New Insight into the Nature of Bonding in the Dimers of Lappert's

Mar 8, 2016 - Department of Theoretical Chemistry and Amsterdam Center for ... of Pardubice, Studentská 573, CZ-532 10, Pardubice, Czech Republic...
0 downloads 0 Views 5MB Size
Subscriber access provided by NEW YORK UNIV

Article

A new insight into the nature of bonding in the dimers of Lappert’s stannylene and its Ge analogs. A quantum mechanical study Robert Sedlak, Olga A. Stasyuk, Celia Fonseca Guerra, Jan #ezá#, Ales Ruzicka, and Pavel Hobza J. Chem. Theory Comput., Just Accepted Manuscript • DOI: 10.1021/acs.jctc.6b00065 • Publication Date (Web): 08 Mar 2016 Downloaded from http://pubs.acs.org on March 9, 2016

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

Journal of Chemical Theory and Computation is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 34

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Chemical Theory and Computation

A new insight into the nature of bonding in the dimers of Lappert’s stannylene and its Ge analogs. A quantum mechanical study Robert Sedlak,[a,b] Olga A. Stasyuk,[a] Célia Fonseca Guerra,[c] Jan Řezáč,[a] Aleš Růžička*[d] and  Pavel Hobza*[a,b]  Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 

a

166 10 Prague 6, Czech Republic Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, 



Palacký University, 771 46 Olomouc, Czech Republic  Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, VU 

c

Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands  Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University 

d

of Pardubice, Studentská 573, CZ­532 10, Pardubice, Czech Republic

stannylene • dimer • dative bond • dispersion interaction • electrostatic potential • energy  decomposition analysis

ACS Paragon Plus Environment

11

Journal of Chemical Theory and Computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 34

The strength and nature of  the connection  in Lappert’s stannylene dimer ({Sn[CH(SiMe3)2]2}2) and its smaller analogs, simplified stannylenes, as well as similar Ge complexes were studied by means  of DFT­D3 calculations, energy decomposition analysis  (EDA), electrostatic potential (ESP) and natural population analysis. The  trans­bent structure of the investigated molecules was rationalized by means of EDA, ESP and molecular orbital (MO) analyses. The different ESPs for the monomers studied are a result of different hybridization of the Sn (Ge) atoms. The comparably   strong   stabilization   in   the   largest   and   the   smallest   systems   with   a   dramatically different substituent size is explained by the different nature of the binding between monomers. For all complexes, it has been found that the total attractive interaction is mostly provided by the electrostatic component (> 50 %), followed by orbital interaction and dispersion. In the largest molecule   (Lappert’s   stannylene),   the   dispersion   interaction   plays   a   more   significant   role   in stabilization and its magnitude is comparable to that of orbital interaction; on the other hand in the smallest molecule (SnH2), where bulky substituents are replaced by H only, the dispersion energy is less important and the E­E bond is more of a charge­transfer character, caused by donor­acceptor orbital interactions. The charge transfer in Ge dimers is greater than in the Sn ones   due   to   shorter   distances   between   monomers,   which   cause  better   overlaps.   The   easier   dimerization   of   Lappert’s   stannylene   as   compared   to   Kira’s ({Sn[(Me3Si)2CHCH2CH2CH(SiMe3)2­κ2C,C']})   stannylene   is   explained   by   the   different orientation of their substituents – asymmetry promotes dimerization.

Introduction

ACS Paragon Plus Environment

22

Page 3 of 34

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Chemical Theory and Computation

Lappert’s   seminal   discovery   of   low­valent   and   low­coordinate   Group   14 coordination and organometallic compounds1­4  opened an unprecedented source of  main­group metal chemistry areas, inspired or influenced by that particular species, has been opened. In the last   twenty   years,   the   phenomena   described   have   included,   for   example,   the   low­coordinate bulky terphenyl ligand­decorated organometallics5­11 and analogs of acetylenes, highly silylated compounds,12,13  various   cyclic   or   acyclic   metal   amides,14­17  low­valent   metal   complexes containing   heterocyclic   or   carbene   ligands,18­23,24,25  the   use   of   low­valent   main­group   metal species as ligands for transition­metal complexes26­31 or various areas of the activation of small molecules.5­11,14­17,32,33  In agreement with Lappert’s original observations, the possibility of the (co)­existence of both singlet and triplet states of tetrylenes (low­valent Group 14 metal (E) complexes   –   R2E(14))26­31,34  and   even   the   aggregation   of   such   molecules   to   the   dimers   – ditetrenes (R2E(14)=E(14)R2)34  (Scheme 1)  by some authors  described as heavier congeners of olefins   have   been   observed   many   times   both   experimentally 26­31  and   theoretically.35,36  It   is believed that the sterical protection of the metal center is the reason for the existence of the monomeric   tetrylene,37  and   slightly   controversially   also   for   the   excited­state   stabilization   (a triplet state).34 According to several studies, the stabilization of the monomeric species R 2E(14) over the dimeric ones (R2E(14)=E(14)R2) could be achieved not only by the steric properties of the metal substituents (even by cyclic silylated hydrocarbons), 37,38,39 but also by the introduction of a heteroatom to the ligand skeleton, 28  using  π­electron­rich cyclic chelating ligands,25  the employment of an adjacent donor atom in both intramolecular and intermolecular fashion 40­42 and the interaction of the metal centre with a small atom of such a ligand as fluorine 26­31 or hydrogen (an agostic interaction).43­49  On the other hand, the low­valent tin compounds of Marschner &

ACS Paragon Plus Environment

33

Journal of Chemical Theory and Computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 34

Müller50  and Wesemann51,52  reveal higher steric protection by silyl groups and polyaromates, respectively, but behave as  endocyclic distannenes. Scheme 1.

