Next-Generation DNA-Functionalized Quantum Dots as Biological

Ganglin Wang, Zhi Li, Nan Ma*. The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical. Engineering and ...
0 downloads 0 Views 7MB Size
Subscriber access provided by UNIV OF NEW ENGLAND ARMIDALE

Review

Next-Generation DNA-Functionalized Quantum Dots as Biological Sensors Ganglin Wang, Zhi Li, and Nan Ma ACS Chem. Biol., Just Accepted Manuscript • DOI: 10.1021/acschembio.7b00887 • Publication Date (Web): 19 Dec 2017 Downloaded from http://pubs.acs.org on December 22, 2017

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Chemical Biology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Biology

Next-Generation DNA-Functionalized Quantum Dots as Biological Sensors Ganglin Wang, Zhi Li, Nan Ma* The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China

Abstract DNA-functionalized quantum dots (DNA-QDs) have found considerable applications for biosensing and bioimaging. Different from the first generation (I-G) DNA-QDs prepared via conventional bioconjugation chemistry, the second generation (II-G) DNA-QDs prepared via one-step DNA-templated QD synthesis features defined number of DNA valencies (usually monovalency), which is preferable for controlled assembly and biological targeting. In this review we summarize recent progress in designing QD probes based on II-G DNA-QDs for advanced sensing and imaging applications. It opens up new avenues for high-sensitive and intelligent sensing of a range of diseaserelevant biomolecules in vitro and in living cells. Quantum dots (QDs), an important class of inorganic semiconductor nanocrystals, have been extensively applied to biosensing and bioimaging studies during the past twenty years.1-10 Compared to traditional organic fluorophores, QDs feature broad absorption spectra, large extinction coefficient, narrow and symmetric photoluminescence (PL) spectra, high quantum yield, tunable emission wavelength, and robust photostability,11-13 which enable a range of practical applications such as multiplex detection and imaging,14-18 fluorescence resonance energy transfer (FRET)-based biosensing,19-22 long-term cell imaging,23-26 single molecule tracking,27-30 and near-infrared (NIR) in vivo imaging.31-34 Surface functionalization is a crucial step to afford QDs high specificity towards a variety of biological targets. Conventional QD functionalization strategy is a multi-step process which usually involves ligand exchange/encapsulation35-40 and bioconjugation.41-44 These protocols could generate stable biofunctionalized QDs with bright PL for bioimaging. However, aside from its complexity, little control over QDs avidity is achieved via conventional strategies,45 which is problematic for precise modulating QD assembly and QD-biotarget interactions. The next generation

ACS Paragon Plus Environment

ACS Chemical Biology 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 23

QDs should feature both defined number of QD valencies for assembly and biotargeting, as well as generalizability for interacting with different types of biological targets. Besides metal chalcogenide QDs, metal nanoclusters such as DNA-stabilized silver nanoclusters are another type of widely used inorganic fluorophores for biosensing applications.46-48 The related topic has been discussed in detail in an excellent review article.49 DNA-Functionalized QDs: From first generation to second generation DNA molecules have proven to be powerful and versatile molecules for biotargeting.50,51 DNA aptamers could specifically bind to a range of biomolecules including nucleic acids,51 proteins,52,53 enzymes,54,55 cell surface receptors,56,57 and growth factors58,59 with high affinities. DNA aptamers possess several advantages such as high stability, small size, easy modification, and low cost. It is expected that DNA aptamers toward any biological targets could be generated through in vitro selection from a DNA library.60-62 Therefore, DNA-functionalized QDs could potentially serve as universal sensing and imaging probes by rationally tailoring the bio-recognition sequence.63-65 The first generation DNA-functionalized QDs (I-G DNA-QDs) are prepared via traditional bioconjugation chemistry using DNA molecules with 5’ or 3’-end modifier of amine, thiol or carboxylate groups.66-69 It produces a DNA-QD spherical nanostructure with numerous DNA molecules attached on the centered QD. The number of DNA on each QD is not uniform but follows a Poisson distribution.70 Additionally, the QDs prepared via conventional synthetic method usually have a thick protecting layer from either the inorganic or the polymeric shell,71,72 which may lead to a relatively large separation distance between FERT donor and acceptor to impede efficient energy transfer of FRET-based QD probes.73 The second generation DNA-functionalized QDs (II-G DNA-QDs), which is pioneered by Kelley group and Sargent group at University of Toronto, is prepared through a one-step approach using DNA molecules as templates to direct QD growth.74 Specifically, a chimeric DNA molecule containing a phosphorothioate (ps) domain and a natural phosphate (po) domain is used as a template for aqueous synthesis of QDs (Figure 1a). The prepared QDs are found to be preferentially associated with the ps domain because of the high affinity between sulphur atom and cadmium ions; and the phosphate domain is left free on the QD surface for biotargeting. Meanwhile, additional small thiol-

