Organic Marine Geochemistry - ACS Symposium Series (ACS

Jul 23, 2009 - Department of Chemistry, Florida Institute of Technology, Melbourne, FL 32901. Organic Marine Geochemistry. Chapter 1, pp 1–8. Chapte...
6 downloads 18 Views 759KB Size
1 Organic Marine Geochemistry An Overview Mary L. Sohn

Downloaded by 80.82.77.83 on January 10, 2018 | http://pubs.acs.org Publication Date: April 21, 1986 | doi: 10.1021/bk-1986-0305.ch001

Department of Chemistry, Florida Institute of Technology, Melbourne, F L 32901

The use of modern hyphenated methods such as GC-MS have proven invaluable to the task of assigning specific sources to specific organic compounds isolated from marine sediments, suspended particulate matter, interstitial water and seawater. Early chapters of this volume discuss the correlation of various classes of compounds isolated largely from marine and brackish sediments with sources consisting of terrigenous plants, bacteria, phytoplankton, zooplankton and nonbiological components such as anthropogenic input, petroleum seepage, and the weathering of "mineral" deposits. Biomarkers A biological marker (or "biomarker") may be defined as "a compound the structure of which can be interpreted in terms of a previous biological origin." Since the isolation and identification of metalloporphyrins in bitumens by Treibs (2) in the 1930's and their correlation with tetrapyrroles of chlorophylls, implying a biological origin for petroleum, an enormous amount of progress has been accomplished in this area of research. In order to be a useful biomarker, a compound must retain enough of its original structure to be identified as a modified version of the original biological parent compound. The retention of the carbon backbone of biologically generated alcohols, in alkanes isolated from sediments and petroleum fractions, includes the classic cases of pristane and phytane as diagenetic products of phytol (the alcohol which esterifies the carboylic acid group in chlorophyll-a) and 5 ,-cholestane from cholesterol. Other examples of the usefulness of alkanes as biomarkers include correlations of various n-alkanes to bacterial populations (3), and the association of C -steranes with marine versus nonmarine input (originally as C -sterols) (4). Another factor commonly used as a source indicator with respect to alkanes is the carbon number distribution. Briefly, n-alkane distributions with carbon number maxima in the 17-21 range (C -C ) originate largely from aquatic algal sources, while maxima characterized by higher carbon numbers are 30

