New Chiral Aminophosphine Ligands: Application to Catalytic

Nov 11, 1981 - Several approaches have been envisaged in the preparation of chiral phosphines : (i) The phosphorus atom is the chiral center (2). (ii)...
0 downloads 0 Views 573KB Size
103 New Chiral Aminophosphine Ligands: Application to Catalytic Asymmetric C - C Bond Formation G É R A R D BUONO, CHRISTIAN TRIANTAPHYLIDES, and GILBERT PEIFFER

Downloaded by UNIV OF NEW SOUTH WALES on August 24, 2015 | http://pubs.acs.org Publication Date: November 11, 1981 | doi: 10.1021/bk-1981-0171.ch103

Laboratoire de l'Ecole de Chimie de Marseille et des Organophosphorés, Université d'Aix-Marseille III, Rue H. Poincaré, 13397 Marseille, France A N D R É MORTREUX and FRANCIS PETIT Laboratoire de Chimie Organique Appliquée, ERA CNRS 458 Ecole Nationale Supérieure de Chimie de Lille, BP 40, 59650 Villeneuve d'Ascq, France

Chiral phosphines have been widely used to prepare low-valent transition metal complexe catalysts for enantioselective organic transformations. In many studies, catalytic processes for asym­ metric C-H induction give almost quantitative optical yields (1). Several approaches have been envisaged in the preparation of chiral phosphines : (i) The phosphorus atom is the chiral center (2). (ii) The diphenylphosphino groups are connected by a chiral link (3). (iii) Asymmetric centers are located both on phosphorus atom and organic chain (4). Often the chiral phosphine is the chelating diphosphine to decrease conformational mobility (5). Asymmetric C-C bond forming reactions are of great significance for the synthesis of optically active compounds (6), however the use of chiral transition metal catalysts for such reactions has been much less successful (1). We describe in this work the syn­ thesis of chiral aminophosphines obtained from natural amino acids. This synthetic approach allows the synthesis of mono bi and multidentate chiral ligands in which two achiral phosphorus centers are connected by a chiral link. These ligands can be used in the asymmetric codimerization of cyclohexa-1,3-diene with ethylene catalysed by nickel complexes (7). Synthesis of chiral aminophosphines from natural aminoacids. Chiral aminoacids were generally used for configurational correlation and more recently for reagent preparation in order to induce asymmetric synthesis (8). Several chiral Ν and N,N subs­ tituted diamines, diamino alcohols and acylphosphide are readily obtained from aminoacids by a method outlined in the scheme I. Among the different known methods of peptide bond formation (9) only the azide one is appropriate to the coupling step when the amino protecting group is an acetyl or a formyl. Chiral starting materials were the N-formyl and the N-acetyl methyl esters of optically pure amino acids : (R)-phenylglycine Rj = Ph, (S)-phenylalanine R=PhCH (S)-Methionine Rj= CH CH SMe, (S)-valine Ri=(CH ) CH, etc. The activated azide compounds(2) were prepared as generally described via hydrazides f

2

2

2

3 2

0097-6156/81/0171-0499$05.00/0 © 1981 American Chemical Society In Phosphorus Chemistry; Quin, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

500

PHOSPHORUS

Scheme

«1

I

1

J HCONHCH

?

LiAlH ,THF A

CHCHoNHÇH I

I

NHCOR

Downloaded by UNIV OF NEW SOUTH WALES on August 24, 2015 | http://pubs.acs.org Publication Date: November 11, 1981 | doi: 10.1021/bk-1981-0171.ch103

CHEMISTRY

COOCH3

\

Ψ

2



*CHCOOCH NHCOR 1a R = H 1b R=CH

3

2

2

NH?-CHC00Me

1/KH NH MeOH 2

CH OH

NHCH R

PPh H 2

*CHCON 2/UN0 AcOH 2

*CHCOPPh

3

I

NHCOR

NHCOR 2

/ '

J

3

2

I

HNR'R"

R1 LiAlH ,THF 4

*CHCH,N

*OHC0N'

NH I CH R

NHCOR

V

2

and s u i t a b l e c o n d e n s a t i o n o f amine compounds gave a m i d e s w i t h o u t r a c e m i z a t i o n (60 % y i e l d f r o m compounds l a , l b ) . The d i a m i d e compounds were c o n v e r t e d i n t o t h e d i a m i n o ones b y r e d u c t i o n w i t h L 1 A I H 4 i- TKF (90% y i e l d ) . From t h e s e compounds we c a n s y n t h e s i z e d i f f e r e n t b i d e n t a t e and t r i d e n t a t e c h i r a l h e t e r o p h o s p h i n e s as shown i n scheme I I b y a c t i o n o f t h e c h l o r o d i p h e n y l p h o s p h i n e and triethylamine. n

Scheme

Ph I *CH-CH I

II

*CH-CH

CH-CH / \ RN NR 2

2

\

RN N(CH ) I PPh 3

RN

PPh

2

PPh

2

PPh

2

yCH-CH

>

I

2

2

Ph

Ph

Ph

PPh,

2

? PPh„

2

M o r e o v e r , t h e d i a m i n o a l c o h o l _3 r e s u l t i n g f r o m (R) p h e n y l g l y c i n e g i v e s w i t h h e x a m e t h y l p h o s p h o r o u s t r i a m i d e o n l y one c h i r a l t r i c o o r d i n a t e d compound 4 .

In Phosphorus Chemistry; Quin, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

103.

BUONO ET AL.