ACS Paragon Plus Environment

Page 3 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Biology

containing molecules are introduced as co-ligands during the synthesis to passivate the unoccupied surface metal atoms to improve QD stability and quantum yield. The as-prepared II-G DNA-QDs could be directly used to target nucleic acids molecules or further functionalized with DNA aptamers through DNA hybridization to target protein or cell surface receptors (Figure 1b). Importantly, these II-G DNAQDs are mostly homogeneous with a single DNA molecule on each QD (monovalency). A later milestone work shows that the QD valency (the number of DNA molecules on each QD) could be precisely tuned between one and five by tailoring the length of the ps domain or the size of QDs.75 These DNA-QDs could be assembled to higher order QD nanostructures with defined patterns. Another fascinating aspect of nucleic acids-templated QD growth is that the QD size and emission wavelength could be rationally tuned using different DNA sequences or three-dimensional structures of RNA molecules.75-79 These DNA-QDs exhibit high biocompatibility and low cytotoxicity, ensuring their applicability for biosensing and bioimaging applications.74,79-86 The monovalent DNA-QDs represent the basic form of a II-G DNA-QD probe for biotargeting and biosensing. In many cases a series of derivatives are needed for specific applications. For example, a polyvalent DNA-QD probe is constructed by co-polymerization of DNA-QDs and DNA aptamers via hybridization chain reaction (Figure 1c).84 These polyvalent aptamer-QD polymers have a length scale of a few hundred nanometers for multivalent binding with cancer cell surface receptors. These polymeric QDs possess much higher binding affinity with cancer cells than monovalent QDs, which makes it possible to light up cancer cells with high selectivity at very low QD concentration. Heterobivalent DNA-QDs are constructed using a po-ps-po DNA template for QD synthesis (Figure 1c).82 These heterobivalent DNA-QDs could be used to sequentially target two types of spatially isolated cancer markers of live cancer cells. Ternary QDs assembly is constructed by assembling three DNA-QDs with distinct emission wavelengths (blue, green, red) onto a DNA template (Figure 1c). These ternary QDs assembly has been applied for molecular computation–based bioanalysis.87 DNAtemplated gold nanoparticle (GNP) – QDs complex is constructed by assembling DNA-QDs and DNAGNP onto a DNA linker, which yields a satellite nanostructure with multiple QDs tethered to one GNP (Figure 1c). These GNP-QDs complex has been applied for catalytic sensing and imaging of lowabundant miRNA molecules.83,86 The DNA-QDs could also self-assemble into quantum dot DNA hydrogels (QDH) with the aid of Y-shape DNA interconnectors. The QDH could be further conjugated

ACS Paragon Plus Environment

ACS Chemical Biology 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 23

with cancer therapeutics such as doxorubicin and siRNA for simultaneous cancer imaging and cancer therapy with greatly enhanced potencies.85 FRET-Based Intracellular Biosensing In situ imaging of biological targets in living cells requires unambiguous signals that could be easily distinguished from background. While this could be easily achieved for cell surface targets by washing off unbound QD probes, it remains a challenge to image intracellular targets since the free intracellular QD probes could not be simply removed. To this end FRET-based QD probes are designed for imaging of intracellular biological targets whereby the QD-target binding event triggers fluorescence signal changes. The II-G DNA-QDs possess a minimal sized protection layer due to direct passivation of DNA molecule on QD surface, and as a result the distance between FRET donor and acceptor could be minimized (< 5 nm) for efficient FRET. So far a series of DNA-templated QD FRET probes have been developed, which could be categorized into QD-fluorophore FRET probe,82 QD-QD FRET probe,87 and QD-GNP FRET probe (Figure 2).83,86 The QD-fluorophore FRET probe has the QD as FRET donor and the fluorophore as FRET acceptor. A large overlap between QD emission spectrum and fluorophore absorption spectrum is a prerequisite for efficient FRET. Upon ultraviolet (UV) excitation the energy absorbed by the QD could partially transfer to the adjacent fluorophore through non-radiative resonance to allow the fluorophore to emit light (Figure 2b). In most cases the fluorophore is not directly excited, and thus dissociation of fluorophore from the QD leads to complete signal off of fluorophore (Figure 2b).82 A limitation of QD-fluorophore FRET pair is the small Stokes shift of the fluorophore molecule, which inevitably leads to partial emission overlap between QD and fluorophore in FRET spectrum. The QD-QD FRET probe contains two or more QDs with different emission wavelengths. The QD with shorter emission wavelength serves as FRET donor and the QD with longer emission wavelength serves as FRET acceptor. Efficient FRET could occur between QDs with large separation of emission spectra because of the broad absorption spectrum of QDs. Disassembly of the QDs leads to recovery of donor QD PL and partial decrease of acceptor QD PL due to direct excitation of acceptor (Figure 2c).87 The GNP-QD complex has QDs as FRET donors and the GNP as FRET acceptor. QD PL is efficiently quenched by the GNP within the complex due to the large extinction coefficient of GNP. Disassembly of QDs and GNP leads to significant recovery of QD PL, which provides a platform with very low signal background for high-sensitive biomolecule sensing (Figure 2d).83

ACS Paragon Plus Environment

Page 5 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Biology

Intracellular sensing of cancer biomarkers (e.g. mRNA) requires efficient delivery of QD probes into cytosol. This challenge has been tackled using a heterobivalent QD probe capable of targeting cell surface nucleolin and intracellular mRNA.82 Targeting nucleolin with AS1411 aptamer results in efficient macropinocytosis, and the internalized QD probes in leaky macropinosome subsequently translocate to cytosol for mRNA sensing (Figure 3). This strategy could bypass lysosomal sequestration, a main route identified for endocytosis-mediated nanoparticle uptake. The mRNAtargeting motif of the QD probe contains a FRET pair of CdTe QD and Cy5. The mRNA target could displace the short Cy5-labeled DNA pre-hybridized on the DNA template through strand displacement reaction (SDR) to turn off the FRET signal. Confocal microscopy is used to monitor the intracellular QD-Cy5 FRET signal for mRNA sensing. Additionally, other elegant approaches using organic fluorophore reporters have been applied to mRNA sensing in living cells.88-92 For example, a nucleaseresistant molecular beacon was used to visualize the location and movements of mRNA in living cells.88 DNA-functionalized gold nanoparticles were used as nanoflares for multiplex mRNA imaging in living cells.90,91 Signal amplification-based strategy was developed to image mRNA in living cells with improved sensitivity.92 These strategies could be potentially adapted to II-G DNA-QDs to achieve sensitive, multiplexed, and long-term tracking of mRNA molecules in living cells. Catalytic Biosensing Intracellular sensing of low-abundance cancer biomarkers such as miRNA molecules necessities DNA-QD probes with high detection sensitivity. Conventional molecular beacon based on one-to-one probe-target binding has a limit of detection in nanomolar range,93-95 which is not capable of detecting nucleic acids with picomolar intracellular concentrations. To resolve this challenge, a GNPQD complex is constructed for catalytic detection of low-abundance miRNA molecules in live cancer cells with a detection sensitivity three orders of magnitude higher than that of the conventional molecular beacons.83 In this strategy the miRNA target serves as a catalyst to sequentially disassemble multiple QDs from the centered GNP through entropy-driven DNA strand displacement reactions (SDR) (Figure 4a). In the first SDR the miRNA binds to the end toehold and displaces the DNA-QD from the DNA linker, during which the QD PL is recovered. In the second SDR fuel DNA binds to the middle toehold and displaces both DNA-GNP and miRNA from the DNA linker. The released miRNA then participates in the next round of SDRs (Figure 4b). On the basis of this strategy, high-sensitive

