CHO, Chinese hamster ovary; CL, clearance; CSF, cerebrospinal fluid; CNS, central nervous system; CV, cardiovascular; CYP, cytochrome P450; DCM, dichloromethane; DLM, dog liver microsome; Dof, dofetilide; DOI, 2,5-dimethoxy-4-iodoamphetamine; dppb, dog plasma protein binding; ER, efflux ratio; FDA, Federal Drug Agency; FLIPR, fluorescence imaging plate reader; hep, hepatocytes; hERG, human ether-a-go-go-related gene; hppb, human plasma protein binding; HLM, human liver microsome; log D, partition coefficient between octanol and water at pH 7.4; MDCK, Madin−Darby canine kidney; MDR1, multidrug resistance gene 1; PAMPA, parallel artificial membrane permeability assay; PDB, Protein Data Bank; P-gp, Pglycoprotein; ppb, plasma protein binding; PUP, peak urethral pressure; RLM, rat liver microsome; SAR, structure−activity relationship; SDM, site directed mutagenesis; SUI, stress urinary incontinence; Tf, triflate (trifluoromethanesulfonate); TM, transmembrane; TPSA, topological polar surface area; VCD, vibrational circular dichroism
■
REFERENCES
(1) (a) Lee, J.; Jung, M. E.; Lee, J. 5-HT2C receptor modulators: a patent survey. Expert Opin. Ther. Pat. 2010, 20, 1429−1455. (b) Smith, B. M.; Thomsen, W. J.; Grottick, A. J. The potential use of selective 5-HT2C agonists in treating obesity. Expert Opin. Invest. Drugs 2006, 15, 257−266. (c) Rosenzweig-Lipson, S.; Dunlop, J.; Marquis, K. L. 5-HT2C receptor agonists as an innovative approach for psychiatric disorders. Drug News Perspect. 2007, 20, 565−571. (d) Wacker, D. A.; Miller, K. J. Agonists of the serotonin 5-HT2C receptor: preclinical and clinical progression in multiple diseases. Curr. Opin. Drug Discovery Dev. 2008, 11, 438−445. (e) Mbaki, Y.; Ramage, A. G. Investigation of the role of 5-HT2 receptor subtypes in the control of the bladder and the urethra in the anesthetized female rat. Br. J. Pharmacol. 2008, 155, 343−356. (2) (a) Kaumann, A. J.; Levy, F. O. 5-Hydroxytryptamine receptors in the human cardiovascular system. Pharmacol. Ther. 2006, 111, 674− 706. (b) Vollenweider, F. X.; Vollenweider-Scherpenhuyzen, M. F. I.;
ASSOCIATED CONTENT
S Supporting Information *
Synthetic procedures, characterization, and purity analysis of all compounds; selected spectra for key compounds; details of the VCD determination of stereochemical assignment of compounds 16 and 17; detailed descriptions of computational modeling; procedures for the functional, binding, and tissue based assays; detailed in vivo methodology. This material is available free of charge via the Internet at http://pubs.acs.org. J
dx.doi.org/10.1021/jm5003292 | J. Med. Chem. XXXX, XXX, XXX−XXX
Journal of Medicinal Chemistry
Article