30

17

21

0097-6156/ 86/ 0305-0001 $06.00/ 0 © 1986 American Chemical Society

Sohn; Organic Marine Geochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

2

ORGANC I MARN IE GEOCHEMSITRY i n d i c a t i v e o f h i g h e r p l a n t i n p u t ( l e a f waxes o f t e r r e s t r i a l p l a n t s ) £l, 5 ) . I n a d d i t i o n , 2 3 ~ 3 3 n - a l k a n e s w i t h a p r e ­ dominance o f an odd number o f carbons t o an even number o f carbons (OEP) i s a l s o i n d i c a t i v e o f t e r r e s t r i a l h i g h e r p l a n t i n p u t (_1, 6-9) a l t h o u g h l o s s o f odd numbered carbon predominance can o c c u r w i t h m a t u r i t y ( 5 ) . Thus, a l t h o u g h p e t r o l e u m i s b e l i e v e d t o be o f b i o l o g i c a l o r i g i n , p e t r o l e u m i n p u t i s c h a r a c t e r i z e d by a l a c k o f odd t o even predominance (O.E.P. = 1.0). The i s o t o p i c c o m p o s i t i o n o f a l k a n e s and o f o t h e r c l a s s e s o f compounds can a l s o be used as a g e n e r a l s o u r c e i n p u t i n d i c a ­ t o r . I s o t o p i c f r a c t i o n a t i o n r e s u l t i n g from t h e m e t a b o l i c p a t h ­ ways i n v o l v e d i n t h e s y n t h e s i s o f b i o l o g i c a l l y produced compounds, when p r e s e r v e d i n a d i a g e n e t i c p r o d u c t , i s f r e q u e n t l y used t o d i f f e r e n t i a t e between t e r r e s t r i a l and a q u a t i c s o u r c e s . Hydrogen and carbon i s o t o p i c c o m p o s i t i o n s o f b i o g e n i c methanes from s h a l l o w a q u a t i c environments i s d i s c u s s e d i n a l a t e r c h a p t e r of t h i s volume (R. A. Burke and W. M. S a c k e t t ) . The a p p l i c a b i ­ l i t y o f carbon i s o t o p i c d a t a t o t r a c i n g t h e s o u r c e o f deep-sea M e s o z o i c sediments i s d i s c u s s e d by R.M. J o y c e and E. S. Van Vleet. Many o t h e r c l a s s e s o f l i p i d s b e s i d e s a l k a n e s have proven t o be v a l u a b l e b i o m a r k e r s , i n c l u d i n g f a t t y a c i d s , s t e r o l s , amino a c i d s , p o l y s a c c h a r i d e s , g l y c e r o l s , wax e s t e r s , p o r p h y r i n s and many i s o p r e n o i d s . The g r e a t e r t h e e x t e n t o f a l t e r a t i o n o f a compound by d i a g e n e t i c p r o c e s s e s , t h e h a r d e r i t i s t o c o r r e l a t e t h e p r o d u c t t o t h e b i o l o g i c a l p r e c u r s o r . However, t h e s u c c e s s i v e changes undergone by t h e p r e c u r s o r m o l e c u l e can sometimes be deduced from t h e s t r u c t u r e o f t h e p r o d u c t . I n t h e s e cases t h e "biomarker i s a l s o a g e o c h e m i c a l marker and may be r e f e r r e d t o as a b i o g e o c h e m i c a l i n d i c a t o r . F o r example, s t e n o l t o s t a n o l r a t i o s can be used as an i n d i c a t o r o f sediment o x i c i t y . High s t e n o l / s t a n o l r a t i o s are i n d i c a t i v e of o x i d i z i n g r a t h e r than r e d u c i n g environments ( 1 , 2 0 ) . P e r y l e n e p r o v i d e s an i n t e r e s t i n g example o f a PAH o f d i s p u t e d o r i g i n , w h i c h may prove t o be a r e l i a b l e i n d i c a t o r o f syn-and p o s t - d e p o s i t i o n a l a n o x i a when p r e s e n t i n g r e a t e r t h a n t r a c e amounts ( 1 1 ) . I n d i c a t o r s o f t h e b i o g e o c h e m i s t r y o f c h l o r o p h y l l and t h e temperature dependence o f c h l o r o p h y l l d i a g e n e s i s i s r e v i e w e d i n t h e c h a p t e r by J.W. Louda and E. W. Baker. Other c h a p t e r s i n t h i s volume concerned w i t h s o u r c e i n p u t markers and g e o c h e m i c a l i n d i c a t o r s i n c l u d e t h o s e by S.C. B r a s s e l l and G. E g l i n t o n , J.W. de Leeuw, J . Whelan e t a l . , J . J . Boon e t a l . , R.M. Joyce and E. S. Van V l e e t .

Downloaded by 80.82.77.83 on January 10, 2018 | http://pubs.acs.org Publication Date: April 21, 1986 | doi: 10.1021/bk-1986-0305.ch001

C

C

11

Humic Substances Compared t o t h e w e l l d e f i n e d s t r u c t u r e s and i n t e r r e l a t i o n s h i p s o f t h e d i s c r e t e m o l e c u l a r b i o m a r k e r s and g e o c h e m i c a l i n d i c a t o r s d i s c u s s e d above, r e l a t i v e l y l i t t l e i s known about marine humic s u b s t a n c e s . Whether t h e major s o u r c e o f i n p u t t o d i s s o l v e d and s e d i m e n t a r y marine humic s u b s t a n c e s i s o f t e r r i g e n o u s o r marine o r i g i n i s s t i l l o c c a s i o n a l l y debated i n t h e l i t e r a t u r e , a l t h o u g h most i n t e r p r e t a t i o n s p o i n t towards marine p l a n k t o n i c s o u r c e s ^ ( 1 2 - ^ ) , based most c o n v i n c i n g l y on i s o t o p i c r a t i o s , GC-MS, H and C NMR and i n f r a r e d s y ^ c t r a ( 1 5 - 1 7 ) . Stuermer e t a l (12) propose a c o m b i n a t i o n o f C and H/C r a t i o s as a

Sohn; Organic Marine Geochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by 80.82.77.83 on January 10, 2018 | http://pubs.acs.org Publication Date: April 21, 1986 | doi: 10.1021/bk-1986-0305.ch001

1.

