Organoboron Initiated Rh-Catalyzed Asymmetric Cascade Reactions

Apr 7, 2017 - figure. Scheme 1. A Switch in the Regioselectivity of Alkyne Insertion Providing New Heterocycles ... 3, 1e, 4b, 7-Me, 2eb, 84, 82. 4, 1...
0 downloads 0 Views 521KB Size
Subscriber access provided by University of Missouri-Columbia

Article

Organoboron Initiated Rh-Catalyzed Asymmetric Cascade Reactions: a Subtle Switch in Regioselectivity Leading to Chiral 3-Benzazepine Derivatives Aurélie Claraz, Fabien Serpier, and Sylvain Darses ACS Catal., Just Accepted Manuscript • DOI: 10.1021/acscatal.7b00511 • Publication Date (Web): 07 Apr 2017 Downloaded from http://pubs.acs.org on April 7, 2017

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Catalysis is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Catalysis

Organoboron Initiated Rh-Catalyzed Asymmetric Cascade Reactions: a Subtle Switch in Regioselectivity Leading to Chiral 3Benzazepine Derivatives Aurélie Claraz, Fabien Serpier, Sylvain Darses* PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005, Paris (France)

Supporting Information Placeholder ABSTRACT: An addition-carbocyclization cascade reac-

tion initiated by arylboronic acids and catalyzed by a rhodium/chiral diene complex is described. Starting from N-bridged yne-enoate derivatives, chiral functionalized 7-membered 3-benzazepine heterocycles were obtained with high enantioselectivities, thanks to a rhodium 1,4-shift.

oselective rhodium-catalyzed arylative cyclization of nitrogen-tethered alkyne-enoate provided chiral pyrrolidines12h (Scheme 1, route 1), where the formation of the 5-membered heterocycle was triggered by the regioselectivity of the alkyne insertion. CO2Me Ph R

[Rh-Ph]

N-Heterocyclic compounds are found in many natural molecules and drugs,1 and are a class of compounds that exhibits interesting biological activities. Among them, the benzazepine framework, a 7-membered azaheterocyclic fused aromatic ring, is the core structural element of many biologically active compounds.2 Despite their interest, methodologies to access benzazepines have been relatively unexplored. Different approaches have been described, including Friedel-Crafts cyclization,3 intramolecular Heck-type reaction or hydroarylation,4 ring enlargement strategies,5 hydroamidation6 and radical cyclization.7 Even if some of these reactions allow the asymmetric synthesis of benzazepine core ring, catalytic asymmetric strategies have been totally unexplored. You et al. have reported the enantioselective synthesis of 1-benzazepines by iridiumcatalyzed tandem allylic vinylation/amination reactions8 and more recently, the group of F. Glorius has described a cooperative N-heterocyclic carbene/palladiumcatalyzed enantioselective umpolung annulation to access to 1-benzazepines.9 Herein we report for the first time a straightforward access to chiral 3-benzazepines via rhodium-catalyzed cascade reaction initiated by organoboron compounds. The rhodium or palladium–catalyzed carbocyclization reactions, initiated by the addition of organoboron reagents,10 represent a powerful approach for the formation of diversely substituted chiral carbo-11 and hetero-cyclic compounds.12 For example, we have shown that enanti-

Ph (1)

N Ts

N Ts Pyrrolidines

R = alkyl

R

CO2Me

[Rh-Ph]

N Ts

R=?

CO2Me

R

[Rh]

CO2Me

[Rh]

Ph

R

New heterocycles ?

(2)

N Ts

Scheme 1. A Switch in the Regioselectivity of Alkyne Insertion Providing New Heterocycles

We envisioned that a reverse alkyne insertion (Scheme 1, route 2) would modify the rhodium-catalyzed cascade process and result in the formation of new heterocycles. In order to switch the regioselectivity of the alkyne insertion, we evaluated the influence of the alkyne substituent13 on the rhodium-catalyzed arylative cyclisation of 1 with phenylboronic acid under our previously reported conditions12h (Table 1). Table 1. From Pyrrolidines to 3-Benzazepines by Reversing the Alkyne Insertiona R

