Palladium-Catalyzed Carbene Migratory Insertion and Trapping with

5 days ago - For the previous Pd-catalyzed N-tosylhydrazone cross-coupling, sulfinic acid salt is generated as a byproduct. In this transformation, th...
5 downloads 14 Views 611KB Size
Subscriber access provided by Kent State University Libraries

Palladium-Catalyzed Carbene Migratory Insertion and Trapping with Sulfinic Acid Salts toward Allylic Sulfones Ping-Xin Zhou, Yalei Zhang, Chunbo Ge, Yong-Min Liang, and Changzheng Li J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b00615 • Publication Date (Web): 05 Apr 2018 Downloaded from http://pubs.acs.org on April 5, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Palladium-Catalyzed Carbene Migratory Insertion and Trapping with Sulfinic Acid Salts toward Allylic Sulfones Ping-Xin Zhou,a* Yalei Zhang,a Chunbo Ge,a Yong-Min Liangb*, and Changzheng Lia* a

School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China E-mail: [email protected]; [email protected]

b

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou,730000, China E-mail: [email protected]

ABSTRACT: Allylic sulfones were synthesized with excellent selectivity and good yield via Pd-catalyzed cross-coupling of vinyl iodide with N-tosylhydrazone. This process involves palladium carbene migratory insertion/trapping with sulfinic acid salts. For the previous Pd-catalyzed N-tosylhydrazone cross coupling, sulfinic acid salt is generated as a by-product. In this transformation, the diazo compound and the sulfinic acid salt, which are all generated from N-tosylhydrazone, were used as crosscoupling partner. INTRODUCTION Due to the activation of the α-carbon, allylic sulfones are essential synthetic precursors in a number of carbon-carbon bond-forming reactions, such as RambergBäcklund reaction, Michael addition reaction and Julia olefination.1 Additionally, allylic sulfones are unit constituents of some biologically important compound and pharmaceuticals, such as anticancer agents, weed control herbicides, drugs used in the cure of Alzheimer’s disease and abnormal cell proliferation diseases.2 Because of their important applications in chemistry and biology, substantial attention has been paid to the development of synthetic methods toward this type of compounds.3 However, the current methods in use have notable drawbacks such as the use of

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

external oxidants, relatively harsh reaction conditions, or pre-installation of a leaving group. Thus, the development of a mild and efficient approach to allylic sulfones remains a topic of great interest. Palladium-catalyzed carbene insertion reaction have been well-established as indispensable tool for the formation of C-C bonds.4 In the early studies, diazo compounds are widely utilized as a precursor for the generation of palladium carbene species. Over the past years, N-tosylhydrazones have emerged as safe and convenient diazo precursors via in situ generation of unstable diazo species with one equivalent of sulfinic acid salt released as by-product. A general mechanism of these transformations involves Pd-carbene complex formation II and subsequent migration insertion of carbene into the Pd-C bond to afford the Csp3-Pd intermediate III.4 The palladium complex III can proceed through a number of subsequent processes, depending on its structure. When there is hydrogen adjacent to the carbene center, the palladium complex III may undergo the β-hydride elimination to afford the alkenes (Scheme 1a).4-5 When the palladium intermediate III does not have a β-hydrogen, the palladium species III can be engaged in different types of cascade process (Scheme 1b). All of the cascade processes take advantage of the inherent reactivity of the Csp 3Pd intermediate III, involving the η3-benzylpalladium, η3-oxoallylpalladium and η3allylpalladium. For example, Wang, Valdés and Van Vranken have reported that the η3-benzylpalladium intermediate can be trapped by a nucleophile or it can undergo transmetalation with an organometallic reagent or it can react with a double bond.6 Wang, we and Sekar have reported interception the η3-oxoallylpalladium intermediate with a double bond for the construction of cyclic architectures or it can also be trapped by a nucleophile.7 We reported that the Pd-catalyzed insertion of α,βunsaturated diazo compound could access the η3-allylpalladium intermediates that would then be attacked by amines, enolates and sulfinic acid salt.7b, 8 Van Vranken, Wang and we have explored the Pd-catalyzed reactions of vinyl halides with Ntosylhydrazone to generate η3-allylpalladium species, which can be trapped by amines, oxygen or enolates (Scheme 2a, 2b, 2c).9 However, in the Pd-catalyzed cross-coupling

ACS Paragon Plus Environment

Page 2 of 23

Page 3 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Scheme 1. Mechanisms of palladium-catalyzed reactions of diazo compound

reaction of vinyl halides with N-tosylhydrazone, sulfinic acid salt was generated as a by-product. Considering the sulfinic acid salt is also a potential nucleophile in the Pdcatalyzed cross-coupling reactions,10 and continuing with our interest in the Pdcarbene migratory insertion cascade reaction,7b,

8, 9b, 11

we speculated that η3-

allylpalladium intermediates derived from vinyl group migratory insertion into carbene could also be attacked by sulfinic acid salt to generate allylic sulfones (Scheme 2d).

