Anal. Chem. 1984, 56,212R-219R (291)Shenoy, G. K.; Noakes, D. R.; Meisner, G.P. J. Appl. fhys. 1982, 5 3 , 2628-2630. (292) Shinjo, T.; Kiyama, M.; Sugita, N.; Watanabe, K.; Takada, T. J. Magn. Magn. Mater. 1083, 35, 133-135. (293) Shinjo, T.; Shigematsu, T.; Hosolto, N,; Iwasaki, T.; Takada, T. Jpn. J. Appl. fhys. 1082,27, L220-222. (294) Shinno, I. Kyushu Dalgaku Kyoyobu Chigaku Kenkyu Hokoku 1983, 2 3 , 25-40. (295) Shinno, I.;Maeda, Y. Kyushu Daigaku Kyoyobu Chlgaku Kenkyu HOkOkU $981, 22, 13-26. (296) Siebers, H. H.; van der Kaan, A. M.; Donze, M. Hydrobiologia 1082, 92, 697-700. (297) Singh, P. R.; Reddy, K. R.; Chandra, G. Indian J. Pure Appl. Phys. 1982, 2 0 , 297-299. (298) Sisson, K.; Boolchand, P. Nucl. Instrum. Methods 1902, 198, 317-320. (299) Smit, P. H.; Van Stapele, R . P. Appl. fhys. A 1982, 28, 113-117. (300) Stadnik, Z.M. J. Magn. Magn. Mater. 1003, 3 7 , 138-146. (301) Stanek, J. J. Chem. fhys. 1982, 76, 2315-2320. (302) Staniek, S.; Shigematsu, T.; Keune, W.; Pfannes, H. D. J. Magn. hirrgn. Mater. 1983, 35, 347-349. (303) Stevens, J. G., Ed., section on Mossbauer Spectroscopy, "CRC Handbook of Spectroscopy, Volume 11"; J. W. Robinson, Editor of entlre voiume; CRC Press: Boca Raton, FL, 1981;551 pages. (304) Stevens, J. G.; Calis, G. H. M.; Bowen, L. H. Anal. Chem. 1082,5 4 ,
204R-216. (305) Stevens, J. G.; Ruiz, M. J. "Treatise on Analytical Chemistry, Part 1, Volume 10";Eking, P. J., Kolthoff, I.M., Eds.; Wlley: New York, 1983; pp 440-552. (306) Stevovic, J.; Zmbova, B.; May, L. Nuklearmedizin Suppi. 1982, 19, 334-336. (307) Sundqvist, T.; Wappling, R. Nucl. Instrum. Methods fhys. Res. 1983, 205,473-478. (308) Suttiil, R. J.; Turner, P. Vaughan, D. J. Geochim. Cosmochim. Acta 1982, 46,205-217. (309) TakBcs, L.; Vlrtss, A.; Laidheiser, H., Jr. Phys. Status Solidi A 1982, 7 4 , K45-48. (310) Tenhover, M.; Boolchand, P.; Bresser, W. J. fhys. Rev. 6 : Condens. Matter 1983, 27, 7533-7538. (311) Thosar, B. V.; Iyengar, P. K. "Advances in Mossbauer Spectroscopy, Applications to Physics, Chemistry and Biology"; Eisevier Scientific Publishing Company: New York, 1983;924 pages. (312) Ti, S. S.;Finiayson, T. R.; Smith, T. F.; Cashion, J. D.; Clark, P. E. Aust. J. fhys. 1983, 36, 185-196. (313) Tornov, T.; Klisrurski, D.; Mitrov, I.fhys. Status Solidi A 1902,
249-254. (314) Trautwein, A,; Biii, E. "Transition Metal Chemistry": Mulier, H., Diemann, s. E., Eds.; Veriag Chemie: Weinheim, 1981;pp 240-263. (315) Tricker, M. J.; Vaishnava, P. B.; Whan, D. A. Appl. Catal. 1982, 3 , 283-295.
(316)Tyson, J.; Owens, A.; Walker, J. C. J. Magn. Magn. Mater. 1803, 35, 126-129. (317) Uetake. N.; Kikuchi, M. Chem. Lett. 1083, 229-232. (318) Unlisted Editors "International Conference on the Applications of the Mdssbauer Effect"; Indian Natlonal Science Academy: New Delhi, 1982; 985 pages. (319) Urwank, P. Nucl. Instrum. Methods 1902, 203, 329-337. (320) Vaishnava. P. P.; Montano, P. A. J. Phys. Chem. Solids 1982, 4 3 , 809-815. (321) van de Vioed, G.; de Roy, G. L.; Verhaert, I.; Vansant, E. F. Recl. Trav. Chlm. fays-Bas. 1082, 101, 106-111. (322) van Deen, J. K.; van der Woude, F. Acta Metall. 1981, 2 9 , 1255-1262. (323) van der Kraan, A. M.; Buschow, K. H. J. fhys. Rev. B 1982, 25, 3311-3318. (324) van Rosaum, M.; Dezsi, I.; Langouche, G.; de Bruyn, J.; Coussement, R. "Nuclear and Electron Resonance Spectroscopies Applied to Materials Science"; Kaufmann, E. N., Shenoy, G. K., Eds.; Elsevier North-Holland Co, Inc.: New York, 1981;pp 359-363. (325)van Rossum, M.; Dezsi, I.; Mlshra, K. C.; Das, T. P.; Coker, A. fbys. Rev. 6 1982, 26, 4442-4447. (326) Varnek, V. A.; Poleshchuk, 0. Kh.; Mazalov, L. N.; Kizhner, D. M. J. Struct. Chem. (Engl. Transl.) 1982, 23, 81-84. (327) Varret, F. "International Conference on the Applications of the Mossbauer Effect"; Indian National Science Academy: Mew Deihi, 1982; pp 129-40. (328) Verbiest, E. Comput. fhys. Commun. 1003, 29, 131-154. (329) Vortes, A.; J6n& K.; CzakbNagy, I.: Nemecz, E. Radkxhem. Radloanal. Lett. 1981, 48, 93-100. (330) Vortes, A.; Kajcsos, 2.; Czakb-Nagy, I.; Lakatos-Varsanyi, M.; Csordis, L.; Brauer, G.; Leidheiser, H., Jr. Nucl. Instrum. Methods 1902, 199, 353-357. (331) V6rtes, A.; Nagy, S.; Awad, M. Z. Nucl. Instrum. Methods 1082, 199,
367-369. (332) Wagner, U.; Wagner, F. E.; Riederer, J. Radlochem. Radioanal. Lett. 1902, 51, 244-256. (333) Wegener, H. H. F.; Wimrner, K.; Seyboth. D.;Zsman, N. Hyperfine Interac. 1082, 12, 15-25. (334) Weyer, G.; Petersen, J. W.; Damgaard, G. fhysica 1983, 1168, 470-473. (335) Wiesinger, G.; Haferl, R.; Kirchmayr, H. Mikrochlm. Acta Suppi. 1881, 9 , 177-192. (336) Williamson, D. L.; Gibart, P. J. fhys. C 1081, 14, 2517-2526. (337)Yang, T.; Kolk, B.; Kachnowski, T.; Trooster, J. M.; Benczer-Koiler, N. Nucl. Instrum. Methods 1982, 197, 545-556. (338) Yang, T.; Krishnan, A.; Benczer-Koller, N.; Bayreuther, G. fhys. Rev. Lett. 1082, 1292-1295. (339) Zhetbaev, A. K.; Ibragimov, Sh. Sh.; Shokanov, A. K.; Ozernoi, A. N. Sov. Phys .-Dokl. (Engl. Transl.) 1982, 27, 556-557. (340) Zimrnermann, R.; Doerfler, R. Hyperfine Interac. 1982, 12, 79-93.
Nuclear Magnetic Resonance Spectrometry John R. Wasson' SYNTHECO, Inc., 1920 Industrial Pike Road, Gastonia, North Carolina 28052
This review covers the published literature from July 1981 to July 1983 although some citations of other work are also included. As noted in earlier reviews (1) the volume of literature published in a 2 year period is impossible to summarize in such a short space. Instead, it is hoped that this effort serves as a guide to the recent books, reviews, and developments of use to the reader. With the general affordability of computers there is coming an onslaught of software, instructional tools, and other applications. Educational software on lH NMR spectroscopy (2) and a new Wiley Heyden journal Computer Enhanced Spectroscopy have already graced the scene as have an increasing number of papers dealing with computer software and hardware and NMR spectrometry.
BOOKS AND REVIEWS The books (3-46) on NMR spectrometry cover fundamentalsto state-of-the-art developments with a significant number l F o r biographical material, see the review o n electron spin resonance.
212 R
0003-2700/84/0356-212R$01.50/0
of them dealing with biological applications. Table I lists review articles. For convenience, the references in Table I are collected separately in the bibliography. The reviews by Kuchel(47) and Levy and Craik (48) deserve special mention since the former deals with handling biological samples and the latter gives a good overview of current developments.