SOHN

3 Organic Marine Geochemistry

s o u r c e i n p u t i n d i c a t o r o f t e r r e s t r i a l v e r s u s marine d e r i v e d humic substances. One o f t h e most u s e f u l t o o l s f o r d e t e r m i n i n g i n p u t s o u r c e s , f u n c t i o n a l group c o n t e n t and diagçnetic r e l a t i o n s h i p s between h u m ^ f r a c t i o n s has proven t o be C NMR. The e a r l y a p p l i c a t i o n s of C NMR t o humic s u b s t a n c e s were done by s o l u t i o n NMR and were t h u s l i m i t e d t o base s o l u b l e humic and f u l y ^ c a c i d s ( 1 6 , 18, 1 9 ) . The subsequent a p p l i c a t i o n o f s o l i d - s t a t e C NMR t o humic samples has a l l o w e d f o r d i r e c t comparisons between s o l u b l e and i n s o l u b l e f r a c t i o n s a s ^ e l l as between humic s u b s t a n c e s from d i v e r s e environments. C NMR a n a l y s i s o f s o l i d samples i s made p o s s i b l e by t h e u s e o f c r o s s p o l a r i z a t i o n and magic a n g l e s p i n n i n g (CP/MAS). C r o s s p o l a r i z a t i o n i s a s e n s i t i v i t y enhancing technique i n which t h e a p p l i c a t i o n o|^radio frequency p u l s e s a t t h e resonance f r e q u e n c i e s o f H and C establishes contact between t h e two p o p u l a t i o n s a l l o w i n g f o r ^ c r o s s p o l a n i z a t i o n ( i . e . p a n s i e r o f m a g n e t i z a t i o n ) from a l a r g e H p o p u l a t i o n t o a m i n u t e C p o p u l a t i o n . Magic a n g l e s p i n n i n g ( s p i n n i n g t h e sample a t s e v e r a l kHz a t an a n g l e o f 54.7 r e l a t i v e t o t h e e x t e r n a l l y a p p l i e d magnetic f i e l d ) m i n i m i z e s l i n e b r o a d e n i n g due t o c h e m i c a l s h i f t a n i s o t r o p y (20-21) The c o m b i n a t i o n o f t h e s e t e c h n i q u e s w i t h h i g h power d e c o u p l i n g and f o u r i e r t r a n s f o r m a n a l y s i s has y i e l d e d h i g h r e s o l u t i o n s p e c t r a which can provide r e l i a b l e e s t i m a t e s o f v a r i o u s carbon t y p e s , ( 2 1 - 2 4 ) . The i m p o r t a n t q u e s t i o n o f t h e r e l i a b i l i t y o f q u a n t i f i c a t i o n of s o l i d s t a t e C NMR r e s u l t s can be answered i n p a r t by r e l a x a t i o n s t u d i e s and t h e measurement o f r e l a x a t i o n c o n s t a n t s (25-27) and i s d i s c u s s e d i n g r e a t e r d e t a i l by M.A. W i l s o n and A.H. G i l l a m i n a l a t e r c h a p t e r o f t h i s volume. Q u a n t i f i c a t i o n o f t h e a r o m a t i c c o n t e n t ( f ) o f marine humic and f u l v i c a c i d s by CP/MAS C NMR has demonstrated t h a t t h e s e s u b s t a n c e s have low a r o m a t i c i t i e s r e l a t i v e t o t e r r e s t r i a l c o u n t e r p a r t s ( 1 6 , 2 8 ) . The low a r o m a t i c ( h i g h a l i p h a t i c ) c o n t e n t o f marine humic s u b s t a n c e s i s a r e s u l t o f t h e i r i n s i t u p r o d u c t i o n . Higher p l a n t s a s s o c i a t e d w i t h t e r r e s t r i a l environments c o n t r i b u t e l i g n i n t o s o i l humic s u b s t a n c e s . The l a c k o f l i g n i n i n marine p l a n t s r e s u l t s i n a low a r o m a t i c i t y o f marine humic s u b s t a n c e s a l t h o u g h c o a s t a l sediments may c o n t a i n h i g h l e v e l s o f v a s c u l a r p l a n t r e s i d u e s ( 2 9 ) . L i g n i n i s an a r o m a t i c based n a t u r a l polymer c h a r a c t e r i z e d by methoxyl group s u b s t i t u t i o n s on t h e benezene r i n g s t r u c t u r e . These l i g n i n - a s s ^ c i a t e d methoxyl groups t y p i c a l l y produce a d i s t i n c t i v e C NMR peak w h i c h i s n o r m a l l y i n t e r p r e t e d as a s o u r c e marker f o r t e r r e s t r i a l i n p u t . However, as d i s c u s s e d i n t h e c h a p t e r by M.A. W i l s o n and A.H. G i l l a m , c o n t r i b u t i o n s from o t h e r carbon t y p e s ( p o s s i b l y amino a c i d carbon) may c o n t r i b u t e t o t h i s s i g n a l . The r e l a t i v e l y new t e c h n i q u e o f d i p o l a r dephasing i s c a p a b l e o f d i s t i n g u i s h i n g between t e r r e s t r i a l l i g n i n methoxyl s i g n a l s and o t h e r p r o t o n a t e d carbons w h i c h may r e s o n a t e i n t h e m e t h o x y l r e g i o n o f t h e spectrum. D i p o l a r dephasing t a k e s advantage o f d i f f e r e n t r e l a x a t i o n r a t e s o f v a r i o u s t y p e s o f carbon and u t i l i z e s t h i s phenomenon t o d i s t i n q u i s h between p r o t o n a t e d and n o n p r o t o n a t e d carbon ( 2 6 ) . The u t i l i z a t i o n o f d i p o l a r dephasing i n s t u d y i n g t h e d i a g e n e t i c changes undergone by o r g a n i c m a t t e r i n marine sediments i s d i s c u s s e d i n a c h a p t e r by W.T. Cooper e t a l . . &

