Organotin Compounds
H. Ε. HIRSCHLAND and C. K. BANKS Metal & ThermitCorp.,New York, Ν. Y.
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch018
The valences, syntheses and by-product formations, and reactions of organotin compounds are discussed. The general physical properties and physiological effects of these compounds are described. Commer cial uses of organotin compounds are given.
According to the definition of Oilman, an organometallic compound must contain a carbon to metal bond. This paper will discuss only those compounds containing a carbon to tin bond. Tin can exhibit covalences of two and four {38), as well as com plex valences of six (IS). Inorganic tin compounds showing all these valences are com mon: The stannous or bivalent form is represented by the stannous salts, the stannic or quadrivalent by tin tetrachloride and similar compounds, and the sexivalent by the metal stannates such as sodium stannate. Although organotin compounds of all these valences are known, only the quadrivalent ones are common. In addition to the multiple valences, tin may be substituted successively with one to four organic groups, while the remainder of the valences are filled by electronegative groups. The possible structures are (R Sn) , R Sn—SnR , R S n X , R S n X , R SnX, R Sn, and M [ S n R X _ ] . Using R = butyl, (R Sn) , represents dibutyltin which is known only in polymeric form; R Sn—SnR is hexabutylditin; R S n X , butyltin trichloride; R S n X , dibutyltin dichloride; R S n X , tributyltin chloride; and R Sn, tetrabutyltin. The M [ S n R S _ ] structure is not known in any simple form but only in the complexes of Harada (14) and in some recent industrial compounds. Both the disubstituted tins and the hexasubstituted dit ins are very susceptible to oxidation. They have no commercial value and are actually troublesome as by-products in the synthesis of quadrivalent compounds. 2
4
n
6
l/
3
w
3
2
3
2
3
2
2
3
2
3
?
3
3
2
n
6
4
w
Preparation Although many synthetic processes are known for the preparation of organotin compounds, only three are feasible for commercial production. Wurtz. Alkyl and aryl halides, sodium, and tin tetrachloride react to form a series of compounds of the formula R S n X _ . The reaction can be performed by preparing the sodium alkyl or aryl (32, 38) and then adding the tin tetrachloride or by simultaneous reaction of all of the reactants (16, 18, 44) · A number of variations of the basic reaction have been described. Because the reaction goes through several steps, none of which is unique, it is not possible to make pure RSnX , R S n X , or R S n X compounds, and frequently it is difficult to obtain complete alkylation to R Sn compounds. The basic reaction is useful to obtain a crude product for further syn thetic manipulation. 204 w
4
n
3
3
2
2
4
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
HIRSCHLAND AND BANKS-ORGANOTIN COMPOUNDS
205
R C 1 + 2 N a + S n C l -> 2 N a C l + R S n C l 4
RSnCla + RC1 + 2 N a - » 2 N a C l + R S n C l 2
R2S11CI2 + R C 1 + 2 N a -> 2 N a C l +
(1)
3
(2)
2
(3)
R3S11CI
RaSnCl + RC1 + 2 N a - » 2 N a C l + R S n
(4)
4
B y - p r o d u c t reactions: + 2Na - » R Sn + 2NaCl
(5)
2 R S n C l + 2 N a -> R S n - S n R + 2 N a C l
R SnCl
(6)
2
2
2
3
3
3
2RC1 + 2 N a - » R - R + 2 N a C l
(7)
Solvent + R C 1 + N a -> R - solvent + N a C l 2 R C H C H C 1 + 2 N a -> R C H = C H
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch018
2
2
SnCl
+ RCH C1
2
2
(8) 3
+ 2NaCl
(9) (10)
+ 2 N a -> S n C l + 2 N a C l
4
2
