Subscriber access provided by LAURENTIAN UNIV
Article
One-pot access to a library of dispiro oxindole-pyrrolidine/pyrrolothiazolethiochromane hybrids via three-component 1,3-dipolar cycloaddition reactions Gandhi Uma Rani, Sundaravel Vivek Kumar, Chelliah Bharkavi, J. Carlos Menéndez, and Subbu Perumal ACS Comb. Sci., Just Accepted Manuscript • DOI: 10.1021/acscombsci.6b00011 • Publication Date (Web): 13 Apr 2016 Downloaded from http://pubs.acs.org on April 16, 2016
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
ACS Combinatorial Science is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Combinatorial Science
One-pot access to a library of dispiro oxindolepyrrolidine/pyrrolothiazole-thiochromane hybrids via three-component 1,3-dipolar cycloaddition reactions Gandhi Uma Rani,‡1 Sundaravel Vivek Kumar,‡1 Chelliah Bharkavi,1 J. Carlos Menéndez*2 and Subbu Perumal*1. ‡These authors contributed equally. 1
Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University,
Madurai – 625021, Tamil Nadu, India. 2
Departmento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad
Complutense, 28040 Madrid, Spain
KEYWORDS: 1,3-dipolar cycloaddition; 3-arylidenethiochroman-4-ones; dispiro-oxindolopyrrolidine-thiochroman-4-one; dispiro-oxindole-pyrrolothiazole-thiochroman-4-one; azomethineylides.
ACS Paragon Plus Environment
1
ACS Combinatorial Science
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ABSTRACT:
A
library
of
novel
dispiro
compounds
Page 2 of 23
containing
oxindole
pyrrolidine/oxindolopyrrolothiazole-thiochroman-4-one hybrid frameworks has been synthesised in a fully regio- and stereoselective fashion by the three-component 1,3-dipolar cycloaddition of azomethine ylides generated in situ from the condensation of isatins and secondary amino acids (sarcosine/L-thioproline) with 3-arylidenethiochroman-4-ones. This experimentally simple protocol provides good yields of structurally complex, biologically relevant heterocycles in a single operation.
INTRODUCTION Spirocyclanes1 display interesting biological activities, ascribable to their intrinsic rigid structure. Compounds containing spiro centres are frequently encountered in natural products and they possess diverse pharmacological activities.2 In particular, spirooxindole-pyrrolidine is an ubiquitous core in many alkaloids such as horsfiline,3 coerulescine,4 elacomine5 (Figure 1), pteropodine, isopteropodine,6 formosanine,7 rychnophyilline,8 strychnofoline,9 alstonisine,10 spirotryprostatins A and B,11 etc. These spirooxindole-pyrrolidine derivatives show important biological activities such as acetylcholinesterase inhibition12 and anticancer,13 antimicrobial,14 (including antimycobacterial15) and local anaesthetic16 activities. Pyrrolothiazoles also display a wide range of biological activities, including hepatoprotective,17 antibiotic,18 antidiabetic,19 anticonvulsant20 and
acetylcholinesterase inhibitory properties.21 Finally, thiochromane and
thiochromanone derivatives are known to display antiviral,22 anticancer,23 human steroid sulfatase inhibition,24 non steroidal estrogen downregulation,25 α-adrenergic antagonism,26 antifungal27 and antiparasitic activities.28
ACS Paragon Plus Environment
2
Page 3 of 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Combinatorial Science
Figure 1: Biologically relevant thiochroman derivatives and naturally occurring oxindolo pyrrolidines and our spirooxindole-pyrrolidine/pyrrolothiazole-thiochromane hybrids.
The aforementioned biological importance of spirooxindole-pyrrolidine/pyrrolothiazole and thiochroman sub-structures and our interest in the construction of novel heterocycles employing multi-component, domino, 1,3-dipolar cycloadditions and green transformations29 have led us now
to
report
the
assembly
of
hybrid
heterocycles
comprising
spirooxinole-
pyrrolidine/pyrrolothiazole and thiochroman-4-ones employing 1,3-dipolar cycloaddition reactions (Scheme 1) from 3-arylidenethiochroman-4-ones (figure 2), isatins (figure 3) and secondary amino acids (figure 4) . The development of multiple bond-forming transformations, which include multicomponent reactions and cycloadditions, is currently recognized as key for the generation of molecular diversity and complexity in the search for new methods for the generation of lead compounds in the pharmaceutical and agrochemical industries.30
ACS Paragon Plus Environment
3
ACS Combinatorial Science
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 4 of 23
RESULTS AND DISCUSSION The plan for the synthesis of our target compounds is summarized in Scheme 1 and involves a three-component process having as the key step the 1,3-dipolar cycloaddition between 3arylmethylenethiochroman-4-ones 1 and the dipole generated from isatin derivatives 2 and Nsubstituted α-aminoacids 3. Thus, the diversity points in our library are the aromatic substituent in compounds 1, the substituent in the isatin ring of compounds 2 and the nature of the amino acid 3 (sarcosine, thioproline). The structural diversity of these reagents is summarized in Figures 2-4.
