Subscriber access provided by UNIVERSITY OF LEEDS
Article
Nanocarriers from GRAS Zein Proteins to Encapsulate Hydrophobic Actives Nikolas T. Weissmueller, Hoang Dung Lu, Amanda Hurley, and Robert K Prud'homme Biomacromolecules, Just Accepted Manuscript • DOI: 10.1021/acs.biomac.6b01440 • Publication Date (Web): 16 Oct 2016 Downloaded from http://pubs.acs.org on October 18, 2016
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Biomacromolecules is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 29
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Biomacromolecules
1
Nanocarriers from GRAS Zein Proteins to Encapsulate
2
Hydrophobic Actives
3 4
Nikolas T. Weissmueller†1, Hoang D. Lu†1, Amanda Hurley2, Robert K. Prud’homme*1
5
1. Department of Chemical and Biological Engineering, Princeton University, Princeton, New
6
Jersey 08544, United States.
7
2. Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United
8
States.
9 10
Keywords:
11
Nanoparticle, zein, casein, autoinducer, drug-delivery, GRAS, cholera
12 13
Abstract
14
One factor limiting the expansion of nanomedicines has been the high cost of the materials and
15
processes required for their production. We present a continuous, scalable, low cost nano-
16
encapsulation process, Flash Nanoprecipitation (FNP) that enables the production of nanocarriers
17
(NCs) with a narrow size distribution using zein corn proteins. Zein is a low cost, GRAS protein
18
(having the FDA status of “Generally Regarded as Safe”) currently used in food applications,
19
which acts as an effective encapsulant for hydrophobic compounds using FNP. The four-stream
20
FNP configuration allows the encapsulation of very hydrophobic compounds in a way that is not
21
possible with previous precipitation processes. We present the encapsulation of several model
22
active compounds with as high as 45 wt% drug loading with respect to zein concentration into
23
~100 nm nanocarriers. Three examples are presented: (1) the pro-drug antioxidant, vitamin E-
ACS Paragon Plus Environment
1
Biomacromolecules
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 2 of 29
24
acetate, (2) an anti-cholera quorum-sensing modulator CAI-1 ((S)-3-hydroxytridecan-4-one).
25
CAI-1 that reduces Vibrio cholerae virulence by modulating cellular communication, and (3)
26
hydrophobic fluorescent dyes with a range of hydrophobicities. The specific interaction between
27
zein and the milk protein, sodium caseinate, provides stabilization of the NCs in PBS, LB
28
medium, and in pH 2 solutions. The stability and size changes in the three media provide
29
information on the mechanism of assembly of the zein:active:casein NC.
30
Background
31
Nanomedicines: Nanotechnology has been an area of intense research commitment over
32
that last two decades, and nanocarriers (NCs) for the delivery of therapeutics has been one of the
33
successful areas in biomedical nanotechnology. Most successes in NC delivery have been in
34
oncology, where the high value of treatment has allowed the application of relatively expensive
35
formulations. Formulations most often employ block copolymers with polyethylene glycol
36
(PEG) blocks to provide biocompatible surface properties.1-2 NCs for oral administration, most
37
often, have as their aim increased bioavailability of very hydrophobic drug compounds.
38
formulations must balance the advantage of increased bioavailabilty against the increased costs
39
of NC processing and of the excipients required for NC formation. Using materials that are
40
accepted by regulatory agencies as GRAS (Generally Regarded as Safe) are preferred in oral
41
delivery applications, as they reduce the complexity of regulatory approval.
3
Oral
42
Our interest is in the encapsulation of hydrophobic compounds for oral delivery using
43
low-cost, GRAS excipients. Biodegradable protein polymers, such as albumin, casein, gelatin,
44
and chitosan, have been investigated as all-natural low-cost encapsulants.