ACS Paragon Plus Environment

ACS Chemical Biology 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 6 of 23

detection of miRNA molecules in vitro and in live cancer cells is accomplished. This strategy was later adopted by different research groups for sensitive imaging of miRNA in living cells.96,97 Additionally, other DNA-based signal amplification strategies such as DNAzyme and hybridization chain reaction were applied for miRNA imaging in living cells.98,99 While most of these strategies utilize organic fluorophores as reporters, integration of II-G DNA-QDs into these systems could potentially offer stronger and persistent fluorescence signals to improve detection sensitivity and enable long-term imaging. Intelligent Biosensing In many cases a disease state is determined by the abnormal expression levels (either high or low) of a few disease-relevant nucleic acids molecules (e.g. mRNA and miRNA) that act synergistically.100-103 Simultaneous detection of multiple nucleic acids targets could improve the diagnosis accuracy in comparison with single target detection.103-105 Conventional strategy relies on measuring the expression level of each nucleic acids target, and then analyzing the overall outcome manually to conclude the risk of a disease. However, it is usually time- and labor-intensive, and may cause significant bias due to personal error. Intelligent molecular diagnostics has been established to automate the diagnostic process by integrating Boolean logic computing function into a molecular probe.106 For example, an AND logic gate probe could simultaneously detect two targets with high expression levels (i.e. input: 1, 1) and generate a positive decision (i.e. output: 1). DNA-QDs turn out to be superior candidates for intelligent diagnostics. It benefits from the powerful DNA computing capability and the unique optical properties of QDs. A complete set of seven elementary logic gates (OR, AND, NOR, NAND, INH, XOR, XNOR) has been realized using a series of binary and ternary QD complexes operated by SDRs.87 The QD complex is constructed by assembling two or three DNA-QDs with distinct emission wavelengths (blue (B): ZnCdSe QD; green (G): CdTe QD; red (R): ZnHgSe QD) on a DNA template. A toehold is inserted into each DNA-QD to enable SDR. Addition of certain nucleic acids target would cause disassembly or reassembly of QD complex, which is accompanied by QD FRET signal changes (Figure 5a). This DNA-programmed dynamic assembly of QDs provides a general platform for molecular computation based on elementary or integrated logic gates using nucleic acids molecules as inputs and QD PL as outputs. The ultimate goal is to generate a QD nanocomputer with integrated logic gates to perform multiplexed intelligent

ACS Paragon Plus Environment

Page 7 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Biology

diagnostics in situ (Figure 5b). Conclusions and Outlook Since developed ten years ago, II-G DNA-QDs have found considerable applications for sensing and imaging of clinical-relevant biological targets in vitro and in living cells. It solves the longstanding challenges of controlling QD valencies that dictate their assembly and interaction with biological targets. So far the research has been mainly focused on sensing overexpressed cell surface receptors and cancer-relevant RNA molecules. It could be potentially applied to detect other types of important biomolecules using specific DNA aptamers. One future direction is to develop near-infrared (NIR) light emitting DNA-QDs for in vivo sensing of biological targets. Another direction, which might be more challenging, is to develop DNA-QD-based autonomous nanodevices that is capable of performing intelligent diagnostics and delivering therapeutics on demand for personalized medicine. Keywords Quantum dot: semiconductor nanoparticle (typically 1~10 nm) with size-dependent optical and electronic properties different from those of bulk materials. DNA: deoxyribonucleic acid, a natural biopolymer that carries genetic information. Valency: the number of complexation sites available on the surface of a given quantum dot. Biosensing: the use of an analytic device to measure physiological activity or detect biomolecules. Photoluminescence: light emission from a matter after the absorption of photons. Quantum yield: number of emitted photons occurring per number of absorbed photons. mRNA: messenger RNA, a family of RNA molecules that convey genetic information from DNA to the ribosome. miRNA: microRNA, a family of small non-coding RNA molecules (~22 nucleotides) that act as crucial regulators of gene expression. Molecular computation: the use of molecules to operate Boolean logic gates and build computer programs.

ACS Paragon Plus Environment

ACS Chemical Biology 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 1. Schematic illustration of II-G DNA-QD and its derivatives. (a) Chemical structure of phosphorothioate linkage and phosphate linkage of the chimeric DNA template for QD synthesis. (b) Binding of II-G DNA-QD with complementary DNA target or specific protein target. (c) Schematic illustration of II-G DNA-QD derivatives including heterobivalent DNA-QD, polyvalent DNA-QD, ternary QDs assembly, and GNP-QDs assembly.