Sohn; Organic Marine Geochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

4

ORGANC I MARN IE GEOCHEMSITRY Recent advances i n t h e s t r u c t u r a l i n t e r r e l a t i o n s h i p s among humic substances o f marine and e s t u a r i n e sedimentary o r i g i n i s d i s c u s s e d i n t h e c h a p t e r by P.G. Hatcher and W.H. Orem. O r g a n i c P o l l u t a n t s i n t h e M a r i n e Environment The b i o g e o c h e m i s t r y o f o r g a n i c p o l l u t a n t s i n marine systems i s o f enormous economic and e n v i r o n m e n t a l impact. The e n v i r o n m e n t a l b e h a v i o r o f p o l y c h l o r i n a t e d b i p h e n y l s ( P C B s ) has been s t u d i e d r a t h e r e x t e n s i v e l y because o f t h e i r d e t r i m e n t a l e f f e c t s on human h e a l t h and on l i v i n g marine r e s o u r c e s (30-32). As d i s c u s s e d i n t h e c h a p t e r s by J.W. F a r r i n g t o n e t a l . , due t o r e c e n t advances i n gas c a p i l l a r y chromotographic methods, i t i s now p o s s i b l e t o s t u d y t h e b i o g e o c h e m i s t r y o f i n d i v i d u a l PCB's r a t h e r t h a n t h a t o f combined i n d u s t r i a l m i x t u r e s o f PCB's (33-36). I n o r d e r t o r e a l i s t i c a l l y assess t h e r i s k s t o animal h e a l t h , i t i s important t o be a b l e t o work w i t h i n d i v i d u a l PCB l e v e l s r a t h e r t h a n w i t h u n r e s o l v e d m i x t u r e s because i n d i v i d u a l PCB's can v a r y g r e a t l y i n terms o f t o x i c i t y ( 3 7 ) . The c o n t a m i n a t i o n o f c o a s t a l marine environments by a n t h r o p o g e n i c hydrocarbon i n p u t i s a l s o a m a t t e r o f u r g e n t concern w i t h r e s p e c t t o human h e a l t h and p r e s e r v a t i o n o f n a t u r a l r e s o u r c e s . Hydrocarbon c o n t a m i n a t i o n by o i l s p i l l s c a n o f t e n be t r a c e d t o s o u r c e s by f i n g e r p r i n t i n g t e c h n i q u e s . An e x c e l l e n t r e v i e w o f c u r r e n t developments i n t h i s f i e l d i s p r e s e n t e d by E.S. Van V l e e t ( 3 8 ) i n c l u d i n g d i s c u s s i o n s on computer i n t e r f a c e d t o t a l f l u o r e s c e n c e , t r a n s m i s s i o n i n f r a r e d s p e c t r o s c o p y , GC and GC-MS, t r a c e m e t a l a n a l y s i s e t c . . The c o r r e l a t i o n o f hydrocarbons w i t h p e t r o l e u m s o u r c e s i s f r e q u e n t l y h i n d e r e d by d i f f e r e n t i a l w e a t h e r i n g . F o r a d e t a i l e d d i s c u s s i o n on t h e w e a t h e r i n g o f p e t r o l e u m i n t h e marine environment, t h e r e a d e r i s r e f e r r e d t o a c u r r e n t l i t e r a t u r e r e v i e w ( 3 9 ) . I n t h i s volume, t h e f i n g e r p r i n t i n g o f hydrocarbon c o n t a m i n a t i o n from s p e c i f i c l a n d use a c t i v i t i e s , s u p p o r t e d by GC-MS a n a l y s i s o f p o l y n u c l e a r a r o m a t i c compounds (PNA) a r e d i s c u s s e d by R.H. P i e r c e e t a l . and by E.B. Overton e t a l . , w h i l e f i n g e r p r i n t i n g o f hydrocarbon c o n t a m i n a t i o n from c a r b o n i e d c o a l p r o d u c t s ( c r e o s o t e and c o a l t a r ) i s d e s c r i b e d by T.L. Wade e t a l . .