Scheme 2. Cascade reactions involved η3-allylpalladium intermediates and this work RESULTS AND DISCUSSION: Initially, the reaction was explored by examining the coupling of vinyl iodide 1a with N-tosylhydrazone 2a in toluene at 70 oC with Pd(OAc)2/PPh3 as catalyst in the presence of Na2CO3 (Table 1, entry 1). To our disappointment, no allylic sulfone

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 23

Table 1. Optimization of reaction conditions for palladium-catalyzed cross-coupling of vinyl iodide 1a with N-Tosylhydrazone 2a[a]

Entry

Catalyst

Base

Slovent

Yield

1

Pd(OAc)2/PPh3

Na2CO3

toluene

nr

2

Pd(OAc)2/PPh3

K2CO3

toluene

nr

3

Pd(OAc)2/PPh3

Cs2CO3

toluen

nr

4

Pd(OAc)2/PPh3

t-BuOLi

toluene

nr

5

Pd(OAc)2/PPh3

t-BuONa

toluene

nr

6

Pd(OAc)2/PPh3

t-BuOK

toluene

nr

7[b]

Pd(OAc)2/PPh3

K2CO3

toluene

48%

8[b]

Pd(OAc)2/PPh3

K2CO3

THF

61%

9[b]

Pd(OAc)2/PPh3

K2CO3

dioxane

75%

10[b]

Pd(OAc)2/PPh3

K2CO3

CH3CN

7%

11[b]

Pd(CH3CN)2Cl2/PPh3

K2CO3

dioxane

22%

12[b]

Pd2(dba)3/PPh3

K2CO3

dioxane

58%

13[b]

PdCl2/PPh3

K2CO3

dioxane

33%

14[b,c]

Pd(OAc)2/PPh3

K2CO3

dioxane

67%

K2CO3

dioxane

0

15[b] [a]

Reaction conditions are as follows: 1a (0.2 mmol, 1.0 equiv.), 2a (0.45 mmol, 2.25

equiv.), Pd (10 mol%), ligand (30 mol%), base (0.6 mmol, 3.0 equiv.), solvent (2 mL), Ar, at 30 °C for 45 min then 70 °C for 12 h. Yield of the isolated product. (benzyl triethylammonium chloride) (0.2 mmol, 1.0 equiv.) was used.

[c]

[b]

BTAC

Reaction is

stirred at 30 oC for 20 min, then 70 °C for 12 h.

product was obtained under such condition. Then, an array of different catalytic conditions such as base, Pd sources and solvent were screened. Switching the base to

ACS Paragon Plus Environment

Page 5 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

K2CO3, Cs2CO3, t-BuOLi, t-BuONa, t-BuOK were not effective (entries 2-6). In previous Pd-catalyzed cross-coupling reactions of sulfinate salt10 and Pd-catalyzed cross-coupling reactions of N-tosylhydrazones9a, 9d, phase-transfer catalyst was used as an additive to increase the yield. We were delighted to find that 48% yield of the desired product 3-1 could be afforded when the reaction was carried out with BTAC as an additive (entry 7). This is may be due to the fact that the BTAC increase the solubility of the N-tosylhydrazone anion and sulfinate salt in toluene. The yield was further increased to 75% by performing the reaction with dioxane as solvent (entry 9). The effect of catalyst was subsequently examined and revealed that Pd(CH3CN)2Cl2, Pd2(dba)3, PdCl2 were less efficient catalysts for this transformation (entries 11-13). Decreasing the reaction time at 30 °C to 20 min, a lower yield was observed (entry 14). Finally, control experiment showed that no desired product could be afforded without the palladium catalyst (entry 15). With the optimized conditions in hand, we studied the scope of this reaction. A set of substituted N-tosylhydrazones 2 were coupled to vinyl iodide 1a to form the products 3 (Table 2). N-tosylhydrazones bearing an electron-donating group delivered 3-2, 3-3 and 3-4 in moderate yield. However, no product or a lower yield of product was observed when N-tosylhydrazones were substituted with electron-withdrawing groups. For the palladium-catalyzed three-component coupling of vinyl halides, diazo compound and nucleophiles, as demonstrated by Van Vranken’s group and our group, excess nucleophiles need to use to improve the yield.9a, 9b, 9d Encouraged by these previous results, 2.0 equiv. of extra TsNa was used. As anticipated, the product was isolated in good to excellent yield and different electron-withdrawing groups, such as CF3 (3-5), fluoro (3-6), chloro(3-7), and bromo (3-8), were all tolerated. Substituents at the ortho-position of the aryl ring are also tolerated, as shown in the formation of 314, 3-15, 3-16 and 3-17 in good yield. Finally, furanyl-substituted N-tosylhydrazone was also participated in the coupling, albeit providing the product 3-20 with 42% yield.