APPARATUS AND TECHNIQUES A method involving surrounding the particles of the powder with a liquid of the same magnetic susceptibility as the powder has been presented to reduce the severe magnetic susceptibility broadening of NMR spectra of powders (49). Highresolution lH NMR in solids can be obtained by isotopic dilution of protons in a deuterated solid combined with ma ic-angle spinnin (50). Methods for measuring the energy an%temperature ofthe secular dipole-dipole interaction of nuclear spin systems in high field have been described (51). Magic-angle sample spinning has been combined with twodimensional NMR methods to obtain high-resolution chemical shift dipolar spectra (52). Variable-angle sample spinning high-resolution NMR of solids (53) and an alternatlng pulsed 0 1984 American Chemical Society
NUCLEAR MAGNETIC RESONANCE SPECTROMETRY
magnetic field radient apparatus for NMR self-diffusion measurements (%4)have been reported. A design for a high homogeneity rf coil for solid-state multiple-pulse NMR (55) and a high-pressure, low-temperature apparatus for study of phase transitions (56) have been reported. Methods for suppression of the spinner signal in magic angle spinnin NMR (57), total suppression of side bands in CPMAS 1 3 8 NMR (58), high-resolution MAS NMR of quadrupolar nuclei in powders (59),and a time saving method to determine the length of a 90° pulse (60) have been described. A method for altering the phase of spinnin side bands in MAS NMR by using a single 180° pulse has%een introduced (61). A MAS apparatus which can be used for high-resolution solid-state NMR at 215 K has been reported (62). A comparatively cheap broad band pulsed NMR power amplifier has been described (63). An improved version of the chemical shift scaling multipulse cycle has been demonstrated (64) which eliminates the dependence of the direction of the axis of precession on the extent of scaling. A superior pulse sequence for two-dimensional chemical shift correlation spectroscopy (65)and a five pulse sequence has been suggested (66) for population inversion of d l resonances in a spectrum whose width may be nearly twice as large as the rf field strength. A new pulsed polarization transfer experimental method has been described for the polarization of 13Cspins in a solid by magnetization transfer from protons (67). Optimal experimental parameters for quantitative pulse Fourier transform lH NMR spectrometry has been described (68). A convenient digital method for measuring pulse length using second-dimension transformation (69) has been detailed. The recovery-preparation time in pulsed FT NMR experiments (70), relayed coherence transfer spectroscopy of heteronuclear systems (71), a simple scheme for determining multiplicity in I3C NMR spectra (72) and distortionless enhancement of NMR signals by polarization transfer (73) have been reported. NMR chemical shift imaging in three dimensions has been presented (74). A convenient method of observing relatively broad nuclear magnetic resonances in the Fourier transform mode (75) has been discussed as has a method for elimination of the power mismatch cequirements in cross-polarization NMR (76). Spinning-side-band-free and spinning-sideband-only NMR spectra in spinning samples ( 7 3 , skyline projections in 2-D NMR (78), and pulse strategies for the suppresion of acoustic ringing (79) have been reported. A new method of external referencing with NMR spectrometers where the magnetic field is parallel to the sample axis has been suggested (80) as have conditions for quantitative flow FT proton NMR measurements under repetitive pulse conditions (81) and a method of randomization of spins in heteronuclear pulse sequences (82). A simple magic-echo sequence for second-moment measurements (83),mapping the pattern of proton-proton spin coupling in a spectrum of man lines (84), and hi h resolution spectra with J coupling in soli s (85) have been &scribed. The application of double cross-polarization 15N NMR techniques has been illustrated by studies of the formation or metabolism of particular chemical bonds of proteins in intact lyophilized soybean tissues (86). Variable frequency proton off-resonance decoupled 13C NMR spectroscopy can be used as a tool for structural investigations in micellar microemulsion systems (87). Molecular weight determination by NMR can be based on the proportionality between peak areas and the number of nuclei producing the signals (88). Determination of dipole coupling constants using heteronuclear rnulti le quantum NMR has been developed (89). A technique {as been proposed for the detection of long-range NMR couplin between protons and 13C (90). Design of a digital hase skfter for multiple-quantum NMR has been describei (91). Diode replacement for improving performance of a Varian FT-BOA spectrometer at low operating frequencies has been reported (92). A new type of magnetic field gradient coil (93) and an improved tune-andmatch circuit for Boshimming in intact biological samples have been reported (94). A study of precision in the measurement of chemical shifts has been reported (95). A simple pressurized, internally heated, high-tem erature 13C NMR probe for work at 293-823 K and 0.1-100 &Pa has been reported (96).A probe for high tem erature, Le., -1100 K, work has been developed (97). PP NMR reference standards for aqueous samples have been proposed (98). A solution of 0.1 mol PPh3 and OPPh3 in toluene-d, is recom-
B
mended (99) as a shift thermometer for P NMR. Hexachlorocyclotriphosphazenehas been proposed (100) as a 31P reference standard for intact biological systems. A D20 solution of -0.04 M Dy(N03) in acetic acid-acetate buffer at pH 5.2 comprises a useful IiC thermometer for aqueous solution work (101). Influence of an internal reference on proton NMR solvent shifts and determination of reference-independent ASIS (aromatic solvent-induced shifts) have been discussed (102). A lab experiment for student use which employs NMR to characterize polymer tacticity has been reported (103). Water-soluble parama netic relaxation rea ents for l8C NMR (104) and aqueous s k f t reagents, e.g., DyfNTA),", for high-resolution cationic NMR (105)have been described. The conventional reference standard (4.5 M LiC1, 0.01 M MnC12)for measuring unfreezable water by NMR was found (106)to be unsuitable at temperatures below minus 32" because of partial freezing and an alternative standard proposed. NMR titration of carnosine has been developed as a model biochemistry experiment (307). An external arteriovenous bypass system with an NMR tube as part of the circuit has been developed (108) for the detection of species, e.g., drugs, in circulating whole blood of a dog. An apparatus has been described which permits the acquisition of NMR spectra from spinning 20-mm sample tubes while constantly monitoring the pH, pH-statting, and efficiently mixing the added reagent (109). A graphical procedure has been presented for evaluating the association constant and the observed chemical shift of weak molecular complexes (110).
SPECTRAL ANALYSIS A useful formula for the number and relative intensities of the lines in a NMR spectrum due to first-order coupling has been with a group of equivalent nuclei with spin I > developed (111)which enables the generation of lLascal-type triangles. Model compounds have been developed which facilitate determination of isomeric unsaturated terpene aminoethanols by 13C NMR (112). Rules for predicting the chemical shifts in the 13C NMR spectra of monounsaturated steroids have been evaluated (113). A theory has been developed (114) for NMR spectra of A2B2systems with nuclei of higher spin. It is assumed that all nuclei have the same spin value, otherwise, no arbitrary limit is set on the spin. A computer program has been written that determines trace components and separates overlapping components in multicomponent NMR spectra (115). A relativistic analog of Ramsey's theory of chemical shifts has been formulated (116). A simple correction accounting for the effect of truncating the A 0 basis in calculations of NMR shielding has been proposed (117). Chemical shifts (?Si) of simple alkylhalosilanesfollow an additive relation with first- and second-order coefficients (118). In the analysis of NMR spectra of symmetric spin systems, a set of multiple solutions can be obtained from a iven solution by performing those parameter permutations wkch have the same effect on the spin Hamiltonian as nuclear permutations (119). A study has been reported (120) of the chemical shifts of highly deshielded methine protons using multiple linear regression analysis and Simplex function minimization to determine the limitations of additivity of shift parameters for these protons. 13Cshielding constants have been calculated by the EHMO method using GIAOs (121). MO calculations and 13C NMR studies on coumarin and a number of other compounds showed (122) that 13Cspectra can be automatically assigned on the basis of a 13Cchemical shift/charge density relation. The use of uniform chemical shift scaling to obtain isotropic magic-angle sample spinning (MASS) spectra has been shown to be feasible at high fields (123). Simplification of the calculation of transition probability matrix elements for strongly coupled spin systems can be achieved (124) by considering correspondences between eigenstates belonging to opposite values of F,,the z component of the total spin momentum. Exact solutions of the Bloch equations with n-site chemical exchange have been obtained (125). Topological and group theoretical analysis in dynamic NMR spectroscopy has been presented (126). A general method for estimation of natural line widths in exchange-broadened NMR spectra has been described (127). NMR line-shape analysis can distinguish between the two forms of distributions of correlation times describing molecular motions (128). Analytical expressions ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984
213 R
NUCLEAR MAGNETIC RESONANCE SPECTROMETRY
Table I. Reviews topic general review nuclear shielding nuclear shielding-theoretical and physical aspects NMR chemical shifts-quantum mechanical calculations spin-spin couplings spin-spin couplings-theoretical aspects nuclear spin-spin couplings-calculations multiple resonance multiple quantum spectroscopy time-dependent hyperfine interactions two-dimensional Fourier spectroscopyinformation content superoperators computer simulation of spectra computer assisted analysis--13C NMR intermolecular field interaction in solutions oriented molecules oriented molecules and applications to inorganic chemistry anisotropies in spin-spin coupling constantschemical shifts in liquid crystals chiral solvating agents magnetic resonance and relaxation in structurally incommensurate systems spin relaxation in fluids damping effects matching up of NMR and ESR spectrometers automated quantitative analysis proton NMR detectors for liquid chromatography transient paramagnetic intermediates radiative detection of NMR NMR at high pressure solvent mechanisms by high-pressure NMR NMR spectroscopy at 600 MHz Ultrahigh field NMR coordination complexes using lanthanide shift reagents ionic and molecular solids-wide-line NMR and relaxation processes direct observation of recombination barriers of ion pairs by dynamic NMR ion hydration in chemistry and biophysics rapid analysis of food food science-pulsed low-resolution NMR conformational analysis conformational analysis of chelate ring systems humic acid research fossil fuels solid fossil fuels: 13CNMR using cross polarization and MAS solid fossil fuels clay minerals supercooled water water in heterogeneous systems glass structure glasses: NMR and Moessbauer spectroscopy structure of nonmetallic glasses metallic glasses solid helium-3 pulsed NMR studies of superfluids helium3 'H NMR-crystal hydrates silicates in solution dissolved silicates-silicon NMR silanol groups and silica surfaces zeolites zeolitesMAS-NMR heterogeneous systems cluster chemistry amorphous alloys ternary superconductors intercalated graphite hydrogenated amorphous silicon rare-earth materials containing hydrogen hydrogen diffusion in metals 214R
ref 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28,29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48,49 50 51 52,53 54 55 56 57 58 59 60, 61 62, 63 64 65 66 67 68 69 70 71
ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984