45
soluble proteins generally provide poor coupling with hydrophobic compounds and, therefore,
46
result in low loading and low encapsulation efficiency. Excellent work by the Johnston and
ACS Paragon Plus Environment
4
However, these
2
Page 3 of 29
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Biomacromolecules
47
Elder’s group on direct precipitation of hydrophobic drugs with hydroxypropyl methylcellulose
48
(HPMC) has demonstrated significant increases in drug supersaturation upon dissolution of the
49
resulting powders.5-8 Direct precipitations rely upon highly hydrophobic compounds to achieve
50
high nucleation rates, and encapsulation by HPMC relies solely on hydrophobic interactions
51
between the polymer and compounds. Both hydrophobic and electrostatic interactions between
52
zein and the compounds being encapsulated provides increased flexibility in compounds that can
53
be processed into NC form.
54
In this paper we present the new process for the encapsulation of hydrophobic actives
55
with zein proteins using the kinetically controlled, rapid precipitation process Flash
56
NanoPrecipitation (FNP) using a Multi-inlet Vortex Mixer (MIVM). The MIVM, with multiple
57
inlet streams enables the encapsulation of actives at higher loading, control of size, and narrow
58
size distributions than have been reported for alternate NC formation processes. The specific
59
interaction between zein and the milk protein casein provides effective stabilization of the NCs.
60
We provide three examples to show the generality of the process: (1) the pro-drug antioxidant,
61
vitamin E-acetate, (2) an anti-cholera quorum-sensing modulator CAI-1 ((S)-3-hydroxytridecan-
62
4-one) and (3) hydrophobic fluorescent dyes with a range of hydrophobicities.
63 64
Zein prolamin proteins: In this study we present NC formation based on rapid
65
precipitation with zein as the encapsulating agent. Zein is a low cost, GRAS prolamin protein
66
found in the endoplasmic reticulum-derived protein vesicles in maize seeds.9 It finds application
67
as a film coating excipient of pharmaceuticals. Zein is water-insoluble owing to its high content
68
(>50%) of non-polar amino acids such as leucine, proline, alanine, and phenylalanine.10 It is also
69
insoluble in pure alcohol or most organics. It is soluble in water:alcohol mixed solvents, which
ACS Paragon Plus Environment
3
Biomacromolecules
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 4 of 29
70
provides a route for processing zein into water insoluble particles by mixing with excess water.
71
However, this presents a barrier for incorporating highly hydrophobic actives and zein in simple
72
mixing/phase separation processes because the highly hydrophobic active will not be soluble in
73
high enough concentrations in an alcohol:water mixture to ensure adequate active loading.
74
Globular zein consists of four fractions that vary in molecular weight, composition,
75
structure and solubility.9, 11 These include α-zein (MW, 19–24 kDa; 75–80% of total protein) 12,
76
β-zein (17–18 kDa, 10– 15%), γ-zein (27 kDa, 5–10%), and δ-zein (10kDa)
77
subcomponents are arranged into a tertiary structure that comprises nine homologous repeating
78
units oriented in an anti-parallel sense, and stabilized by hydrogen bonds.11 The majority of the
79
molecular surface area comprises the hydrophobic α-helixes in anti-parallel orientation 16, while
80
the glutamine rich turns create a hydrophilic surface at their top and bottom.
81
assembly bestows zein with amphiphilic characteristics. These properties are reported to drive
82
self-assembly into a variety of mesostructures, 17 including ribbons, sheets, tori, pores, and micro
83
and nanospheres15. The amphilicity of zein allows it to encapsulate a variety of biological
84
compounds: heparin
85
D3
86
thymol
87
unique, and points to the encapsulation being driven both by hydrophobic and electrostatic
88
interactions. A limitation has been that reported loading capacities are generally 98% for all stable formulations as determined by absorbance measurement of the flow through
394
after centrifugal filtration (SI Figure 1). With increasing Nile Red concentration in the core, the
395
mean NC diameter increases (Fig. 7b). The florescence intensity increased with higher dye
396
loading per particle. This can be seen in Fig. 7c and 7d for two different wavelengths (500nm
397
excitation, 690nm emission) and core loadings of 0.2-1% wt. However, at dye content higher
398
than 1%wt. the fluorescence intensity decreases, as intermolecular interactions lead to
399
quenching.61
ACS Paragon Plus Environment
20
Page 21 of 29
A
B
Nile Red Pyrene Methyl Red
16 14
NP Mean Diameter
106
Size (d.nm)
Intensity (%)
108 107
12 10 8 6 4
105 104 103 102 101
2 100 0 100
1000
10000
0
1
2
Size (d.nm)
400
C
3
4
5
Nile Red % wt.