Ph

CO2Me

N Ts

1

PhB(OH)2 (2 equiv) MeOH, 60 °C

ACS Paragon Plus Environment

CO2Me

R

[Rh(cod)OH]2 3 mol% CO2Me

R N Ts

2

N Ts

3

ACS Catalysis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Entry

1, R =

2:3b

Yieldc (%)

1

C6H5 (1a)

79:21

62

2d

C6H5 (1a)

78:22

60

3

SiMe3 (1b)

nre

nre

4

2-pyridyl (1c)

nre

nre

5

4-CF3C6H4 (1d)

91/9

76

6

2-MeC6H4 (1e)

93/7

78

a

The reaction was conducted with 1 (0.15 mmol), phenylboronic acid (0.3 mmol, 2 equiv), [Rh(cod)OH]2 (3 mol % Rh) in degassed methanol at 60 °C. b Determined by 1H NMR of the crude. c Isolated yield of 2. d Using PhBF3K instead of PhB(OH)2. e No reaction.

We were pleased to find that cyclization of 1a, where the alkyne is bearing a phenyl substituent (entry 1), resulted in the formation of a new heterocyclic compound, a 3-benzazepine derivative (2), along with the formation of 20% of pyrrolidine (3). Under identical conditions, the cyclization of 1a in the presence of potassium phenyltrifluoroborate instead of phenylboronic acid (entry 2) does also occur, without any change in the proportion of 2 and 3. Others alkynes substituents were evaluated (entries 3-4),13 like trimethylsilyl, or 2-pyridyl, but the reaction of 1b or 1c did not result in the formation of any heterocycle. On the other hand, the reaction of 1d bearing a 4-trifluoromethylphenyl (entry 5) and even more the reaction of 1e bearing a 2-methylphenyl (entry 6) substituent resulted in the formation of 3-benzazepine 2 with selectivities over than 90%. Indeed, thanks to a change of the alkyne substituent, we could completely change the course of the rhodium-catalyzed arylative cyclization from the formation of pyrrolidines to the formation of 3-benzazepine derivatives. After this successful switch in the regioselective insertion of the alkyne moiety, allowing a straightforward access to 3-benzazepine core structure, we envisioned the development of an enantioselective version of this Rh-catalyzed cascade reaction. After a screening of chiral phosphane and diene ligands (see supporting information), we were pleased to find that cyclization of 1a with 4a in the presence of chiral diene L1*, developed by Hayashi and co-workers,14 furnishes the 3benzazepine 2aa with moderate yield and an enantiomeric excess of 92% (Table 2, entry 1). Gratifyingly, a higher yield, with the same level of enantioselectivity, was obtained from the cyclization of 1e using chiral diene L2*15 (Table 2, entry 2). Table 2. Chiral 3-Benzazepines from Rh/Chiral DieneCatalyzed Arylative Cyclization of 1a

Page 2 of 5 8

7

R

CO2Me + N Ts

ArB(OH)2

1

4

[Rh(C 2H 4) 2Cl] 2 3 mol% Ln * 6.6 mol% Dioxane/MeOH 1:1 60 °C

6

9

CO2Me

R

2

R = Ph (1a), R = 2-MeC6H 4 (1e) Ar = C6H 5 (4a), 3-MeC6H 4 (4b), 4-FC6H 4 (4c), 4-BrC6H 4 (4d), 3-BrC6H 4 (4e), 4-ClC6H 4 (4f), 4-CF3OC6H 4 (4g), 4CF3C6H 4 (4h), 4-NO2C6H 4 (4i), 3-Cl-4-FC6H 3 (4j)

X

N Ts

Ln* =

R'

R' = COO(2,6-Me2C6H 3) (L1 *) R' = C(Me)2OH (L 2*)

2

Yieldb (%)

eec (%)

H

2aa

38

92

4a

H

2ea

61

86

1e

4b

7-Me

2eb

84

82

1a

4c

8-F

2ac

36

96

1e

4c

8-F

2ec

70

92

d

1a

4d

8-Br

2ad

44

96

7

1e

4d

8-Br

2ed

75

95

8

1e

4e

7-Br

2ee

59

91

9

1e

4f

8-Cl

2ef

93

95

10

1e

4g

8-CF3O

2eg

87

98

11

1e

4h

8-CF3

2eh

74

97

12

1e

4i

8-NO2

2ei

64

96

13

1e

4j

7-Cl-8-F

2ej

78

97

Entry

1

4

X=

1d

1a

4a

2

1e

3 d

5

4 6

a

The reactions were conducted with 1a or 1e (0.15 mmol), arylboronic acid (0.3 mmol, 2 equiv), in the presence of in situ generated chiral L2*-rhodium complex (6 mol % Rh) in degassed dioxane/methanol 1:1 at 60 °C. b Isolated yields. c Determined by HPLC analysis using a chiral stationary phase (see supporting information). d Using L1* as chiral ligand.