Babler, A.; Vogel, H.; Hell, D. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2A agonist action. NeuroReport 1998, 9, 3897−3902. (c) Nichols, D. E. Hallucinogens. Pharmacol. Ther. 2004, 101, 131−181. (d) Villalon, C. M.; Centurion, D. Cardiovascular responses produced by 5-hydroxytriptamine: a pharmacological update on the receptors/mechanisms involved and therapeutic implications. N-S Arch. Pharmacol. 2007, 376, 45−63. (3) (a) Abenhaim, L.; Moride, Y.; Brenot, F.; Rich, S.; Benichou, J.; Kurz, X.; Higenbottam, T.; Oakley, C.; Wouters, E. Appetitesuppressant drugs and the risk of primary pulmonary hypertension. N. Engl. J. Med. 1996, 335, 609−616. (b) Roth, B. L. Drugs and valvular heart disease. N. Engl. J. Med. 2007, 356, 6−9. (4) (a) Fleming, J. W.; McClendon, K. S.; Riche, D. M. New obesity agents: lorcaserin and phentermine/topiramate. Ann. Pharmacother. 2013, 47, 1007−1016. (b) Smith, B. M.; Smith, J. M.; Tsai, J. H.; Schultz, J. A.; Gilson, C. A.; Estrada, S. A.; Chen, R. R.; Park, D. M.; Prieto, E. B.; Gallardo, C. S.; Sengupta, D.; Dosa, P. I.; Covel, J. A.; Ren, A.; Webb, R. R.; Beeley, N. R. A.; Martin, M.; Morgan, M.; Espitia, S.; Saldana, H. R.; Bjenning, C.; Whelan, K. T.; Grottick, A. J.; Menzaghi, F.; Thomsen, W. J. Discovery and structure−activity relationship of (1R)-8-chloro-2,3,4,5-tetrahydro-1-methyl-1H-3-benzazepine (lorcaserin), a selective serotonin 5-HT2C receptor agonist for the treatment of obesity. J. Med. Chem. 2008, 51, 305−313. (5) Ramamoorthy, P. S.; Beyer, C.; Brennan, J.; Dunlop, J.; Gove, S.; Grauer, S.; Harrison, B. L.; Lin, Q.; Malberg, J.; Marquis, K.; Mazandarani, H.; Piesla, M.; Pulicicchio, C.; Rosenzwieg-Lipson, S.; Sabb, A.-M.; Schechter, L.; Stack, G.; Zhang, J. Discovery of SCA-136, a novel 5-HT2C agonist, for the treatment of schizophrenia. Abstracts of Papers, 231st National Meeting of the American Chemical Society, Atlanta, GA, U.S., March 26−30, 2006; American Chemical Society: Washington, DC, 2006; MEDI-021. (6) (a) Monck, N. J. T.; Kennett, G. A. 5-HT2C ligands: recent progress. Prog. Med. Chem. 2008, 46, 281−390. (b) Stahl, S. M.; LeeZimmerman, C.; Cartwright, S.; Morrissette, D. A. Serotonergic drugs for depression and beyond. Curr. Drug Targets 2013, 14, 578−585. (c) Heal, D. J.; Gosden, J.; Smith, S. L. A review of late-stage CNS drug candidates for the treatment of obesity. Int. J. Obes. 2013, 37, 107−117. (d) Yang, H. Y.; Tae, J.; Seo, Y. W.; Kim, Y. J.; Im, H. Y.; Choi, G. D.; Cho, H.; Park, W.-K.; Kwon, O. S.; Cho, Y. S.; Ko, M.; Jang, H.; Lee, J.; Choi, K.; Kim, C.-H.; Lee, J.; Pae, A. N. Novel pyrimidoazepine analogs as serotonin 5-HT2A and 5-HT2C receptor ligands for the treatment of obesity. Eur. J. Med. Chem. 2013, 63, 558− 569. (e) Rosenzweig-Lipson, S.; Comery, T. A.; Marquis, K. L.; Gross, J.; Dunlop, J. 5-HT2C agonists as therapeutics for the treatment of schizophrenia. Handb. Exp. Pharmacol. 2012, 213, 147−165. (f) Sargent, B. J.; Henderson, A. J. Targeting 5-HT receptors for the treatment of obesity. Curr. Opin. Pharmacol. 