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Table 2. Scope of the reaction with N-tosylhydrazones 2[a]

[a]

Reaction conditions: 1a (0.2 mmol, 1.0 equiv.), 2 (0.45 mmol, 2.25 equiv.),

Pd(OAc)2 (10 mol%), PPh3 (30 mol%), K2CO3 (0.6 mmol, 3.0 equiv.), BTAC (0.2mmol, 1.0 equiv.), dioxane (2 mL), Ar, at 30 °C for 45 min then 70 °C for 12 h. Yield is of the isolated product.

[b]

This reaction was carried out with addition 2.0

equiv. of TsNa. [c] NMR yield.

ACS Paragon Plus Environment

Page 6 of 23

Page 7 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

To probe the reaction scope further, we then studied the scope of this reaction by using various R groups (Table 3). Electron-donating (-OMe) or electron-withdrawing groups (-F and -Cl) on the aryl ring (R=aryl) all proceeded efficiently to lead to the corresponding products 3-24, 3-25, and 3-27 in moderate to good yields. It is noteworthy that steric effect had no significant effect on the reaction, where substrate with an ortho-methyl group furnished 3-28 in 67% yield. The thiophene contained hydrazone (R=thienyl) was also identified as a suitable substrate for the coupling, delivering the product 3-30 in 57% yield.

Table 3. Scope of the reaction with N-tosylhydrazones 2[a]

[a]

Reaction conditions: 1a (0.2 mmol, 1.0 equiv.), 2 (0.45 mmol, 2.25 equiv.),

Pd(OAc)2 (10 mol%), PPh3 (30 mol%), K2CO3 (0.6 mmol, 3.0 equiv.), BTAC (0.2 mmol, 1.0 equiv.), dioxane (2 mL), Ar, at 30 °C for 45 min then 70 °C for 12 h. Yield is of the isolated product. [b] This reaction was carried out with addition 2.0 equiv. of corresponding sodium sulfinate salt. [c] NMR yield.

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Furthermore, we are delighted to find that vinyl iodide 1b is a suitable substrate for the cross coupling with N-tosylhydrazone 2a without addition of TsNa, constructing of a quaternary carbon center in 71% yield (Scheme 3).

Scheme 3. Palladium-catalyzed cross-coupling of vinyl iodide 1b with Ntosylhydrazone 2a. Reaction conditions: 1b (0.2 mmol, 1.0 equiv.), 2a (0.45 mmol, 2.25 equiv.), Pd(OAc)2 (10 mol%), PPh3 (30 mol%), K2CO3 (0.6 mmol, 3.0 equiv.), BTAC (0.2 mmol, 1.0 equiv.), dioxane (2 mL), Ar, at 30 °C for 45 min then 70 °C for 12 h. Yield is of the isolated product.

A plausible catalytic cycle is proposed as shown in Scheme 4. The reaction involves the oxidative addition of Pd(0) to 1 to afford a vinylpalladium iodide complex A. Meanwhile, the diazo compound B and TsK are generated in situ from Ntosylhydrazone 2 in the presence of K2CO3. The palladium species A can react with the diazo compound B to give the palladium-carbene C, followed by migratory insertion to generate η1-allylpalladium intermediate D. The η1-allylpalladium complex could generate η3-allylpalladium intermediate E, which could be trapped by sulfinic

Scheme 4. Proposed catalytic cycle

ACS Paragon Plus Environment

Page 8 of 23

Page 9 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

acid salt and give 3 as the only product. The selectivity is consistent with previous reports.9 CONCLUSIONS In conclusion, we have developed a novel Pd-catalyzed carbene migratory insertion/nucleophilic addition strategy to access allylic sulfones with excellent selectivity. For the previous Pd-catalyzed N-tosylhydrazone cross coupling, sulfinic acid salt is a by-product. In this cross coupling, sulfinic acid salt, generated from Ntosylhydrazone, is also employed as a nucleophile. EXPERIMENT SECTION: 1. General remarks The desired product was purified by flash column chromatography, silica gel (200~300 mesh). 1H NMR spectra and 13C NMR spectra were recorded on 400 MHz in CDCl3 and TMS as internal standard. All products were further characterized by HRMS (high resolution mass spectra). Copies of their 1 H NMR and 13C NMR spectra are provided. THF, and toluene, 1,4-dioxane were dried over sodium with benzophenone-ketyl intermediate as indicator. DCE and MeCN were distilled over P2O5. Commercially available reagents and solvents were used without further purification. 1a12, 1b13 and N-tosylhydrazones 214 were synthesized according to the literature procedure. 2. General procedure for the preparation of the products 3: An oven-dried Schlenk tube under a nitrogen atmosphere was charged with vinyl iodide 1 (0.2 mmol, 1.0 equiv.), N-Tosylhydrazone 2 (0.445 mmol, 2.25 equiv.), (If necessary, 2.0 equiv. of sulfinic acid salts was added), Pd(OAc)2 (10 mol%), PPh3 (30 mol%), K2CO3 (0.6 mmol, 3.0 equiv.), BTAC (0.2 mmol, 1.0 equiv.), dioxane (2 mL). The mixture was stirred at room temperature for 45 minutes and then stirred at 70 °C for 12 h. The resulting mixture was cooled to room temperature and filtered through Celite eluting