With these reaction conditions in hands, 1a or 1e reacted smoothly with diversely substituted arylboronic acids 4 to afford the corresponding chiral 3benzazepines with moderate to good yields, and with high levels of enantioselectivity ranging from 86 to 98% ee (Table 2). Noteworthy, the best enantioselectivities were obtained from boronic acids containing electronwithdrawing substituents (entries 4-10). With orthosubstituted (2-methylphenylboronic acid) or electronrich (4-methoxyphenylboronic acid) arylboronic acids the reaction was sluggish and the conversion very low. From a general point of view, yields were lower with substrate 1a, due to the formation of pyrrolidine 3. Nevertheless, with alkyne-enoate 1e better yields were generally achieved (from 59 to 93%) as a result of the almost exclusive formation of the 7-membered ring. Under identical conditions, no reaction was observed with substrate 1d, using either L1* or L2*. The structure of 3-benzazepine 2ei was confirmed unambiguously by single-crystal X-ray analysis (Figure 1). The absolute configuration of the stereogenic center of

ACS Paragon Plus Environment

Page 3 of 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Catalysis

2ei was determined to be (S) when L2* was used as ligand. Assuming an analogous reaction pathway, the absolute configuration of the other described 3-benzazepines is supposed to be the same.

CO2Me

R N Ts

[Rh(diene)OR']

MeOH

PhB(OH) 2

R' = H or Me

[Rh]

NO 2

=

[Rh(diene)Ph]

CO2Me

R N Ts

R

CO2Me

CO2Me N Ts N Ts

(S)-2ei

CO2Me

[Rh] H

Figure 1. X-ray Crystal Structure of (S)-2ei

CO2Me

H [Rh] R

N Ts

R

1,4-shift

N Ts

Scheme 3. Proposed Reaction Mechanism In order to get some insight into the reaction mechanism, cyclization of 1e was conducted in the presence of potassium trifluoro(phenyl-d5)borate (Scheme 2). The reaction, conducted in MeOH in the presence of [Rh(cod)OH]2, gave the 3-benzazepine 2ea-d5 in 77% yield, where one of the deuterium atoms on the ortho position of the pentadeuteriophenyl moved to the vinylic position. This 1,4-shift of the deuterium, and thus of the rhodium has yet been observed in transition-metal catalyzed cascade reaction, but not fully exploited for the synthesis of carbocycles or heterocycles.16 D

R

CO2Me [Rh(cod)OH]2 3 mol% N Ts

1e (R = 2-MeC6H4)

C6D5BF3K (2 equiv) MeOH, 60 °C 77%

CO2Me

D

D D R

We next examined the reactivity of the benzazepines, which can further be functionalized thanks to its versatile functional groups such as a methyl ester and an exocyclic double bound. As an illustration, the reactivity of the exocyclic double bound has been studied: the ruthenium catalyzed oxidative cleavage17 of benzazepine (S)2eg gave the corresponding chiral benzazepinone 5 in 71% yield, with no erosion of the enantioselectivity (Scheme 4).

F3CO

D

NTs CO2Me

N Ts

2ea-d5

Scheme 2. Deuterium Labeling Experiment The overall mechanism is believed to involve transmetalation of the arylboron reagent to the in situ generated hydroxorhodium(I) complex followed by regioselective alkyne insertion generating a vinylrhodium intermediate (Scheme 3). Then 1,4-rearrangement occurs to afford an arylrhodium species that undergoes 1,4-addition to the enoate moiety allowing the construction of the 7-membered ring. The resulting rhodium enolate is hydrolyzed by the protic solvent yielding the 3-benzazepine derivatives along with the regeneration of an active alkoxorhodium(I) complex.

