Nanoshell Magnetic Resonance Imaging Contrast Agents - Journal

Dokyoung Kim , Junxin Wang , Yunho Han , Jonathan M. Zuidema , Ali Hariri , Ji-Ho .... Malay Pramanik , Fa-Kuen Shieh , Saad M. Alshehri , Zeid Ab...
0 downloads 0 Views 297KB Size
Published on Web 01/31/2007

Nanoshell Magnetic Resonance Imaging Contrast Agents Chia-Hao Su,†,‡ Hwo-Shuenn Sheu,§ Chia-Yun Lin,† Chih-Chia Huang,† Yi-Wei Lo,† Ying-Chih Pu,† Jun-Cheng Weng,‡ Dar-Bin Shieh,⊥ Jyh-Horng Chen,*,‡ and Chen-Sheng Yeh*,† Contribution from the Department of Chemistry and Center for Micro/Nano Science and Technology and Institute of Oral Medicine and Molecular Medicine, National Cheng Kung UniVersity, Tainan 701, Taiwan, Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan UniVersity, Taipei 106, Taiwan, and National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan Received October 8, 2006; E-mail: [email protected]; [email protected]

Abstract: Nanocontrast agents have great potential in magnetic resonance (MR) molecular imaging applications for clinical diagnosis. We synthesized Au3Cu1 (gold and copper) nanoshells that showed a promising MR contrast effect. For in vitro MR images, the large proton r1 relaxivities brightened T1-weighted images. As for the proton-dephasing effect in T2, Au3Cu1 lightened MR images at the low concentration of 0.125 mg mL-1 (3.84 × 10-7 mM), and then the signal continuously decreased as the concentration increased. For in vivo MR imaging, Au3Cu1 nanocontrast agents enhanced the contrast of blood vessels and suggested their potential use in MR angiography as blood-pool agents. We propose that (1) the cooperativity originating from the form of the nanoparticles and (2) the large surface area coordinated to water from their porous hollow morphology are important for efficient relaxivity. In a cytotoxicity and animal survival assay, Au3Cu1 nanocontrast agents showed a dose-dependent toxic effect: the viability rate of experimental mice reached 83% at a dose of 20 mg kg-1 and as much as 100% at 2 mg kg-1.

Introduction

Nanoparticle systems are promising new paradigms in pharmacotherapy and are being used in gene therapy, drug delivery,1,2 imaging,3,4 and novel drug discovery techniques.5,6 The aim of nanodiagnostics is to identify disease at its earliest stage, particularly at the molecular level. Nanoparticle-based molecular imaging has set a unique platform for cellular tracking, targeted diagnostic studies, and image-monitored therapy.7-10 Magnetic resonance imaging (MRI) has been recognized as the most † Department of Chemistry and Center for Micro/Nano Science and Technology, National Cheng Kung University. ‡ Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan University. § National Synchrotron Radiation Research Center. ⊥ Institute of Oral Medicine and Molecular Medicine, National Cheng Kung University.

(1) Shaffer, C. Drug DiscoVery Today 2005, 10, 1581-1582. (2) Vinogradov, S. Expert Opin. Drug DeliVery 2004, 1, 181-184. (3) Muldoon, L. L.; Tratnyek, P. G.; Jacobs, P. M.; Doolittle, N. D.; Christoforidis, G. A.; Frank, J. A.; Lindau, M.; Lockman, P. R.; Manninger, S. P.; Qiang, Y.; Spence, A. M.; Stupp, S. I.; Zhang, M.; Neuwelt, E. A. AJNR Am. J. Neuroradiol. 2006, 27, 715-721. (4) Li, K. C.; Pandit, S. D.; Guccione, S.; Bednarski, M. D. Biomed. MicrodeVices 2004, 6, 113-116. (5) Wilkinson, J. M. Med. DeVice Technol. 2003, 14, 29-31. (6) Roco, M. C. Curr. Opin. Biotechnol. 2003, 14, 337-346. (7) Winter, P. M.; Morawski, A. M.; Caruthers, S. D.; Fuhrhop, R. W.; Zhang, H.; Williams, T. A.; Allen, J. S.; Lacy, E. K.; Robertson, J. D.; Lanza, G. M.; Wickline, S. A. Circulation 2003, 108, 2270-2274. (8) Krause, M. H.; Kwong, K. K.; Gragoudas, E. S.; Young, L. H. Magn. Reson. Imaging 2004, 22, 779-787. (9) Bulte, J. W.; Zhang, S.; van Gelderen, P.; Herynek, V.; Jordan, E. K.; Duncan, I. D.; Frank, J. A. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 1525615261. (10) Anderson, S. A.; Glod, J.; Arbab, A. S.; Noel, M.; Ashari, P.; Fine, H. A.; Frank, J. A. Blood 2005, 105, 420-425. 10.1021/ja0672066 CCC: $37.00 © 2007 American Chemical Society