topic hydrogen diffusion in metal hydrides solid state solids: analytical chemical applications high-resolution 13Csolid-state NMR high-resolution spectra of solids MAS-CPMAS-analytical applications CPMAS metal nuclides-main group metals deuterium NMR boron-11 NMR tin-119 NMR in coordination chemistry organotin reactions-tin-119 NMR thallium NMR cadmium-113 NMR-biological systems cadmium-113 NMR mol yb den um-95 NMR 195PtNMR antitumor comple~es--'~~Pt and 15NNMR vanadium-51 NMR structures of diene polymers synthetic polymers oriented polymers bulk polymers magic angle NMR studies of polymers solid polymers solid p ~ l y m e r s - ~ ~NMR C high polymers-high-resolution 13CNMR and 'HNMR solid polymers-molecular dynamics--'H NMR semicrystalline polymers-"C NMR relaxation parameters polymer structure and dynamics-13C NMR structural and dynamic characterization of polymers: 13Cand 19FNMR molecular motion in solid polymers--2H NMR dynamic and thermodynamic transition points in polymers rubber analysis-computerized NMR and IR techniques imaging techniques and applications in vivo topical NMR in vivo imaging-human biochemistry NMR imaging in medicine position tomography and NMR imaging intracellular pH measurements intracellular pH determined by 31PNMR enzyme mechanisms involving phosphorus (170,
ref 72 73 74 75 76,77 78 79 80
81 82 83 84 85 86 87 88 89 90 91 92 93,94 95 96 97 98 99 100
101 102 103 104 105 106 107 108-110 111
112 113 114 115,116 117 118
3 1 ~ )
enzyme catalysis active sites in enzymatic complexes serine proteases-crystallographic and NMR studies Go and Cr nucleotides-interactions with enzymes cobalamins and their derivatives bimetalloenzymes oxidized metalloporphyrins iron prophyrins cytochromes low-spin cytochromes inorganic and organometallic chemistrydynamic NMR organic and organometallic compounds inorganic and organometallic compounds 31PNMR: metal-phosphorus bonding transition metal carbonyl clusters-multinuclear NMR studies alkaloids spectra of isoquinoline alkaloids constitution of thioamides and thiohydrazides substituent effects of allenes and cumulenes NMR: coumarin derivatives solid methane ring-opening polymerization of cycloalkenesI3C NMR sulfate esters and sulfatases medicine
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
NUCLEAR MAGNETIC RESONANCE SPECTROMETRY ~~
Table I (Continued) topic
ref
topic
pharmaceutical research biological applications biological samples fluorine NMR-Biochemistry biological systen~s--'~CNMR biological systems-lSN NMR ion binding in biological systems Na binding by natural and synthetic ionophores ion binding in biological systems living cells monitoring cell metabolism 31PNMR in living bodies noninvasive studies of living cells and organisms localized noninvasive detection and description of ischemic cerebral damage biosynthetic studies using -'*Oisotope shifts in 13CNMR living systems living system's3-'P topical magnetic resonance metabolites in living tissue water in living cells water in biological systems-170 NMR lanthanide ions in solution and biological systems biosynthetic pathways: use of isotopic hydrogen differentiation in Acanthamoeba castellanii l80and l70effects on ,lP NMR as probes of enzymatic reactions of phosphate compounds phosphorus NMR: renal physiology and metabolism vertebrate rod outer segments muscle constituents in living tissue cerebral vascular disease cardiac and skeletal m u s ~ l e s - ~ ~NMR P 31PNMR: striated muscle metabolism epethelial metabolism and junction mono- and oligosaccharides polysaccharides cyanogenic glycosides flavonoids-13C NMR flavonoid-0- and C-glycosides flavins carotenoids membranes
143 144 145 146 147 148 149 150 151 152,153 154 155 156 157
ion transport-membranes pathological membranes 31PNMR: membrane lipid structure membrane lipids-*H NMR lipid and membrane biochemistry structural and motional properties of phospholipids in membranes solid-state NMR of lipid bilayers lipid-protein interactions natural macromolecules proteins protein conformations protein structure and fun~tion-~lPNMR protein crystals, membrane proteins, and lipids proteins and nucleic acidssolid state protein dynamics internal mobility of globular proteins larger motions within proteins mobility in proteins protein structure and dynamics--'H NMR dynamic structures of proteinsshort and long neurotoxins oligonucleotides in solution oligonucleotide and polynucleotide-drug complexes in solution I7O NMR of labeled peptides and model systems two-dimensional NMR of cyclic peptides amino acids and peptides: 13Cenriched 13CNMR of biologically active peptides copolyamides and p01ypeptides~~N NMR linear and cyclic peptides-solidstate NMR nucleic acids complexes between nucleic acid and intercalating compounds transfer ribonucleic acids-high-resolution phosphorus NMR proteins and transfer RNA-ring current calculations solution structure of transfer RNA--'H NMR DNA conformation, dynamics, and interaction in solution DNA-drug and DNA-protein interactions DNA dynamics-multiple field natural abundance 13CNMR DNA-structural and dynamic aspects
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178,181 179 180
182 183
for NMR line shapes of spin -5/2 and nuclei have been derived (129) by assuming quadrupole relaxation and nonextreme narrowing conditions. Software for quantitative analysis by 13C FT-NMR has been described (130). A new PASCAL program has been described (131) for the interactive analysis and display of high-resolution NMR from spin 'I2 nuclei. The maximum entropy method has been employed in a novel technique for analyzing time-series data representing a set of noninteracting damped oscillators. FT NMR has been used as an example of this method's applications (132). A data processing method has been developed (133) whereby 2D Fourier transform runs can be done with limited and slow mass storage. A computer program for simulating EPR spectra of randomly oriented samples has been adopted to simulation of broad band NMR spectra of (134) randomly oriented samples. A theory of broad-band spin decoupling has been presented (135). The selection of coherence transfer through a chosen order of multiple quantum coherence facilitates the analysis of 2-D correlation spectra (136). Separation and suppression of coherent transfer effects in two-dimensional NOE and chemical exchange spectroscopy (137) and three-frequency NMR simultaneous determination of 13C chemical shifts, scalar coupling, multiplicities, and chemical shifts of directly bonded protons (138) have been described. Saturation in Hadamard NMR spectroscopy and its description by a correlation expansion have been detailed (139). A canonical transformation technique has been employed to describe the influence of molecular motions on multipulse NMR spectra (140). A rapid search procedure for optimizing high-order multiple-quantum
ref 184 185 186 187 188
189 190 191 192 193 194 195 196,197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
transition intensities (141) and a method for descriminating between CH1, CH2,and CH, groups by modulation NMR with a second spin echo (142) have been reported. Abstract factor analysis of solid-state NMR spectra has been detailed (143). Obtaining the key set of typical vectors by factor analysis and subsequent isolation of component spectra has been detailed (144).
An interactive computer system for the simulation of 13C NMR spectra has been reported (145). Identification and interpretation of spectra by logical comparison of spectral information sets have been extensively examined (146). Calculation of Alfrey-Price Q-e values from 13C NMR data has been detailed (147). A computer program has been described (148) for predicting 13C NMR spectra of organic compounds and for determining the similarity of the predicted spectrum to an observed spectrum. A computer program that searches a data base of assigned 13C NMR spectra to find reference structures that model an unknown has been described (149). Computer-assisted structural interpretation of proton NMR spectral data has been performed with programs which can be linked to the GENOA and STEREO programs (150). Combination of analytical spectrometers and spectroscopic data bases (151), a new file search system for NMR spectra (152),and computer-aided structure elucidation with the CHEMICS system (153) have been described. A dialog computer program system for structure recognition by IR, lH NMR, and 13C NMR has been described (154). Computer programs for 13C NMR, 'H NMR, and IR structure assignments have been reported (155). A rapid, microcomputerbased search system for binary-coded spectra has been demANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984
215R
NUCLEAR MAGNETIC RESONANCE SPECTROMETRY
onstrated (156)for large IR, 13CNMR, and mass spectral data bases.
ANALYTICAL APPLICATIONS The direct couplin of high-performance liquid chromato ra hy and high-fiefd NMR has been demonstrated (157). l08/&3isotopic ratio determinations can be made (158) with FT-NMR spectroscopy. An inexpensive NMR spectrometer suitable for use in an advanced laboratory course and its application to the measurement of the oil content of corn seeds have been described (159). Linalool in coriander oil can be determined by ‘H NMR using N,N-dimethylaniline as an internal standard (160). A pulsed, low-resolution technique can be used for oil and water determinations in oil/water emulsions (161). A method has been developed for the 13C NMR determination of rubber in guayule (162). Low-reso) a rapid screening lution lH NMR can be employed ( 1 6 2 ~as method for the determination of rubber in guayule. 13C NMR for analysis of fatty quaternary amines has been reported (163). Forensic characterization of explosives, especially trinitroaniline, has been detailed (164). A technique for analysis of debris from fires of suspicious origin has been reported (165). A 13Cand IH NMR study of isomeric cocaines and their syntheses has been described (166). The use of 13C NMR for the analysis of amphetamine, cocaine, methaqualone, phenacetin, and ten other drugs has been assessed (167). lH NMR determination of diazepam using maleic acid as an internal standard has been described (168). High-field lH NMR has been used to identify and quantify endogenous and ingested substances in human serum (169). Quantitative detection of dimethirimol can be achieved by using lH NMR with chloroform as an internal standard (170). Determinations of ampicillin and cloxacillin can be made by NMR (171) as can those for ephedrine and pseudoephedrine (172). A method for the determination of nalidizic acid in tablets and pediatric suspensions has been proposed (173) which involves comparing the integral of the methyl group protons at 2.56 ppm to that of the singlet of a known amount of hexamethylcyclotrisilazane a t 0.00 ppm, used as an internal standard. Optical purity of drugs can be determined by using chiral lanthanide shift reagents and a base line technique (174). The europium chelate of optically active bis(perf1uoro-2-propoxypropiony1)methane can be employed for the direct determination of the enantiomeric composition of chiral compounds (175). Identification of the origin of natural alcohols by natural abundance 2H NMR (176) and use of trifluoromethanesulfonyl chloride and 19FNMR for identification of various functional grou s (177) have been detailed. A quantitative method for the p4FNMR analysis of pentafluoropropionic anhydride derivatized pharmaceuticals is based on chromatographic derivatization methods (178).
SELECTED SYSTEMS Pulse NMR studies of oil shale (179)and coal (180)provide useful information re arding the structure and composition of those materials. C NMR spectra of salicylic acid and several of its derivatives have been reported (181). A good linear relation exists between the 170NMR chemical shift and the OH stretching frequency in some saturated alcohols (182). 23Na NMR and interactions of sodium ions with 2,2,6,6tetramethylpiperidinyl oxide in THF have been probed (183). 13PNMR studies of P4Sloand P4Sghave been presented (184). Silver-109 NMR spectra of aqueous silver ions coordinated with the tanol nitroxide radical have been described (185). Nuclear quadrupole relaxation and chemical shift data for 81Br in aqueous 10-20 m HBr and viscosity data have been reported
f
(186).
ACKNOWLEDGMENT The author is grateful to C. B. Stubblefield and Joann Trull, Lithium Corporation of America, for use of library facilities. LITERATURE CITED
(1) Wasson, J. R.; Salinas, J. E. Anal. Chem. 1080, 52, 90R-95R. (2) Clough, F. Spectral Interpretation. Part 11. Proton NMR Spectroscopy”; Wiiey Educational Software; Wiiey: New York, 1983. (3) Bax, A. “Two-Dimensional Nuclear Magnetic Resonance in Liquids”; Reidel: Dordrecht. 1982.