I n t h e synthesis o f b u t y l t i n s , the o p t i m u m r e a c t i o n i s o b t a i n e d w h e n a s l u r r y o f finely d i s p e r s e d s o d i u m i n a h y d r o c a r b o n s o l v e n t reacts w i t h b u t y l c h l o r i d e a n d t i n t e t r a c h l o r i d e u n d e r c a r e f u l l y c o n t r o l l e d c o n d i t i o n s of t e m p e r a t u r e . T h i s i s n o t as s i m p l e as i t sounds because t h e heat o f r e a c t i o n i s c o n s i d e r a b l e a n d t h e heat t r a n s f e r w i t h c o o l i n g m e d i a a v a i l a b l e i s n o t too g o o d . T h e degree o f c o n t r o l s h o u l d b e as close as p o s s i b l e : A v a r i a t i o n o f o n l y 2 ° C . w i l l result i n a n a p p r e c i a b l e s h i f t i n t h e a m o u n t of b y - p r o d u c t f o r m e d . A g r e a t d e a l of w o r k is i n d i c a t e d i n t h e p a t e n t l i t e r a t u r e o n c o n t r o l l i n g b y - p r o d u c t f o r m a t i o n b y v a r i o u s m o d i f i c a t i o n s of t h i s basic r e a c t i o n . Luijt e n a n d v a n d e r K e r k (38) a n d R a m s d e n a n d G l o s k e y (49) i n d i c a t e d t h a t t h e r e are less b y - p r o d u c t s w h e n a l o w e r a l k y l t i n is f u r t h e r a l k y l a t e d t h a n w h e n t i n t e t r a c h l o r i d e is a l k y l a t e d . T h i s process d e p e n d s o n : RSnCl
3
+ 3 R C 1 + 6 N a -> R S n
(11)
R SnCl
2
+ 2 R C 1 + 4 N a -> R S n
(12)
2
4
4
R S n + S n C l -> R S n C l 4
2
+ R SnCl
3
2
+ R SnCl
2
(13)
3
a n d t h e n r e c y c l i n g p a r t of the p r o d u c t . T h e basic W u r t z r e a c t i o n is a p p l i c a b l e t o a l m o s t a l l s i m p l e a l k y l a n d a r y l c h l o r i d e s . A m o n g its m a n y d i s a d v a n t a g e s a r e : d e g r a d a t i o n o f s o l v e n t t h r o u g h f u r t h e r a l k y l a t i o n or a r y l a t i o n ; formation of high boiling hydrocarbon b y - p r o d u c t s ; required control of s o d i u m g r a n u l a t i o n ; f o r m a t i o n of R S n a n d R S n c o m p o u n d s , w h i c h are d i f f i c u l t t o c o n v e r t t o d e s i r e d p r o d u c t s e c o n o m i c a l l y ; h a z a r d o f excess s o d i u m , because a n y agent u s e d t o d e s t r o y excess s o d i u m tends t o also d e s t r o y some p r o d u c t ; a n d difficult c o n trol temperature. 2
6
2
G r i g n a r d . T h e use o f G r i g n a r d reagents t o s y n t h e s i z e o r g a n o t i n c o m p o u n d s i s r a t h e r o l d (2, 24, 26, 31, 46). H o w e v e r , t h e d i s a d v a n t a g e s i n h e r e n t i n a s t a n d a r d G r i g n a r d r e a c t i o n h a v e p r e v e n t e d its c o m m e r c i a l u t i l i z a t i o n u n t i l recent m o d i f i c a t i o n s m a d e i t m o r e feasible (47, 48, 52). T h e f u n d a m e n t a l reactions are s i m i l a r t o those o f the W u r t z system: R M g C l + S n C l -> R S n C l 4
R M g C l + R S n C l -> R S n C l 3
2
+ MgCl
3
2
+ MgCl
R M g C l + R g S n C l i -> R S n C l + M g C l 3
R M g C l + R S n C l -> R S n + M g C l 3
By-product
4
(14)
s
(15)
2
(16)
2
(17)
2
reactions:
2 R — C H C H C 1 + M g -> R C H = C H 2
2
2
+ RCH
2
- C H + MgCl3
R C 1 + solvent —> R — solvent + H C 1
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
(18) (19)
ADVANCES IN CHEMISTRY SERIES
206
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch018
T h e G r i g n a r d s y n t h e s i s h a s been m o d i f i e d i n s e v e r a l w a y s t o effect a m o r e e c o n o m i c a l a n d safer r e a c t i o n . O n e m o d i f i c a t i o n uses a n i n e r t s o l v e n t i n s t e a d o f e t h e r once t h e r e a c t i o n h a s b e e n s t a r t e d (48). I n t h i s case, a l l r e a c t a n t s a r e p r e s e n t s i m u l taneously a n d the reaction m a y not be a true G r i g n a r d b u t m o r e of a W u r t z t y p e , w h e r e m a g n e s i u m acts as t h e h a l o g e n a c c e p t o r i n p l a c e o f s o d i u m . A n o t h e r v a r i a t i o n w h i c h e x t e n d e d t h e u t i l i t y o f t h e r e a c t i o n u t i l i z e s t e t r a h y d r o f u r a n as t h e s o l v e n t (1$, 52) f o r t h e f o r m a t i o n of a r y l i c a n d v i n y l i c m a g n e s i u m c h l o r i d e s a n d t h e i r s u b s e q u e n t reaction w i t h t i n tetrachloride. P r i o r t o this w o r k , the G r i g n a r d t y p e synthesis was l i m i t e d o n a c o m m e r c i a l scale t o a l k y l t i n s because o f t h e cost o r l a c k o f r e a c t i v i t