CO2Me RuCl3•2H2O (20 mol%) NaIO4 (4 equiv)

F3CO NTs

CH2Cl2/H2O, rt, 36 h

(S)-2eg 98% ee

71%

(S)-5 98% ee

O

Scheme 4. Oxidative Cleavage of the Exocyclic Double Bond In summary, we have developed an efficient atomeconomic cascade reaction for the formation of new chiral 3-benzazepine derivatives with high levels of enantioselectivities. The compounds have been obtained through the first reported example of a rhodiumcatalyzed asymmetric carbocyclization of N-tethered yne-enoate through a high regioselective alkyne insertion and rhodium 1,4-shift. ASSOCIATED CONTENT Experimental procedures, description of the compounds and X-ray diffraction of 2ei. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION Corresponding Author

* E-mail: [email protected]

ACS Paragon Plus Environment

ACS Catalysis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 5

ACKNOWLEDGMENT Fabien Serpier thanks Diverchim for a grant. The authors warmly thank L.-M. Chamoreau (IPCM, Université Pierre et Marie Curie, Paris) for X-ray analysis.

REFERENCES

1

(a) O’Hagan, D., Nat. Prod. Rep. 2000, 17, 435-446. (b) Majumdar, K. C.; Chattopadhyay, S. K., Heterocycles in Natural Product Synthesis. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011. 2 (a) Kametani, T.; Fukumoto, K., Heterocycles 1975, 3, 931-1004. (b) Weinstock, J.; Hieble, J. P.; Wilson, J. W., Drugs Future 1985, 10, 645-697. (c) Gilchrist, T. L. in Heterocyclic Chemistry, 3rd ed., Addison, Wesley, Essex, 1997, pp. 373-383. (d) Kawase, M.; Saito, S.; Motohashi, N., Int. J. Antimicrob. Agents 2000, 14, 193-201. (e) Kouznetsov, V.; Palma, A.; Ewert, C., Curr. Org. Chem. 2001, 5, 519-551. (f) Meigh, J. P. K., Sci. Synth. 2004, 17, 825-927. 3 For selected examples: (a) Damsen, H.; Niggemann, M., Eur. J. Org. Chem. 2015, 7880-7883. (b) So, M.; Kotake, T.; Matsuura, K.; Inui, M.; Kamimura, A., J. Org. Chem. 2012, 77, 4017-4028. (c) Crecente-Campo, J.; Vázquez-Tato, M. P.; Seijas, J. A., Tetrahedron 2009, 65, 2655-2659. (d) Wirt, U.; Schepmann, D.; Wünsch, B., Eur. J. Org. Chem. 2007, 462-475. (e) Padwa, A.; Wang, Q., J. Org. Chem. 2006, 71, 7391-7402. (f) Fuchs, J. R.; Funk, R. L., Org. Lett. 2001, 3, 3349-3351. (g) Gerritz, S. W.; Smith, J. S.; Nanthakumar, S. S.; Uehling, D. E.; Cobb, J. E., Org. Lett. 2000, 2, 4099-4102. 