216R
ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984
(4) Toda, F.; Oshima, T.; Ishlda, Y.; Takehlra, Y.; Saito, K.; Tanaka, K. “% NMR”; Sankyo Publishing, Inc.: Tokyo, 1981. (5) Gadlan, D. G. “NMR and Its Applicatlon to Livlng Systems”; Oxford University Press: New York, 1982. (6) Memory, J. D.; Wilson, N. K. “NMR of Aromatic Compounds”; Wiiey: New York, 1982. (7) Emsiey, J. W., et ai. Eds. “Progress in NMR Spectroscopy”; Pergamon Press: Oxford, 1982; Vol. 14. (8) Berliner, L., Reuben, J., Eds. “Biological Magnetic Resonance”; Plenum Press: New York, 1982; Vol. 4. (9) Abragam, A.; Goidman, M. “Nuclear Magnetism: Order and Disorder”; Oxford University Press, New York, 1982. (10) Bremser, W.; Franke, B.; Wagner, H. “Chemical Shift Ranges in Carbon-13 NMR Spectroscopy”: Veriag-Chemie: Weinheim, 1982. (1 1) ”Proton NMR Collection. 1981-1982 Supplementary-Numerical, Moiecular Weight Index, No. 3200 1M-36000M”; Sadtier Res. Lab.: Philadelphia, PA, 1982. (12) “The Sadtler NMR Spectra Handbook of Esters”; Sadtier Res. Lab.: Philadelphia, PA, 1982. (13) Waugh, J. S.,Ed. “Advances in Magnetic Resonance Voi. 10”; Academic Press: New York, 1982. (14) Levy, G. C., Ed. “ACS Symposium Series. Voi. 191: NMR Spectroscopy: New Methods and Applications”; ACS: Washlngton, DC, 1982. (15) Mehring, M. “Principles of High Resolution NMR in Solids”, 2nd ed.; Springer-Verlag: Berlin, 1983. (16) Webb, 0. A., Ed. “Annual Reports on NMR Spectroscopy”; Academic Press: New York, 1982; Vol. 12. (17) Formacek, V.; Kubeczka, K. H. “Essential Oils Analysis by Capillary Gas Chromatography and Carbon-13 NMR Spectroscopy”; Wiiey: New York, 1982. (18) Sarma, R. H., Ed. “Biomoi. Stereodynamics, Proc. Symp.”; Adenine Press: Gliderland, NY, 1981; Voi. 2. (19) Govil, G.; Hosur, R. V. “NMR: Basic Principles and Progress. Vol 20. Conformation of BlologicalMolecules”; Springer Verlag: New York, 1982. (20) Kintzinger, J. P.; Marsmann, H. ”NMR, Basic Principles and Progress, Vol. 17: Oxygen-17 and Silicon-29”; Springer Veriag: New York, 1981. (21) Kaufman, L., Crooks, L. E., Marguiis, A. R., Eds. “Nuclear Magnetic Resonance Imaging in Medlcine”; Igaku-Shoin: New York, 1981. (22) Sandstroem, J. ”Dynamic NMR Spectroscopy”; Academic Press: New York, 1982. (23) Bothner-By, A. A., Glickson, J. D., Sykes, B. D., Eds. “Biochemical Structure Determination by NMR”; Marcel Dekker: New York, 1982. (24) Beach, L. B., Ed. “Selected C-13 NMR Spectral Data Supplementary Vol. No G-12”; Thermodynamics Res. Center, Texas A&M University: College Statlon, TX, 1982. (25) Jardetzky, 0.; Roberts, G. “NMR in Molecular Biology”; Academic Press: New York, 1982. (26) Mansfieid, P.; Morris, P. “NMR Imaging in Biomedlcine Supplement 2, Advances in Magnetlc Resonance”; Academic Press: New York, 1982. (27) Sohar, P. “Nuclear Magnetic Resonance Spectroscopy”; CRC Press: Boca Ratan, FL, 1983; Vol. I 11. (28) Pham, Q.-T.; Petlaud, R.; Watson, H. “Proton and Carbon NMR Spectra of Porymers”; Wiley: New York, 1983; Vol. 2. (29) Cohen, J. S., Ed. “Magnetlc Resonance in Biology”; Wiley: New York, 1983; Vol. 2. (30) Lambert, J. B.; Riddeii, F. G. “The Multinuclear Approach to NMR Spectroscopy”; Reidei: Dordrecht, 1983. (31) Akitt, J. W. “NMR and Chemlstry-An Introduction to the Fourier Transform-Multinuclear Era”, 2nd ed.; Chapman & Hail: New York, 1983. (32) Carrington, A.; Hudson, A,; MacLachlan, A. D. “Introduction to Magnetic Resonance”, 2nd ed.; Chapman & Hail: New York, 1983. (33) Harris, R. K. “Nuclear Magnetic Resonance Spectroscopy. A Physicochemical View”; Pitman: Marshfield, MA, 1983. (34) Partain, C. L.; James, A. E., Jr.; Rollo, F. D.; Price, R. R. “Nuclear Magnetic Resonance (NMR) Imaging”; Saunders: Philadelphia, PA, 1983. (35) Marshall, A. G., Ed. “Fourier, Hadamard and Hilbert Transforms in Chemistry”; Plenum Press: New York, 1982. (36) Mann, B. E.; Taylor, 8. F. ”% NMR Data for Organometallic Compounds”; Academic Press: New York, 1981. (37) Webb, G. A,. Ed. “Annual Reports on NMR Spectroscopy”; Academic Press: New York, 1981; Voi. 1 1 (Nitrogen NMR Spectroscopy). (38) Kaufmann, E. N., Shenoy, G. K., Eds. “Nuclear and Electron Resonance Spectroscopies Appiled to Materials Science”; Vol. 3, Elsevier: New York, 1981. (39) Cierc, J. T.; Pretsch, E.; Seibi, J. “Structural Analysis of Organic Compounds by Combined ApDiicationS of Spectroscopic Methods”; Elsevier: .. hew Yorl;, 1981. (40) Marchand, A. P. “Stereochemical Applications of NMR Studies in Rigid Bicyclic Systems”; Veriag Chemie International, Inc.: Deerfleld Beach, FL. 1982. (41) Marshall, J. L. “Carbon Carbon and Carbon-Proton NMR Couplings: Applications to Organic Stereochemistry and Conformational Analysis”; Verlag Chemie International, Inc.: Deerfieid Beach, FL, 1983. (42) Bovey. F. A. “Chain Structure and Conformation of Macromolecules”; Academic Press: New York, 1982. (43) Clarke, R. H.. Ed. “Triplet State ODMR Spectroscopy Techniques and Applications to Biophysical Systems”; Wlley: New York. 1982. (44) Webb, G. A. “NMR Vol. 1 1 . Speclalist Periodical Reports”; Royal Society of Chemistry: London, 1982. (45) Webb, 0. A., Ed. “Annual Reports on NMR Spectroscopy”; Academic Press: New York, 1982; Voi. 13. (46) Webb G. A,, Ed. “Annual Reports on NMR Spectroscopy”; Academic Press: New York, 1983; Vol. 14. (47) Kuchei, P. W., CRCCrit. Rev. Anal. Chem. 1081, 12, 155-231. (48) Levy, G. C.; Craik, D. J. Science 1081, 214, 291-9. (49) Stoii, M. E.; Majors, T. J. J. Magn. Res. 1082, 46. 283-8.