Downloaded by 80.82.77.83 on January 10, 2018 | http://pubs.acs.org Publication Date: April 21, 1986 | doi: 10.1021/bk-1986-0305.ch001

f

V o l a t i l e Organic

Substances

The d e c o m p o s i t i o n o f complex o r g a n i c substances by m i c r o b i a l marine p o p u l a t i o n s r e s u l t s i n t h e i n s i t u p r o d u c t i o n o f b i o g e n i c methane, w h i c h i s found i n t r a c e amounts i n a l l f r e s h and s a l t w a t e r s . The r e l a t i v e importance o f a c e t a t e a s s i m i l a t i o n and CO^ r e d u c t i o n as p r i m a r y methanogenic pathways i s d i s c u s s e d i n t h e c h a p t e r by R.A. Burke and W.M. S a c k e ^ . I n t h e past, these pathways were s t u d i e d by t h e u s e o f C labelled substrates. However, t h e a u t h o r s demonstrate t h e advantages o f u s i n g s t a b l e hydrogen and carbon i s o t o p i c c o m p o s i t i o n s o f b i o g e n i c methanes t o e v a l u a t e t h e r e l a t i v e c o n t r i b u t i o n s from t h e s e two pathways. S e a s o n a l d i s t r i b u t i o n s o f methane a r e d i s c u s s e d i n t h e c h a p t e r by J.D. C l i n e e t a l . . V o l a t i l e h a l o g e n a t e d methanes a r e a l s o produced i n s i t u i n the marine environment and have been found t o be a s s o c i a t e d w i t h marine macroalge ( 4 0 ) . The r e l e a s e o f t h e s e h a l o g e n a t e d methanes

Sohn; Organic Marine Geochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

1.

SOHN

5 Organic Marine Geochemistry

i n t o c o a s t a l seawater has a l s o been demonstrated (41-43) and i s of e n v i r o n m e n t a l c o n c e r n . A s e a s o n a l s t u d y o f t h e r e l e a s e o f polybromomethanes i s d e s c r i b e d i n t h e c h a p t e r by P.M. Gschwend and J.K. MacFarlane.

Downloaded by 80.82.77.83 on January 10, 2018 | http://pubs.acs.org Publication Date: April 21, 1986 | doi: 10.1021/bk-1986-0305.ch001