Scheme 1. Synthetic plan
ACS Paragon Plus Environment
4
Page 5 of 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Combinatorial Science
Figure 2. Diversity of dipolarophiles 1{1,16}
Figure 3. Diversity of isatins 2{1,3}
Figure 4. Diversity of secondary amino acids 3{1,2}
ACS Paragon Plus Environment
5
ACS Combinatorial Science
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 6 of 23
We started our investigation with the optimization of a model reaction by refluxing a mixture of 3-(4-chlorobenzylidene)thiochroman-4-one 1{2} (1 mmol), isatin 2{1} (1 mmol), sarcosine 3{1} (1 mmol) in EtOH for 7 h, which afforded 4'-(4-chlorophenyl)-1'-methyldispiro[indoline-3,2'pyrrolidine-3',3''-thiochromane]-2,4''-dione 4{2,1,1} in 75% yield, as a single diastereomer (Table 1, entry 1). The model reaction was also examined in other solvents such as MeOH, i
PrOH, 1,4-dioxane, CH3CN and toluene under heating to reflux (Table 1, entries 2–6). From the
data listed in Table 1, methanol (Table 1, entry 2) emerges as the solvent of choice, furnishing the highest yield (81 %) of the target compound.
Table 1. Solvent screen for the synthesis of 4{2,1,1}a
1
EtOH
7
Yield of 4{2,1,1} b (%) 75
2
MeOH
5
81
3
i
PrOH
8
34
4
1,4-Dioxane
10
58
5
CH3CN
8
62
6
Toluene
10
trace
Entry
a
Solvent
Reaction time (h)
Reactions performed under heating at reflux; bIsolated yield after purification by
column
chromatography.
ACS Paragon Plus Environment
6
Page 7 of 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Combinatorial Science
With these results in hand, all subsequent reactions were performed by heating an equimolar mixture of 3-arylidinethiochroman-4-one, isatin and sarcosine in MeOH under reflux for 5 – 6 h. After completion of the reaction as evident from TLC, the solvent was removed and the crude product
was
purified
by
column
chromatography
to
obtain
pure
4'-(aryl)-1'-
methyldispiro[indoline-3,2'-pyrrolidine-3',3''-thiochromane]-2,4''-diones 4. We next explored the scope and generality of this three-component cycloaddition reaction with substrates having (i) aryl rings bearing a series of electron-withdrawing and electron-releasing substituents and (ii) heteroaryl rings at the arylidene side chain. Moreover, the thiochroman-4one core was either unsubstituted or substituted with electron-releasing (methyl) or electronwithdrawing (Cl) groups. These structurally and electronically varied starting materials reacted efficiently with differently substituted, isatins and amino acids, like L-thioproline, affording the corresponding cycloadducts 5 in good yields under the same set of reaction conditions in all cases.
Scheme 2. Synthesis of spirooxindole-pyrrolidine/pyrrolothiazole-thiochroman-4-one hybrids 4 and 5.
ACS Paragon Plus Environment
7
ACS Combinatorial Science
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 8 of 23
Table 2. Synthesis of spirooxindole-pyrrolidine/pyrrolothiazole-thiochroman-4-one hybrids 4 and 5. Entry
Comp.
Yield (%)a
Reaction time
mp oC
1
4{1,1,1}
82
5
156-157
2
4{2,1,1}
81
5
188-189
3
4{3,1,1}
84
5
217-218
4
4{4,1,1}
79
6
214-213
5
4{5,1,1}
80
5
220-221
6
4{7,1,1}
73
5
239-240
7
4{8,1,1}
84
5
204-205
8
4{9,1,1}
82
5
200-201
9
4{12,1,1}
75
5
219-220
10
4{13,1,1}
77
5
237-238
11
4{14,1,1}
70
5
235-236
12
4{2,2,1}
82
5
223-224
13
4{2,3,1}
80
5
211-212
14
5{1,1,2}
85
5
236-237
15
5{2,1,2}
80
5
228-229
16
5{3,1,2}
82
5
225-226
17
5{4,1,2}
78
5
231-232
18
5{5,1,2}
81
5
243-244
19
5{6,1,2}
74
6
227-228
20
5{7,1,2}
78
5
209-210
21
5{8,1,2}
83
5
214-215
22
5{9,1,2}
82
5
206-207
23
5{10,1,2}
78
5
230-231
24
5{11,1,2}
72
6
218-219
25
5{12,1,2}
74
5
207-208
26
5{13,1,2}
76
5
232-233
27
5{15,1,2}
84
5
233-234
28
5{16,1,2}
82
5
228-229
ACS Paragon Plus Environment
8
Page 9 of 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Combinatorial Science
a
29
5{2,2,2}
80
5
210-211
30
5{2,3,2}
84
5
198-199
Isolated yield after purification.