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 10 of 23

with EtOAc. The volatiles were evaporated under reduced pressure and the residue was purified by silica gel flash chromatography to afford the desired products 3. (E)-(3-tosylpent-1-ene-1,5-diyl)dibenzene (3-1): yellow solid (56.4 mg, 75%), mp: 110-113oC; PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.66(d, J =8.0Hz, 2H), 7.34-7.24(m, 9H), 7.21-7.19(m, 1H), 7.12(d, J=7.2Hz, 2H), 6.29(d, J=16.0Hz, 1H), 5.94(dd, J=9.6Hz, 16.0Hz, 1H), 3.65-3.59(m, 1H), 2.84-2.77(m, 1H), 2.622.50(m, 2H), 2.40(s, 3H), 2.11-2.01(m, 1H);

13

C NMR (100 MHz, CDCl3) δ: 144.5,

140.0, 138.4, 135.8, 134.4, 129.4, 129.1, 128.6, 128.5, 128.4, 126.6, 126.3, 121.0, 68.6, 32.4, 28.8, 21.6; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C24H24O2SNa: 399.1395; found: 399.1391. (E)-1-methyl-4-((5-phenyl-1-(p-tolyl)pent-1-en-3-yl)sulfonyl)benzene (3-2): yellow oil (48.4 mg, 62%); PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.65(d, J =8.0Hz, 2H), 7.28-7.24(m, 4H), 7.20-7.18(m, 3H), 7.14-7.11(m, 4H), 6.24(d, J=16.0Hz, 1H), 5.91-5.85(m, 1H), 3.63-3.57(m, 1H), 2.83-2.77(m, 1H), 2.61-2.51(m, 2H), 2.40(s, 3H), 2.34(s, 3H), 2.08-2.04(m, 1H);

13

C NMR (100 MHz, CDCl3)

δ:144.5, 140.0, 138.4, 138.3, 134.4, 133.1, 129.5, 129.3, 129.1, 128.5, 128.4, 126.5, 126.2, 119.8, 68.7, 32.4, 28.8, 21.5, 21.2; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C25H26O2SNa: 413.1551; found: 413.1544. (E)-1-methoxy-4-(5-phenyl-3-tosylpent-1-en-1-yl)benzene (3-3):yellow solid (36.3 mg, 45%), mp: 125-127oC; PE/EA=18/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.65(d, J =8.4Hz, 2H), 7.28-7.19(m, 7H), 7.13-7.11(m, 2H), 6.85(d, J=8.8Hz, 2H), 6.23(d, J=16.0Hz, 1H), 5.78(dd, J=9.2Hz, 16.0Hz, 1H), 3.81(s, 3H), 3.62-3.56(m, 1H), 2.83-2.78(m, 1H), 2.60-2.50(m, 2H), 2.40(s, 3H), 2.07-2.01(m, 1H);

13

C NMR (100

MHz, CDCl3) δ: 159.78, 144.4, 140.1, 137.9, 134.5, 129.4, 129.1, 128.6, 128.5, 128.4, 127.8, 126.2, 118.4, 114.0, 68.8 55.3, 32.4, 28.9, 21.5; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C25H26O3SNa: 429.1500; found: 429.1495. (E)-methyl(4-(5-phenyl-3-tosylpent-1-en-1-yl)phenyl)sulfane (3-4): yellow solid (39.7 mg, 47%), mp: 110-113oC; PE/EA=17/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.65(d, J =8.4Hz, 2H), 7.28-7.22(m, 4H), 7.20-7.17(m, 5H), 7.11(d, J=7.2Hz, 2H),