y . T h e G r i g n a r d s y n t h e s i s w i t h the recent m o d i f i c a t i o n s is n o w m o r e flexible t h a n t h e W u r t z s y n t h e s i s a n d h a s t h e a d v a n t a g e s o f fewer b y - p r o d u c t s a n d h i g h e r y i e l d s . T h e d i s a d v a n t a g e s are s t i l l a p p r e c i a b l e : r e l a t i v e l y h i g h e r cost o f m a g n e s i u m as c o m p a r e d t o s o d i u m ; h a z a r d o f ethers unless a n o n e t h e r a l m o d i f i c a t i o n c a n b e d e v i s e d ; a n d f o r m a t i o n of h i g h e r b o i l i n g h y d r o c a r b o n s . D i r e c t Reaction. S m i t h a n d R o c h o w (53) a n d o t h e r s (50, 56) h a v e d e m o n s t r a t e d t h a t m e t h y l c h l o r i d e reacts w i t h m e t a l l i c t i n t o y i e l d d i m e t h y l t i n d i c h l o r i d e . T h i s r e a c t i o n is i n f l u e n c e d b y c a t a l y s t s a n d r e q u i r e s a h i g h t e m p e r a t u r e f o r r e a c t i o n : 2 C H C 1 + Sn -> ( C H ) S n C l 3
3
2
(20)
2
T h e r e appears t o be little, i f a n y , r e d i s t r i b u t i o n of the m e t h y l group d u r i n g the reac t i o n . P r a c t i c a l l y , t h e r e a c t i o n i s l i m i t e d t o m e t h y l c h l o r i d e (53). A l t h o u g h o t h e r a l k y l c h l o r i d e s w i l l r e a c t , t h e t e m p e r a t u r e o f r e a c t i o n is s u c h t h a t m o s t o f t h e p r o d u c t is d e s t r o y e d b y p y r o l y s i s i n t h e r e a c t i o n zone. A l t h o u g h t h e r e a c t i o n is m o r e g e n e r a l f o r a l k y l i o d i d e s a n d b r o m i d e s , these processes are n o t c o m m e r c i a l l y feasible (3, 10, 21). Miscellaneous Reactions. O t h e r t y p i c a l o r g a n o m e t a l l i c syntheses h a v e been t r i e d b u t n o n e h a v e a p p e a r e d c o m m e r c i a l l y feasible. A m o n g these a r e t h e M e y e r ( a l k a l i , a l k y l c h l o r i d e , a n d t h e l o w e r v a l e n c e f o r m o f m e t a l c h l o r i d e ) (36, 45), s o d i u m - m e t a l a m a l g a m (30), c a l c i u m a l k y l a t i o n , a l u m i n u m a l k y l a t i o n , a n d S a n d e m e y e r r e a c t i o n (27).
Reactions Pure Halides. T h e p r e p a r a t i o n o f a n y p u r e o r g a n o t i n c o m p o u n d o t h e r t h a n a t e t r a a l k y l - o r t e t r a a r y l t i n depends either o n complicated separations of m i x t u r e s of p a r t i a l l y a l k y l a t e d compounds, o r o n redistribution reactions, or both. T h e most universal reaction of organotin compounds is the r e d i s t r i b u t i o n of groups when t h e c o m p o u n d s a r e h e a t e d w i t h t i n t e t r a c h l o r i d e (18, 20, 25, 44)· V a r y i n g r a t i o s o f r e a c t a n t s c a n b e u s e d , a n d t h e r e s u l t i n g p r o d u c t s t e n d t o c o n f o r m closely t o t h e i d e a l ized equations: R S n + S n C l -> 2 R S n C l 4
4
2
(21)
2
2R Sn + SnCl - » 4R SnCl
(22)
R S n + 3 S n C l -> 4 R S n C l
(23)
4
4
4
3
4
3
A c t u a l l y , t h e r e a c t i o n s a r e v e r y c o m p l e x a n d a l l t h e o r e t i c a l l y possible i n t e r c h a n g e s m a y o c c u r , a l t h o u g h some r e a c t i o n s a p p e a r t o a v o i d f o r b i d d e n states w h i l e o t h e r s a p p e a r t o go d i r e c t l y t h r o u g h the state (38). T h e r e a c t i o n R S n + S n C l -> 2 R S n C l 4
4
2
(24)
2
does n o t go b y d i r e c t successive a l k y l a t i o n s (12), b u t r a t h e r R Sn + SnCl 4
4
R SnCl + RSnCl 3
R S n C l + R S n C l -> 2 R S n C l 3
where R i s b u t y l .
3
2
3
2
(25) (26)
T h e reaction 3R Sn + SnCl 4
4
4R SnCl 3
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
(27)
207
HIRSCHLAND AND BANKS-ORGANOTIN COMPOUNDS a p p e a r s t o go
(28)
R S n + S n C U -> R3S11CI + RS11CI3 4
R a S n C l + RS11CI3 - * 2R2S11CI2
(29)
2R Sn + 2R SnCl -> 4R SnCl.
(30)
4
2
2
3
V i n y l - a n d phenyltins do n o t appear t o conform t o the a l k y l reactions
(SI).