Organic - Inorganic I n t e r a c t i o n s The major i n f l u e n c e o f o r g a n i c marine s u b s t a n c e s on t h e p a r t i t i o n i n g and s p e c i a t i o n o f i n o r g a n i c and o r g a n o m e t a l l i c s u b s t a n c e s i s d i s c u s s e d i n t h e c l o s i n g c h a p t e r s o f t h i s volume. C o m p l e x a t i o n , a d s o r p t i o n and/or r e d u c t i o n o f i o n s and compounds by o r g a n i c m a t t e r i n marine and b r a c k i s h systems g r e a t l y a f f e c t t h e c y c l i n g and b i o a v a i l a b i l i t y o f many p o t e n t i a l n u t r i e n t s and t o x i c substances. The c o m p l e x a t i o n of m e t a l i o n s by humic s u b s t a n c e s i s a w e l l documented phenomenon (44-51). Due t o t h e u b i q u i t o u s n a t u r e o f t h e s e n a t u r a l l y o c c u r r i n g l i g a n d s , humic s u b s t a n c e s p l a y an i m p o r t a n t r o l e i n d e t e r m i n i n g t h e p a r t i t i o n i n g o f m e t a l i o n s and o t h e r s u b s t a n c e s i n b o t h t e r r e s t r i a l and a q u a t i c environments (52-56). I n o r d e r t o p r e d i c t o r model t h e p a r t i t i o n i n g o f a p a r t i c u l a r m e t a l i o n i n a g i v e n environment, i t i s e s s e n t i a l t o be a b l e t o e v a l u a t e t h e magnitude of t h e i n t e r a c t i o n between t h e p e r t i n e n t components o f t h e environment ( t h e s u b s t r a t e s ) and t h e m e t a l i o n . When d e a l i n g w i t h t h e v a r i o u s s o l i d phases w h i c h may be p r e s e n t , a d s o r p t i o n o f t h e i o n onto each phase ( c l a y , sand, s i l t , hydrous m e t a l o x i d e s , humus) can be s t u d i e d v i a t h e e v a l u a t i o n o f a d s o r p t i o n i s o t h e r m s ( 5 6 ) . I n t h e s o l u t i o n phase, c o m p l e x a t i o n i s an i m p o r t a n t p r o c e s s w h i c h competes w i t h i o n - p a i r f o r m a t i o n and subsequent p r e c i p i t a t i o n . The s t r e n g t h o f t h e c o m p l e x a t i o n r e a c t i o n can be measured by e v a l u a t i o n o f a c o n d i t i o n a l f o r m a t i o n c o n s t a n t . (57-59, 4 6 ) . A d s o r p t i o n o f d i s s o l v e d s u b s t a n c e s onto suspended m a t t e r i s a p r i m a r y p r o c e s s i n t h e removal o f d i s s o l v e d substance from t h e water column and subsequent c o n c e n t r a t i o n i n sediments. The major r o l e p l a y e d by adsorbed o r g a n i c c o a t i n g s on p a r t i c u l a t e m a t t e r i s w e l l known (60, 6 1 ) . The p r o c e s s e s o f c o m p l e x a t i o n and a d s o r p t i o n i n marine systems and t h e i r e f f e c t s on t h e s p e c i a t i o n o f v a r i o u s i o n s and compounds a r e d i s c u s s e d i n t h e c l o s i n g chapters. Literature 1.

2. 3.

4. 5.

Cited

Eglinton, G. I n "Advances in O r g a n i c Geochemistry 1968"; Schenck, P.Α.; Havenaar, I., Eds.; Pergamon P r e s s : O x f o r d , 1968 pp. 1-24. T r e i b s , A. Angew. Chimie 1936, 49, 682-686. Volkman, J.K.; F a r r i n g t o n , J.W.; G a g o s i a n , R.B.; Wakeham, S.G. I n "Advances in O r g a n i c Geochemistry 1981"; B j o r o y , M., Ed.; John W i l e y & Sons L i m i t e d : 1982, pp. 228-240. Moldowan, J.M. Geochim. Cosmochim. A c t a 1984, 48, 2767-2768. B a k e r , E.W.; Louda, J.W. I n "Advances i n O r g a n i c Geochemistry 1981; B j o r o y , M., Ed.; John W i l e y & Sons L i m i t e d : 1982 pp 295-319.

Sohn; Organic Marine Geochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

6 6. 7. 8.

9.

Downloaded by 80.82.77.83 on January 10, 2018 | http://pubs.acs.org Publication Date: April 21, 1986 | doi: 10.1021/bk-1986-0305.ch001

10.

11. 12. 13. 14. 15. 16. 17. 18. 19. 20.

21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31.