New

Chiral

Aminophosphine

PI

(Scheme I I I )

3

+

P(NMe ) 2

3

N p X Downloaded by UNIV OF NEW SOUTH WALES on August 24, 2015 | http://pubs.acs.org Publication Date: November 11, 1981 | doi: 10.1021/bk-1981-0171.ch103

501

Ligands

N

CH R 2

4 Asymmetric C-C bond formation c a t a l y s e d by m e t a l l i c complexes with c h i r a l amino-phosphines as l i g a n d s . C a t a l y t i c r e a c t i o n s i n which an asymmetric carbon i s created have been l e s s i n t e n s e l y s t u d i e d than asymmetric hydrogénation(J_) . Before e n a n t i o s e l e c t i v i t y a n a l y s i s , we endeavored to increase the r e g i o s e l e c t i v i t y of the expected products. For instance by v a r y i n g the nature of the s u b s t i t u e n t s (R may be a l k y l or a r y l ) at the n i t r o g e n atom of the ligands PI12PNR1R2 a v a r i a t i o n i n r e g i o s e l e c t i v i t y to normal and branched aldehyde was observed during hydrof o r m y l a t i o n of 1-hexene with (PPh2NRjR2>2 c a t a l y s t s ( 1_0) . A good c o r r e l a t i o n has been shown between the acceptor p r o p e r t i e s of the aminophosphine ligands and the s e l e c t i v i t y f o r l i n e a r aldehyde formation. Recently i t has been reported that c h i r a l aminophosphines presented a high e n a n t i o s e l e c t i v i t y i n c a t a l y t i c hydrog e n t a t i o n (11) . We have a l s o observed i n t e r e s t i n g r e s u l t s i n r e g i o and e n a n t i o s e l e c t i v i t y i n the asymmetric c o d i m e r i z a t i o n of cyclohexa-1,3 diene with ethylene c a t a l y s e d by c h i r a l aminophosphine n i c k e l complexes ( 7 ) , (Scheme I V ) . O p t i m i z a t i o n of the c a t a l y t i c system (-70°C, aminophosphine/Ni=10) gave (+)-(S)-3-vinylcyclohexene with 73,5% o p t i c a l p u r i t y i n 87% chemical y i e l d when (-)-R-N-methy1-N-(1-phenyl-1-ethylamino)diphenylphosphine was used.

Scheme IV

Ni(COD) AIEt CI

2

2

In Phosphorus Chemistry; Quin, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

502

PHOSPHORUS

CHEMISTRY

Downloaded by UNIV OF NEW SOUTH WALES on August 24, 2015 | http://pubs.acs.org Publication Date: November 11, 1981 | doi: 10.1021/bk-1981-0171.ch103

Literature cited 1. Kagan, H.B. ; Fiaud, J.C. "Topics in Stereochemistry" ; Vol.10, E l i e l , E.L. ; Allinger, N.L. ; New York, N.Y.,1978, p 175-261. 2. Horner, L. ; Stegel, H. Phosphorus. 1972, 1, 199, 209 ; Knowles, W.S. ; Sabacky, M.J. ; Vineyard, B.D. Chem.Technol. 1972, 591 ; Knowles, W.S. ; Sabacky, M.J. ; Vineyard, B.D. ; Weinkauff, D.J. J.Am.Chem.Soc. 1975, 94, 2569. 3. Aguiar, A.M. ; Morrow, C.J. ; Morrison, J.D. ; Burnett, R.E. ; Masler, W.F. ; Bhacca, N.S. ; J.Org.Chem. 1976, 41, 1545. 4. Valentine, D. ; Blount, J . F . ; Toth, K. J.Org.Chem. 1980, 45, 3691 ; Valentine, D. et al. J.Org.Chem. 1980, 45, 3698, 3703. 5. Kagan, H.B. ; Langlois, N. ; Dang, T. J.Organomet.Chem. 1975, 90, 353 ; 1975, 91, 105 and papers cited therein ; Fryzuk, M.D. Bosnich, B. J.Am.Chem.Soc. 1977, 99, 6262 ; 1978, 100, 5491 ; Achiwa, K. J.Am.Chem.Soc. 1976, 98, 8265. 6. Meyers, A.I. Acc.Chem.Res. 1978, 11, 375 ; Apsimon, J.W. ; Seguin, R.P. Tetrahedron. 1979, 35, 2797. 7. Buono, G. ; Peiffer, G. ; Mortreux, A. ; Petit, F. J.C.S., Chem.Commun. 1980, 937. 8. Enders, D. ; Eichenauer, H. Tetrahedron Lett. 1977, 191 ; Enders, D et al. J.Am.Chem.Soc. 1979, 101, 5654 ; Meyers, A . I . ; Poindexter, G.S. ; Brich, Z. J.Org.Chem. 1978, 43, 892. 9. Gross, Ε. ; Meienhofer, J . "The peptides", Vol. 1, Academic Press, New York, N.Y., 1979, p 197 - 239. 10. Grimblot, J . ; Bonnelle, J.B. ; Vacher, C. ; Mortreux, A. ; Petit, F. ; Peiffer, G. J . Mol. Catal. 1980, 9, 357. 11. Fiorini, M. ; Giongo, G.M. ; Marcoti, F. ; Marconi, W. J . Mol Catal. 1976, 1, 451 ; Pracejus, G. ; Pracejus, H. Tetrahedron Lett. 1977, 3497 ; Hanaki, K. ; Kashiwabara, K. ; Fujita, J . Tetrahedron Lett. 1978, 489. RECEIVED

July 7, 1981.

In Phosphorus Chemistry; Quin, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.