D 1400
3500
Excitation Maximum
Emission Maximum
3000 1200
Fluorescence
2500
Fluorescence
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Biomacromolecules
2000 1500 1000 500
1000 800 600 400 200
0
0 0
1
2
3
4
5
6
0
1
Nile Red % wt.
401
2
3
4
5
Nile Red % wt.
402
Figure 7: Characterization of NC loading. (A) Sizes of dye-containing Zein:CAS:VitE-Ac NCs by dynamic light
403
scattering. Formulations contained 2 mg/mL zein in 60% EtOH at 12mL/min, flashed with 1mg/mL casein in
404
sodium citrate buffer (36mL/min), flashed with 0.33 mg/mL VitE-Ac and 0.01wt % of dye in 100% EtOH at
405
12mL/min. (B) Mean diameter size of NC formulations with Nile Red loading from 0.25-5% wt. Fluorescence
406
maxima for either (C) 500nm excitation, or (D) 690nm emission, at 0.25-5% wt. Nile Red loading for
407
Zein:CAS:VitE-Ac NCs.
408 409 410
Conclusion
ACS Paragon Plus Environment
21
Biomacromolecules
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 22 of 29
411
Zein protein-based NC formulations were prepared using sodium caseinate (CAS) as a
412
stabilizer. Particles at sub-100 nm sizes, with high loading of highly hydrophobic components
413
such as VitE-Ac, CAI-1, and hydrophobic dyes is enabled by the ability to form NCs with a
414
multi-inlet vortex mixing geometry (MIVM) that enables independent control over multiple inlet
415
streams. The amphiphilic molecular structure of zein enables both assembly of the NCs, and also
416
synergistic interactions with casein proteins to produce stable NCs. The components in the
417
formulations are all GRAS, which means that translation to food and oral drug delivery
418
therapeutics is facilitated. The dramatically lower cost of zein and casein, relative to the
419
amphiphilic block copolymers previously used in block copolymer stabilized NCs, expands the
420
range of applications that will be of interest. The precise NC size control, and the scalability of
421
the FNP process suggests applications in food (e.g. nutraceutical), pharmaceutical and
422
agricultural formulations.
423
Encapsulation of the quorum sensing therapeutic, CAI-1 demonstrated that the NCs
424
remained colloidally stable in ionic buffers and simulated intestinal fluid for 24 hrs. Efficacy of
425
CAI-1 in NCs was similar to CAI-1 in DMSO, while enabling CAI-1 delivery as an aqueous
426
dispersion. Within the context of cholera, the low-cost GRAS components and the scalability of
427
the FNP process may enable an auxiliary prophylactic treatment that could limit the need for
428
antibiotics.
429
The encapsulation of both purely hydrophobic compounds (VitE-Ac, CAI-1) has been
430
demonstrated by FNP previously. The encapsulation of the ionizable methyl red and Nile Red
431
point out the interesting ability of zein to interact both hydrophobically and ionically with
432
compounds during NC assembly.
433
ACS Paragon Plus Environment
22
Page 23 of 29
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Biomacromolecules
434
ASSOCIATED CONTENT
435
Supporting Information. Additional information on particle characterization is available free of
436
charge via the Internet at http://pubs.acs.org.
437
AUTHOR INFORMATION
438 439 440 441 442 443 444
Nikolas t. Weissmueller† Hoang D. Lu† Amanda Hurley Robert K. Prud’homme
445
Corresponding Author
446
*E-mail:
[email protected] 447
Acknowledgements
448
The authors would like to thank Dr. Christina Tang for assistance with TEM imaging. We would
449
like to thank Professor Martin Semmelhack for CAI-1 material, and Professor Bonnie Bassler for
450
materials used in cell work.
†
Co-first authors
451 452
Funding
453
Funds were provided by Princeton University’s internal SEAS Old Guard grant, Princeton
454
University Center for Health and Wellbeing, and the Woodrow Wilson School of Public and
455
International Affairs Program in Science, Technology, and Environmental Policy.