4 (a) Peshkov, A. A.; Peshkov, V. A.; Pereshivko, O. P.; Van Hecke, K.; Kumar, R.; V Van der Eycken, E., J. Org. Chem. 2015, 80, 6598-6608. (b) Wang, L.; Huang, J.; Peng, S.; Liu, H.; Jiang, X.; Wang, J., Angew. Chem. Int. Ed. 2013, 52, 1768-1772. (c) Peshkov, V. A.; Pereshivko, O. P.; Donets, P. A.; Mehta, V. P.; Van der Eycken, E. V., Eur. J. Org. Chem. 2010, 4861-4867. (d) Donets, P. A.; Goeman, J. L.; van der Eycken, J.; Robeyns, K.; Van Meervelt, L.; Van der Eycken, E. V., Eur. J. Org. Chem. 2009, 793-796. (e) Smith, B. M.; Smith, J. M.; Tsai, J. H.; Schultz, J. A.; Gilson, C. A.; Estrada, S. A.; Chen, R. R.; Park, D. M.; Prieto, E. B.; Gallardo, C. S.; Sengupta, D.; Dosa, P. I.; Covel, J. A.; Ren, A.; Webb, R. R.; Beeley, N. R. A.; Martin, M.; Morgan, M.; Espitia, S.; Saldana, H. R.; Bjenning, C.; Whelan, K. T.; Grottick, A. J.; Menzaghi, F.; Thomsen, W. J., J. Med. Chem. 2008, 51, 305-313. (f) Donets, P. A.; Van der Eycken, E. V., Org. Lett. 2007, 9, 3017-3020. (g) Tietze, L. F.; Schimpf, R., Synthesis 1993, 876-880. 5 (a) Gini, A.; Bamberger, J.; Luis-Barrera, J.; Zurro, M.; MasBallesté, R.; Alemán, J.; Mancheño, O. G., Adv. Synth. Catal. 2016, 358, 4049-4056. (b) Gouthami, P.; Chegondi, R.; Chandrasekhar, S., Org. Lett. 2016, 18, 2044-2046. (c) Yu, L.-Z.; Xu, Q.; Tang, X.-Y.; Shi, M., ACS Catal 2016, 6, 526-531. (d) Xiao, T.; Peng, P.; Xie, Y.; Wang, Z.-y.; Zhou, L., Org. Lett. 2015, 17, 4332-4335. (e) Soeta, T.; Ohgai, T.; Sakai, T.; Fujinami, S.; Ukaji, Y., Org. Lett. 2014, 16, 4854-4857. (f) Xiao, T.; Li, L.; Lin, G.; Mao, Z.-w.; Zhou, L., Org. Lett. 2014, 16, 4232-4235. 6 (a) Zhang, L.; Ye, D.; Zhou, Y.; Liu, G.; Feng, E.; Jiang, H.; Liu, H., J. Org. Chem. 2010, 75, 3671-3677. (b) Vieira, T. O.; Alper, H., Org. Lett. 2008, 10, 485-487. 7 (a) Kaoudi, T.; Quiclet-Sire, B.; Seguin, S.; Zard, S. Z., Angew. Chem. Int. Ed. 2000, 39, 731-733. (b) Castedo, L.; Domínguez, D.; Fidalgo, J., Heterocycles 1994, 39, 581-589.