The structure of compounds 4 and 5 was deduced from one- and two-dimensional NMR spectroscopic data, as detailed for 4{3,1,1} as a representative example (vide supporting information). Finally, the complete stereochemistry of the product was unambiguously assigned by X-ray diffraction study31 of a single crystal of 4{8,1,1} (Figure 5).
Figure 5. Single crystal XRD analysis for 4{8,1,1}.
In our structural assignment, we have assumed that all the molecules have the same connectivity and that the relative stereochemistry is the same as that shown by the X-ray in all cases. Some diagnostic NMR signals are common to all compounds 4 and 5 and support this assumption. As an example, the chemical shifts of the C-2” diastereotopic protons, which are in the same range for all compounds, are summarized in Table 3. Moreover the stereochemistry of the 7a’ stereocenter in compounds 5 is in accordance with our earlier reports on related compounds.32
ACS Paragon Plus Environment
9
ACS Combinatorial Science
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 10 of 23
Table 3. Chemical shifts of the C-2” diastereotopic protons of compounds 4 and 5
Entry
Compound
1
4{1,1,1}
2.59 (d, J = 14.4 Hz, 1H), 3.33 (d, J = 14.4 Hz, 1H)
2
4{2,1,1}
2.61 (d, J = 14.1 Hz, 1H), 3.33 (d, J = 14.4 Hz, 1H),
3
4{3,1,1}
2.61 (d, J = 14.1 Hz, 1H), 3.32 (d, J = 14.4 Hz, 1H)
4
4{4,1,1}
2.62 (d, J = 14.1 Hz, 1H), 3.37‒3.47 (m, 1H) merged
5
4{5,1,1}
2.63 (d, J = 14.4 Hz, 1H), 3.38 (d, J = 14.4 Hz, 1H)
6
4{7,1,1}
2.70 (d, J = 14.1 Hz, 1H), 3.09 (d, J = 14.1 Hz, 1H),
7
4{8,1,1}
2.65 (d, J = 14.1 Hz, 1H), 3.37 (d, J = 14.4 Hz, 1H)
8
4{9,1,1}
2.64 (d, J = 14.4 Hz, 1H), 3.35 (d, J = 14.1 Hz, 1H)
9
4{12,1,1}
2.48 (d, J = 14.1 Hz, 1H),3.48‒3.57 (m, 1H) merged
10
4{13,1,1}
2.57 (d, J = 14.4 Hz, 1H), 3.31 (d, J = 14.4 Hz, 1H)
11
4{14,1,1}
2.59 (d, J = 14.4 Hz, 1H), 3.33‒3.43 (m, 1H) merged
12
4{2,2,1}
2.60 (d, J = 14.1 Hz, 1H), 3.28 (d, J = 14.4 Hz, 1H)
13
4{2,3,1}
2.60 (d, J = 14.4 Hz, 1H), 3.27 (d, J = 14.4 Hz, 1H)
14
5{1,1,2}
2.60 (d, J = 14.1 Hz, 1H), 3.39‒3.53 (m, 1H) merged
15
5{2,1,2}
2.61 (d, J = 14.1 Hz, 1H),3.39‒3.52 (m, 1H) merged
16
5{3,1,2}
2.61 (d, J = 14.1 Hz, 1H), 3.38‒3.51 (m, 1H) merged
17
5{4,1,2}
2.62 (d, J = 14.1 Hz, 1H), 3.40‒3.56 (m, 1H) merged
Chemical shift of the C-2” protons
ACS Paragon Plus Environment
10
Page 11 of 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Combinatorial Science
18
5{5,1,2}
2.63 (d, J = 14.4 Hz, 1H), 3.39‒3.55 (m, 1H) merged
19
5{6,1,2}
2.63 (d, J = 14.4 Hz, 1H), 3.39‒3.54 (m, 1H) merged
20
5{7,1,2}
2.67 (d, J = 14.1 Hz, 1H), 3.23 (d, J = 14.1 Hz, 1H)
21
5{8,1,2}
2.65 (d, J = 14.1 Hz, 1H), 3.47‒3.56 (m, 1H) merged
22
5{9,1,2}
2.64 (d, J = 14.1 Hz, 1H), 3.38‒3.54 (m, 1H) merged
23
5{10,1,2}
2.65 (d, J = 14.1 Hz, 1H), 3.20 (d, J = 14.1 Hz, 1H)
24
5{11,1,2}
2.34 (d, J = 14.1 Hz, 1H), 3.42‒3.50 (m, 1H), merged
25
5{12,1,2}
2.87‒2.91 (m, 1H) merged, 3.66 (d, J = 14.1 Hz, 1H)
26
5{13,1,2}
2.58 (d, J = 14.1 Hz, 1H), 3.39‒3.50 (m, 1H) merged
27
5{15,1,2}
2.55 (d, J = 14.4 Hz, 1H), 3.38-3.53 (m, 1H) merged
28
5{16,1,2}
2.60 (d, J = 14.1 Hz, 1H), 3.39‒3.57 (m, 1H) merged
29
5{2,2,2}
2.61 (d, J = 14.1 Hz, 1H), 3.36-3.50 (m, 1H) merged
30
5{2,3,2}
2.60 (d, J = 14.4 Hz, 1H), 3.36‒3.50 (m, 1H) merged
The mechanism for the formation of the cycloadducts presumably proceeds through the generation of azomethine ylide 6 from the reaction between isatins and sarcosine/thioproline, comprising the initial formation of an iminium species which would then evolve by decarboxylation. The subsequent reaction of 6 with dipolarophile 1 would give the cycloadducts 4 and 5 (Scheme 3). Despite the presence of three or four stereocenters in the cycloadducts 4 and 5, respectively, it is remarkable to find the selective formation of only one of the possible diastereomers, since the electron-rich carbon of the dipole adds to the electron-deficient β-carbon of the α,β-unsaturated system of 1 in path ‘a’ rather than path ‘b’ (Scheme 4). Presumably the
ACS Paragon Plus Environment
11
ACS Combinatorial Science
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 12 of 23
cycloaddition occurs in such a way that (i) the carbonyl of the thiochroman-4-one ring system and the aryl ring of the pyrrolidine ring are trans to each other to avoid steric interaction and (ii) the two carbonyls of the products are trans to each other to minimize electrostatic repulsion. The other two possible disasteromeric pairs of compounds are not obtained.