+
NUCLEAR MAGNETIC RESONANCE SPECTROMETRY (50) Eckman R. J. Chem fhys. 1982, 76, 2767-8. (51) Goldman, M.; Roinel, Y.; Bouffard, V. J . Magn. Res. 1982, 46, 110-24. (52) Munowitz, M. 0.; Griffln, R. G. J. Chem. fhys. 1982, 76, 2848-58. (53) Ganapathy, S.; Schramm, S.; Oldfield, E. J. Chem. fhys. 1982, 77, 4360-5. (54) Hrovat, M. I.; Brilt, C. 0.; Moore, T. C.; Wade, C. 0. J . Magn. Res. 1982, 49. 41 1-24. (55) Idzlak, S.; Haeberien, N. J . Magn. Reson. 1982, 50,281-8. (56) Schuele, P. J.; Schmldt, V. H. Rev. Sci. Instrum. 1982, 53, 1724-6. (57) Zumbulyadis, N. J . Magn. Reson. 1982, 49,329-31. (58) Dlxon, W. T.; Schaefer, J.; et ai. J . Magn. Reson. 1982, 49,341-5. (59) Samosan, A.; Kundla, E.; Lippmaa, E. J . Magn. Reson. 1982, 49, 350-7. (60) Haupt, E. J . Magn. Reson. 1982, 49,358-64. (61) Hemminga, M. A.; DeJager, P. A.; Datema, K. P.; Breg, J. J . Magn. Reson. 1982, 50,508-12. (62) Macho, V.; Kendrlck, R.; Yannoni, C. S. J . Magn. Reson. 1983, 52, 450-6. (63) McLachlan, L. A. J. Magn. Reson. 1982, 4 7 , 490-9. (64) DiVerdi, J. A.; Opeila, S. J. J . Chem. fhys. 1981, 75,5594-5. (65) Bendall, M. R.; Pegg, D. T.; Dcddreii, D. M.; Thomas, D. M. J . Magn. Res. 1982, 46, 43-53. (66) Levltt, M. H. J. Magn. Reson. 1982. 50,95-110. (67) Bax, A.; Szeverenyl, N. M.; Maclel, G. E. J . Magn. Reson. 1982, 50, 227-32. (68) Cookson, D. J.; Smith, E. E. Anal. Chem. 1982, 54,2591-3. (69) Lawn, D. B.; Jones, A. J. Aust. J . Chem. 1982, 35, 1717-22. (70) Sweeting, L. M. J . Magn. Reson. 1982, 48, 311-3. (71) Bolton, P. H.; Bodenhausen, G. Chem. fhys. Lett. 1982, 89,139-44. (72) Pel, F.; Freeman, R. J . Magn. Reson. 1982, 48, 318-22. (73) Doddrell, D. M.; Pegg, D. T.; Bendall, M. R. J . Magn. Reson. 1982, 48, 323-7. (74) Brown, T. R.; Kincald, 8. M.; Ugurbll, K. R o c . Natl. Acad. Sci., U . S . A . 1982, 79,3523-6. (75) Canet, D.; Brondeau, J.; Marchai, J. P.; Robin-Lherbier, 8. Org Magn Reson. 1982, 20,51-3. (76) Murphy, P. D. J . Magn. Reson. 1982, 49,368-70. (77) Dixon, W. t. J . Chem. fhys. 1982, 77, 1800-9. (78) Bluemich, E.; Ziessow, D. J . Magn. Reson. 1982, 49, 151-4, (79) Patt, S. L. J . Magn. Reson. 1982, 49, 161-3. (80) Lagodzhskaya, G. V.; Kllmenko, I. Yu. J . Magn. Reson. 1982, 49, 1-7. (81) Haw, J. F.; Glass, T. E.; Dorn, H. C. J . Magn. Reson. 1982, 49, 22-31. (82) Pegg, D. T.; Bendail, M. R.; Doddrell, D. M. J . Magn. Reson. 1982, 49, 32-47. (83) Bowman, R. C., Jr.; Rhlm, W. K. J . Magn. Res. 1982, 49,93-8. (84) Pel. F. K.; Freeman, R. J . Magn. Reson. 1982, 48. 519-23. (85) Zilm, K. W.; Grant, D. M. J . Magn. Reson. 1982, 48, 524-26. (86) Schaefer, J.; SteJskal, E. 0.; McKay, R. ACS Symp. Ser. 1982, No. 191, 187-98. (87) Stilbs, P. Chem. Scr. 1982, 19,9304. (88) Rahman, S. R.; Gennaro, A. R.; Zanger, M. Am. l a b . 1981, 13,42, 45, 47, 48. (89) Weitekamp, D. P.; Garbow, J. R.; Pines, A. J . Chem. fhys. 1982, 77, 2870-3. (90) Bax, A.; Freeman, R. J . Am. Chem. SOC. 1982, 104, 1099-1100. (91) Hintermann, M.; Braunschweiler, L.; Bodenhausen, 0.; Ernst, R. R. J. Magn. Reson. 1982, 50,316-22. (92) Dykstra, R. W. J. Magn. Reson. 1982, 50,154-6. (93) Blicharskl, J. S.; Sobol, W. T. J . Magn. Res. 1982, 46, 1-8. (94) Gordon, R. E.; Timms, W. E. J . Magn. Reson. 1982, 46, 322-4. (95) Welss, G. H.; Ferretti, J. A.; Kiefer, J. E. J . Magn. Res. 1982, 46, 69-83. (96) Shlmokawa, S.; Yamada, E. J . Magn. Reson. 1983, 51, 103-9, (97) Aurora, 1.S.; Day, S. M. Rev. Sci. Instrum. 1982, 53, 1152-4. (98) Batley. M.; Redmond, J. W. J . Magn. Reson. 1982, 49, 172-4. (99) Dlckert, F. L.; Hellmann, S. W. JfOL NEWS, [Ser.] Anal. Instrum., 1982, M A , 57; Chem. Abstr. 1982, 96,20963a. (100) Gard, J. K.; Ackerman, J. J. H. J . Magn. Reson. 1983, 51, 124-7. (101) Smolenaers, P. J.; Kelso, M. T.; Beattie, J. K. J . Magn. Reson. 1983, 52, 118-19. (102) Jutila, M. Acta. Chem. Scand., Ser. 6 1981, 635,503-6. (103) Pearce, E. M.; Wright, C. E.; Bordoloi, 8. K. J . Educ. Modules Mater. Scl. Eng. 1981, 3 , 753-72. (104) Wenzel, T. J.; Ashley, M. E.; Slevers, R. E. Anal. Chem. 1982, 54, 6 15-2 1. (105) Pike, M. M.; Springer, C. S., Jr., J . M a p . Res. 1982, 46, 348-53. (108) Hays, D. L.; Fennema, 0.Arch. Biochem. 6lophys. 1982, 213, 1-6. (107) Burt, C. T. J . Chem. Educ. 1982. 59, 1056. (108) Burt. C. T.; Eisemann, A.; Schofleld, J. C.; Wyrwicz, A. M. J . Magn. Res. 1982, 46, 176-9. (109) Yesinowaski, J. P.; Sunberg, R. J.; Benedict, J. J. J. Magn. Res. 1982, 47, 85-90. (110) Seal, 6. K.; Mukherjee, A. K.; et al. J . Magn. Reson. 1983, 51, 318-22. (111) Koster, D. F.; Jones, W. J. Chem. fduc. 1982, 59,289. (112) Abldl, S. L. Anal. Chem. 1982, 54,510-16. (113) Eggert. H.; DJerassl, C. J . Org. Chem. 1981, 46, 5399-401. (114) Slddali, T. H. J. Phys. Chem. 1982, 86, 91-6. (115) Nakayama, T.; Fujiwara, Y. Anal. Chem. 1982, 54,25-8. (116) Pyykko, P. Chem. fhys. 1983, 74, 1-7. (117) Levy, 8.; Rldard, J. Mol. fhys. 1981, 44, 1099-107. (118) Cory, D.; Wong, A.; Rlchey, W. M. J . Organomet. Chem. 1982, 235, 277-85. (119) Dler, E.; Santoro, J.; Esteban. A. L. J. Magn. Res. 1982, 48, 440-52.
.
.
(120) Bell, H. M.; Bowles, D. B.; Senese, F. Org. Magn. Reson. 1981, 16, 285-9. (121) Ducasse, L.; Hoaran, J.; Pesquer, M. THfOCHEM 1982, 5, 61-70. (122) Bangov, I. Org. Magn. Reson. 1981, 16, 296-303. (123) Aue, W. P.; Ruben, D. J.; Griffin, R. 0. J . Magn. Res. 1982, 46, 354-7. (124) Brondeau, J.; Canet, D.; Brocas, J.; Decoster, A. M. J . Magn. Res. 1982. 46, 129-33. (125) Schotland, J.; Lelgh. J. S. J. Magn. Reson. 1983, 51,48-55. (126) Balasubramanian, K. J . fhys. Chem. 1982, 86, 4668-74. (127) Zdunek, L. 2.; Gold, V. J. Chem. SOC.,Faraday Trans. 2 1982, 78, 1825-33. (128) Kaplan, J. I.; Garroway, A. N. J . Magn. Reson. 1982, 49,464-75. (129) Westlund. P. 0.; Wennerstroem, H. J. Magn. Reson. 1982, 50, 451-66. (130) Sotak, C. H.; Dumoulin, C. L.; Levy, 0.C. Anal. Chem. 1983, 55, 782-7. (131) Elllson, A. J. Chem. Educ. 1983, 60, 425-8. (132) Slblsi, S. Nature (London) 1983, 301, 134-8. (133) Redfleld, A. G. J . Magn. Reson. 1983, 52,310-12. (134) Gallndo, S. Gomput. fhys. Common. 1981, 24,231-2. (135) Waugh, J. S. J. Magn. Reson. 1982, 50,30-49. (136) Piantlni, U.; Sorensen, 0. W.; Ernst, R. R. J. Am. Chem. SOC.1982, 104, 6800-1. (137) Macura, S.; Wuethrich, K.; Ernst, R. R. J . Magn. Res. 1982, 46, 269-82. (138) Bolton, P. H. J . Magn. Reson. 1982, 46, 343-7. (139) Bluemich, B.; Ziessow, D. J . Magn. Res. 1982, 46, 385-405. (140) Erofeev, L. N.; Khltrin, A. K.; Provotorov, E. N.; Tavasov, V. P. fhys. Lett. A 1982, 87A, 443-4. (141) Weltekamp, D. P.; Garbow, J. R.; Pines, A. J . Magn. Res. 1982, 4 6 , 529-34. (142) Patt, S. L.; Shooiery, J. N. J . Magn. Reson. 1982, 46, 535-9. (143) Kormos, D. W.; Waugh, J. S. Anal. Chem. 1983, 55,633-8. (144) Mallnowskl, E. R. Anal. Chim. Acta 1982, 734, 129-37. (145) Small, G. W.; Jurs, P. C. Anal. Chem. 1983. 55, 1121-7. (146) Kwlatkowskl, J.; Rlepe, W. Anal. Chim. Acta 1982, 135, 285-91. 293-305, 381-3. (147) Borchardt, J. K.; Dairympie, E. D. J . folym. Sci., Polym. Chem. Ed. 1982, 20, 1745-64. (148) Crandeli, C. W.; Gray, N. A. B.; Smith, D. H. J . Chem. Inf. Compt. Sci. 1982, 22,48-57. (149) Shelley, C. A,; Munk, M. E. Anal. Chem. 1982, 54,516-21. (150) Egll, H.; Smlth, D. H.; DJerassi, C. Hew. Chim. Acta 1982. 65, 1896-920. (151) Maeda, K.; Koyama, Y.; Sato, K.; Sasaki, S. Anal. Chim. Acta 1981, 133,561-74. (152) Katagirl, Y.; et al. Anal. Chlm. Acta 1981, 133, 535-43. (153) Fujiwara, I.; et ai. Anal. Chim. Acta 1981, 133, 544-7. (154) Gribov, L. A.; Elyashberg, M. E.; et al. Anal. Chim. Acta 1983, 148. 159-70. (155) Szalontai, G.; Recsey, 2.; Csapo, 2. Acta Chim. Acad. Sci. Hung. 1982, 1 I f , 239-47; Szalontal, G.; Csapo, 2.; Recsey, 2. Ibid. 1982, 111, 249-58. (156) Uthmann, A. P.; Koontz, J. P.; et al. Anal. Chem. 1982, 54, 1772-7. (157) Bayer, E.; Albert, K.; Nleder, M.; Grom, E.; et al. Anal. Chem. 1982, 54, 1747-50. (158) Walker, J. M.; Starks, R. J.; Gray, G. A,; Schoolery, J. N. Appl. Spectrosc. 1981, 35,607-8. (159) Biscegll, C.; Panepuccl, H.;Farach, H. A.; Poole, C. P., Jr., Am. J. fhyS. 1982, 50,48-50. (160) El-Obeid, H. A.; Mossa, J. S.; Hassan, M. A. Anal. Lett. 1982, 15(A9), 757-61. (161) Brosio, E.; Conti, F.; Di Nola, A.; Scslzo, M.; Zulli, E. J. Am. OilChem. SOC. 1982, 59, 59-61. (162) Hayman, E.; Yokoyama, H.; Schuster, R. J. Agric. FoodChem. 