ORGANIC M A R I N E GEOCHEMISTRY

Eglinton, G.; H a m i l t o n , R . J . S c i e n c e 1967, 156, 1322-1335. L e e n h e e r , M.J.; Flessland, K.D.; Meyers, P.A. Org. Geochem. 1984, 7, 141-150. Brassell, S.C.; Comet, P.Α.; Eglinton, G.; I s a a c s o n , P . J . ; McEvoy, J.; M a x w e l l , J.R.; Thomson, I.D.; Tibbetts, P.J.C.; Volkman, J.K. In "Advances in O r g a n i c Geochemistry 1981; B j o r o y , M., Ed.; John W i l e y & Sons L i m i t e d : pp. 375-391. S i m o n e i t , B.R.T. I n " C h e m i c a l Oceanography" Riley, J.P.; C h e s t e r , P., Eds.; Academic P r e s s : New Y o r k , 1978; Vol. 7, pp. 233-311. G a g o s i a n , R. B.; S m i t h , S.O.; L e e , C.; Farrington, J.W.; Frew, N.M. I n "Advances in O r g a n i c Geochemistry 1979" D o u g l a s , A.G.; M a x w e l l , J.R., Eds.; Pergamon P r e s s : , 1980; pp.407-419. Louda, J.W.; B a k e r , E.W. Geochim. Cosmochim A c t a 1984, 48, 1043-1058. S t u e r m e r , D.H.; P e t e r s , K.E.; K a p l a n , I.R. Geochim. Cosmochim. A c t a 1978, 42, 989-997. Nissenbaum, Α.; K a p l a n , I.R. L i m o l . Oceanogr. 1972, 17, 570-582. Stuermen, D.H.; Harvey, G.R. N a t u r e , 1974, 250, 480-481. S t u e r m e r , D.H.; Payne, J.R. Geochim. Cosmochim A c t a 1976, 40, 1109-1114. H a t c h e r , P.G.; Rowan, R.; Mattingly, M.A. Org. Geochem 1980, 2, 77-85. Gillam, A.H.; W i l s o n , M.A. Org. Geochem. 1985, 8, 15-25. Vila, F.J.G.; L e n t z , H.; Ludemann, H.D. Biochem. B i o p h y s . Res. Commun. 1976, 672, 1063-1069. W i l s o n , M.A.; Goh, K.M., J. Soil Sci 1977, 28, 645-652. Andrew, E.R. I n " P r o g r e s s in NMR S p e c t r o s c o p y " , Emsley, J.W.; Feeney, J.; Sutcliffe, L.H., Eds.; Pergamon, 1972; Vol. 8, pp. 1-39. B a r t u s k a , V . J . ; Maciel, G.E.; S c h a e f e r , J.; Stejskal, E.O. F u e l 1977, 56, 354-358. H a t c h e r , P.G.; V a n d e r H a r t , D.L.; Earl, W.L. Org. Geochem 1980, 2, 87-92. M i k n i s , F.P.; Netzel, D.A.; S m i t h , J.W.; Mast, M.A.; Maciel, G.E. Geochim. Cosmochim. A c t a 1982, 46, 977-984. R e s i n g , H.A.; Garroway, A.N.; Hazlett, R.N. Fuel, 1978, 57, 450-454. Y o s h i d a , T.; Maekawa, Y.; Fujito, T. A n a l . Chem. 1983, 55, 388-390. W i l s o n , M.A.; Pugmire, R . J . ; G r a n t , D.M. Org. Geochem. 1983, 5, 121-129. W i l s o n , M.A.; Vassallo, A.M. Org. Geochem. 1985, 8, 299-312. H a t c h e r , P.G.; B r e g e r , I.Α.; Mattingly, M.A. N a t u r e 1980, 285, 560 562. Ertel, J.R.; Hedges, J.I. Geochim. Cosmochim. A c t a 1984, 48, 2065-2074. Miller, S. E n v i r o n . Sci. Technol 1982, 16, 98A-99A. Bopp, R.F.; Simpson, H.J.; O l s e n , C.R.; K o s t y k , N. E n v i r o n . Sci. T e c h n o l . 1981, 15, 210-216.

Sohn; Organic Marine Geochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

1.

SOHN

32. 33. 34. 35.

36.

Downloaded by 80.82.77.83 on January 10, 2018 | http://pubs.acs.org Publication Date: April 21, 1986 | doi: 10.1021/bk-1986-0305.ch001

37.

38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54.

55. 56. 57. 58. 59.