2011, 11, 52−58. (g) Cho, S. J.; Jensen, N. H.; Kurome, T.; Kadari, S.; Manzano, M. L.; Malberg, J. E.; Caldarone, B.; Roth, B. L.; Kozikowski, A. P. Selective 5-hydroxytryptamine 2C receptor agonists derived from the lead compound tranylcypromine: identification of drugs with antidepressant-like action. J. Med. Chem. 2009, 52, 1885−1902. (h) Bishop, M. J.; Nilsson, B. M. New 5-HT2C receptor agonists. Expert Opin. Ther. Pat. 2003, 13, 1691−1705. (i) Lacivita, E.; Leopoldo, M. Selective agents for serotonin2C (5-HT2C) receptor. Curr. Top. Med. Chem. (Sharjah, United Arab Emirates) 2006, 6, 1927− 1970. (j) Nilsson, B. M. 5-Hydroxytryptamine 2C (5-HT2C) receptor agonists as potential antiobesity agents. J. Med. Chem. 2006, 49, 4023− 4034. (k) Ahmad, S.; Ngu, K.; Miller, K. J.; Wu, G.; Hung, C.-p.; Malmstrom, S.; Zhang, G.; O’Tanyi, E.; Keim, W. J.; Cullen, M. J.; Rohrbach, K. W.; Thomas, M.; Ung, T.; Qu, Q.; Gan, J.; Narayanan, R.; Pelleymounter, M. A.; Robl, J. A. Tricyclic dihydroquinazolinones as novel 5-HT2C selective and orally efficacious anti-obesity agents. Bioorg. Med. Chem. Lett. 2010, 20, 1128−1133. (l) Shimada, I.; Maeno, K.; Kondoh, Y.; Kaku, H.; Sugasawa, K.; Kimura, Y.; Hatanaka, K.-i.; Naitou, Y.; Wanibuchi, F.; Sakamoto, S.; Tsukamoto, S.-i. Synthesis and structure−activity relationships of a series of benzazepine derivatives as 5-HT2C receptor agonists. Bioorg. Med. Chem. 2008, 16, 3309−3320. (m) Shimada, I.; Maeno, K.; Kazuta, K.-i.; Kubota, H.;
Kimizuka, T.; Kimura, Y.; Hatanaka, K.-i.; Naitou, Y.; Wanibuchi, F.; Sakamoto, S.; Tsukamoto, S.-i. Synthesis and structure−activity relationships of a series of substituted 2-(1H-furo[2,3-g]indazol-1yl)ethylamine derivatives as 5-HT2C receptor agonists. Bioorg. Med. Chem. 2008, 16, 1966−1982. (7) (a) Brennan, P. E.; Whitlock, G. A.; Ho, D. K. H.; Conlon, K.; McMurray, G. Discovery of a novel azepine series of potent and selective 5-HT2C agonists as potential treatments for urinary incontinence. Bioorg. Med. Chem. Lett. 2009, 19, 4999−5003. (b) Andrews, M. D.; Green, M. P.; Allerton, C. M. N.; Batchelor, D. V.; Blagg, J.; Brown, A. D.; Gordon, D. W.; McMurray, G.; Millns, D. J.; Nichols, C. L.; Watson, L. Design and synthesis of piperazinylpyrimidinones as novel selective 5-HT2C agonists. Bioorg. Med. Chem. Lett. 2009, 19, 5346−5350. (c) Allerton, C. M. N.; Andrews, M. D.; Blagg, J.; Ellis, D.; Evrard, E.; Green, M. P.; Liu, K. K. C.; McMurray, G.; Ralph, M.; Sanderson, V.; Ward, R.; Watson, L. Design and synthesis of pyridazinone-based 5-HT2C agonists. Bioorg. Med. Chem. Lett. 2009, 19, 5791−5795. (d) Siuciak, J. A.; Chapin, D. S.; McCarthy, S. A.; Guanowsky, V.; Brown, J.; Chiang, P.; Marala, R.; Patterson, T.; Seymour, P. A.; Swick, A.; Iredale, P. A. CP-809,101, a selective 5HT2C agonist, shows activity in animal models of antipsychotic activity. Neuropharmacology 2007, 52, 279−290. (e) Kalgutkar, A. S.; Dalvie, D. K.; Aubrecht, J.; Smith, E. B.; Coffing, S. L.; Cheung, J. R.; Vage, C.; Lame, M. E.; Chiang, P.; McClure, K. F.; Maurer, T. S.; Coelho, R. V., Jr.; Soliman, V. F.; Schildknegt, K. Genotoxicity of 2-(3-chlorobenzyloxy)-6-(piperazinyl)pyrazine, a novel 5-hydroxytryptamine2C receptor agonist for the treatment of obesity: role of metabolic activation. Drug Metab. Dispos. 