1982, 30, 399-401. (162a) Tonnet, M. L.; Downes, R. W. J. Sci. Food Agric. 1983, 34,169-74. (163) Falrchild, E. H. J . Am. Oil Chem. SOC. 1982, 59, 305-8. (184) Schleie, H. D.; Vordermaler, G. Arch. Kriminol. 1982, 169, 155-60. (185) Bryce, K. L.; Stove, I. C.; Daugherty, K. E. J. Forensci Sci. 1981, a6, 678-85. (186) Carroll, F. I.; Coleman, M. L.; Lewln, A. H. J. Org. Chem. 1982, 47. 13-19. (167) Alm, S.; Bomgren, 8.; Boren, H. E.; Karlsson, H.; Maehly, A. C. Forensic Scl. Int. 1982, 19,271-80. (168) Tiralti, M. C.; Brunelli, C.; Grandolini Boll. Chim. Farm. 1982, 121, 80-6 Chem. Abstr. 1982, 97,7 8 9 9 0 ~ . (169) Bock, J. L. Clin. Chem. (Winston-Salem, N . C . ) 1982, 28, 1873-7. (170) Das, R. C.; Saikia, B. K. Curr. Sci. 1982, 51,351. (171) Shin, M. H.; Park, M. K.; Yu, C. H.; Choi, J. K., Arch. Pharmacol. Res. 1981, 4,9-17. (172) Barkan, S.; Weber, J. D.;Smith E. J. Ghromatogr. 1981, 219. 81-8. (173) AbouCEnein, H. Y.; AI-Rashood, K. A.; El-Fatatry, H. M. Pharm. Acta Helv. 1981, 56,262-4. (174) Dewar, G. H.; Kwakye, J. K.; Parfitt, R. T.; Sibson, R. J . fharm. Sci. 1982, 71,802-6. (175) Kawa, H.; Yamaguchi, F.; Ishlkawa, N. Chem. Lett. 1982, 153-6. (176) Martln, G. J.; Martln, M. L.; Mabon, F.; Michon, M. J. Anal. Chem. 1982, 54,2380-2. (177) Shue. F. F.; Yen, T. F. Anal. Chem. 1982, 54, 1641-2. (178) Zuber, G. E.; Stalger, D. E.; Warren, R. J. Anal. Chem. 1983, 55, 64-7. (179) Miknis, F. P.; Maciel, G. E. Oil Shale Symp. R o c . 1981, 14, 270-81. (180) Jurklewlcz, A.; Marzec, A.; Idziak, S. Fuel 1981, 60, 1167-8. ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984
217R
NUCLEAR MAGNETIC RESONANCE SPECTROMETRY
(181) Hassan, M. M. A.; Zubalr, M. U. Spectrosc. Lett. 1982, 15, 533-42. (182) Takasuka, M. J. Chem. SOC., Perkln Trans. 2 1981, 1558-61. (183) Kolodzlejskl, W.; Laszlo, P.; Stockls, A. Mol. Phys. 1982, 45, 939-47. (184) Thamm, R.; Heckmann, G.; Fluck, E. Phosphorus Sulfur 1982, 12, 319-24. (185) Endo, K.; Matsushlta, K.; et ai. Chem. Lett. 1982, 1497-500. (186) Soffer, N.; Marcus, Y. Ber. Bunsenges. Phys. Chem. 1982, 86, 72-3. LITERATURE FOR TABLE I
(1) White, R. F. M. Annu. Rep. Progr. Chem., Sect. B 1981, 77, 3-13. (2) Hawkes, G. E. Nucl. Magn. Reson. 1982, 1 1 , 22-54. (3) Jameson, C. J. Nucl. Magn. Reson. 1982, 7 7 , 1021. (4) Schastnev, P. V.; Cheremlsln, A. A. Zh. Strukt. Khim. 1982, 2 3 , 129-70. (5) Ewlng, D. F. Nucl. Magn. Reson. 1982, 1 1 , 71-105. (6) Kowalewskl, J. Nucl. Magn. Reson. 1982, 1 7 , 55-70. (7) Kowalewskl, J. Annu. Rep. NMR Spectrosc. 1992, 12, 81-176. (8) McFarlane, W.; Rycrott, D. S. Nwl Magn. Reson. 1982, 1 1 , 157-78. (9) Emld, S. Bull. Magn. Reson. 1983, 4, 99-104. (10) Dattagupta, S.Hyperflne Interact. 1981, 1 1 , 77-126. (11) Ernst, R. R. ACS Symp. Ser. 1982, No. 191, 47-61. (12) Jeener, J. Adv. Magn. Reson. 1982, IO, 1-51. (13) Brumby, S. Magn. Reson. Rev. 1983, 8, 1-32. (14) Gray, N. A. B. Progr. Nucl. Magn. Reson. Spectrosc. 1982, 15, 201-48. (15) Lutskll, A. E.; Prezhdo, V. V.; Degtereva, L. I.; Gordlenko, V. G. Usp. Khlm. 1982, 5 1 , 1398-423;Chem. Abstr. 1982, 97, 161877/. (16) Khetrapal, C. L.; Kunwar, A. C. Nucl. Magn. Reson. 1982, 1 1 , 248-63. (17) Khetrapal, C. L. J . Indian Chem. SOC.1982, 5 9 , 164-9. (18) Lounlla, J.; Joklsaarl, J. Prog. Nucl. Magn. Reson. Spectrosc. 1982, 15, 249-90. (19) Plrkle, W. H.; Hoover, D. J. Top. Stereochem. 1982, 13, 263-331. (20) Bllnc, R. Phys. Rep. 1981, 79, 332-98. (21) Kratochwlll. A. Nucl. Magn. Reson. 1982, 7 1 , 106-27. (22) Degauque, J.; Zarembowltch, A. J. Phys. Colloq. 1981, 607-13. (23) Buckmaster, H. A.; Hansen, C. H. J. Magn. Reson. 1982, 46, 521-4. (24) Slonlm, I.Ya.; Klyuchnikov, V. N. Zh. Anal. Khlm. 1981, 3 6 , 1610-23; Chem. Abstr. 1982, 9 6 , 14780~. (25) Haw, J. F.; Glass, T.; Dorn, H. C. JEOL News, [Ser.] Anal. Instrumen. 1982, 78A, 58-61. (26) Trlfunac, A. D.; Lawler, R. G. Magn. Reson. Rev. 1982, 7 , 147-74. (27) Brewer, W. D. Hyperfine Interact. 1982, 72, 173-210. (28) Jonas, J. ACS Symp. Ser. 1982, No. 191, 199-217. (29) Jonas, J. Science 1982, 216, 1179-84. (30) Merbach, A. E. Pure Appl. Chem. 1982, 5 4 , 1479-63. (31) Bothner-By, A. A.; Dadok, J. ACS Symp. Ser., 1982, No. 191, 31-45. (32) Wehrll, F. W. ACS Symp. Ser. 1982, No. 797, 7-29. (33) Lindoy, L. F. Coord. Chem. Rev. 1983, 48, 83-100. (34) Rushworth, F. A. Magn. Reson. Rev. 1982, 7 , 197-214. (35) Kessler, H.; Felgel, M. Acc. Chem. Res. 1982, 15, 2-8. (36) Conway, B. E. “Studies in Physical and Theoretical Chemistry. Vol. 12. Ion Hydration In Chemistry and Biophysics”; Elsevier: New York, 1981. (37) Coveney, L. V. Sci. Tech. Sow.-Br. Food Manuf. Ind. Res. Assoc. 1980, 123. (38) Brosio, E.; Di Nola, A. Trends Anal. Chem. 1982, 1 , 284-8. (39) Rlddell, F. G. Nucl. Magn. Reson. 1982, 1 1 , 225-47. (40) Hawklns, C. J.; Palmer, J. A. Coord. Chem. Rev. 1982, 44, 1-60. (41) Schnltzer, M. Proc. Int. Peat Symp. 1981, 17-44. (42) Jones. D. W. Trends Anal. Chem. (Pers. Ed.) 1983, 2 , 83-8. (43) Maclel, G. E.; Sullivan, M. J. ACS Symp. Ser. 1982, No. 191, 319-43. (44) Mlknls, F. P., Magn. Reson. Rev. 1982, 7 , 87-121. (45) Stone, W. E. E. Dev. Sedimenfol. 1982, 3 4 , 77-112. (46) Angell, C. A. Water Compr. Treatlse 1982, 7 , 1-81. (47) Derbyshire, W. Water Compr. Treatise 1982, 7 , 339-430. (48) Bray, P. J.; Gelssberger, A. E.; Buchokz, F.; Harris, I. A. J. Non- Cryst. SOlldS 1982, 5 2 , 45-66. (49) Bray, P. J.; Dell, W. J. J. Phys. Colloq. 1982, 131-42. (50) Mueller-Warmuth, W.; Eckert, H. Phys. Rep. 1982, 88, 91-149. (51)Bray, P. J.; Bucholtz, F.; Gelssberger, A. E.; Harris, I. A. Nucl. Insfrum Methods Phys. Res. 1982, 199, 1-15. (52) Durand, J.; Panissod, P. J. Magn. Magn. Mater. 1983, 37-34,
1567-70. (53) Durand, J. At. Energy Rev. 1981 (Suppl. I), 143-72. (54) Roger, M. J. Magn. Magn Mater. 1983, 31-34, 727-32. (55) Glannetta, R.; Smith, E. N.; Lee, D. M. J. Low Temp. Phys. 1981, 45, 295-33. (56) Weiss, A.; Weiden, N. Adv. Nucl. Quadrupole Reson. 1980, 4 , 149-248. (57) Harris, R. K.; Knight, C. T. G.; Hull. W. E. ACS Symp Ser. 1982, No. 194, 79-93. (58) Marsmann, H. C.; Vongehr, M. ACS Symp. Ser. 1982, No. 794, 73-8. (59) Frlplat, J. J. ACS Symp. Ser. 1982, No. 794, 165-84. (60) Rees, L. Nature (London) 1993, 303, 204. (61) Thomas, J. M.; Ramdas, S.; et al. J. Solld State Chem. 1982, 45, 368-80. (62)Fyfe, C. A.; Thomas, J. M.; Klinowski, J.; Gobbi. G. C. Angew. Chem. 1983, 9 5 , 257-73. (63) Thomas, J. M.; Klinowsky, J.; et ai. ACS Symp. Ser. 1983,No. 218. 159-80. .. ~ . . (64) Derbyshlre, W. Nucl. Magn. Reson. 1982, 11, 264-370. (65) Heaton, B. T. Phllos. Trans. R . SOC. London, Ser. A 1992, 308, 95-102. (66) Khan, H. R.; Lueders, K. Phys. Status Solidi B 1991, 108, 9-18. (67) Fradin, F. Y.; Dunlap, B. D.; Shenoy, G. K.; Klmball, C. W., Top. Curr. Phys. 1982, 3 4 , 201-28, 298. ’
218R
ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984
(68) Resing, H. A.; Moran, M. J.; et ai. Mater, Res. Soc. Symp. Proc. 1983, 2 0 , 355-61. (69) Relmer, J. A. J. Phys. Colloq. 1981, 715-24. (70) Barnes, R. 0. Rare Earths Mod. Scl. Technol. 1982, 3 , 471-2. (71) Cons, R. Rm. NATO Conf. Ser., Ser 6 1983, 6, 451-64. (72) Seymour, E. F. W. J. Less-Common Met. 1982, 88, 323-34. (73) Hays, G. R. Nucl. Magn. Reson. 1982, 1 1 , 128-56. (74) Fyfe, C. A.; Bemi, L.; et ai. Phllos. Trans. R. SOC.London, Ser. A 1982, 305, 591-607. (75) Hays, 0. R., Analyst (London) 1982, 107, 241-52. (76) Gersteln, B. C. Anal. Chem. 1983, 5 5 , 781A, 782A, 784A, 786A, 788A, 790A. (77)Washylishen. R. E.; Fyfe, C. A. Annu. Rep. NMR Spectrosc. 1982, 72,
1-60,287-90. (78) Fyfe, C. A.; Bemi. L.; et ai. ACS Symp. Ser. 1983, No. 211, 405-30. (79) Yannonl, C. S. Accfs. Chem. Res. 1982, 15, 201-8. Lyerla, J. R.; Yannonl, C. S.; Fyfe, C. A., Accts. Chem. Res. 1982, 15, 208-16. (80) Dechter, J. J. Progr. Inorg. Chem. 1982, 2 9 , 285-385. (81) Smith, I. C. P.; Mantsch, H. H. ACS Symp. Ser. 1982, No. 191, 97-117, (82) Sledle, A. R. Annu. Rep. NMR Spectrosc. 1982, 12, 177-261. (83) Hanl, R.; Geanangel, R. A. Coord. Chem. Rev. 1982, 44, 229-46. (84) Pereyre, M.; Quintard, J. P.; Rahm, A. Pure Appl Chem. 1982, 5 4 , 29-41. (85) Hinton, J. F. Trends Anal. Chem. 1982, 7 , 288-91. (86) Armltage, I. M.; Otvos, J. D. Biol. Magn. Reson. 1982, 4, 79-144. (87) Ellis, P. D. Science 1983, 221, 1141-6.