A f t e r r e d i s t r i b u t i o n of groups has been achieved, t h e m a j o r component
c a n be
purified from m i n o r impurities b y distillation, recrystallization, or sublimation. Hydroxides and Oxides. t o h y d r o x i d e s a n d oxides
O r g a n o t i n h a l i d e s h y d r o l y z e i n t h e presence
of alkali
A s most organotin compounds are
(9, 14, 15, 27, 28, 84).
insoluble i n water, complete hydrolysis of the halide frequency requires a d u a l solvent
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch018
system, emulsion reactions, o r prolonged reaction times. R S n C l + O H - - * R S n O H -> R S n — O S n R 3
3
R SnCl 2
RSnCl
3
(31)
3
2
+ 2 0 H - -> R S n O
(32)
3
+ 3 0 H - - » R S n 0 H -> R S n O r
(33)
2
2
T h e R S n C l c o m p o u n d s y i e l d b o t h t h e h y d r o x i d e a n d t h e o x i d e d e r i v a t i v e s . I n some cases, s u c h as t h e m e t h y l a n d e t h y l h o m o l o g s , d r a s t i c m e t h o d s a r e r e q u i r e d t o d e h y d r a t e t h e h y d r o x i d e t o t h e o x i d e a n d t h e reverse h y d r a t i o n o c c u r s s p o n t a n e o u s l y i n 3
t h e presence of m o i s t u r e . V a n d e r K e r k a n d L u i j t e n r e p o r t the f o r m a t i o n o f t r i e t h y l t i n h y d r o x i d e a n d i t s d e h y d r a t i o n p h e n o m e n a (22). E . L . W e i n b e r g , M e t a l & T h e r m i t C o r p . L a b o r a t o r y , has r e p e a t e d t h e h y d r o l y s i s i n a c o m p l e t e l y aqueous s y s t e m . I f t h e b u t y l h o m o l o g has b e e n i s o l a t e d , i t s existence has o n l y been m o m e n t a r y a n d d e h y d r a tion to t h e oxide is spontaneous. D i l u t e s o l u t i o n s of t h e b u t y l c o m p o u n d a p p e a r t o c o n t a i n some h y d r o x i d e f o r m i n e q u i l i b r i u m (55). T h e R S n C l compounds do not form dihydroxides b u t appear to dehydrate to t h e o x i d e . B o n d angles r e q u i r e t h a t s u c h oxides b e p o l y m e r i c , a n d t h e c h a r a c t e r of the p o l y m e r is v a r i a b l e . D i b u t y l t i n oxide is k n o w n i n a toluene soluble f o r m , w h i c h m a y b e a r i n g t r i m e r , a n d i n a v e r y s l i g h t l y o r g a n i c - s o l u b l e f o r m of l i n e a r p o l y m e r of v a r y i n g l e n g t h (19). B y r e s i d u a l w a t e r m e a s u r e m e n t s , t h e l e n g t h of p o l y m e r a p p e a r s 2
2
t o v a r y f r o m f o u r t o five u n i t s u p t o a l a r g e n u m b e r w h e n c o m p l e t e l y
dehydrated.
D i a l k y l t i n oxides also r e a c t w i t h d i a l k y l t i n h a l i d e t o f o r m p o l y m e r s w i t h t e r m i n a l halide groups. T h e R S n 0 H c o m p o u n d s , o r s t a n n o i c a c i d s , h a v e n o t been i n v e s t i g a t e d as t h o r o u g h l y as t h e o t h e r d e r i v a t i v e s (9). T h e y are n e a r l y n e u t r a l i n r e a c t i o n b u t w i l l f o r m 2
salts w h i c h are s p a r i n g l y s o l u b l e i n w a t e r w i t h s t r o n g a l k a l i e s . Salts. S o m e salts o f a l l t h r e e m i x e d f o r m s of q u a d r i v a l e n t t i n are k n o w n : R S n A , R S n A , a n d R S n A , w h e r e A i s a n a c i d a n i o n . T h e m e t h o d of p r e p a r a t i o n i s t h e H
2
2
3
general metathetic reaction c o m m o n t o a l l organometallic compounds
of this t y p e :
+ 2 N a A -> R S n A
2
(34)
R S n O + 2 H A -> R S n A
2
(35)
2
(36)
R SnCl 2
2
2
2
2
R Sn(OR') 2
2
+ 2 H A -> R S n A 2
C o m m o n salts are t h e acetates, l a u r a t e s , stéarates, m a l e a t e s , a n d benzoates. Sulfur Derivatives.