ACS Paragon Plus Environment

Page 11 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

6.23(d, J=16.0Hz, 1H), 5.91-5.85(m, 1H), 3.63-3.58(m, 1H), 2.83-2.76(m, 1H), 2.592.53(m, 2H), 2.49(s, 3H), 2.40(s, 3H), 2.08-2.04(m, 1H); 13C NMR (100 MHz, CDCl3) δ: 144.5, 140.0, 139.1, 137.7, 134.4, 132.6, 129.4, 129.1, 128.5, 128.4, 126.9, 126.3, 120.1, 68.7, 32.4, 28.8, 21.6, 15.5; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C25H26O2S2Na: 445.1272; found:445.1264. (E)-1-methyl-4-((5-phenyl-1-(4-(trifluoromethyl)phenyl)pent-1-en-3yl)sulfonyl)benzene (3-5): yellow solid (74.6mg, 84%), mp: 95-97oC; PE/EA=18/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.66(d, J =8.4Hz, 2H), 7.57(d, J=8.4Hz, 2H), 7.37(d, J=8.0Hz, 2H), 7.29-7.25(m, 4H), 7.21-7.18(m, 1H), 7.13-7.10(m, 2H), 6.32(d, J=16.0Hz, 1H), 6.04(dd, J=9.2Hz, J=16.0Hz, 1H), 3.68-3.62(m, 1H), 2.842.76(m, 1H), 2.63-2.52(m, 2H), 2.41(s, 3H), 2.12-2.07(m, 1H); 13C NMR (100 MHz, CDCl3) δ: 144.8, 139.8, 139.1, 136.9, 134.3, 129.5, 129.1, 128.5, 128.4, 126.7, 126.4, 125.7, 125.6, 125.5, 125.5, 123.9, 68.5, 32.4, 28.8, 21.6; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C25H23F3O2SNa: 467.1269; found: 467.1266. (E)-1-fluoro-4-(5-phenyl-3-tosylpent-1-en-1-yl)benzene (3-6): yellow solid (65.4mg, 83%), mp: 86-89oC; PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.65(d, J =8.4Hz, 2H), 7.27-7.24(m, 6H), 7.21-7.19(m, 1H), 7.12-7.10(m, 2H), 7.01(t, J=8.8Hz, 2H), 6.26(d, J=16.0Hz, 1H), 5.88-5.82(m, 1H), 3.64-3.58(m, 1H), 2.83-2.78(m, 1H), 2.59-2.50(m, 2H), 2.40(s, 3H), 2.09-2.04(m, 1H);

13

C NMR (100 MHz, CDCl3) δ:

144.6, 139.9, 137.2, 134.4, 132.0, 131.9, 129.5, 129.1, 128.5, 128.4, 128.3, 128.2, 128.1, 126.3, 120.7, 120.6, 115.7, 115.5, 68.6, 32.4, 28.8, 21.6; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C24H23FO2SNa: 417.1300; found: 417.1293. (E)-1-chloro-4-(5-phenyl-3-tosylpent-1-en-1-yl)benzene

(3-7):

yellow

solid

(60.7mg, 74%), mp: 84-86oC; PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.65(d, J =8.4 Hz, 2H), 7.30-7.24(m, 6H), 7.22-7.19(m, 3H), 7.12-7.10(m, 2H), 6.24(d, J=16.0 Hz, 1H), 5.90(dd, J=9.6Hz, J=16.0Hz, 1H), 3.64-3.58(m, 1H), 2.802.75(m, 1H), 2.59-2.51(m, 2H), 2.40(s, 3H), 2.09-2.01(m, 1H); 13C NMR (100 MHz, CDCl3) δ: 144.6, 139.9, 137.0, 134.3, 134.2, 134.1, 129.4, 129.1, 128.8, 128.5, 128.3,

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

127.7, 126.3, 121.6, 68.5, 32.4, 28.8, 21.5; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C24H23ClO2SNa: 433.1005; found: 433.0999. (E)-1-bromo-4-(5-phenyl-3-tosylpent-1-en-1-yl)benzene (3-8): yellow oil (52.7mg, 58%); PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.65(d, J=8.4Hz, 2H), 7.44(d, J=8.4Hz, 2H), 7.28-7.25(m, 4H), 7.20(d, J=7.2Hz, 1H), 7.15-7.10(m, 4H), 6.23(d, J=16.0Hz, 1H), 5.92(dd, J=9.2Hz, J=16.0Hz,1H), 3.63-3.58(m, 1H), 2.832.75(m, 1H), 2.61-2.50(m, 2H), 2.41(s, 3H), 2.09-2.01(m, 1H); 13C NMR (100 MHz, CDCl3) δ: 144.7, 139.9, 137.1, 134.7, 134.4, 131.8, 129.5, 129.1, 128.5, 128.4, 128.0, 126.3, 122.4, 121.8, 68.6, 32.4, 28.8, 21.6; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C24H23BrO2SNa: 477.0500; found: 477.0499. (E)-1-methyl-3-(5-phenyl-3-tosylpent-1-en-1-yl)benzene (3-9): yellow oil (48.4mg, 62%); PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.66(d, J=8.0Hz, 2H), 7.28-7.25(d, J=8.4 Hz, 4H), 7.23-7.20(m, 2H), 7.13-7.07(m, 5H), 6.25(d, J=16.0Hz, 1H), 5.96-5.90(m, 1H), 3.63-3.58(m, 1H), 2.84-2.77(m, 1H), 2.61-2.50(m, 2H), 2.40(s, 3H), 2.35(s, 3H), 2.10-2.05(m, 1H);