Scheme 3. Plausible mechanism for the formation of spirooxindole-pyrrolidine/pyrrolo-thiazolethiochroman-4-one hybrids 4 and 5
ACS Paragon Plus Environment
12
Page 13 of 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Combinatorial Science
Scheme 4. Proposed approach of 1,3-dipole to dipolarophile, explaining the regio- and diastereoselective formation of spirooxindole-pyrrolidine/pyrrolothiazole-thiochroman-4-one hybrids CONCLUSION In conclusion, we disclose a facile, three-component 1,3-dipolar cycloaddition reaction for the regio-
and
stereoselective
synthesis
of
biologically
relevant
novel
spirooxindole-
pyrrolidine/pyrrolothiazole-thiochroman-4-one hybrids in good yields from simple, readily available starting materials. This transformation occurs with the formation of two C-C and one C-N bonds and the generation of three contiguous stereocenters in a one-pot operation that proceeds with a very high atom economy and has water and carbon dioxide as the only side products. EXPERIMENTAL PROCEDURES General procedure for the synthesis of dispirooxindole-pyrrolidine/pyrrolothiazole– thiochroman-4-one heterocyclic hybrids: A mixture of the suitable 3-arylidinethiocroman-4one (1 mmol), isatin (1 mmol) and sarcosine/L-thioproline (1 mmol) in MeOH (5 ml) was heated under reflux for 6-7 h. After completion of the reaction as evident from TLC, the solvent was removed and the crude product was purified by column chromatography eluting with a 4:1 (v/v) petroleum ether–ethyl acetate mixture to afford the desired products. Characterization data for representative compounds follow; for the full set of data, see the Supporting Information. 4'-(4-Fluorophenyl)-1'-methyldispiro[indoline-3,2'-pyrrolidine-3',3''-thiochromane]-2,4''dione 4{1,1,1}: White solid. Yield: 82%; mp = 156-157 °C (AcOEt-petroleum ether); IR (KBr)
ACS Paragon Plus Environment
13
ACS Combinatorial Science
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 14 of 23
υmax: 3209, 3063, 2954, 2845, 1696, 1672, 1617, 1587, 1511, 1470 cm-1; 1H NMR (300 MHz, CDCl3) δH: 2.09 (s, 3H), 2.59 (d, J = 14.4 Hz, 1H), 3.33 (d, J = 14.4 Hz, 1H), 3.44 (t, J = 8.4 Hz, 1H), 3.92 (t, J = 9.9 Hz, 1H), 5.16 (dd, J = 10.5, 7.8 Hz, 1H), 6.57 (t, J = 7.5 Hz, 1H), 6.65 (d, J = 7.8 Hz, 1H), 6.75 (t, J = 6.4 Hz, 2H), 6.95 (d, J = 7.5 Hz, 1H), 7.00 (d, J = 8.7 Hz, 2H), 7.047.09 (m, 2H), 7.49 (t, J = 6.6 Hz, 2H), 7.69 (br s, 1H), 8.16 (dd, J = 8.1, 1.5 Hz, 1H); 13C NMR (75 MHz, CDCl3) δC: 34.0, 34.1, 46.5, 56.9, 59.9, 74.9, 109.3, 115.3 (2JC, F = 20.9 Hz), 122.0, 124.5, 126.0, 126.3, 127.2, 129.0, 130.7, 130.9, 132.1 (3JC, 142.0, 162.0 (1JC,
F
F
= 7.9 Hz), 132.3, 133.4, 141.6,
= 244.3 Hz), 177.1, 193.5; ESI-MS: m/z. Calcd: 444.13; Found: 445.13
(M+1); Anal. Calcd for C26H21FN2O2S: C, 70.25; H, 4.76; N, 6.30; %. Found C, 69.95; H, 4.69; N, 6.22 %. 7'-(4-Fluorophenyl)-7',7a'-dihydro-1'H,3'H-dispiro[indoline-3,5'-pyrrolo[1,2-c]thiazole6',3''-thiochromane]-2,4''-dione 5{1,1,2}: White solid. Yield: 85%; mp = 236‒237°C (AcOEtpetroleum ether); IR (KBr) υmax: 3135, 2934, 2815, 1694, 1672, 1620, 1588, 1473 cm-1; 1H NMR (300 MHz, CDCl3) δH: 2.60 (d, J = 14.1 Hz, 1H), 2.82 (t, J = 8.7 Hz, 1H), 2.95 (dd, J = 9.1, 5.2 Hz, 1H), 3.39‒3.53 (m, 3H), 4.73-4.81 (m, 1H), 4.87 (d, J = 9.9 Hz, 1H), 6.58‒6.64 (m, 1H), 6.66 (d, J = 7.5 Hz, 1H), (6.76, dd, J = 7.9, 1.0 Hz, 1H), (6.86, d, J = 7.8 Hz, 1H), 6.94‒7.00 (m, 2H), 7.01‒7.10 (m, 3H), 7.44 (dd, J = 8.1, 5.4 Hz, 2H), 7.88 (br s, 1H), 8.06 (dd, J = 8.1, 1.5 Hz, 1H); 13C NMR (75 MHz, CDCl3) δC: 31.1, 32.8, 44.2, 48.8, 63.9, 67.2, 68.9, 108.9, 114.5 (2JC, F = 21.1 Hz), 120.2, 123.5, 123.9, 125.2, 125.7, 128.2, 129.6 (2JC, F = 20.4 Hz), 130.03 (3JC, F = 7.7 Hz), 131.5, 131.6, 140.7, 141.5, 161.0 (1JC, F = 244.3 Hz), 175.5, 191.5; ESI-MS: m/z. Calcd: 488.10; Found: 487.14 (M-1); Anal. Calcd for C27H21FN2O2S2: C, 66.37; H, 4.33; N, 5.73; %. Found C, 65.99; H, 4.49; N, 5.68 %.