456 457 458
ACS Paragon Plus Environment
23
Biomacromolecules
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 24 of 29
459 460
References:
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
1. Prabhu, R. H.; Patravale, V. B.; Joshi, M. D., Polymeric nanoparticles for targeted treatment in oncology: current insights. International journal of nanomedicine 2015, 10, 100118. 2. Wang, A. Z.; Langer, R.; Farokhzad, O. C., Nanoparticle delivery of cancer drugs. Annual review of medicine 2012, 63, 185-98. 3. Kumari, A.; Yadav, S. K.; Yadav, S. C., Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and surfaces. B, Biointerfaces 2010, 75 (1), 1-18. 4. Hudson, D.; Margaritis, A., Biopolymer nanoparticle production for controlled release of biopharmaceuticals. Critical reviews in biotechnology 2014, 34 (2), 161-79. 5. Matteucci, M. E.; Brettmann, B. K.; Rogers, T. L.; Elder, E. J.; Williams, R. O.; Johnston, K. P., Design of potent amorphous drug nanoparticles for rapid generation of highly supersaturated media. Mol Pharmaceut 2007, 4 (5), 782-793. 6. Matteucci, M. E.; Miller, M. A.; Williams, R. O.; Johnston, K. P., Highly Supersaturated Solutions of Amorphous Drugs Approaching Predictions from Configurational Thermodynamic Properties. Journal of Physical Chemistry B 2008, 112 (51), 16675-16681. 7. Matteucci, M. E.; Paguio, J. C.; Miller, M. A.; Williams, R. O.; Johnston, K. P., Flocculated amorphous nanoparticles for highly supersaturated solutions. Pharmaceutical Research 2008, 25 (11), 2477-2487. 8. Matteucci, M. E.; Paguio, J. C.; Miller, M. A.; Williams, R. O.; Johnston, K. P., Highly Supersaturated Solutions from Dissolution of Amorphous Itraconazole Microparticles at pH 6.8. Mol Pharmaceut 2009, 6 (2), 375-385. 9. Bagga, S.; Adams, H. P.; Rodriguez, F. D.; Kemp, J. D.; Sengupta-Gopalan, C., Coexpression of the maize delta-zein and beta-zein genes results in stable accumulation of deltazein in endoplasmic reticulum-derived protein bodies formed by beta-zein. The Plant cell 1997, 9 (9), 1683-96. 10. Wang, S. Z.; Esen, A., Primary structure of a proline-rich zein and its cDNA. Plant physiology 1986, 81 (1), 70-4. 11. Argos, P.; Pedersen, K.; Marks, M. D.; Larkins, B. A., A structural model for maize zein proteins. The Journal of biological chemistry 1982, 257 (17), 9984-90. 12. Momany, F. A.; Sessa, D. J.; Lawton, J. W.; Selling, G. W.; Hamaker, S. A. H.; Willett, J. L., Structural characterization of alpha-zein. J Agr Food Chem 2006, 54 (2), 543-547. 13. Matsushima, N.; Danno, G.; Takezawa, H.; Izumi, Y., Three-dimensional structure of maize alpha-zein proteins studied by small-angle X-ray scattering. Bba-Protein Struct M 1997, 1339 (1), 14-22. 14. Wu, Y.; Holding, D. R.; Messing, J., Gamma-zeins are essential for endosperm modification in quality protein maize. Proceedings of the National Academy of Sciences of the United States of America 2010, 107 (29), 12810-5. 15. Wang, Y.; Padua, G. W., Nanoscale Characterization of Zein Self-Assembly. Langmuir 2012, 28 (5), 2429-2435. 16. Wang, Q.; Xian, W.; Li, S.; Liu, C.; Padua, G. W., Topography and biocompatibility of patterned hydrophobic/hydrophilic zein layers. Acta biomaterialia 2008, 4 (4), 844-51.