(88) Enemark, J. H. “Nitrogen Fixation: Chem-Blochem.-Genet.Interface [Proc. Int. Meet.] 1981”;Mueller, A., Newton, W. E.,Eds.; Plenum, New York, 1983;pp 329-39. (89) Pregosln, P. S.Coord. Chem. Rev. 1982, 44, 247-91. (90) Ismail, I. M.; Sadler, P. J. ACS Symp. Ser. 1983, No. 209, 171-90. (91) Rehder, D. Bull. Magn. Reson. 1982, 4, 33-83. (92) Harwood, H. J. Rubber Chem. Technol. 1982, 5 5 , 769-808. (93) Ebdon, J. R. Nucl. Magn. Reson. 1982, 1 1 , 205-24. (94) Kalyanam, N.; Satlsh, S. J. Scl. Ind. Res. 1983, 42, 149-65. (95) Spless, H. W. Dev. Oriented Polym. 1982, 1 , 47-78. (96) Ross-Murphy, S. B. Macromol. Chem. (London) 1982, 2 , 174-190. (97) Stejskal, E. 0.; Schaefer, J.; et ai. Pure Appl. Chem. 1982, 5 4 , 461-6. (98) Heatley, F. NATO Adv. Study Inst. Ser., Ser. C 1982, 9 4 , 251-70. (99) Havens, J. R.; Koenlg, J. L. Appl. Spectrosc. 1983, 3 7 , 226-49. (100) Quang, T. P. Trends Anal. Chem. (Pers. Ed.) 1983, 2 , 67-73. (101) Spless, H. W. Collold Polym. Scl. 1983, 267, 193-209. (102) Mandelkern, L. Pure Appl. Chem. 1982, 5 4 , 611-18. (103) Bovey, F. A. Pure Appl. Chem. 1982, 5 4 , 559-68. (104) Bovey, F. A.; Cals, R. E.; Jellnskl, L. W.; et ai. Polym. Prepr. 1981, 2 2 , 268-70. (105) Sillescu, H. Pure Appl. Chem. 1982, 54, 619-26. (106) Llndberg, J. J.; Tormala, P. Pure Appl. Chem. 1982, 5 4 , 627-33. (107) Hlrst, R. C. Rubber Chem. Technol. 1982, 5 5 , 913-30. (108) Pykett, I.L.; Newhouse. J. H.; et ai. Radiology 1982, 143, 157-68. (109) Andrew, E. R. Acc. Chem. Res. 1983, 16, 114-22. Beset!, J. L. J. Be/ge Radio/. 1982, 65, 289-304. (110) Bottomley, P. A. Rev. Scl. Instrum. 1982, 5 3 , 1319-27. (111) Shaw, D. Org. Magn. Reson. 1983, 2 1 , 225-37. (112) Hall, L. D. Chem. Can. 1983, 3 5 , 23-6,28. (113) Andrew, A. R. Biosci. Rep. 1982, 2 , 707-12. (114)Brownell, G. L.; Budlnger, T. F.; Lauterfur, P. C.; McGeer, P. L. Sclence (Washlngton) 1982, 275, 619-26. (115) Jacobson, L.; Cohen, J. S. “Noninvasive Probes Tissue Metabolism”; Cohen, J. S., Ed.; Wiley: New York, 1982;pp 5-24. (116) Glllles, R. J.; Alger, J. R.; Den Hollander, J. A,; Shulman, R. G. Kroc Found. Ser. 1981, 15, 79-104. (117) Gadlan, D. G.; Radda, G. K.; et ai. Kroc. Found. Ser. 1981, 15, 6177;Nuccitelll, R. ibid. 1981, 15, 161-9;Bore, P. J.; Chan, L.; et ai. [bid. 1981, 15, 527-35. (118) Tsal, M. D. Methods Enzymol. 1982, 8 7 , 235-79. (119) Rueterjans, H. Colloq. Ges. Blol. Chem. 1981, 3 2 , 59-62. (120) Cohn, M.; Reed, G. H. Annu. Rev. Blophys. Bioeng. 1982, 5 7 ,
365-94. (121) Steltz, T. A,; Shulman, R. G. Annu. Rev. Siophys. Bloeng. 1982, 1 7 , 419-44. (122) Villafranca, J. J. Mefhods Enzymol. 1982, 87, 180-97. McClelland, C. E.; Williams, R. J. P. (123) Hensens, 0.D.; HIII, H. A. 0.; “B,,[twelve]”; Dolphin, D., Ed.; Wlley: New York, 1982; Vol. 1, pp 463-500. (124) Villafranca, J. J.; Raushel, F. M. Adv. Inorg. Biochem. 1982, 4, 289-319. (125) Goff, H. M.; Phllllppl, M. A.; Boersma, A. D.; Hansen, A. P.. Adv. Chem. Ser. 1982, No. 201, 357-76. (126) Goff, H. M. Phys. Bioinorg. Chem. Ser. 1983, 7, 237-81. (127) Xavier, A. V. NATO Adv. Study Inst. Ser., Ser. C 1983, 100, 291-311. (128) Xavler, A. V.; Moura, I.; Moura, J. J. G.; Santos, H.; Villalain, J. NATO A&. StMy Inst. Ser. Ser. C. 1982, 8 9 , 127-41. (129) Mann, B. E. Annu. Rep. NMR Spectrosc. 1982. 12, 263-86. (130)White, R. F. M. Annu Rep. Prog. Chem., Sect. 8 1982, 788, 29-38. (131) Mann, B. E. Spectrosc. Prog. Inorg. Organomet. Compd. 1981, 14, 1-137. (132) Pidcock, A. Adv. Chem. Ser. 1982, No. 796, 1-22. (133) Aime, S.Inorg. Chim. Acta 1982, 6 2 , 51-6. (134) Crabb, T. A. Annu. Rep. NMR Spectrosc. 1982, 13, 59-210. (135) Hughes, D. W.; MacLean, D. B. Alkaloids (N.Y.) 1981, 78, 217-62. (136) Jensen, K. A. Arch. Pharm. Cheml, Sci. Ed. 1981, 9 , 93-116. (137) Runge, W. I n “Progress In Physical Organic Chemistry”; Tatt, R. W., Ed.; Wlley: New York, 1981;Vol. 13.