13

C NMR (100 MHz, CDCl3) δ: 144.5, 140.0,

138.5, 138.3, 135.8, 134.5, 129.4, 129.2, 129.1, 128.5, 128.4, 127.2, 126.3, 123.8, 120.7, 68.7, 32.4, 28.8, 21.6, 21.3; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C25H26O2SNa: 413.1551; found: 413.1546. (E)-1-methoxy-3-(5-phenyl-3-tosylpent-1-en-1-yl)benzene (3-10): yellow oil (47.9 mg, 59%); PE/EA=18/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.66(d, J=8.4Hz, 2H), 7.28-7.24(m, 5H), 7.22-7.19(m, 1H), 7.13-7.11(m, 2H), 6.89-6.82(m, 3H), 6.25(d, J=15.6Hz, 1H), 5.96-5.90(m,1H), 3.81(s, 3H), 3.64-3.58(m, 1H), 2.82-2.77(m, 1H), 2.60-2.52(m, 2H), 2.40(s, 3H), 2.09-2.05(m, 1H); 13C NMR (100 MHz, CDCl3) δ: 159.8, 144.6, 140.0, 138.3, 137.2, 134.4, 129.6, 129.4, 129.1, 128.5, 128.4, 126.3, 121.3, 119.2, 114.0, 111.9, 68.6, 55.2, 32.4, 28.8, 21.6; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C25H26O3SNa: 429.1500; found: 429.1499. (E)-1-fluoro-3-(5-phenyl-3-tosylpent-1-en-1-yl)benzene (3-11): yellow solid (64.6 mg, 82%), mp: 87-89oC; PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.65(d, J=16.0Hz, 2H), 7.28-7.24(m, 5H), 7.19(d, J=7.2Hz, 1H), 7.12-7.10(m, 2H),

ACS Paragon Plus Environment

Page 12 of 23

Page 13 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

7.04(d, J=8.0Hz, 1H), 6.99-6.96(m, 2H), 6.26(d, J=15.6Hz, 1H), 5.97-5.91(m,1H), 3.65-3.59(m, 1H), 2.81-2.75(m, 1H), 2.59-2.51(m, 2H), 2.40(s, 3H), 2.09-2.03(m, 1H); C NMR (100 MHz, CDCl3) δ: 144.7, 139.8, 138.1, 138.0, 137.2, 137.1, 134.3, 130.2,

13

130.1, 129.5, 129.1, 128.5, 128.3, 126.3, 122.5, 122.4, 122.4, 115.3, 115.1, 113.1, 112.9, 68.5, 32.4, 28.8, 21.5; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C24H23FO2SNa: 417.1300; found: 417.1296. (E)-1-chloro-3-(5-phenyl-3-tosylpent-1-en-1-yl)benzene (3-12): yellow solid (64.0 mg, 78%), mp: 98-100oC; PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.65(d, J=8.0Hz, 2H), 7.28-7.24(m, 7H), 7.21-7.19(m, 1H), 7.17-7.14(m, 1H), 7.127.10(m, 2H), 6.22(d, J=16.0 Hz, 1H), 5.98-5.92(m,1H), 3.64-3.58(m, 1H), 2.832.75(m, 1H), 2.61-2.51(m, 2H), 2.41(s, 3H), 2.10-2.04(m, 1H); 13C NMR (100 MHz, CDCl3) δ: 144.7, 139.8, 137.6, 136.9, 134.6, 134.3, 129.9, 129.5, 129.1, 128.5, 128.4, 128.3, 126.4, 126.3, 124.7, 122.7, 68.5, 32.4, 28.8, 21.6; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C24H23ClO2SNa: 433.1005; found: 433.0996. (E)-1-bromo-3-(5-phenyl-3-tosylpent-1-en-1-yl)benzene (3-13): yellow solid (76.3 mg, 84%), mp: 78-81oC; PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.65(d, J=8.4Hz, 2H), 7.41-7.38(m, 2H), 7.27-7.24(m, 4H), 7.20-7.17(m, 3H), 7.127.10(m, 2H), 6.22(d, J=16.0 Hz, 1H), 5.97-5.91(m, 1H), 3.65-3.59(m, 1H), 2.822.75(m, 1H), 2.59-2.51(m, 2H), 2.40(s, 3H), 2.10-2.04(m, 1H); 13C NMR (100 MHz, CDCl3) δ: 144.7, 139.8, 137.8, 136.8, 134.2, 131.2, 130.1, 129.5, 129.3, 129.0, 128.5, 128.3, 126.3, 125.1, 122.7, 122.6, 68.5, 32.4, 28.7, 21.5; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C24H23BrO2SNa: 477.0500; found:477.0494. (E)-1-methyl-2-(5-phenyl-3-tosylpent-1-en-1-yl)benzene (3-14): yellow solid (49.9 mg, 64%), mp: 92-94oC; PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.70(m, 2H), 7.35(t, J=4.4Hz, 1H), 7.25(t, J=8.0Hz, 4H), 7.20-7.13(m, 6H), 6.506.45(m, 1H), 5.86-5.78(m,1H), 3.69-3.62(m, 1H), 2.85-2.81(m, 1H), 2.63-2.57(m, 2H), 2.38(s, 3H), 2.13-2.08(m, 4H);