ACS Paragon Plus Environment
24
Page 25 of 29
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
Biomacromolecules
17. Podaralla, S.; Perumal, O., Influence of formulation factors on the preparation of zein nanoparticles. AAPS PharmSciTech 2012, 13 (3), 919-27. 18. Wang, H. J.; Lin, Z. X.; Liu, X. M.; Sheng, S. Y.; Wang, J. Y., Heparin-loaded zein microsphere film and hemocompatibility. Journal of controlled release : official journal of the Controlled Release Society 2005, 105 (1-2), 120-31. 19. Hurtado-Lopez, P.; Murdan, S., Formulation and characterisation of zein microspheres as delivery vehicles. J Drug Deliv Sci Tec 2005, 15 (4), 267-272. 20. Zou, T.; Gu, L. W., TPGS Emulsified Zein Nanoparticles Enhanced Oral Bioavailability of Daidzin: In Vitro Characteristics and In Vivo Performance. Mol Pharmaceut 2013, 10 (5), 2062-2070. 21. Lee, S.; Alwahab, N. S.; Moazzam, Z. M., Zein-based oral drug delivery system targeting activated macrophages. International journal of pharmaceutics 2013, 454 (1), 388-93. 22. Luo, Y.; Teng, Z.; Wang, Q., Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3. J Agric Food Chem 2012, 60 (3), 836-43. 23. Regier, M. C.; Taylor, J. D.; Borcyk, T.; Yang, Y. Q.; Pannier, A. K., Fabrication and characterization of DNA-loaded zein nanospheres. J Nanobiotechnol 2012, 10. 24. Lai, L. F.; Guo, H. X., Preparation of new 5-fluorouracil-loaded zein nanoparticles for liver targeting. International journal of pharmaceutics 2011, 404 (1-2), 317-23. 25. Muthuselvi, L.; Dhathathreyan, A., Simple coacervates of zein to encapsulate Gitoxin. Colloid Surface B 2006, 51 (1), 39-43. 26. Patel, A.; Hu, Y. C.; Tiwari, J. K.; Velikov, K. P., Synthesis and characterisation of zeincurcumin colloidal particles. Soft Matter 2010, 6 (24), 6192-6199. 27. Luo, Y. C.; Zhang, B. C.; Whent, M.; Yu, L. L.; Wang, Q., Preparation and characterization of zein/chitosan complex for encapsulation of alpha-tocopherol, and its in vitro controlled release study. Colloid Surface B 2011, 85 (2), 145-152. 28. Wu, Y. P.; Luo, Y. G.; Wang, Q., Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid-liquid dispersion method. Lwt-Food Sci Technol 2012, 48 (2), 283-290. 29. Parris, N.; Cooke, P. H.; Hicks, K. B., Encapsulation of essential oils in zein nanospherical particles. J Agr Food Chem 2005, 53 (12), 4788-4792. 30. Xiao, D.; Davidson, P. M.; Zhong, Q. X., Spray-Dried Zein Capsules with Coencapsulated Nisin and Thymol as Antimicrobial Delivery System for Enhanced Antilisterial Properties. J Agr Food Chem 2011, 59 (13), 7393-7404. 31. Hu, K.; McClements, D. J., Fabrication of surfactant-stabilized zein nanoparticles: A pH modulated antisolvent precipitation method. Food Res Int 2014, 64, 329-335. 32. Zhang, Y.; Niu, Y.; Luo, Y.; Ge, M.; Yang, T.; Yu, L. L.; Wang, Q., Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate-chitosan hydrochloride double layers. Food chemistry 2014, 142, 269-75. 33. Chen, H. Q.; Zhong, Q. X., A novel method of preparing stable zein nanoparticle dispersions for encapsulation of peppermint oil. Food Hydrocolloid 2015, 43, 593-602. 34. Li, K. K.; Zhang, X.; Huang, Q.; Yin, S. W.; Yang, X. Q.; Wen, Q. B.; Tang, C. H.; Lai, F. R., Continuous preparation of zein colloidal particles by Flash NanoPrecipitation (FNP). J Food Eng 2014, 127, 103-110. 35. Patel, A. R.; Bouwens, E. C. M.; Velikov, K. P., Sodium Caseinate Stabilized Zein Colloidal Particles. J Agr Food Chem 2010, 58 (23), 12497-12503.