ACS Paragon Plus Environment

Page 8 of 23

Page 9 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Biology

Figure 2. Optical spectra of QDs and QD-based FRET probes. (a) Absorption and photoluminescence spectra of DNA-CdTe QDs under UV excitation. (b-d) FRET and non-FRET emission spectra of (b) CdTe QD-Cy5 FRET probe; (c) ZnCdSe QD-CdTe QD FRET probe; (d) CdTe QD-GNP FRET probe under UV excitation.

ACS Paragon Plus Environment

ACS Chemical Biology 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 10 of 23

Figure 3. Schematic illustration of the delivery route of the heterobivalent DNA-QD probe for imaging cell surface nucleolin and intracellular mRNA.

ACS Paragon Plus Environment

Page 11 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Biology

Figure 4. Schematic illustration of catalytic detection of miRNA molecules using DNA-templated GNP-QD complex. (a) Catalytic disassembly of QDs and GNP using miRNA as a catalyst. (b) Mechanisms of the entropy-driven two-step SDRs for catalytic disassembly. Reproduced with permission from ref. 83 and 86.

ACS Paragon Plus Environment

ACS Chemical Biology 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 12 of 23

Figure 5. Schematic illustration of DNA-templated QDs complex for molecular computation. (a) DNA-programmed dynamic assembly of a ternary QDs complex for nucleic acids detection. Reproduced with permission from ref. 87. (b) Intelligent sensing of multiple nucleic acids targets using an integrated QD nanocomputer for disease diagnostics.

ACS Paragon Plus Environment

Page 13 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Biology

AUTHOR INFORMATION Corresponding Author *E-mail: [email protected] Acknowledgment Work in Nan Ma group is supported by the NSFC (21175147, 91313302, 21475093, 21522506), the National High-Tech R&D Program (2014AA020518), 1000-Young Talents Plan, PAPD, and startup funds from Soochow University.

References (1) Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 1998, 281, 2013-2016. (2) Chan, W. C., Nie, S. M. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science 1998, 281, 2016-2018. (3) Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005, 307, 538-544. (4) Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435-446. (5) Zrazhevskiy, P.; Sena, M.; Gao, X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev. 2010, 39, 4326-4354. (6) Howes, P. D.; Chandrawati, R.; Stevens, M. M. Bionanotechnology. Colloidal nanoparticles as advanced biological sensors. Science 2014, 346, 1247390. (7) Freeman, R.; Willner, I. Optical molecular sensing with semiconductor quantum dots (QDs). Chem. Soc. Rev. 2012, 41, 4067-4085. (8) Kairdolf, B. A.; Smith, A. M.; Stokes, T. H.; Wang, M. D.; Young, A. N.; Nie, S. M. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu. Rev. Anal. Chem. 2013, 6, 143-162.

ACS Paragon Plus Environment

ACS Chemical Biology 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 14 of 23

(9) He, X.; Ma, N. An overview of recent advances in quantum dots for biomedical applications. Colloids Surf B Biointerfaces 2014, 124, 118-131. (10) Zhou, J.; Yang, Y.; Zhang, C. Y. Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chem. Rev. 2015, 115, 11669-11717. (11) Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles. Science 2002, 298, 1759-1762. (12) Wu, X.; Liu, H.; Liu, J.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N.; Peale, F.; Bruchez, M. P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 2003, 21, 41-46. (13) Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763-775. (14) Han, M. Y, Gao, X., Su, J.; Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 2001, 19, 631 – 635. (15) Geissler, D.; Charbonniere, L. J.; Ziessel, R. F.; Butlin, N. G.; Lohmannsroben, H. G.; Hildebrandt, N. Quantum dot biosensors for ultrasensitive multiplexed diagnostics. Angew. Chem., Int. Ed. 2010, 49, 1396-401. (16) Hu, J.; Wen, C. Y.; Zhang, Z. L.; Xie, M.; Hu, J.; Wu, M.; Pang, D. W. Optically encoded multifunctional nanospheres for one-pot separation and detection of multiplex DNA sequences. Anal. Chem. 2013, 85, 11929-11935. (17) Panagiotopoulou, M.; Salinas, Y.; Beyazit, S.; Kunath, S.; Duma, L.; Prost, E.; Mayes, A. G.; Resmini, M.; Tse Sum Bui, B.; Haupt, K., Molecularly Imprinted Polymer Coated Quantum Dots for Multiplexed Cell Targeting and Imaging. Angew. Chem., Int. Ed. 2016, 55, 8244-8248. (18) Ming, K.; Kim, J.; Biondi, M. J.; Syed, A.; Chen, K.; Lam, A.; Ostrowski, M.; Rebbapragada, A.; Feld, J. J.; Chan, W. C. W. Integrated Quantum Dot Barcode Smartphone Optical Device for Wireless Multiplexed Diagnosis of Infected Patients. ACS Nano 2015, 9, 3060-3074. (19) Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M. Selfassembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2003, 2, 630-638. (20) Kim, G. B.; Kim, Y. P. Analysis of protease activity using quantum dots and resonance energy transfer. Theranostics 2012, 2, 127-138. (21) Algar, W. R.; Khachatrian, A.; Melinger, J. S.; Huston, A. L.; Stewart, M. H.; Susumu, K.; Blanco-Canosa, J. B.; Oh, E.; Dawson, P. E.; Medintz, I. L. Concurrent Modulation of Quantum Dot