ACS Paragon Plus Environment
14
Page 15 of 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Combinatorial Science
ASSOCIATED CONTENT Further details on the experimental and isolation procedures, spectral data, and copies of 1H and 13
C NMR spectra for all synthesized compounds. This material is available free of charge via the
Internet at http://pubs.acs.org.
AUTHOR INFORMATION Corresponding Author e-mail:
[email protected] and
[email protected] Author Contributions ‡These authors contributed equally. ACKNOWLEDGMENTS SP thanks UGC New Delhi for the award of BSR Faculty Fellowship. JCM thanks MINECO for financial support through grants CTQ2012-33272-BQU and CTQ2015-68380-R. ABBREVIATIONS AChE, Acetylcholinesterase; TLC, thin layer chromatography. REFERENCES 1. Moss, G. P. Extension and revision of the nomenclature for spiro compounds. Pure Appl. Chem. 1999, 71, 531-558. 2. a) Daly, J. W.; Garraffo, H. M.; Spande, T. F. in The Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Wiley: New York, 1986; Vol. 4, 2–147; b) Cordell, G. A., Ed. The Alkaloids: Chemistry and Biology, Vol. 51; Academic Press: San Diego,
ACS Paragon Plus Environment
15
ACS Combinatorial Science
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 16 of 23
1998; (c) Osmanov, Z.; Ibragimov, A. A.; Yunusov, S. Y. Structure of sibirine. Chem. Nat. Compd. 1982, 18, 206-208; d) Kuramoto, M.; Chou, T.; Yamada, K.; Chiba, T.; Hayashi, Y.; Uemura, D. Halichlorine, an Inhibitor of VCAM-1 Induction from the Marine Sponge Halichondria okadai Kadota. Tetrahedron Lett. 1996, 37, 3867-3870; e) Kolocouris, N.; Kolocouris, A.; Foscolos, G. B.; Fytas, G.; Neyts, J.; Paldako, E.; Balzarini, J.; Snoeck, R.; Andrei, G.; De Clercq, E. Synthesis and Antiviral Activity Evaluation of Some New Aminoadamantane Derivatives. J. Med. Chem. 1996, 39, 33073318; (f) Ashirmatov, M. A.; Ibragimov, A. A. Quantum-chemical study of the spiropiperidine alkaloids of Nitraria I. Intramolecular hydrogen bonds and chemical properties of nitramine and isonitramine. Chem. Nat. Compd. 1996, 32, 882-885. 3. Jossang, A.; Jossang, P.; Hadi, H. A.; Sevenet, T.; Bodo, B. Horsfiline, an Oxindole Alkaloid from Horsfieldia superba. J. Org. Chem. 1991, 56, 6527-6530. 4. Anderton, N.; Cockrum, P. A.; Colegate, S. M.; Edgar, J. A.; Flower, K.; Vit, I.; Willing, R. I. Oxindoles from Phalariscoe rulescens. Phytochemistry 1998, 48, 437-439. 5. Pellegrin, C.; Weber, M.; Borschberg, H.-J. Total synthesis of (+)-elacomine and (−)isoelacomine, two hitherto unnamed oxindole alkaloids from Elaeagnus commutata. Helv. Chim. Acta 1996, 79, 151-168. 6. Chan, K. C.; Morsingh, F.; Yeoh G. Alkaloids of Uncaria pteropoda. Isolation and structures of pteropodine and isopteropodine. J. Chem. Soc. (C) 1966, 2245-2249. 7. Ban, Y.; Taga, N.; Oishi, T. The synthesis of 3-spirooxindole derivatives. Total syntheses of
dl-formosanine,
dl-isoformosanine,
dl-mitraphylline
and
dl-isomitraphylline.