2007, 35, 848−858. (f) Kalgutkar, A. S.; Bauman, J. N.; McClure, K. F.; Aubrecht, J.; Cortina, S. R.; Paralkar, J. Biochemical basis for differences in metabolism-dependent genotoxicity by two diazinylpiperazine-based 5-HT2C receptor agonists. Bioorg. Med. Chem. Lett. 2009, 19, 1559−1563. (g) Fish, P. V.; Brown, A. D.; Evrard, E.; Roberts, L. R. 7-Sulfonamido-3-benzazepines as potent and selective 5-HT2C receptor agonists: hit-to-lead optimization. Bioorg. Med. Chem. Lett. 2009, 19, 1871−1875. (h) Liu, K. K. C.; Cornelius, P.; Patterson, T. A.; Zeng, Y.; Santucci, S.; Tomlinson, E.; Gibbons, C.; Maurer, T. S.; Marala, R.; Brown, J.; Kong, J. X.; Lee, E.; Werner, W.; Wenzel, Z.; Vage, C. Design and synthesis of orally-active and selective azaindane 5-HT2C agonist for the treatment of obesity. Bioorg. Med. Chem. Lett. 2010, 20, 266−271. (i) Liu, K. K. C.; Lefker, B. A.; Dombroski, M. A.; Chiang, P.; Cornelius, P.; Patterson, T. A.; Zeng, Y.; Santucci, S.; Tomlinson, E.; Gibbons, C. P.; Marala, R.; Brown, J. A.; Kong, J. X.; Lee, E.; Werner, W.; Wenzel, Z.; Giragossian, C.; Chen, H.; Coffey, S. B. Orally active and brain permeable proline amides as highly selective 5-HT2C agonists for the treatment of obesity. Bioorg. Med. Chem. Lett. 2010, 20, 2365−2369. (8) (a) Andrews, M. D.; Fish, P. V.; Blagg, J.; Brabham, T. K.; Brennan, P. E.; Bridgeland, A.; Brown, A. D.; Bungay, P. J.; Conlon, K. M.; Edmunds, N. J.; af Forselles, K.; Gibbons, C. P.; Green, M. P.; Hanton, G.; Holbrook, M.; Jessiman, A. S.; McIntosh, K.; McMurray, G.; Nichols, C. L.; Root, J. A.; Storer, R. I.; Sutton, M. R.; Ward, R. V.; Westbrook, D.; Whitlock, G. A. Pyrimido[4,5-d]azepines as potent and selective 5-HT2C receptor agonists: design, synthesis, and evaluation of PF-3246799 as a treatment for urinary incontinence. Bioorg. Med. Chem. Lett. 2011, 21, 2715−2720. (b) Andrews, M. D.; Blagg, J.; Brennan, P. E.; Fish, P. V.; Roberts, L. R.; Storer, R. I.; Whitlock, G. A. Preparation of pyrimido[4,5-d]azepine derivatives as 5-HT2C agonists. WO2008117169, 2008. (9) (a) Borman, R. A.; Tilford, N. S.; Harmer, D. W.; Day, N.; Ellis, E. S.; Sheldrick, R. L. G.; Carey, J.; Coleman, R. A.; Baxter, G. S. 5HT2B receptors play a key role in mediating the excitatory effects of 5HT in human colon in vitro. Br. J. Pharmacol. 2002, 135, 1144−1151. (b) Baxter, G. S.; Murphy, O. E.; Blackburn, T. P. Further characterization of 5-hydroxytryptamine receptors (putative 5-HT2B) in rat stomach fundus longitudinal muscle. Br. J. Pharmacol. 1994, 112, 323−331. (c) Huang, X.-P.; Setola, V.; Yadav, P. N.; Allen, J. A.; Rogan, S. C.; Hanson, B. J.; Revankar, C.; Robers, M.; Doucette, C.; Roth, B. L. Parallel functional activity profiling reveals valvulopathK
dx.doi.org/10.1021/jm5003292 | J. Med. Chem. XXXX, XXX, XXX−XXX
Journal of Medicinal Chemistry
Article