ACS Paragon Plus Environment

Page 15 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Biology

Photoluminescence Using a Combination of Charge Transfer and Forster Resonance Energy Transfer: Competitive Quenching and Multiplexed Biosensing Modality. J. Am. Chem. Soc. 2017, 139, 363-372. (22) Afsari, H. S.; Cardoso Dos Santos, M.; Lindén, S.; Chen, T.; Qiu, X.; van Bergen en Henegouwen, P. M. P.; Jennings, T. L.; Susumu, K.; Medintz, I. L.; Hildebrandt, N.; Miller, L. W. Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging. Sci. Adv. 2016, 2, e1600265. (23) Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 2003, 21, 47-51. (24) Aubert, T.; Soenen, S. J.; Wassmuth, D.; Cirillo, M.; Van Deun, R.; Braeckmans, K.; Hens, Z. Bright and stable CdSe/CdS@SiO2 nanoparticles suitable for long-term cell labeling. ACS Appl. Mater. Interfaces 2014, 6, 11714-11723. (25) Chen, G.; Zhu, J. Y.; Zhang, Z. L.; Zhang, W.; Ren, J. G.; Wu, M.; Hong, Z. Y.; Lv, C.; Pang, D. W.; Zhao, Y. F. Transformation of cell-derived microparticles into quantum-dot-labeled nanovectors for antitumor siRNA delivery. Angew. Chem., Int. Ed. 2015, 54, 1036-1040. (26) Li, J.; Lee, W. Y.; Wu, T.; Xu, J.; Zhang, K.; Li, G.; Xia, J.; Bian, L. Multifunctional Quantum Dot Nanoparticles for Effective Differentiation and Long-Term Tracking of Human Mesenchymal Stem Cells In Vitro and In Vivo. Adv. Healthcare Mater. 2016, 5, 1049-1057. (27) Sun, C.; Cao, Z.; Wu, M.; Lu, C. Intracellular tracking of single native molecules with electroporation-delivered quantum dots. Anal. Chem. 2014, 86, 11403-11409. (28) Lisse, D.; Richter, C. P.; Drees, C.; Birkholz, O.; You, C.; Rampazzo, E.; Piehler, J. Monofunctional stealth nanoparticle for unbiased single molecule tracking inside living cells. Nano Lett. 2014, 14, 2189-2195. (29) Komatsuzaki, A.; Ohyanagi, T.; Tsukasaki, Y.; Miyanaga, Y.; Ueda, M.; Jin, T. Compact haloligand-conjugated quantum dots for multicolored single-molecule imaging of overcrowding GPCR proteins on cell membranes. Small 2015, 11, 1396-1401. (30) Varela, J. A.; Dupuis, J. P.; Etchepare, L.; Espana, A.; Cognet, L.; Groc, L. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices. Nat. Commun. 2016, 7, 10947. (31) Liu, W.; Greytak, A. B.; Lee, J.; Wong, C. R.; Park, J.; Marshall, L. F.; Jiang, W.; Curtin, P. N.; Ting, A. Y.; Nocera, D. G.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. Compact biocompatible

ACS Paragon Plus Environment

ACS Chemical Biology 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 16 of 23

quantum dots via RAFT-mediated synthesis of imidazole-based random copolymer ligand. J. Am. Chem. Soc. 2010, 132, 472-483. (32) Dong, B.; Li, C.; Chen, G.; Zhang, Y.; Zhang, Y.; Deng, M.; Wang, Q. B. Facile Synthesis of Highly Photoluminescent Ag2Se Quantum Dots as a New Fluorescent Probe in the Second NearInfrared Window for in Vivo Imaging. Chem. Mater. 2013, 25, 2503-2509. (33) Benayas, A.; Ren, F.; Carrasco, E.; Marzal, V.; del Rosal, B.; Gonfa, B. A.; Juarranz, Á.; SanzRodríguez, F.; Jaque, D.; García-Solé, J.; Ma, D.; Vetrone, F. PbS/CdS/ZnS Quantum Dots: A Multifunctional Platform for In Vivo Near-Infrared Low-Dose Fluorescence Imaging. Adv. Funct. Mater. 2015, 25, 6650-6659. (34) Liu, X.; Braun, G. B.; Qin, M.; Ruoslahti, E.; Sugahara, K. N. In vivo cation exchange in quantum dots for tumor-specific imaging. Nat. Commun. 2017, 8, 343. (35) Susumu, K.; Uyeda, H. T.; Medintz, I. L.; Pons, T.; Delehanty, J. B.; Mattoussi, H. Enhancing the Stability and Biological Functionalities of Quantum Dots via Compact Multifunctional Ligands. J. Am. Chem. Soc. 2007, 129, 13987-13996. (36) Palui, G.; Avellini, T.; Zhan, N.; Pan, F.; Gray, D.; Alabugin, I.; Mattoussi, H. Photoinduced phase transfer of luminescent quantum dots to polar and aqueous media. J. Am. Chem. Soc. 2012, 134, 1637016378. (37) Guo, Y.; Sakonsinsiri, C.; Nehlmeier, I.; Fascione, M. A.; Zhang, H.; Wang, W.; Pöhlmann, S.; Turnbull, W. B.; Zhou, D. Compact, Polyvalent Mannose Quantum Dots as Sensitive, Ratiometric FRET Probes for Multivalent Protein–Ligand Interactions. Angew. Chem., Int. Ed. 2016, 55, 47384742. (38) Mancini, M. C.; Kairdolf, B. A.; Smith, A. M.; Nie, S. M., Oxidative Quenching and Degradation of Polymer-Encapsulated Quantum Dots: New Insights into the Long-Term Fate and Toxicity of Nanocrystals in Vivo. J. Am. Chem. Soc. 2008, 130, 10836-10837. (39) Ye, L.; Yong, K. T.; Liu, L.; Roy, I.; Hu, R.; Zhu, J.; Cai, H.; Law, W. C.; Liu, J.; Wang, K.; Liu, J.; Liu, Y.; Hu, Y.; Zhang, X.; Swihart, M. T.; Prasad, P. N. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat. Nanotechnol. 2012, 7, 453458. (40) Zheng, W.; Liu, Y.; West, A.; Schuler, E. E.; Yehl, K.; Dyer, R. B.; Kindt, J. T.; Salaita, K., Quantum dots encapsulated within phospholipid membranes: phase-dependent structure, photostability, and site-selective functionalization. J. Am. Chem. Soc. 2014, 136, 1992-1999.