Organic Marine Geochemistry

Pierce, R.H.; Olney, C.E.; F e l b e c k , G.T. Geochim. Cosmochim. A c t a 1974, 38, 1061-1073. Ballschmiter, K.; Zell, M. F r e z e n i u s Z. A n a l . Chem. 1980, 302, 20-31. D u i n k e r , J.C.; Hillebrand, M.T.J. E n v i r o n . Sci. T e c h n o l . 1983, 17, 449-456 Mullin, M.D.; P o c h i n i , C.M.; M c C r i n d l e , S.; Romkes, M.; S a f e , S.H.; S a f e , L.M. E n v i r o n . Sci. T e c h n o l . 1984, 18, 468-476. D u i n k e r , J.C.; Hillebrand, M.T.J.; Boon, J.P. N e t h e r l a n d s J . Sea. Res. 1983, 17, 19-38. Kimbrough, R.D. "Halogenated B i p h e n y l s , T e r p h e n y l s , N a p h t h a l e n e s , D i b e n z o d i x i n s and R e l a t e d P r o d u c t s . Elsevier/North H o l l a n d B i o m e d i c a l P r e s s : New Y o r k , 1980, 406 pp. Van Vleet, E.S. Mar. Techn. Soc. J. 1984, 18, 11-23. Payne, J.R.; McNabb, G.D., Jr. Mar. Techn. Soc. J. 1984, 18, 11-23. Hewson, W.D.; Hager, L.P. J. P h y c o l 1980, 16, 340. Gschwend, P.M.; M a c F a r l a n e , J.K.; Newman, K.A. S c i e n c e 1985, 227,1033. D r y s s e n , D.; F o g e l q u i s t , E. Oceanol. A c t a 1981, 4, 313. L o v e l o c k , J.E.; Maggs, R . J . ; Wade, R . J . N a t u r e 1973, 256, 193. Adhikari, M.; H a z r a , G.C. J . I n d i a n Chem. Soc. 1972, 49, 947-951. A r d a k a n i , M.; Stevenson, F . J . Soil Sci. Soc. Am. P r o c . 1972, 36, 884-890. Gamble, D.S.; S c h n i t z e r , M.; Hoffman, I. Can. J o u r n . Chem. 1970, 48, 3197-3204. Gamble, D.S. A n a l . Chem. 1980, 52, 1901-1908. M a n t o u r a , R.F.C.; Riley, J.P. A n a l y t . Chim. A c t a 1975, 78, 193-200. M a n t o u r a , R.F.C.; D i c k s o n , Α.; Riley, J.P. Est. C o a s t . Mar. Sci. 1978, 6, 387-408. Mills, G.L.; Hanosn, A.K. Jr.; Q u i n n , J.G.; Lammela, W.R.; Chasteen, N.D. Mar. Chem. 1982, 11, 355-377. Piotrowicz, S.R.; Harvey, G.R.; Boran, D.A.; W e i s e l , C.P.; S p r i n g e r - Y o u n g , M. Mar. Chem. 1984, 14, 333-346. Nissenbaum, Α.; Swaine, D.J. Geochim.Cosmochim. A c t a . 1976, 40, 809. R a s h i d , M.A.; Leonard, J.D. Chem. G e o l . 1973, 11, 89-97. T h e i s , T.L.; S i n g e r , P.C. I n "Trace M e t a l s and M e t a l - O r g a n i c I n t e r a c t i o n s in Natural Waters"; S i n g e r , P.C., Ed.; Ann A r b o r S c i e n c e Publishers, 1973. W a l l a c e , G.T. Mar. Chem. 1982, 11, 379-394. D a v i e s - C o l l e y , R . J . ; N e l s o n , P.O.; W i l l i a m s o n , K . J . E n v i r o n . Sci. T e c h n o l . 1984, 18, 491-499. Gamble, D.S.; S c h n i t z e r , M.; K e r n d o r f f , H. Geochim. Cosmochim. A c t a 1983, 47, 1311-1323. C l a r k , J.S.; T u r n e r , R.C. Soil Sci. 1969, 107, 8-11. Elgala, Α., El-Damaty, Α.; Abel-Latif, I . Z. Pflanz.Rodenk. 1976, 3, 293-300.

Sohn; Organic Marine Geochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

1

ORGANIC M A R I N E GEOCHEMISTRY

8

60. Davis, J.A.; Leckie, J.O. Environ. Sci. Technol. 1978, 12, 1309-1315. 61. Balistrieri, L.S.; Brewer, P.G.; Murray, J.W. Deep-Sea Res. 1981, 28A, 101-121.

Downloaded by 80.82.77.83 on January 10, 2018 | http://pubs.acs.org Publication Date: April 21, 1986 | doi: 10.1021/bk-1986-0305.ch001

RECEIVED December 10, 1985

Sohn; Organic Marine Geochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1986.