L i k e other organometallic compounds,
h y d r o g e n sulfide a n d
m e r c a p t o - s u b s t i t u t e d o r g a n i c m o l e c u l e s r e a c t w i t h o r g a n o t i n c h l o r i d e s o r oxides t o f o r m m e r c a p t o d e r i v a t i v e s (83, 57, 58) : + 2 H S R ' -> R S n ( S R )
2
(37)
R S n O + 2 H S R ' -> R S n ( S R ' )
2
(38)
R SnCl 2
2
2
2
2
,
Miscellaneous Derivatives. Organotin oxides react with aldehyde and ketone to yield acetals and ketals (7), They also undergo an unusual reaction with esters to In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
ADVANCES IN CHEMISTRY SERIES
208
f o r m a n a c e t a l - t y p e p r o d u c t w h i c h w i l l r e v e r t t o the s i m p l e o r g a n o t i n salt o f the a c i d p a r t o f the ester a n d the a l c o h o l u p o n a d d i t i o n of w a t e r (4, 17). T h i s offers a n o v e l b u t expensive m e t h o d of h y d r o l y z i n g d i f f i c u l t l y h y d r o l y z a b l e esters. S o m e d i a l k y l t i n salts of o r g a n i c acids react w i t h m e r c a p t o c o m p o u n d s t o f o r m c o m p l e x e s w h e r e t h e t i n shows a v a l e n c e of m o r e t h a n f o u r . A l t h o u g h these c o m p o u n d s are u n i q u e , t h e o n l y ones k n o w n are so c o m p l e x t h a t the exact s t r u c t u r e i s difficult t o d e t e r m i n e . O t h e r c o m p o u n d s , s u c h as a l k o x i d c s , are k n o w n a n d are p r e p a r e d i n t h e c l a s s i c a l m a n n e r (39). I n a l l s a l t - t y p e d e r i v a t i v e s , the d i a l k y l o r g a n o t i n s are c a p a b l e o f f u n c tioning i n a polymeric m a n n e r t o y i e l d compounds of the following s t r u c t u r e :
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch018
A—O—
Sn—Ο
H a l o g e n Acids and Halogens. I n a d d i t i o n t o the m e t a t h e t i c r e a c t i o n o f o r g a n o t i n oxides a n d h y d r o x i d e s w i t h h a l o g e n a c i d s , m a n y o r g a n o t i n s w i l l u n d e r g o d e a l k y l a t i o n o r d e a r y l a t i o n u n d e r a v a r i e t y o f c o n d i t i o n s (35) : R Sn + HC1 4
R SnCl + R H 2
(39)
R S n A + H C 1 -> R S n A C l + R H
(40)
R SnA
(41)
3
2
2
2
+ H C 1 -> R S n A C l + R H 2
T h e m o n o - o r g a n o t i n d e r i v a t i v e s are r e s i s t a n t t o h a l o g e n a c i d cleavage, a n d d r a s t i c c o n d i t i o n s are r e q u i r e d t o effect a n y r e a c t i o n . T h e r a d i c a l b o n d s t r e n g t h f o l l o w s t h e e x p e c t e d sequence, w i t h a l k y l s b e i n g the m o s t stable a n d a r y l s b e i n g t h e w e a k e s t . S i m i l a r t o t h e r e a c t i o n of h a l o g e n a c i d s , halogens r e a c t w i t h o r g a n o t i n c o m p o u n d s t o cleave o r g a n i c g r o u p s (13, 29, Jfi) : R S n + B r -> R S n B r - f R B r
(42)
R S n A + B r -> R S n A B r + R B r
(43)
4
2
3
R SnA 2
2
2
3
2
+ Br -» RSnA Br + R B r 2
2
(44)
T h e halogen reaction is frequently vigorous even w i t h a n a l k y l t i n c o m p o u n d . T h e p r e f e r e n t i a l r e m o v a l o f g r o u p s is i n t h e same o r d e r as f o r h a l o g e n a c i d s .
Properties E x c e p t f o r t h e m e t h y l t i n c o m p o u n d s a n d t h e salts o f a few s t a n n o i c a c i d s , o r g a n o t i n c o m p o u n d s are v i r t u a l l y i n s o l u b l e i n w a t e r . E v e n d i m e t h y l t i n d i c h l o r i d e , w h i c h w i l l f o r m solutions i n water over a wide range of concentrations, tends t o separate w h e n left u n d i s t u r b e d (1). A 2 0 % s o l u t i o n , a l l o w e d t o s t a n d w i t h o u t a g i t a t i o n i n a glass c a r b o y , w i l l s e p a r a t e t o t h e e x t e n t t h a t t h e s o l u t i o n a t t h e t o p o f t h e c a r b o y i s v i r t u a l l y free o f t h e t i n c o m p o u n d a n d t h e s o l u t i o n a t t h e b o t t o m i s e x t r e m e l y c o n centrated. M o s t o r g a n o t i n c o m p o u n d s a r e soluble t o a c o n s i d e r a b l e e x t e n t i n a l m o s t a l l organic solvents. T h e aliphatic hydrocarbons t e n d t o be the poorest solvents while a l c o h o l s , esters, k e t o n e s , a n d a r o m a t i c h y d r o c a r b o n s a r e g e n e r a l l y e x c e l l e n t . T h e p r i n c i p a l e x c e p t i o n s are those c o m p o u n d s w h i c h h a v e a p o l y m e r i c n a t u r e , s u c h as d i b u t y l t i n oxide w h i c h is v i r t u a l l y i n s o l u b l e i n a l l s o l v e n t s a n d d i b u t y l t i n m a l e a t e w h i c h is soluble o n l y i n esters a n d h i g h m o l e c u l a r w e i g h t p l a s t i c i z e r s . T h e p h y s i c a l properties of the organotin f a m i l y r u n the gamut. I n v o l a t i l i t y , t h e y range f r o m t h e r e a d i l y v o l a t i l e t e t r a m e t h y l t i n t o t h e m o r e d i f f i c u l t l y d i s t i l l a b l e higher a l k y l - a n d a r y l t i n halides. E x c e p t for the tetraorganotins, the organotin halides, a n d t h e o r g a n o t i n salts o f t h e l o w e r m o l e c u l a r w e i g h t f a t t y a c i d s , m o s t d e r i v a t i v e s u n d e r g o p a r t i a l o r t o t a l t h e r m a l d e c o m p o s i t i o n i n m o l e c u l a r s t i l l s a t m i c r o n pressures.