ACS Paragon Plus Environment

Page 17 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Biology

(41) Wang, Q.; Xu, Y.; Zhao, X.; Chang, Y.; Liu, Y.; Jiang, L.; Sharma, J.; Seo, D. K.; Yan, H. A facile one-step in situ functionalization of quantum dots with preserved photoluminescence for bioconjugation. J. Am. Chem. Soc. 2007, 129, 6380-6381. (42) Ma, L.; Tu, C.; Le, P.; Chitoor, S.; Lim, S. J.; Zahid, M. U.; Teng, K. W.; Ge, P.; Selvin, P. R.; Smith, A. M. Multidentate Polymer Coatings for Compact and Homogeneous Quantum Dots with Efficient Bioconjugation. J. Am. Chem. Soc. 2016, 138, 3382-3394. (43) Foubert, A.; Beloglazova, N. V.; Rajkovic, A.; Sas, B.; Madder, A.; Goryacheva, I. Y.; De Saeger, S. Bioconjugation of quantum dots: Review & impact on future application. Trends Anal. Chem. 2016, 83, 31-48. (44) Wichner, S. M.; Mann, V. R.; Powers, A. S.; Segal, M. A.; Mir, M.; Bandaria, J. N.; DeWitt, M. A.; Darzacq, X.; Yildiz, A.; Cohen, B. E. Covalent Protein Labeling and Improved Single-Molecule Optical Properties of Aqueous CdSe/CdS Quantum Dots. ACS Nano 2017, 11, 6773-6781. (45) Wegner, K. D.; Hildebrandt, N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 2015, 44, 4792-834. (46) Zhang, L.; Zhu, J.; Guo, S.; Li, T.; Li, J.; Wang, E. Photoinduced electron transfer of DNA/Ag nanoclusters modulated by G-quadruplex/hemin complex for the construction of versatile biosensors. J. Am. Chem. Soc. 2013, 135, 2403-2406. (47) Zhu, J.; Zhang, L.; Dong, S.; Wang. E. How to split a G-quadruplex for DNA detection: new insight into the formation of DNA split G-quadruplex. Chem. Sci. 2015, 6, 4822-4827. (48) Zhu, J.; Zhang, L.; Teng, Y.; Lou, B.; Jia, X.; Gu, X.; Wang, E. G-quadruplex enhanced fluorescence of DNA-silver nanoclusters and their application in bioimaging. Nanoscale 2015, 7, 13224-13229. (49) Zhang, L.; Wang, E. Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today 2014, 9, 132-157. (50) Lee, J. H.; Yigit, M. V.; Mazumdar, D.; Lu, Y. Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv. Drug. Deliv. Rev. 2010, 62, 592-605. (51) Meng, H. M.; Liu, H.; Kuai, H.; Peng, R.; Mo, L.; Zhang, X. B. Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem. Soc. Rev. 2016, 45, 2583-2602. (52) Han, D.; Zhu, Z.; Wu, C.; Peng, L.; Zhou, L.; Gulbakan, B.; Zhu, G.; Williams, K. R.; Tan, W. A logical molecular circuit for programmable and autonomous regulation of protein activity using DNA aptamer-protein interactions. J. Am. Chem. Soc. 2012, 134, 20797-20804.

ACS Paragon Plus Environment

ACS Chemical Biology 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 18 of 23

(53) Cservenyi, T. Z.; Van Riesen, A. J.; Berger, F. D.; Desoky, A.; Manderville, R. A. A Simple Molecular Rotor for Defining Nucleoside Environment within a DNA Aptamer-Protein Complex. ACS Chem. Biol. 2016, 11, 2576-2582. (54) Zhao, Q.; Li, X. F.; Le, X. C. Aptamer capturing of enzymes on magnetic beads to enhance assay specificity and sensitivity. Anal. Chem. 2011, 83, 9234-9236. (55) Xing, H.; Zhang, C. L.; Ruan, G.; Zhang, J.; Hwang, K.; Lu, Y. Multimodal Detection of a Small Molecule Target Using Stimuli-Responsive Liposome Triggered by Aptamer-Enzyme Conjugate. Anal. Chem. 2016, 88, 1506-1510. (56) Ren, K.; Liu, Y.; Wu, J.; Zhang, Y.; Zhu, J.; Yang, M.; Ju, H. A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery. Nat. Commun. 2016, 7, 13580. (57) You, M.; Lyu, Y.; Han, D.; Qiu, L.; Liu, Q.; Chen, T.; Sam Wu, C.; Peng, L.; Zhang, L.; Bao, G.; Tan, W. DNA probes for monitoring dynamic and transient molecular encounters on live cell membranes. Nat. Nanotechnol. 2017, 12, 453-459. (58) Zhao, W.; Schafer, S.; Choi, J.; Yamanaka, Y. J.; Lombardi, M. L.; Bose, S.; Carlson, A. L.; Phillips, J. A.; Teo, W.; Droujinine, I. A.; Cui, C. H.; Jain, R. K.; Lammerding, J.; Love, J. C.; Lin, C. P.; Sarkar, D.; Karnik, R.; Karp, J. M. Cell-surface sensors for real-time probing of cellular environments. Nat. Nanotechnol. 2011, 6, 524-531. (59) Melancon, M. P.; Zhou, M.; Zhang, R.; Xiong, C.; Allen, P.; Wen, X.; Huang, Q.; Wallace, M.; Myers, J. N.; Stafford, R. J.; Liang, D.; Ellington, A. D.; Li, C. Selective Uptake and Imaging of Aptamer-and Antibody-Conjugated Hollow Nanospheres Targeted to Epidermal Growth Factor Receptors Overexpressed in Head and Neck Cancer. ACS Nano 2014, 8, 4530-4538. (60) Ma, H.; Liu, J.; Ali, M. M.; Mahmood, M. A.; Labanieh, L.; Lu, M.; Iqbal, S. M.; Zhang, Q.; Zhao, W.; Wan, Y., Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem. Soc. Rev. 2015, 44, 1240-1256. (61) Kimoto, M.; Yamashige, R.; Matsunaga, K.; Yokoyama, S.; Hirao, I. Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat. Biotechnol. 2013, 31, 453-457. (62) Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug. Discov. 2017, 16, 181-202. (63) Zhang, C. Y.; Yeh, H. C.; Kuroki, M. T.; Wang, T.-H. Single-quantum-dot-based DNA nanosensor. Nat. Mater. 2005, 4, 826-831. (64) Su, S.; Fan, J.; Xue, B.; Yuwen, L.; Liu, X.; Pan, D.; Fan, C.; Wang, L. DNA-conjugated quantum