ogens are potent 5-hydroxytryptamine2B receptor agonists: implications for drug safety assessment. Mol. Pharmacol. 2009, 76, 710−722. (10) Conlon, K.; Christy, C.; Westbrook, S.; Whitlock, G.; Roberts, L.; Stobie, A.; McMurray, G. Pharmacological properties of 2-((R-5chloro-4-methoxymethyl-indan-1-yl)-1H-imidazole (PF-3774076), a novel and selective a1A-adrenergic partial agonist, in in vitro and in vivo models of urethral function. J. Pharmacol. Exp. Ther. 2009, 330, 892−901. (11) Feng, B.; Mills, J. B.; Davidson, R. E.; Mireles, R. J.; Janiszewski, J. S.; Troutman, M. D.; de Morais, S. M. In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab. Dispos. 2008, 36, 268−275. (12) (a) Schinkel, A. H. P-Glycoprotein, a gatekeeper in the blood− brain barrier. Adv. Drug Delivery Rev. 1999, 36, 179−194. (b) Begley, D. J. ABC transporters and the blood−brain barrier. Curr. Pharm. Des. 2004, 10, 1295−1312. (13) Doan, K. M. M.; Humphreys, J. E.; Webster, L. O.; Wring, S. A.; Shampine, L. J.; Serabjit-Singh, C. J.; Adkison, K. K.; Polli, J. W. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J. Pharmacol. Exp. Ther. 2002, 303, 1029−1037. (14) (a) Klarskov, N.; Scholfield, D.; Soma, K.; Darekar, A.; Mills, I.; Lose, G. Evaluation of the sensitivity of urethral pressure reflectometry (UPR) and urethral pressure profilometry (UPP) to detect pharmacological augmentation of urethral pressure, using [S,S]reboxetine. J. Urol. 2008, 179, 521−523. (b) Wakenhut, F.; Allan, G. A.; Fish, P. V.; Jonathan Fray, M.; Harrison, A. C.; McCoy, R.; Phillips, S. C.; Stobie, A.; Westbrook, D.; Westbrook, S. L.; Whitlock, G. A. N[(3S)-Pyrrolidin-3-yl]benzamides as novel dual serotonin and noradrenaline reuptake inhibitors: Impact of small structural modifications on P-gp recognition and CNS penetration. Bioorg. Med. Chem. Lett. 2009, 19, 5078−5081. (c) Fish, P. V.; Harrison, A.; Wakenhut, F.; Whitlock, G. A. A case history on the challenges of central nervous system and dual pharmacology drug discovery. RSC Drug Discovery Ser. 2011, 4, 267−286. (d) Zinner, N.; Scholfield, D.; Soma, K.; Darekar, A.; Grant, L.; Mills, I. A phase 2, 8-week, multicentre, randomized, double blind, placebo controlled, parallel group study evaluating the efficacy, tolerability and safety of [S,S]-reboxetine (PNU-165442G) for stress urinary incontinence. J. Urol. 2008, 179, 569−570. (15) Van de Waterbeemd, H.; Camenisch, G.; Folkers, G.; Chretien, J. R.; Raevsky, O. A. Estimation of blood−brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J. Drug Targeting 1998, 6, 151−165. (16) Hitchcock, S. A.; Pennington, L. D. Structure−brain exposure relationships. J. Med. Chem. 2006, 49, 7559−7583. (17) Wager, T. T.; Hou, X.; Verhoest, P. R.; Villalobos, A. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem. Neurosci. 2010, 1, 435−449. (18) Penzotti, J. E.; Lamb, M. L.; Evensen, E.; Grootenhuis, P. D. J. A computational ensemble pharmacophore model for identifying substrates of p-glycoprotein. J. Med. Chem. 2002, 45, 1737−1740. (19) Gao, H.; Yao, L.; Mathieu, H. W.; Zhang, Y.; Maurer, T. S.; Troutman, M. D.; Scott, D. O.; Ruggeri, R. B.; Lin, J. In silico modeling of nonspecific binding to human liver microsomes. Drug Metab. Dispos. 