ACS Paragon Plus Environment
25
Biomacromolecules
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
Page 26 of 29
36. Wang, L. J.; Yin, Y. C.; Yin, S. W.; Yang, X. Q.; Shi, W. J.; Tang, C. H.; Wang, J. M., Development of Novel Zein-Sodium Caseinate Nanoparticle (ZP)-Stabilized Emulsion Films for Improved Water Barrier Properties via Emulsion/Solvent Evaporation. J Agr Food Chem 2013, 61 (46), 11089-11097. 37. Podaralla, S.; Perumal, O., Preparation of zein nanoparticles by pH controlled nanoprecipitation. Journal of biomedical nanotechnology 2010, 6 (4), 312-7. 38. Dickinson, E., Properties of emulsions stabilized with milk proteins: Overview of some recent developments. J Dairy Sci 1997, 80 (10), 2607-2619. 39. Johnson, B. K.; Prud'homme, R. K., Flash NanoPrecipitation of organic actives and block copolymers using a confined impinging jets mixer. Australian Journal of Chemistry 2003, 56 (10), 1021-1024. 40. Johnson, B. K.; Prud'homme, R. K., Chemical processing and micromixing in confined impinging jets. AIChE Journal 2003, 49 (9), 2264-2282. 41. Liu, Y.; Cheng, C. Y.; Liu, Y.; Prud'homme, R. K.; Fox, R. O., Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation. Chem Eng Sci 2008, 63 (11), 2829-2842. 42. D'Addio, S. M.; Baldassano, S.; Shi, L.; Cheung, L. L.; Adamson, D. H.; Bruzek, M.; Anthony, J. E.; Laskin, D. L.; Sinko, P. J.; Prud'homme, R. K., Optimization of cell receptorspecific targeting through multivalent surface decoration of polymeric nanocarriers. Journal of Controlled Release 2013, 168 (1), 41-49. 43. Gindy, M. E.; DiFelice, K.; Kumar, V.; Prud'homme, R. K.; Celano, R.; Haas, R. M.; Smith, J. S.; Boardman, D., Mechanism of macromolecular structure evolution in self-assembled lipid nanoparticles for siRNA delivery. Langmuir 2014, 30 (16), 4613-22. 44. Pinkerton, N. M.; Gindy, M. E.; Calero-Ddel, C. V.; Wolfson, T.; Pagels, R. F.; Adler, D.; Gao, D.; Li, S.; Wang, R.; Zevon, M.; Yao, N.; Pacheco, C.; Therien, M. J.; Rinaldi, C.; Sinko, P. J.; Prud'homme, R. K., Single-Step Assembly of Multimodal Imaging Nanocarriers: MRI and Long-Wavelength Fluorescence Imaging. Advanced healthcare materials 2015, 24;4(9):1376-85. 45. Pinkerton, N. M.; Grandeury, A.; Fisch, A.; Brozio, J.; Riebesehl, B. U.; Prud'homme, R. K., Formation of stable nanocarriers by in situ ion pairing during block-copolymer-directed rapid precipitation. Mol Pharm 2013, 10 (1), 319-28. 46. Gindy, M. E.; Prud'homme, R. K., Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert opinion on drug delivery 2009, 6 (8), 865-78. 47. D'Addio, S. M.; Baldassano, S.; Shi, L.; Cheung, L.; Adamson, D. H.; Bruzek, M.; Anthony, J. E.; Laskin, D. L.; Sinko, P. J.; Prud'homme, R. K., Optimization of cell receptorspecific targeting through multivalent surface decoration of polymeric nanocarriers. Journal of controlled release : official journal of the Controlled Release Society 2013, 168 (1), 41-9. 48. Tang, C.; Amin, D.; Messersmith, P. B.; Anthony, J. E.; Prud'homme, R. K., Polymer directed self-assembly of pH-responsive antioxidant nanoparticles. Langmuir 2015, 31 (12), 3612-20. 49. Lu, H. D.; Spiegel, A. C.; Hurley, A.; Perez, L. J.; Maisel, K.; Ensign, L. M.; Hanes, J.; Bassler, B. L.; Semmelhack, M. F.; Prud'homme, R. K., Modulating Vibrio cholerae quorumsensing-controlled communication using autoinducer-loaded nanoparticles. Nano Lett 2015, 15 (4), 2235-41. 50. Dickey, L. C.; McAloon, A.; Craig, J. C.; Parris, N., Estimating the cost of extracting cereal protein with ethanol. Industrial Crops and Products 1999, 10 (2), 137-143.