The nature of binding in Lappert’s stannylenes and their Ge and Pb analogs has very recently been investigated in Ref. 53. The authors have concluded that stabilization in these systems is exclusively caused by London dispersion energy based on the B3W91­D3 method. They   have   deduced   the   role   of   dispersion   from   the   values   of   D3   dispersion   energies.   The respective dispersion energy is, however, strongly underestimated. This is attributable to the fact that the original Becke–Johnsson damping function is not applicable at such short X–X (X= Sn, Ge, Pb) distances as in the present systems. When an appropriate damping function is applied (see below), the dispersion energy reaches much higher values (even by one order of magnitude) and has no relation to the original values. Consequently, the conclusions of Ref. 53 should be taken with caution. This report offers a novel theoretical explanation of the association behavior in the dimers of Lappert’s stannylene and its Sn and Ge analogs based on a careful analysis of the monomer’s  electrostatic  potential  and noncovalent interactions  acting in  the dimer using the

ACS Paragon Plus Environment

44

Page 5 of 34

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Chemical Theory and Computation

Kohn­Sham MO  theory. Furthermore, Lappert’s  first stannylene has been compared with its analogs, Kira’s stannylene and some germanium compounds. Results and Discussion Stabilization in Lappert’s stannylenes possessing the trans­bent form (cf. Figure 1) was  first  believed   to   originate   in   the   double   electron­donor   –   electron­acceptor   dative interaction,26­31  between the in­plane oriented lone pair of  sp  character on the Sn of the first subsystem   and   the   vacant   perpendicular  pz  orbital   on   the   Sn   of   the   second   subsystem.   The reference plane is defined by the tin atom and the two carbon atoms covalently bonded to the tin atom. This trans­bent model of distannylene was first suggested by Trinquier and Malrieu as a part of the GCTM model54­57 and comprehensively discussed in Ref. 58. On the other hand, the discussion  about  the  character  of  this   connection  revolves   around the  terms   of dative  bond, double bond, slipped bond,59  double dative donor–acceptor bond and others.  The dative bond resembles a standard covalent bond where, however, the shared electron pair originates from one subsystem only. The prototype dative bond exists in the H 3N→BH3  system, where the arrow implies that electrons are provided by one subsystem (NH 3 moiety).60,61 The bond length in the above­mentioned dative bond is 1.694 Å, which is greater than that in the standard covalent bond between N and B (e.g. the N­B bond in borazine has length 1.44 Å), but it is still much shorter than that in most of the noncovalent complexes (e.g. the length of a hydrogen bond in water is ~ 2 Å). Figure 1. A schematic depiction of a double dative bond in an analog of Lappert’s stannylene (Me2Sn)2; color legend: vacant pz orbitals = blue ellipsoids; occupied lone pairs = red ellipsoids.

ACS Paragon Plus Environment

55

Journal of Chemical Theory and Computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 6 of 34

The vacant pz orbital has perpendicular orientation, whereas the occupied lone pair has in­plane orientation. The reference plane is defined by the tin atom and the two carbon atoms covalently bonded to the tin atom.

The  trans­bent   structure   of   dimers   of   Lappert’s   stannylenes  with   the   same hybridization of the Sn (or similar) atom exists in systems with bulky as well as small (e.g. only H)   substituents.   The   bulky   substituents   protect   the   electronic   environment   of   the   Sn   atoms, which   makes   these   systems   kinetically   much   more   stable.   It   has   been   shown   that   bulky substituents can dramatically influence the bonding character and the length between Sn atoms in stannylenes.62 Several questions, however, arise. Do bulky substituents play only this role or do they also participate in a different type of stabilization, which has not been discussed yet? Is the dative bond similar when the substituents are dramatically different? Is the ability of Lappert’s stannylenes   to   create  trans­bent   dimers   (contrary   to   Kira’s   stannylenes)   connected   with   the symmetry of the system considered and its substituents? Figure 2. A–H: The structures of Lappert’s stannylene dimers and their analogs; the structure of Kira’s stannylene; color legend: magenta = Sn, blue = Si, green = C and white = H.

ACS Paragon Plus Environment

66

Page 7 of 34

Journal of Chemical Theory and Computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

77

Journal of Chemical Theory and Computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 8 of 34

In the present study, we have tried to answer these questions on the basis of the monomer’s electrostatic potential and noncovalent interactions in the dimers and thus provide a new interpretation of stability for different Lappert’s stannylenes and their Ge analogs. The systems investigated All  of the  Sn­containing  structures   studied  are  visualized  in  Figure  2. First,  the crystal structure (1a) was fully relaxed (1b). Then we removed the extended aliphatic chain on Sn and instead of CH(Si(CH3)3)2, we considered the CH(SiH3)2  substituent (2a). Here all the bond angles and dihedral angles were kept frozen from 1a, while in 2b, the systems were fully relaxed. Further reduction of substituents (from CH(SiH 3)2 to CH3) leads to systems 3a and 3b, respectively. Finally, the replacement of CH3 by H provided systems  4a and 4b; in the former one, all the bond angles as well as dihedral angles were the same as in 1a, molecules 3a and 4a, whereas full relaxation was allowed for 3b and 4b. Computations The   above­mentioned   binary   complexes   were   subjected   to   partial   or   complete geometry   optimization   at   the   B97­D2/def2­QZVP   level   of   theory. 63,64,65,66  The   default convergence criteria of the Gaussian0967 program package were adopted (maximum force