Tetrahedron Lett. 1974, 15, 187-190.
ACS Paragon Plus Environment
16
Page 17 of 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Combinatorial Science
8. Shi, J. S.; Yu, J. X.; Chen, X. P.; Xu, R. X. Pharmacological actions of Uncaria alkaloids, rhynchophylline and isorhynchophylline. Acta Pharmacol. Sin. 2003, 24, 97101. 9. Bassleer, R.; Depauw-Gillet, M. C.; Massart, B.; Marnette, J.-M.; Wiliquet, P.; Caprasse, M.; Angenot, L. Effets de trois alcaloïdes extraits du Strychnos usambarensis sur des cellules cancéreuses en culture. Planta Med. 1982, 45, 123-126. 10. Ghedira, K.; Zeches-Hanrot, M.; Richard, B.; Massiot, G.; Le MenOlivier, L.; Sevenet, T.; Goh, S. H. Alkaloids of Alstonia angustifolia. Phytochemistry 1988, 27, 3955-3962. 11. (a) Cui, C. B.; Kakeya, H.; Osada, H. Novel mammalian cell cycle inhibitors, spirotryprostatins A and B, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase. Tetrahedron 1996, 52, 12651-12666; (b) Cui, C. B.; Kakeya, H.; Osada, H. Spirotryprostatin B, novel mammalian cell cycle inhibitor produced by Aspergillus fumigatus. J. Antibiot. 1996, 49, 832-835. 12. Kia, Y.; Osman, H.; Suresh Kumar, R.; Murugaiyah, V.; Basiri, A.; Perumal, S.; Razak, I. A. A facile chemo-, regio- and stereoselective synthesis and cholinesterase inhibitory activity of spirooxindole–pyrrolizine–piperidine hybrids. Bioorg. Med. Chem. Lett. 2013, 23, 2979-2983. 13. (a) Zhao, Y.; Yu, S.; Sun, W.; Liu, L.; Lu, J.; McEachern, D.; Shargary, S.; Bernard, D. ; Li, X.; Zhao, T.; Zou, P.; Sun, D.; Wang, S. A potent small-molecule inhibitor of the MDM2–p53 interaction (MI-888) achieved complete and durable tumor regression in mice. J. Med. Chem. 2013, 56, 5553-5561; (b) Yu, B.; Yu, D.- Q.; Liu, H.- M. Spirooxindoles: Promising scaffolds for anticancer agents. Eur. J. Med. Chem. 2015, 97, 673-698. (c) Arun, Y.; Saranraj K.; Balachandran, C.; Perumal, P. T. Novel
ACS Paragon Plus Environment
17
ACS Combinatorial Science
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 18 of 23
spirooxindole-pyrrolidine compounds: Synthesis, anticancer and molecular docking studies. Eur. J. Med. Chem. 2014, 74, 50-64; (d) Arun, Y.; Bhaskar, G.; Balachandran, C.; Ignacimuthu, S.; Perumal, P. T. Facile one-pot synthesis of novel dispirooxindolepyrrolidine derivatives and their antimicrobial and anticancer activity against A549 human lung adenocarcinoma cancer cell line. Bioorg. Med. Chem. Lett. 2013, 23, 18391845. (e) Kathirvelan, D.; Haribabu, J.; Reddy, B. S. R.; Balachandran, C.; Duraipandiyan,
V.