2008, 36, 2130−2135. (20) Moriya, T.; Oki, T.; Yamaguchi, S.; Morosawa, S.; Yokoo, A. Studies of seven-membered heterocyclic compounds containing nitrogen. IX. The synthesis of 5-ethoxycarbonyl-1-azacycloheptan-4one and its derivatives. Bull. Chem. Soc. Jpn. 1968, 41, 230−231. (21) Yang, J.; Jamei, M.; Yeo, K. R.; Rostami-Hodjegan, A.; Tucker, G. T. Misuse of the well-stirred model of hepatic drug clearance. Drug Metab. Dispos. 2007, 35, 501−502. (22) Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H.-J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C.; Takeda, S.; Kadowaki, S.; Haga, T.; Takaesu, H.; Mitaku, S.; Fredriksson, R.; Lagerstrom, M. C.; Lundin,
L. G.; Schioth, H. B.; Pierce, K. L.; Premont, R. T.; Lefkowitz, R. J.; Lefkowitz, R. J.; Shenoy, S. K.; Rosenbaum, D. M. High-resolution crystal structure of an engineered human β2-adrenergic G proteincoupled receptor. Science (Washington, DC, U. S.) 2007, 318, 1258− 1265. (23) (a) Gether, U.; Lin, S.; Ghanouni, P.; Ballesteros, J. A.; Weinstein, H.; Kobilka, B. K. Agonists induce conformational changes in transmembrane domains III and VI of the β2 adrenoceptor. EMBO J. 1997, 16, 6737−6747. (b) Farrens, D. L.; Altenbach, C.; Yang, K.; Hubbell, W. L.; Khorana, H. G. Requirement of rigid-body motion of transmembrane helixes for light activation of rhodopsin. Science (Washington, DC, U. S.) 1996, 274, 768−770. (24) Trzaskowski, B.; Latek, D.; Yuan, S.; Ghoshdastider, U.; Debinski, A.; Filipek, S. Action of molecular switches in GPCRs theoretical and experimental studies. Curr. Med. Chem. 2012, 19, 1090−1109. (25) Kim, T. H.; Chung, K. Y.; Manglik, A.; Hansen, A. L.; Dror, R. O.; Mildorf, T. J.; Shaw, D. E.; Kobilka, B. K.; Prosser, R. S. The role of ligands on the equilibria between functional states of a G proteincoupled receptor. J. Am. Chem. Soc. 2013, 135, 9465−9474. (26) Abul Muntasir, H.; Takahashi, J.; Rashid, M.; Ahmed, M.; Komiyama, T.; Hossain, M.; Kawakami, J.; Nashimoto, M.; Nagatomo, T. Site-directed mutagenesis of the serotonin 5-hydroxytryptamine 2C receptor: identification of amino acids responsible for sarpogrelate binding. Biol. Pharm. Bull. 2006, 29, 1645−1650. (27) Canal, C. E.; Cordova-Sintjago, T. C.; Villa, N. Y.; Fang, L.-J.; Booth, R. G. Drug discovery targeting human 5-HT2C receptors: residues S3.36 and Y7.43 impact ligand-binding pocket structure via hydrogen bond formation. Eur. J. Pharmacol. 2011, 673, 1−12. (28) Janoshazi, A.; Deraet, M.; Callebert, J.; Setola, V.; Guenther, S.; Saubamea, B.; Manivet, P.; Launay, J.-M.; Maroteaux, L. Modified receptor internalization upon coexpression of 5-HT1B receptor and 5HT2B receptors. Mol. Pharmacol. 2007, 71, 1463−1474. (29) Rashid, M.; Manivet, P.; Nishio, H.; Pratuangdejkul, J.; Rajab, M.; Ishiguro, M.; Launay, J.-M.; Nagatomo, T. Identification of the binding sites and selectivity of sarpogrelate, a novel 5-HT2 antagonist, to human 5-HT2A, 5-HT2B and 5-HT2C receptor subtypes by molecular modeling. Life Sci. 2003, 73, 193−207. (30) Compound 4 (PF-3246799, catalog no. PZ0229) and compound 17 (PF-4479745, catalog no. PZ0032) are available from Sigma Aldrich.
L
dx.doi.org/10.1021/jm5003292 | J. Med. Chem. XXXX, XXX, XXX−XXX