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
209
HIRSCHLAND AND BANKS-ORGANOTIN COMPOUNDS Physiological Effects
T h e organotin compounds exhibit a wide s p e c t r u m of t o x i c i t y , w i t h considerable v a r i a t i o n f r o m species t o species. T e t r a s u b s t i t u t e d o r g a n o t i n s v a r y f r o m t e t r a e t h y l t i n (5, 54), w h i c h a p p r o a c h e s t e t r a e t h y l l e a d i n t o x i c i t y , t o t e t r a b u t y l t i n (6), w h i c h shows l i t t l e a c u t e o r a l t o x i c i t y i n r a t s . S i m i l a r l y , t r i e t h y l t i n c h l o r i d e is e x t r e m e l y t o x i c (59), t r i b u t y l t i n oxide m u c h less (6), a n d t h e o c t y l h o m o l o g s t i l l less (54)· T h e d i s u b s t i t u t e d compounds show similar variations. V a r i a t i o n i n species i s s h o w n b y d i b u t y l t i n oxide w h i c h has a n L D of 100 t o 200 m g . p e r k g . o r a l l y i n r a t s (6) a n d a n L D o f a b o u t 2000 m g . p e r k g . o r a l l y i n c h i c k e n s (23). H u m a n t o x i c r e a c t i o n s are k n o w n o n l y i n t h e case o f d i e t h y l t i n d i o x i d e , w h i c h m a y c o n t a i n some t r i e t h y l c o m p o n e n t a n d is b e l i e v e d responsible f o r t h e d e a t h o f t h r e e p e o p l e i n F r a n c e (43). O t h e r w i s e , a l t h o u g h c o n s i d e r a b l e o b j e c t i o n a b l e symptoms h a v e been r e p o r t e d , n o f a t a l i t i e s are k n o w n . T h e m o s t o b j e c t i o n a b l e f o r m of o r g a n o t i n c o m p o u n d s is the h a l i d e . T h e p h y s i o l o g i c a l r e a c t i o n f r o m t h e h a l i d e i s n o t specific w i t h the t i n c o m p o u n d , b u t is g e n e r a l w i t h a n y o r g a n o m e t a l l i c c h l o r i d e w h i c h c a n f o r m a h y d r o h a l o g e n a c i d w i t h w a t e r , e i t h e r s l o w l y o r r a p i d l y . T h e s y m p t o m s are s m a r t i n g , b u r n i n g , e r y t h e m a , a n d e d e m a . P r o l o n g e d c o n t a c t m a y r e s u l t i n a second o r t h i r d degree b u r n . T h e course o f t h e r e a c t i o n i s s i m i l a r t o t h e o r g a n i c a r s i n e d i c h l o r i d e s , a n h y d r o u s h y d r o g e n c h l o r i d e , a n d h y d r o b r o m i c a c i d . S o m e r e a c t i o n s h a v e been n o t e d i n t h e i n d u s t r i a l use o f d i a l k y l t i n salts o f acids. G e n e r a l l y these c o m p o u n d s are u s e d at f a i r l y h i g h t e m p e r a t u r e s , a n d t h e s y m p t o m s t e n d t o f o l l o w t h e p a t t e r n of t h e a c i d g r o u p , s u c h as acetic, l a u r i c , o r m a l e i c a c i d . T r i b u t y l t i n oxide i s a s k i n i r r i t a n t i n its o w n r i g h t , a n d its p r o p e r t i e s are s i m i l a r t o a h y d r o h a l o g e n a c i d (41). 5
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch018
5
0
0
Commercial Uses T h e first t w o c o m m e r c i a l uses f o r o r g a n o t i n c o m p o u n d s were d e v e l o p e d a t a b o u t t h e same t i m e d u r i n g t h e forties a n d i n v o l v e d t w o classes o f c o m p o u n d s . The General E l e c t r i c C o . f o u n d t h a t t e t r a p h e n y l t i n was w e l l s u i t e d as a scavenger f o r h y d r o c h l o r i c acid, w h i c h w o u l d result i f a short circuit occurred i n a transformer t h a t used their P y r a n o l s o r c h l o r i n a t e d d i p h e n y l s as c o o l a n t s (8, 37). T h i s a p p l i c a t i o n of t e t r a p h e n y l t i n is still growing. Somewhat earlier, considerable research o n t i n compounds h a d b e e n u n d e r t a k e n c o i n c i d e n t a l w i t h t h e d e v e l o p m e n t