ACS Paragon Plus Environment
26
Page 27 of 29
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
Biomacromolecules
51. Higgins, D. A.; Pomianek, M. E.; Kraml, C. M.; Taylor, R. K.; Semmelhack, M. F.; Bassler, B. L., The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 2007, 450 (7171), 883-6. 52. van Henegouwen, G. M. B.; Junginger, H. E.; de Vries, H., Hydrolysis of RRR-αtocopheryl acetate (vitamin E acetate) in the skin and its UV protecting activity (an in vivo study with the rat). Journal of Photochemistry and Photobiology B: Biology 1995, 29 (1), 45-51. 53. Khdour, O. M.; Lu, J.; Hecht, S. M., An acetate prodrug of a pyridinol-based vitamin E analogue. Pharmaceutical research 2011, 28 (11), 2896-2909. 54. Figueroa, C. E.; Reider, P.; Burckel, P.; Pinkerton, A. A.; Prud'homme, R. K., Highly loaded nanoparticulate formulation of progesterone for emergency traumatic brain injury treatment. Therapeutic Delivery 2012, 3 (11), 1269-1279. 55. Lu, H. D.; Spiegel, A. C.; Hurley, A.; Perez, L. J.; Maisel, K.; Ensign, L. M.; Hanes, J.; Bassler, B. L.; Semmelhack, M. F.; Prud’homme, R. K., Modulating Vibrio cholerae QuorumSensing-Controlled Communication Using Autoinducer-Loaded Nanoparticles. Nano letters 2015, 15 (4), 2235-2241. 56. Luo, Y.; Teng, Z.; Wang, T. T.; Wang, Q., Cellular uptake and transport of zein nanoparticles: effects of sodium caseinate. J Agric Food Chem 2013, 61 (31), 7621-9. 57. Kumar, V.; Wang, L.; Riebe, M.; Tung, H. H.; Prud'homme, R. K., Formulation and Stability of ltraconazole and Odanacatib Nanoparticles: Governing Physical Parameters. Mol Pharmaceut 2009, 6 (4), 1118-1124. 58. Liu, Y.; Kathan, K.; Saad, W.; Prud'homme, R. K., Ostwald ripening of beta-carotene nanoparticles. Physical Review Letters 2007, 98 (3), 036102. 59. Ogawa, K., Effects of salt on intermolecular polyelectrolyte complexes formation between cationic microgel and polyanion. Advances in colloid and interface science 2015, 226, 115-121. 60. Solomatin, S. V.; Bronich, T. K.; Eisenberg, A.; Kabanov, V. A.; Kabanov, A. V., Colloidal stability of aqueous dispersions of block ionomer complexes: effects of temperature and salt. Langmuir 2004, 20 (6), 2066-2068. 61. Pansare, V. J.; Bruzek, M. J.; Adamson, D. H.; Anthony, J.; Prud'homme, R. K., Composite Fluorescent Nanoparticles for Biomedical Imaging. Molecular Imaging and Biology 2014, 16 (2), 180-188.
625 626 627 628 629 630 631
TOC graphic summary:
ACS Paragon Plus Environment
27
Biomacromolecules
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 28 of 29
632 Mixer Geometry
V. cholerae (inactive)
Organic 100% EtOH
Core (VitE-Ac) Drug (Dye, CAI-1) Hydroalcoholic 60% EtOH
Zein
CAI-1 in NP (Aqueous)
Aqueous
Free CAI-1 (DMSO)
Buffer: 10mM Sodium citrate, 150µM citric acid, pH 7.5 Aqueous
MIVM FNP
V. cholerae (active)
Casein in buffer
633
ACS Paragon Plus Environment
28
Page 29 of 29
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Biomacromolecules
Mixer Geometry
Organic 100% EtOH
Core (VitE-Ac) Drug (Dye, CAI-1) Hydroalcoholic 60% EtOH
Zein Aqueous
Buffer: 10mM Sodium citrate, 150μM citric acid, pH 7.5 Aqueous
MIVM FNP
Casein in buffer
ACS Paragon Plus Environment