Facile
and
diastereoselective
synthesis
of
3,2’-
spiropyrrolidineoxindole derivatives, their molecular docking and antiproliferative activities. Bioorg. Med. Chem. Lett. 2015, 25, 389-399. 14. (a) Periyasami, G.; Raghunathan, R.; Surendiran, G.; Mathivanan, N. Synthesis of novel spiropyrrolizidines as potent antimicrobial agents for human and plant pathogens. Bioorg. Med. Chem. Lett. 2008, 18, 2342-2345; (b) Bhaskar, G.; Arun, Y.; Balachandran, C.; Saikumar, C.; Perumal, P. T. Synthesis of novel spirooxindole derivatives by one pot multicomponent reaction and their antimicrobial activity. Eur. J. Med. Chem. 2012, 51, 79-91. 15. (a) Suresh Kumar, R.; Michael Rajesh, S.; Perumal, S.; Banerjee, D.; Yogeeswari, P.; Sriram, D. Novel three-component domino reactions of ketones, isatin and amino acids: Synthesis and discovery of antimycobacterial activity of highly functionalised novel dispiropyrrolidines. Eur. J. Med. Chem. 2010, 45, 411-422; (b) Michael Rajesh, S.; Perumal, S.; Menéndez, J. C.; Yogeeswari, P.; Sriram, D. Antimycobacterial activity of spirooxindolo-pyrrolidine, pyrrolizine and pyrrolothiazole hybrids obtained by a threecomponent regio- and stereoselective 1,3-dipolar cycloaddition. Med. Chem. Commun. 2011, 2, 626-630.
ACS Paragon Plus Environment
18
Page 19 of 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Combinatorial Science
16. Kornet, M. J.; Thio, A. P. Oxindole-3-spiropyrrolidines and -piperidines. Synthesis and local anesthetic activity. J. Med. Chem. 1976, 19, 892-898. 17. Hasegawa, M.; Nakayama, A.; Yokohama, S.; Hosokami, T.; Kurebayashi, Y.; Ikeda, T.; Shimoto, Y.; Ide, S.; Honda, Y.; Suzuki, N. Synthesis and pharmacological activities of novel bicyclic thiazoline derivatives as hepatoprotective agents. II. (7-Alkoxycarbonyl-2, 3, 5, 6-tetrahydropyrrolo [2, 1-b]thiazol-3-ylidene)acetamide derivatives. Chem. Pharm. Bull. 1995, 43, 1125-1131. 18. Baldwin, J. E.; Freeman, R. T.; Lowe, C.; Schofield, C. J.; Lee, E. A β-lactam analogue of the penems possessing antibacterial activity. Tetrahedron 1989, 45, 4537-4550. 19. Aicher, T. D.; Balkan, B.; Bell, P. A.; Brand, L. J.; Cheon, S. H.; Deems, R. O.; Fell, J. B.; Fillers, W. S.; Fraser, J. D.; Gao, J.; Knorr, D. C.; Kahle, G. G.; Leone, C. L.; Nadelsen, J.; Simpson, R.; Smith, H. C. Substituted tetrahydropyrrolo[2,1-b]oxazol5(6H)-ones and tetrahydropyrrolo[2,1-b]thiazol-5(6H)-ones as hypoglycemic agents. J. Med. Chem. 1998, 41, 4556-4566. 20. (a) Trapani, G.; Franco, M.; Latrofa, A.; Genchi, G.; Brigiani, M.; Mazzoccoli, M.; Persichella, M.; Serra, M.; Biggio, G.; Liso, G. Synthesis and anticonvulsant activity of some 1,2,3,3a-tetrahydropyrrolo[2,1-b]benzothiazol-1-ones and pyrrolo[2,1-b]thiazole analogues. Eur. J. Med. Chem. 1994, 29, 197-204; (b) Trapani, G.; Franco, M.; Latrofa, A.; Carotti, A.; Cellamare, S.; Serra, M.; Ghiani, C. A.; Tuligi, G.; Biggio, G.; Liso, G. Synthesis and anticonvulsant activity of some 1,2,3,3a-tetrahydropyrrolo[2,1-b]benzothiazol-, -thiazol- or -oxazol-1-ones in rodents. J. Pharm. Pharmacol. 1996, 48, 834-840.
ACS Paragon Plus Environment
19
ACS Combinatorial Science
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 20 of 23
21. Sivakumar, S.; Ranjith Kumar, R.; Ashraf Ali, M.; Choon, T. S. An atom economic synthesis and AChE inhibitory activity of novel dispiro 7-aryltetrahydro-1H-pyrrolo[1,2c][1,3]thiazole
and
4-aryloctahydroindolizine
N-methylpiperidin-4-one
hybrid
heterocycles. Eur. J. Med. Chem. 2013, 65, 240-248. 22. Zhang, D.; Ji, X.; Gao, R.; Wang, H.; Meng, S.; Zhong, Z.; Li, Y.; Jiang, J.; Li, Z. Synthesis and antiviral activities of a novel class of thioflavone and flavonoid analogues. Acta Pharmacol. Sin. B 2012, 2, 575-580. 23. Nammalwar, B.; Darrell Berlin, K.; Bunce, R. A. SHetA2 – A Mini Review of a Promising Anticancer Drug. JSM Chem 2013, 1005, 1-6. 24. (a) Nussbaumer, P.; Lehr, P.; Billich, A. 2-Substituted 4-(thio)chromenone 6-Osulfamates: potent inhibitors of human steroid sulfatase. J. Med. Chem. 2002, 45, 43104320; (b) Nussbaumer, P.; Winiski, A. P.; Billich, A. Estrogenic Potential of 2-Alkyl-4(thio)chromenone 6-O-Sulfamates: Potent Inhibitors of Human Steroid Sulfatase. J. Med. Chem. 2003, 46, 5091-5094; (c) Horvath, A.; Nussbaumer, P.; Wolff, B.; Billich, A. 2-(1Adamantyl)-4-(thio)chromenone-6-carboxylic Acids: Potent Reversible Inhibitors of Human Steroid Sulfatase. J. Med. Chem. 2004, 47, 4268-4276. 25. Yoneya, T.; Taniguchi, K.; Nakamura, R.; Tsunenari, T.; Ohizumi, I.; Kanbe, Y.; Morikawa, K.; Kaiho, S.- I.; Yamada-Okabe, H. Thiochroman Derivative CH4986399, A New Nonsteroidal Estrogen Receptor Down-regulator, Is Effective in Breast Cancer Models. Anticancer Res. 2010, 30, 873-878. 26. De Bernardis, J. F.; Arendsen, D. L.; Zelle, R. E. US Patent 5185364, 1993.