ACS Paragon Plus Environment

Page 19 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Biology

dot nanoprobe for high-sensitivity fluorescent detection of DNA and micro-RNA. ACS Appl. Mater. Interfaces 2014, 6, 1152-1157. (65) Freeman, R.; Liu, X.; Willner, I. Amplified multiplexed analysis of DNA by the exonuclease IIIcatalyzed regeneration of the target DNA in the presence of functionalized semiconductor quantum dots. Nano Lett. 2011, 11, 4456-4461. (66) Zhou, D.; Ying, L.; Hong, X.; Hall, E. A.; Abell, C.; Klenerman, D. A Compact Functional Quantum Dot−DNA Conjugate:   Preparation, Hybridization, and Specific Label-Free DNA Detection. Langmuir 2008, 24, 1659-1664. (67) Sun, D.; Gang, O. DNA-functionalized quantum dots: fabrication, structural, and physicochemical properties. Langmuir 2013, 29, 7038-7046. (68) Wang, Q.; Liu, Y.; Ke, Y.; Yan, H. Quantum dot bioconjugation during core-shell synthesis. Angew. Chem., Int. Ed. 2008, 47, 316-319. (69) Han, H.; Zylstra, J.; Maye, M. M. Direct Attachment of Oligonucleotides to Quantum Dot Interfaces. Chem. Mater. 2011, 23, 4975-4981. (70) Samanta, A.; Deng, Z.; Liu, Y.; Yan, H. A perspective on functionalizing colloidal quantum dots with DNA. Nano Res. 2013, 6, 853-870. (71) Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706-8715. (72) Law, W. C.; Yong, K. T.; Roy, I.; Ding, H.; Hu, R.; Zhao, W.; Prasad, P. N. Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. Small 2009, 5, 1302-1310. (73) Hildebrandt, N.; Spillmann, C. M.; Algar, W. R.; Pons, T.; Stewart, M. H.; Oh, E.; Susumu, K.; Diaz, S. A.; Delehanty, J. B.; Medintz, I. L. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem. Rev. 2017, 117, 536-711. (74) Ma, N.; Sargent, E. H.; Kelley, S. O., One-step DNA-programmed growth of luminescent and biofunctionalized nanocrystals. Nat. Nanotechnol 2009, 4, 121-125. (75) Tikhomirov, G.; Hoogland, S.; Lee, P. E.; Fischer, A.; Sargent, E. H.; Kelley, S. O. DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat. Nanotechnol. 2011, 6, 485-490.

ACS Paragon Plus Environment

ACS Chemical Biology 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 20 of 23