of t e t r a e t h y l l e a d f o r use i n gasoline. R e s e a r c h i n t h e gasoline a d d i t i v e a n d l u b r i c a t i n g o i l a d d i t i v e field has been a l m o s t c o n t i n u o u s since t h e n . T h e o t h e r c o m m e r c i a l d e v e l o p m e n t i n v o l v e d t h e use of o r g a n o t i n c h e m i c a l s as s t a b i l i z e r s f o r p o l y ( v i n y l c h l o r i d e ) a g a i n s t d e g r a d a t i o n caused b y h e a t a n d / o r u l t r a v i o l e t l i g h t . T h e c h e m i c a l s first c o m m e r c i a l i z e d f o r t h i s use were d i b u t y l t i n d i l a u r a t e , d i b u t y l t i n m a l e a t e , a n d d i b u t y l t i n o x i d e (60). T h e c o n s u m p t i o n o f o r g a n o t i n s f o r t h i s use has b e c o m e s u b s t a n t i a l . O t h e r m a t e r i a l s are a v a i l a b l e , i n c l u d i n g a g r o u p of o r g a n o t i n c o m p o u n d s c o n t a i n i n g s u l f u r , w h i c h are m o s t u s e f u l i n t h e s t a b i l i z a t i o n o f r i g i d poly (vinyl chloride). O n e of t h e m o s t s p e c t a c u l a r d e v e l o p m e n t s i n t h i s field used d i b u t y l t i n d i l a u r a t e as a m a j o r i n g r e d i e n t i n a n t h e l m i n t i c s f o r t r e a t i n g p o u l t r y (23). T h i s a p p l i c a t i o n p r o m ises t o g r o w f u r t h e r a n d u n d o u b t e d l y w i l l i n v o l v e o t h e r c o m p o u n d s . I n t h e a p p l i c a t i o n o f silicones t o t e x t i l e s a n d p a p e r , s u c h m a t e r i a l s as d i b u t y l t i n d i a c e t a t e a n d d i b u t y l t i n d i - 2 - e t h y l h e x o a t e are b e i n g u s e d i n i n c r e a s i n g q u a n t i t i e s as c u r i n g c a t a l y s t s (1). M u c h more recently, t h e commercialization of t r i b u t y l - a n d other t r i a l k y l t i n compounds w a s begun. Basic research a t t h e T i n Research Institute i n E n g l a n d s h o w e d these m a t e r i a l s t o b e o f p o t e n t i a l i n t e r e s t as f u n g i c i d e s a n d b a c t e r i c i d e s (38). T h i s c o n c e p t has been d e v e l o p e d f u r t h e r , a n d s e v e r a l t r i a l k y l t i n c o m p o u n d s are find i n g t h e i r w a y i n t o c o m m e r c i a l a p p l i c a t i o n s . T h e first a p p l i c a t i o n f o r t r i b u t y l t i n oxide w a s for t h e c o n t r o l of s l i m e i n p a p e r a n d p u l p m i l l s (41)·
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
ADVANCES IN CHEMISTRY SERIES
210
A list of commercially available organotin chemicals will illustrate best their rapid and interesting rise into full scale production: Dibutyltin Dibutyltin Dibutyltin Dibutyltin Dibutyltin Dibutyltin
Dibutyltin sulfide Tributyltin sulfide Tributyltin oxide Tributyltin acetate Tetraphenyltin
dichloride oxide dilaurate maleate diacetate di-2-ethylhexoate
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch018
Literature Cited (1) (2) (3) (4) (5) (6)
Braley, Ο. Α., U. S. Patent 2,504,388 (1950). Bullard, R. H., Holden, F. R., J. Am. Chem. Soc. 53, 3150 (1931). Cahours, Α., Ann. Chem. Liebigs 114, 367 (1860). Carroll, R. T., U. S. Patent 2,597,920 (1952). Caujolle, F., Lesbre, M., Bru, Α., Meynier, D., Bru, Y., Compt. rend. 240, 1829 (1955). Caujolle, F., Lesbre, M., Meynier, D., Ibid., 239, 1091 (1954); Toulouse pharm. 