ACS Paragon Plus Environment
20
Page 21 of 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Combinatorial Science
27. Nakib, T. A.; Bezjak, V.; Meeganz, M. J.; Chandy, R. Synthesis and antifungal activity of some
3-benzylidenechroman-4-ones,
3-benzylidenethiochroman-4-ones
and
2-
benzylidene-1-tetralones. Eur. J. Med. Chem. 1990, 25, 455-462. 28. Hadda, T. B.; Kerbal, A.; Bennani, B.; Houari, G. A.; Daoudi, M.; Leite, A. C. L.; Masand, V. H.; Jawarkar, R. D.; Charrouf. Z. Molecular drug design, synthesis and pharmacophore site identification of spiroheterocyclic compounds: Trypanosoma cruzi inhibiting studies. Med. Chem. Res. 2013, 22, 57-69. 29. For selected recent examples, see: (a) Vivek Kumar, S.; Muthusubramanian, S.; Perumal, S. Facile “on water” domino reactions for the expedient synthesis of 2H-thiopyrano[2,3b]quinolones. RSC Adv. 2015, 5, 30826-30832. (b) Bharkavi, C.; Vivek Kumar, S.; Perumal, S. A facile stereoselective domino approach for the construction of novel bis(spiropiperidone)–tetrahydrothiophene hybrid heterocycles. Synlett 2015, 26, 16651670; (c) Muthusaravanan, S.; Sasikumar, C.; Devi Bala, B.; Perumal, S. An eco-friendly three-component regio- and stereoselective synthesis of highly functionalized dihydroindeno[1,2-b]pyrroles under grinding. Green Chem. 2014, 16, 1297-1304; (d) Gunasekaran, P.; Perumal, S.; Menéndez, J. C.; Mancinelli, M.; Ranieri, S.; Mazzanti, A. Axial chirality of 4-arylpyrazolo[3,4-b]pyridines. Conformational analysis and absolute configuration. J. Org. Chem. 2014, 79, 11039-11050; (e) Uma Maheswari, S.; Perumal, S. An expedient domino three-component [3+2]-cycloaddition/annulation protocol: regioand stereoselective assembly of novel polycyclic hybrid heterocycles with five contiguous stereocentres. Tetrahedron Lett. 2013, 54, 7044-7048. 30. Rodriguez, J.; Bonne, D. (eds.) Stereoselective multiple bond-forming transformations in organic synthesis. John Wiley and Sons, Hoboken, New Jersey, 2015.
ACS Paragon Plus Environment
21
ACS Combinatorial Science
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 22 of 23
31. Crystallographic data (excluding structure factors) for compound 4{8,1,1} have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 1411532. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 (0)1223336033 or e-mail:
[email protected]]. 32. (a) Prasanna, P.; Balamurugan, K.; Perumal, S.; Yogeeswari, P.; Sriram, D. A regio- and stereoselective
1,3-dipolar
cycloaddition
for
the
synthesis
of
novel
spiro-
pyrrolothiazolyloxindoles and their antitubercular evaluation. Eur. J. Med. Chem. 2010, 45, 5653-5661. (b) Uma Maheswari, S.; Balamurugan, K.; Perumal, S.; Yogeeswari, P.; Sriram, D. A facile 1,3-dipolar cycloaddition of azomethine ylides to 2-arylidene-1,3indanediones: Synthesis of dispiro-oxindolylpyrrolothiazoles and their antimycobacterial evaluation. Bioorg. Med. Chem. Lett. 2010, 20, 7278-7282.
ACS Paragon Plus Environment
22
Page 23 of 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Combinatorial Science
Graphical Abstract
A library of novel dispiro compounds containing oxindole-pyrrolidine/oxindolopyrrolothiazolethiochroman-4-one hybrid frameworks has been synthesized via three-component 1,3-dipolar cycloaddition reactions.
ACS Paragon Plus Environment
23