Anal. Chem. 1904, 56,219R-225R (138) Duddeck, H. Org. Magn. Reson. 1982, 2 0 , 55-72. (139) Code, R. F. Bull. Magn. Reson. 1983, 4 . 91-8. (140) Ivin, K. J.; Rooney, J. J.; et al. Pure Appl. Chem. 1982, 54, 447-60. (141) Roy, A. B. “Sulfate Metab. Sulfate Conjugatlon, Proc. Int. Workshop”; Mulder, 0. J., Ed.; Taylor and Francis: London, 1982; pp 299-306. (142) Bradbury, E. M.; Radda, G. K.; Allen, P. S. Ann. Intern. Med. 1983, 9 8 , 514-29. (143) Rautio, M. Acta Pharm. Fenn. 1982, 9 7 , 247-50. (144) Schuh, J. R.; Chan, S . I.Methods Exp. Phys. 1982, 20, 1-52. (145) Kuchel, P. W. CRC Crit. Rev. Anal. Chem. 1981, 12, 155-231. (146) Gerig, J. T. “Blomed. Aspects Fluorine Chem.”; Filler, R., Kobayaskl, Y., Eds.; Kodansha: Tokyo, 1982; pp 163-69. (147) Matwiyoff, N. A. Anal. Chem. Symp. Ser. 1082, 7 1 , 573-85. (148) Kanamorl, K.; Roberts, J. D. Acc. Chem. Res. 1983, 16, 35-41. (149) Forsen, S.; Lindman, B. Methods Biochem. Anal. 1981, 2 7 , 289-486. (150) Laszlo, P. ACS Symp. Ser. 1982, No. 797, 63-95. (151) Giick, D., Ed. “Methods of Biochemical Analysls”; Wiley: New York, 1981; Voi. 27. (152) Shulman, R. G. Sci. Am. 1983, 248, 86-93. (153) Smith, I.C. P.; Deslaurlers, R. NATOAdv. Study Inst. Ser., Ser. A 1982, 45, 113-59. (154) Roberts, J. K. M.; Jardetzky, 0. Biochlm. Biophys. Acta 1981, 639, 53-76. (155) Hanley, P. Chem. Br. 1981, 77, 374-6. (156) Scott, A. New Sci. 1981, 9 2 , 440-3. (157) Fossel, E. T.; Ingwall, J. S. Cerebrovasc. Disc. 1981, 72th, 91-7. (158) Vederas, J. C. Can. J. Chem. 1982, 60, 1637-42. (159) Burt, C. T. Life Sci. 1982, 3 1 , 2793-808. (160) Gordon, R. E.; Haniey, P. E.; Shaw, D. frog. Nucl. Magn. Reson. Spectrosc. 1982, 75, 1-47. (161) Iles, R. A.; Stevens, A. N.; Grlffiths, J. R. Progr. Nucl. Magn. Reson. Spectrosc. 1982, 75, 49-200. (162) Mosora, F. Jerusalem Symp Quantum. Chem, Blochem. 1981, 74, 489-98. (163) Burgar, M. I.Stud. Biophys. 1982, 91, 29-36. (164) Williams. R. J. P. Struct. Bonding (Berlin) 1982, 50, 79-119. (165) Hutchlson, C. R. J. Nat. Prod. 1982. 45, 27-37. (166) Deslauriers, R.; Byrd, R. A.; Jarrell, H. C.; Smith, I.C. P. Noninvasive Probes Tissue Metab. 1982, 49-78. (167) Cohn, M. Annu. Rev. Biophys. Bioeng. 1982, 7 7 , 23-42. (168) Ross, 8. D. Proc-Int. Conf. Nephrol. 1981, 8th, 841-9. (169) Watts, A. Prog. Retinal Res. 1982, 1, 153-78. (170) Burt, C. T. Cell Muscle Motii. 1981, 1, 375-98. (171) Budlnger, T. F. Cerebrovasc. Dis. 1983, 73th, 7-13. (172) Ingwall, J. S. Am. J. Physlol. 1982, 242,H729-H744. (173) Meyer, R. A.; Kushmerlck, M. J.; Brown, T. R. Am. J. Physiol. 1982, 242, C1-C11. (174) Balaban, R. S. Fed. Proc., Fed. Am. SOC. Exp. Biol. 1982, 14, 42-7. (175) Bock, K.; Thoegersen, H. Annu. Rep. NMR Spectrosc. 1982, 73, 1-57. (176) Perlin, A. S.; Casu, B. “Polysaccharides;” Aspinall. G. O., Ed.; Academic Press: New York, 1962; Vol. 1, pp 133-93. (177) Nahrstedt, A. Cyanide Biol. 1081, 145-81. (178) Markham. K. R.; Charl, V. M. “Flavonoids: Adv. Res.”; Harborne, J. B., Mabry, T. J., Eds.; Chapman & Hall: London, 1982; pp 19-134. (179) Chari, V. M. Stud. Org. Chem. 1981, 7 7 , 279-91.
(180) Muelier, F.; Moonen, C. T. W. Dev. Biochem. 1882, 27, 517-27. (181) Agrawal, P. K.; Rastogi, R. P. Heterocycles 1981, 78, 2181-236. (182) Englert, G. Carotenoid Chem. Blochem., Proc. Int. Symp. Caroteno i d ~6th 1981, 1982, 107-34. (183) Jardetzky, 0. Membr. Transp. 1882, 1, 109-13. (184) Westerhoff, H. V. Trends Blochem. Scl. (Pers. Ed.) 1982, 7 , 232. (185) Brown, C. E. Blomembranes 1983, 7 7 , 439-62. (186) Cullis, P. R.; Farren, S. 6.; Hope, M. J. Can. J. Spectrosc. 1981, 26, 89-95. (187) Davis, J. H. Biochlm. Biophys. Acta 1983, 737, 117-71. (188) Oldfield, E. Tech. Life Sci.; Biochem. 6 4 / 2 (B427), 23 pp. (189) Browning, J. L. Res. Monogr. Cell Tissue Physiol. 1981, 7 , 189-242. (190) Grlffln, R. G. Methods Enzymol. 1981, 7 2 , 108-74. (191) Seellg, J.; Seelig, A.; Tamm, L. Lipid-Protein Interact. 1982, 2, 127-48. (192) Davies, D. B. Nucl. Magn. Reson. 1982, 7 1 , 179-204. (193) Cohen, J. S.; Wiodawer, A. Trends Biochem Sci. (Pers. Ed.) 1982, 7 , 369-9 1. (194) Wuethrich, K. NATO Adv. Study Inst. Ser., Ser. A 1992, 45, 215-35. (195) Sykes, 8. D. Can. J. Biochem. Cell Bioi. 1983, 67,155-64. (196) Oklfleld, E.; Janes, N.; et al. Blochem. SOC.Symp. 1981, 46, 155-81. (197) Conard, J.; Estrade-Szwarckopf, H.; Lauginie, P.; Hermann, G. Springer Ser. Solid-state Sci. 1981, 38, 264-73. (198) Ganesh, K. N. Curr. Scl. 1982, 51, 866-74. (199) Dobson, C. M. Jerusalem Symp. Quantum Chem. Biochem. 1982, 15, 461-95. (200) Wuethrich, K. Biochem. SOC.Symp. 1981, 46, 17-37. )I (201) Williams, R. J. P. Blochem. SOC.Symp. 1981, 46, 57-72. (202) Wuethrlch, K.; Wagner, G. Ciba Found. Symp. 1983, 93, 310-20. (203) Dobson, C. M. “Struct. Dyn.: Nucleic Acids Proteins, Proc. Int. Symp. 1982”; Clementi, E., Sarma, R. H., Eds.; Adenine Press: Guilderland, NY, 1963; pp 451-61. (204) Inagaki, F.; Miyazawa, T.; Wllllams, R. J. P. Biosci. Rep. 1981, 7 , 743-55. (205) Sarma, R. H.; Dhingra, M. M. Top. Nucleic Acid Struct. 1981, 33-63. (206) Krugh, T. R. Top. Nuclelc Acid Struct., 1981, 197-217. (207) Fiat, D.; Burgar, M. I.; et al. Dev. Endocrinol. 1981, 73, 239-50. (208) Kessler, H.; Ziessow, D. Nachr. Chem. Tech. Lab 1982, 30, 488-92, 494, 497; Chem. Abstr. 1982, 97, 1280171. (209) London, R. E., ACS Symp. Ser. 1982, No. 797, 119-55. (210) Deslauriers, R.; Smith, I. C. P. Dev. Endocrlnol. 1981, 73, 201-10. (211) Kricheldorf, H. R. Pure Appl. Chem. 1982, 54, 467-81. (212) Gierasch, L. M.; Frey, M. H.; Hexem, J. G.; Opella, S. J. ACS Symp. Ser. 1982, No. 797, 233-47. (213) ARona, C. NATO Adv Study. Inst. Ser. A 1982, 45, 161-214. (214) Delbarre, A.; Gaugain, 6.; et ai. Jerusalem Symp. Quantum Chem. Biochem. 1981, 74, 273-83. (215) Gorenstein, D. G.; Goldfield, E. M. Mol. Cell. Biochem. 1982, 46, 97- 120. (216) Perkins, S. J. Biol. Magn. Reson. 1982, 4, 193-336. (217) Reid, B. R. Top. Nucleic Acid Struct. 1981, 113-39. (218) Patel, D. J.; Pardi, A.; Itakura, K. Science 1982, 276,581-590. (219) Fritzsche, H. Stud. Biophys. 1981, 85, 141-58. (220) Hilliard, P. R.; Rill, R. L.; Levy, G. C.; Levy L. F. ACS Symp. Ser. 1982, NO. 191, 269-83. (221) Fritzsche, H. Comments Mol. Cell. Biophys. 1982, 1, 325-36.
.
Raman Spectroscopy Donald L. Gerrard
BP Research Centre, Sunbury-on- Thames, Middlesex, England The period of this review is from late 1981 to late 1983. During this time over 4000 papers have appeared in the scientific literature dealing with many applications of Raman spectroscopy and extending its use to several new areas of study. This large number of publications includes the proceedings of the 8th International Conference on Raman Spectroscopy held in Bordeaux, France, in 1982 ( I ) . It is necessary to be highly selective in collecting material which has direct relevance to analytical chemistry for this review. Where a topic has produced a considerable number of‘papers with a relatively low proportion of analytical interest, the appropriate reviews have been included to which the reader is referred for a more complete background. It is particularly interesting to note that Raman spectroscopy is becoming more widely used as an industrial analytical technique ( 2 , 3 )and reviews have also appeared on chemical applications (4) and recent developments (5,6). Other reviews have covered the evaluation of Raman spectral data (7)and 0003-2700/84/0356-2 19R$O1.50/0
vibrational band intensities of hydrocarbons (8). Time-resolved Raman spectroscopy is becoming more widely used (9, 10) and picosecond laser pulses have been used in studied of photoinduced reaction intermediates, the separation of Raman scattering from luminescence, and Raman gain spectroscopy (11).
The topics to which Raman spectroscopy is applicable continue to expand and reviews have covered single-crystal studies (12), polysaccharides (13),molecular crystals (14), glasses (15-13, environmental problems (I&?),metal cluster compounds (19),iron corrosion (20), and inorganic and organometallic compounds (21-25). As in the previous review in this series (26), a separate section dealing with solids has not been included as many of the references in this area are more properly considered as solid-state physics. The development of surface-enhanced Raman spectroscopy has been so rapid that this is now more conveniently considered in conjunction with resonance-enhanced Raman studies. A 0 1984 American Chemical Society
219 R