(76) Ma, N.; Tikhomirov, G.; Kelley, S. O. Nucleic Acid-Passivated Semiconductor Nanocrystals: Biomolecular Templating of Form and Function. Acc. Chem. Res. 2010, 43, 173-180. (77) Hinds, S.; Taft, B. J.; Levina, L.; Sukhovatkin, V.; Dooley, C. J.; Roy, M. D.; MacNeil, D. D.; Sargent, E. H.; Kelley, S. O. Nucleotide-directed growth of semiconductor nanocrystals. J. Am. Chem. Soc. 2006, 128, 64-65. (78) Ma, N.; Dooley, C. J.; Kelley, S. O. RNA-Templated Semiconductor Nanocrystals. J. Am. Chem. Soc. 2006, 128, 12598-12599. (79) Ma, N.; Yang, J.; Stewart K. M.; Kelley, S. O. DNA-passivated CdS nanocrystals: luminescence, bioimaging, and toxicity profiles. Langmuir 2007, 23, 12783-12787. (80) Gao, L.; Ma, N. DNA-Templated Semiconductor Nanocrystal Growth for Controlled DNA Packing and Gene Delivery. ACS Nano 2012, 6, 689-695. (81) Ma, N.; Kelley, S. O., DNA-based programing of quantum dot properties. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013, 5, 86-95. (82) Wei, W.; He, X.; Ma, N. DNA-templated assembly of a heterobivalent quantum dot nanoprobe for extra- and intracellular dual-targeting and imaging of live cancer cells. Angew. Chem., Int. Ed. 2014, 53, 5573-5577. (83) He, X.; Zeng, T.; Li, Z.; Wang, G.; Ma, N. Catalytic Molecular Imaging of MicroRNA in Living Cells by DNA-Programmed Nanoparticle Disassembly. Angew. Chem., Int. Ed. 2016, 55, 3073-3076. (84) Li, Z.; He, X.; Luo, X.; Wang, L.; Ma, N. DNA-Programmed Quantum Dot Polymerization for Ultrasensitive Molecular Imaging of Cancer Cells. Anal. Chem. 2016, 88, 9355-9358. (85) Zhang, L.; Jean, S. R.; Ahmed, S.; Aldridge, P. M.; Li, X.; Fan, F.; Sargent, E. H.; Kelley, S. O. Multifunctional quantum dot DNA hydrogels. Nat. Commun. 2017, 8, 381. (86) Luo, X.; Li, Z.; Wang, G.; He, X.; Shen, X.; Sun, Q.; Wang, L.; Yue, R.; Ma, N. MicroRNACatalyzed Cancer Therapeutics Based on DNA-Programmed Nanoparticle Complex. ACS Appl. Mater. Interfaces 2017, 9, 33624-33631. (87) He, X.; Li, Z.; Chen, M.; Ma, N. DNA-programmed dynamic assembly of quantum dots for molecular computation. Angew. Chem., Int. Ed. 2014, 53, 14447-14450. (88) Bratu, D. P.; Cha, B. J.; Mhlanga, M. M.; Kramer, F. R.; Tyagi, S. Visualizing the distribution and transport of mRNAs in living cells. Proc. Natl. Acad. Sci. 2003, 100, 13308-13313. (89) Tyagi, S. Imaging intracellular RNA distribution and dynamics in living cells. Nat. Methods 2009, 6, 331-338.

ACS Paragon Plus Environment

Page 21 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Biology

(90) Seferos, D. S.; Giljohann, D. A.; Hill, H. D.; Prigodich, A. E.; Mirkin, C. A. Nano-flares: probes for transfection and mRNA detection in living cells. J. Am. Chem. Soc. 2007, 129, 15477-15479. (91) Li, N.; Chang, C.; Pan, W.; Tang, B. A multicolor nanoprobe for detection and imaging of tumorrelated mRNAs in living cells. Angew. Chem. Int. Ed. 2012, 51, 7426-7430. (92) Wu, Z.; Liu, G. Q.; Yang, X. L.; Jiang, J. H. Electrostatic nucleic acid nanoassembly enables hybridization chain reaction in living cells for ultrasensitive mRNA imaging. J. Am. Chem. Soc. 2015, 137, 6829-6836. (93) Tyagi, S.; Kramer, F. R. Molecular Beacons: Probes that Fluoresce upon Hybridization. Nat. Biotechnol. 1996, 14, 303-308. (94) Dubertret, B., Calame, M. ; Libchaber, A. J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat. Biotechnol. 2001, 19, 365-370. (95) Zhang, P.; Beck, T.; Tan, W. H. Design of a Molecular Beacon DNA Probe with Two Fluorophores. Angew. Chem. 2001, 113, 416-419. (96) Li, D.; Zhou, W.; Yuan, R.; Xiang, Y. A DNA-Fueled and Catalytic Molecule Machine Lights Up Trace Under-Expressed MicroRNAs in Living Cells. Anal. Chem. 2017, 89, 9934-9940. (97) Liang, C.; Ma, P.; Liu, H.; Guo, X.; Yin, B.; Ye, B. Rational Engineering of a Dynamic, EntropyDriven DNA Nanomachine for Intracellular MicroRNA Imaging. Angew. Chem. Int. Ed. 2017, 56, 9077-9081. (98) Wu, Y.; Huang, J.; Yang, X.; Yang, Y.; Quan, K.; Xie, N.; Li, J.; Ma, C.; Wang, K., Gold Nanoparticle Loaded Split-DNAzyme-Probe for Amplified miRNA Detection in Living Cells. Anal. Chem. 2017, 89, 8377–8383. (99) Cheglakov, Z.; Cronin, T. M.; He, C.; Weizmann, Y. Live Cell MicroRNA Imaging Using Cascade Hybridization Reaction. J. Am. Chem. Soc. 2015, 137, 6116–6119. (100) Croce, C. M. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 2009, 10, 704-714. (101) Bartels, C. L.; Tsongalis, G. J. MicroRNAs: novel biomarkers for human cancer. Clin Chem 2009, 55, 623-631. (102) Roa, W.; Brunet, B.; Guo, L.; Amanie, J.; Fairchild, A.; Gabos, Z.; Nijjar, T.; Scrimger, R.; Yee, D.; Xing, J. Identification of a new microRNA expression profile as a potential cancer screening tool. Clin Invest Med 2010, 33, e124- e132. (103) Jung, C.; Ellington, A. D. Diagnostic applications of nucleic acid circuits. Acc. Chem. Res. 2014,

ACS Paragon Plus Environment

ACS Chemical Biology 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 22 of 23

47, 1825-1835. (104) Ravan, H.; Amandadi, M.; Esmaeili-Mahani, S. DNA Domino-Based Nanoscale Logic Circuit: A Versatile Strategy for Ultrasensitive Multiplexed Analysis of Nucleic Acids. Anal. Chem. 2017, 89, 6021-6028. (105) Hemphill, J.; Deiters, A. DNA computation in mammalian cells: microRNA logic operations. J. Am. Chem. Soc. 2013, 135, 10512-10518. (106) de Silva, A. P.; Uchiyama, S. Molecular logic and computing. Nat. Nanotechnol. 2007, 2, 399410.

ACS Paragon Plus Environment

Page 23 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Biology

434x301mm (72 x 72 DPI)

ACS Paragon Plus Environment