13

C NMR (100 MHz, CDCl3) δ: 144.5, 140.0,

136.5, 135.5, 135.0, 134.5, 130.2, 129.4, 129.1, 128.5, 128.4, 128.2, 126.2, 126.1,

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

125.8, 122.4, 68.8, 32.4, 28.5, 21.5, 19.4; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C25H26O2SNa: 413.1551; found: 413.1548. (E)-1-fluoro-2-(5-phenyl-3-tosylpent-1-en-1-yl)benzene (3-15): yellow solid (59.9 mg, 76%), mp: 89-92oC; PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.67(d, J=8.0Hz, 2H), 7.39-7.35(m, 1H), 7.28-7.26(m, 5H), 7.24-7.19(m, 1H), 7.147.09(m, 3H), 7.05-7.00(m, 1H), 6.42(d, J=16.4Hz, 1H), 6.04(dd, J=9.2Hz, J=16.0Hz, 1H), 3.66-3.60(m, 1H), 2.85-2.79(m, 1H), 2.60-2.52(m, 2H), 2.41(s, 3H), 2.10-2.02(m, 1H); 13C NMR (100 MHz, CDCl3) δ: 144.7, 139.9, 134.3, 130.9, 130.8, 130.8, 129.7, 129.5, 129.4, 129.1, 128.5, 128.5, 128.4, 127.6, 127.5, 126.3, 124.2, 124.1, 123.8, 123.7, 123.7, 115.9, 115.7, 69.0, 32.4, 28.8, 21.6; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C24H23FO2SNa: 417.1300; found: 417.1299. (E)-1-chloro-2-(5-phenyl-3-tosylpent-1-en-1-yl)benzene (3-16): NMR Yield (77%); yellow solid, mp: 73-76oC; NMR yield; PE/EA=20/1 as eluent; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C24H23ClO2SNa: 433.1005; found: 433.1004. (E)-1-bromo-2-(5-phenyl-3-tosylpent-1-en-1-yl)benzene (3-17): yellow solid (74.5 mg, 82%), mp: 71-73oC; PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.67(d, J=8.0Hz, 2H), 7.51(d, J=8.4Hz, 1H), 7.44-7.42(m, 1H), 7.30-7.25(m, 5H), 7.20(d, J=7.2Hz, 1H), 7.17-7.13(m, 3H), 6.57(d, J=15.6Hz, 1H), 5.95-5.88(m, 1H), 3.70-3.64(m, 1H), 2.88-2.82(m, 1H), 2.63-2.55(m, 2H), 2.40(s, 3H), 2.16-2.10(m, 1H); C NMR (100 MHz, CDCl3) δ: 144.7, 139.9, 137.1, 135.8, 134.3, 132.9, 129.6, 129.5,

13

129.0, 128.5, 128.4, 127.6, 127.3, 126.3, 124.2, 123.5, 68.4, 32.3, 28.5, 21.6; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C24H23BrO2SNa: 477.0500; found: 477.0502. (E)-2-(5-phenyl-3-tosylpent-1-en-1-yl)naphthalene (3-18): yellow solid (60.5mg, 71%), mp: 109-112oC; PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.817.77(m, 3H), 7.68(d, J=8.0Hz, 2H), 7.62(s, 1H), 7.52-7.45(m, 3H), 7.29-7.20(m, 5H), 7.15-7.13(m, 2H), 6.43(d, J=16.0Hz, 1H), 6.10-6.04(m, 1H), 3.71-3.65(m, 1H), 2.872.80(m, 1H), 2.65-2.56(m, 2H), 2.38(s, 3H), 2.15-2.10(m, 1H); 13C NMR (100 MHz, CDCl3) δ: 144.5, 140.1, 138.4, 134.4, 133.3, 133.2, 133.2, 129.4, 129.2, 128.5, 128.4,