1, 53 (1954). (7) Church, J. M., Johnson, E. W., Ramsden, H . E., U . S. Patents 2,591,675, 2,593,267 (1952). (8) Clark, F. M., Chem. Eng. News 25, 2976 (1947). (9) Druce, J. S. F., Rec. trav. chim. 44, 340 (1925). (10) Frankland, E., Ann. Chem. Liebigs 85, 329 (1853) ; J. Chem. Soc. 6, 57 (1854). (11) Gloskey, C. R., Metal & Thermit Corp., unpublished data. (12) Gloskey, C. R., U . S. Patent 2,718,522 (1955). (13) Grüttner, G., Krause, E., Ber. deut. chem. Ges. 50, 1802 (1917). (14) Harada, T., Sci. Papers Inst. Phys. Chem. Research (Tokyo) 35, 290 (1939); 38, 146 (1940); 42, 59 (1947). (15) Ibid., 36, 497 (1939). (16) Harris, J. O., U. S. Patent 2,431,038 (1947). (17) Johnson, E. W., Ibid., 2,763,632 (1956). (18) Johnson, E . W., Church, J., Ibid., 2,570,686 (1951) ; 2,599,557, 2,672,471 (1954). (19) Johnson, E. W., Ramsden, H . E., Weinberg, E. L., Metal & Thermit Corp., unpublished data. (20) Jones, W. J., Davies. W. C., Bowdun, S. T., Edwards,C.,Davis, V. E., Thomas, L. H., J. Chem. Soc. 1947, 1446. (21) Karantass s. T., Vassiliades, C , Compt. rend. 205, 460 (1937). (22) Kerk, G. J. M . van der, Luijten, J. S. Α., p. 98, U. S. Patent 2,504,388 (1950). (23) Kerr, Κ. Β., Poultry Sci. 31, 328 (1952). (24) Kipping, F. B., J. Chem. Soc. 1928, 2365. (25) Kocheshkov, Κ. Α., Ber. deut. chem. Ges. 62, 996 (1929); 67, 717, 1348 (1934). (26) Kocheshkov, Κ. Α., J. Gen. Chem. (U.S.S.R.) 4, 1359 (1934). (27) Kocheshkov, Κ. Α., Nesmeyanov, A. N . , Klimova, W. Α., Ibid., 6, 68, 167 (1936) ; Ber. deut. chem. Ges. 68, 1877 (1935) ; Doklady Akad. Nauk. S. S.S.R. 87, 421 (1952). (28) Kraus, C. Α., Bullard, R. H., J. Am. Chem. Soc. 51, 3605 (1929), 52, 4056 (1930). (29) Krause, E., Ber. deut. chem. Ges. 51, 912 (1918). (30) Krause, E., Grosse, A. von, "Die Chemie der metall-organischen Verbindungen," pp. 311-72, Berlin, 1937; J. W. Edwards, Ann Arbor, Mich., 1943. (31) Krause, E., Weinberg, E. L., Ber. deut. chem. Ges. 63B, 381 (1930). (32) Ladenburg, Α., Ann. Chem. Liebigs 159, 251 (1871). (33) Leistner, W. E., Knoepke, O. H., U . S. Patents 2,641,588 (1953) ; 2,726,254 (1955). (34) Lesbre, M., Bull. soc. chim. (5), 3, 2071-2 (1936). (35) Lesbre, M., Dupont, R., Compt. rend. 78 congr. soc. Savantes 1953, 429; Compt. rend. 237, 1700 (1953); Bull. soc. chim. (5) 20, 796 (1953). (36) Lesbre, M., Slotz, G., Compt. rend. 198, 1426 (1934). (37) Lewis, C. W., Ind. Eng. Chem. 46, 366 (1954). (38) Luijten, J. G. Α., Kerk, G. J. M . van der, "Investigations in the Field of Organotin Chemistry," Tin Research Institute, Middlesex, England, 1955. (39) Mack, G. P., Parker, E., U. S. Patents 2,592,926 (1952) ; 2,700,675 (1955). (40) Manulkin, A. M., J. Gen. Chem. (U.S.S.R.) 13, 42, 46 (1943) ; 14, 1047 (1944) ; 16, 235 (1946). (41) Metal & Thermit Corp., Data Sheet No. 144. (42) Normant, H., Compt. rend. 239, 1510 (1954). (43) Paris Match, 53 (1954). (44) Passino, H . J., Mantell, R. M . , U . S. Patent 2,569,492 (1951). '
e
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
HIRSCHLAND AND BANKS-ORGANOTIN COMPOUNDS
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch018
(45) Pfeiffer, P., Lehnardt, R., Ber. deut. chem. Ges. 36, 1054 (1903). (46) Quintin, C., Ing. chim. 14, 205 (1930). (47) Ramsden, H. E., U. S. Patent 2,675,397 (1954). (48) Ramsden, H. E., Davidson, H., Ibid., 2,675,398 (1954). (49) Ramsden, H. E., Gloskey, C. R., Ibid., 2,675,399 (1954). (50) Rochow, E. S., Ibid., 2,679,506 (1954). (51) Rosenberg, S. D., Gibbons, A. J., Jr., J. Am. Chem. Soc. 79, 2138 (1957). (52) Rosenberg, S. D., Gibbons, A. J., Jr., Ramsden H. E., Ibid., 79, 2137 (1957). (53) Smith, A. C., Jr., Rochow, E. S., Ibid., 75, 4103 (1953). (54) Stoner Η. B., Barnes, J. M., Duff, J. I., Brit. J. Pharm, 10 [1], 16 (1955). (55) Weinberg, E. L., unpublished data; Metal & Thermit Corp. Data Sheet No. 148. (56) Weinberg, E. L., U. S. Patent 2,679,505 (1954). (57) Weinberg, E. L., Johnson, E. W.,Ibid.,2,648,650(1953). (58) Weinberg, E. L., Ramsden, Η. E., Ibid., 2,746,946 (1956). (59) White, T. P., Pharm. J. 17, 166 (1886). (60) Yngve, V., U. S. Patent 2,307,092 (1943). RECEIVED for review May 10, 1957. Accepted June 1, 1957.
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
211