important technique in medical diagnosis since the discovery of the X-ray. MRI measures the characteristics of the hydrogen nuclei of water and shows the spatial distribution of the intensity of water protons. The signal intensity depends on the amount of water in the image area. Contrast agents accelerate the rate of relaxation of nearby water molecules, thereby greatly increasing the contrast between the specific tissue or organ of interest and its surrounding tissue. Effective magnetic resonance (MR) contrast agents must have a strong effect to accelerate spin-lattice relaxation (T1), which produces bright or positivecontrast images, or to shorten spin-spin relaxation (T2), which produces dark or negative-contrast images. Currently, MR contrast agents are categorized into T1-positive agents of paramagnetic species and T2-negative agents of superparamagnetic particles. The paramagnetic T1 agents include gadolinium (Gd3+)-, manganese (Mn2+)-, chromium (Cr3+)-, lanthanide (Ln3+)-, and dysprosium (Dy3+)-based complexes11-16 and gadolinium-encapsulated liposomes.17,18 Because these para(11) Ho, C.; Hitchens, T. K. Curr. Pharm. Biotechnol. 2004, 5, 551-566. (12) Natanzon, A.; Aletras, A. H.; Hsu, L. Y.; Arai, A. E. Radiology 2005, 236, 859-866. (13) Ahn, J. H.; Yoo, C. I.; Lee, C. R.; Lee, J. H.; Lee, H.; Kim, C. Y.; Park, J. K.; Sakai, T.; Yoon, C. S.; Kim, Y. Neurotoxicology 2003, 24, 835838. (14) Jackson, G. E.; Byrne, M. J.; Blekkenhorst, G.; Hendry, A. J. Int. J. Radiat. Appl. Instrum., Part B 1991, 18, 855-858. (15) Aime, S.; Crich, S. G.; Gianolio, E.; Giovenzana, G. B.; Tei, L.; Terreno, E. Coord. Chem. ReV. 2006, 250, 1562-1579. (16) Fossheim, S.; Saebo, K. B.; Fahlvik, A. K.; Rongved, P.; Klaveness, J. J. Magn. Reson. Imaging 1997, 7, 251-257. (17) Sipkins, D. A.; Cheresh, D. A.; Kazemi, M. R.; Nevin, L. M.; Bednarski, M. D.; Li, K. C. Nature Med. 1998, 4, 623-626. (18) Kabalka, G.; Buonocore, E.; Hubner, K.; Moss, T.; Norley, N.; Huang, L. Radiology 1987, 163, 255-258. J. AM. CHEM. SOC. 2007, 129, 2139-2146

9

2139

Su et al.

ARTICLES Scheme 1. Au3Cu1 Nanocapsules Used as Contrast Agents in Animal MR Imaging

magnetic ions are inherently toxic and cannot be directly injected into or ingested by patients, they are administered as chelates, formed when they bind to ligands such as diethyltriamine pentaacetic acid (DTPA), 1,4,7,10-tetraazacyclododecaneN,N′,N′′,N′′′-tetraacetic acid, and ethylenediamine tetraacetic acid, to achieve the desired biodistribution and ensure patient safety. Recently, some Gd-based nanoparticle contrast agents have also been reported.19-22 The superparamagnetic particles (T2-negative agents) are nanosized or submicrometer-sized and are classified as superparamagnetic iron oxide (SPIO), ultrasmall SPIO, or monocrystalline iron oxide nanoparticles.23,24 Superparamagnetic particles consist of many magnetic ions with significant, large, unpaired spins; they are superparamagnetic when the magnetic ions are mutually aligned. In the present study, we present a new class of bimetallic MR contrast agent: Au3Cu1 hollow nanospheres (Scheme 1). Experimental Section Preparing Cu Nanoparticles. We generated Cu nanoparticles using a laser to irradiate CuO powder in 2-propanol. Pyrex vials were used as containers to prepare the colloidal solutions. An unfocused Nd:YAG laser (Quantel Brilliant) operated at 10 Hz (5-ns pulse width) with a wavelength of 1064 nm was inserted into the vials containing 0.015 g of CuO powder and 5 mL of 2-propanol. The Cu colloidal solutions were prepared as follows: the mixture was irradiated at a laser intensity of 100 mJ/pulse for 5 min. The irradiated mixture was then centrifuged to remove the remaining CuO powder. The prepared solutions were irradiated for an additional 5 min. The resulting Cu colloidal solutions had a deep wine-red color. The ablated solutions were routinely stirred every 1 min during irradiation. Preparing Au3Cu1 Nanoshells and Polyelectrolyte-Coated Au3Cu1 Nanocapsules. Cu colloidal solution (4.5 mL) was added to 1 × 10-6 (19) Evanics, F.; Diamente, P. R.; van Veggel, F. C. J. M.; Stanisz, G. J.; Prosser, R. S. Chem. Mater. 2006, 18, 2499-2505. (20) Lin, Y. S.; Hung, Y.; Su, J. K.; Lee, R.; Chang, C.; Lin, M. L.; Mou, C. Y. J. Phys. Chem. B 2004, 108, 15608-15611. (21) Reynolds, C. H.; Annan, N.; Beshah, K.; Huber, J. H.; Shaber, S. H.; Lenkinski, R. E.; Wortman, J. A. J. Am. Chem. Soc. 2000, 122, 89408945. (22) Rieter, W. J.; Taylor, K. M.; An, H.; Lin, W.; Lin, W. J. Am. Chem. Soc. 2006, 128, 9024-9025. (23) Harisinghani, M. G.; Barentsz, J.; Hahn, P. F.; Deserno, W. M.; Tabatabaei, S.; van de Kaa, C. H.; de la Rosette, J.; Weissleder, R. N. Engl. J. Med. 2003, 348, 2491-2499. (24) Shieh, D. B.; Cheng, F. Y.; Su, C. H.; Yeh, C. S.; Wu, M. T.; Wu, Y. N.; Tsai, C. Y.; Wu, C. L.; Chen, D. H.; Chou, C. H. Biomaterials 2005, 26, 7183-7191. 2140 J. AM. CHEM. SOC.

9

VOL. 129, NO. 7, 2007

mol of HAuCl4 (dehydrated) and was sonicated for 10 min to form Au3Cu1 hollow nanospheres. The colloidal color changed almost immediately (