8 (a) Ye, K.-Y.; He, H.; Liu, W.-B.; Dai, L.-X.; Helmchen, G.; You, S.-L., J. Am. Chem. Soc. 2011, 133, 19006-19014. (b) He, H.; Liu, W.-B.; Dai, L.-X.; You, S.-L., Angew. Chem. Int. Ed. 2010, 49, 1496-1499. 9 Guo, C.; Fleige, M.; Janssen-Müller, D.; Daniliuc, C. G.; Glorius, F., J. Am. Chem. Soc. 2016, 138, 7840-7843. 10 For reviews on tandem reaction initiated by organoborons, see: (a) Miura, T.; Murakami, M., Chem. Commun. 2007, 217-224. (b) Youn, S. W., Eur. J. Org. Chem. 2009, 2597-2605. (c) Guo, H.-C.; Ma, J.-A., Angew. Chem. Int. Ed. 2006, 45, 354-366. 11 For some selected examples of formation of chiral carbocyclic compounds using this strategy: (a) Cauble, D. F.; Gipson, J. D.; Krische, M. J., J. Am. Chem. Soc. 2003, 125, 1110-1111. (b) Bocknack, B. M.; Wang, L.-C.; Krische, M. J., Proc. Natl. Acad. Sci. USA 2004, 101, 5421-5424. (c) Shintani, R.; Okamoto, K.; Otomaru, Y.; Ueyama, K.; Hayashi, T., J. Am. Chem. Soc. 2005, 127, 54-55. (d) Shintani, R.; Tsurusaki, A.; Okamoto, K.; Hayashi, T., Angew. Chem. Int. Ed. 2005, 44, 3909-3912. (e) Shintani, R.; Isobe, S.; Takeda, M.; Hayashi, T., Angew. Chem. Int. Ed. 2010, 49, 3795-3798. (f) Shen, K.; Han, X.; Lu, X., Org. Lett. 2012, 14, 1756-1759. (g) Johnson, T.; Choo, K.-L.; Lautens, M., Chem. Eur. J. 2014, 20, 14194-14197. 12 Formation of chiral tetrahydrofurans: (a) Jiang, M.; Jiang, T.; Bäckvall, J.-E., Org. Lett. 2012, 14, 3538-3541. (b) Keilitz, J.; Newman, S. G.; Lautens, M., Org. Lett. 2013, 15, 1148-1151. (c) He, Z.-T.; Tian, B.; Fukui, Y.; Tong, X.; Tian, P.; Lin, G.-Q., Angew. Chem. Int. Ed. 2013, 52, 5314-5318. Formation of chiral dihydrocoumarins: (d) Han, X.; Lu, X., Org. Lett. 2010, 12, 108–111. Formation of chiral hydroxylactones: (e) Song, J.; Shen, Q.; Xu, F.; Lu, X., Org. Lett. 2007, 9, 2947-2950. Formation of chiral N-heterocyclic compounds: (f) Tsukamoto, H.; Matsumoto, T.; Kondo, Y., Org. Lett. 2008, 10, 1047-1050. (g) Li, Y.; Xu, M.-H., Org. Lett. 2014, 16, 2712-2715. (h) Serpier, F.; Flamme, B.; Brayer, J.-L.; Folléas, B.; Darses, S., Org. Lett. 2015, 17, 1720-1723. (i) Serpier, F.; Brayer, J.L.; Folléas, B.; Darses, S., Org. Lett. 2015, 17, 5496-5499. 13 For the regioselective insertion of arylsubstituted alkynes, see: (a) Hayashi, T.; Inoue, K.; Taniguchi, N.; Ogasawara, M., J. Am. Chem. Soc. 2001, 123, 9918-9919. (b) Lautens, M.; Yoshida, M., Org. Lett. 2002, 4, 123-125. (c) Lautens, M.; Yoshida, M., J. Org. Chem. 2003, 68, 762-769. (d) Genin, E.; Michelet, V.; Genet, J.-P., Tetrahedron Lett. 2004, 45, 4157-4161. For the specific case of propargylic amines, see: (e) Arcadi, A.; Aschi, M.; Chiarini, M.; Ferrara, G.; Marinelli, F., Adv. Synth. Catal. 2010, 352, 493-498. (f) Panteleev, J.; Zhang, L.; Lautens, M., Angew. Chem. Int. Ed. 2011, 50, 9089-9092. 14 Okamoto, K.; Hayashi, T.; Rawal, V. H., Chem. Commun. 2009, 4815-4817. 15 Okamoto, K.; Hayashi, T.; Rawal, V. H., Org. Lett. 2008, 10, 4387–4389. 16 For some examples of reactions involving 1,4-shift, see: (a) Hayashi, T.; Inoue, K.; Taniguchi, N.; Ogasawara, M., J. Am. Chem. Soc. 2001, 123, 9918-9919. (b) Miura, T.; Sasaki, T.; Nakazawa, H.; Murakami, M., J. Am. Chem. Soc. 2005, 127, 1390-1391. (c) Shintani, R.; Okamoto, K.; Hayashi, T., J. Am. Chem. Soc. 2005, 127, 28722873. (d) Shintani, R.; Tsurusaki, A.; Okamoto, K.; Hayashi, T., Angew. Chem. Int. Ed. 2005, 44, 3909-3912. (e) Matsuda, T.; Shigeno, M.; Murakami, M., J. Am. Chem. Soc. 2007, 129, 1208612087. (f) Panteleev, J.; Menard, F.; Lautens, M., Adv. Synth. Catal. 2008, 350, 2893-2902. Sasaki, K.; Nishimura, T.; Shintani, R.; Kantchev, E. A. B.; Hayashi, T., Chem. Sci. 2012, 3, 1278-1283 and references cited. 17 Yang, D.; Zhang, C. J. Org. Chem. 2001, 66, 4814.

ACS Paragon Plus Environment

Page 5 of 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Catalysis

R

CO2Me + ArB(OH)2

N Ts

X

[Rh(C 2H 4) 2Cl] 2 3 mol% L* 6.6 mol% Dioxane/MeOH 1:1 60 °C

R' L* =

R N Ts

CO2Me

R' = C(Me)2OH or CO2(2,6-Me 2C6H 3)

up to 98% ee

ACS Paragon Plus Environment