ACS Paragon Plus Environment

Page 14 of 23

Page 15 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

128.3, 128.0, 127.6, 126.9, 126.5, 126.3, 126.3, 123.2, 121.3, 68.8, 32.5, 28.8, 21.5; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C28H26O2SNa: 449.1551; found: 449.1547. (E)-1-(5-phenyl-3-tosylpent-1-en-1-yl)naphthalene (3-19): yellow solid (71.6mg , 84%), mp: 107-109oC; PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.847.78(m, 2H), 7.71(d, J=8.4Hz, 2H), 7.60(d, J=8.0Hz, 1H), 7.49-7.42(m, 4H), 7.297.17(m, 7H), 6.95(d, J=15.6Hz, 1H), 5.97(dd, J=9.6Hz, J=15.6Hz, 1H), 3.79-3.73(m, 1H), 2.93-2.86(m, 1H), 2.70-2.64m, 2H), 2.38(s, 3H), 2.21-2.17(m, 1H);

13

C NMR

(100 MHz, CDCl3) δ: 144.5, 139.9, 136.1, 134.5, 133.6, 133.4, 130.7, 129.5, 129.1, 128.7, 128.5, 128.5, 128.4, 126.3, 126.1, 125.9, 125.5, 124.4, 124.1, 123.4, 68.9, 32.5, 28.4, 21.5; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C28H26O2SNa: 449.1551; found: 449.1552. (E)-2-(5-phenyl-3-tosylpent-1-en-1-yl)furan (3-20): yellow oil (30.7mg, 42%); PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.66(d, J=8.4Hz, 2H), 7.36(d, J=1.6Hz, 1H), 7.29-7.24(m, 4H), 7.19(d, J=7.2Hz, 1H), 7.12-7.10(m, 2H), 6.37(dd, J=1.6Hz, J=3.2Hz, 1H), 6.23(d, J=3.2Hz, 1H), 6.17(d, J=16.0Hz, 1H), 5.90-5.84(m, 1H), 3.60-3.54(m, 1H), 2.83-2.77(m, 1H), 2.57-2.47(m, 2H), 2.41(s, 3H), 2.03-1.94(m, 1H); 13C NMR (100 MHz, CDCl3) δ: 151.4, 144.6, 142.7, 140.0, 134.3, 129.5, 129.2, 128.5, 128.4, 126.3, 126.2, 119.0, 111.4, 109.5, 68.5, 32.4, 29.1, 21.6; HRMS (ESITOF) m/z: [M+Na]+, calcd for C22H22O3SNa: 389.1187; found: 389.1180. (E)-2,4-dichloro-1-(5-phenyl-3-tosylpent-1-en-1-yl)benzene (3-21): yellow solid (64.8mg, 73%), mp: 91-93oC; PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.65(d, J=8.4Hz, 2H), 7.37-7.34(m, 2H), 7.29-7.25(m, 4H), 7.23-7.20(m, 2H), 7.13(d, J=6.8Hz, 2H), 6.53(d, J=15.6Hz, 1H), 5.97-5.91(m, 1H), 3.69-3.63(m, 1H), 2.852.80(m, 1H), 2.62-2.52(m, 2H), 2.41(s, 3H), 2.15-2.07(m, 1H); 13C NMR (100 MHz, CDCl3) δ: 144.8, 139.8, 134.5, 134.2, 133.6, 133.5, 132.6, 129.5, 129.4, 129.0, 128.5, 128.4, 127.8, 127.4, 126.3, 124.6, 68.5, 32.4, 28.5, 21.6; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C24H22Cl2O2SNa: 467.0615; found: 467.0609. (E)-1,2-dichloro-4-(5-phenyl-3-tosylpent-1-en-1-yl)benzene (3-22): yellow solid (76.4mg, 86%), mp: 86-88oC; PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ:

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 16 of 23

7.64(d, J=8.0Hz, 2H), 7.37(d, J=8.4 Hz, 1H), 7.32(d, J=2.0Hz, 1H), 7.28-7.24(m, 4H), 7.19(d, J=7.2Hz, 1H), 7.11-7.09(m, 3H), 6.18(d, J=16.0Hz, 1H), 5.97-5.90(m, 1H), 3.64-3.56(m, 1H), 2.82-2.76(m, 1H), 2.59-2.50(m, 2H), 2.41(s, 3H), 2.10-2.04(m, 1H); C NMR (100 MHz, CDCl3) δ: 144.8, 139.7, 135.9, 135.7, 134.2, 132.8, 132.1, 130.5,

13

129.5, 129.0, 128.5, 128.3, 128.2, 126.3, 125.6, 123.1, 68.4, 32.4, 28.7, 21.6; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C24H22Cl2O2SNa: 467.0615; found: 467.0615 (E)-(3-(phenylsulfonyl)pent-1-ene-1,5-diyl)dibenzene (3-23): yellow solid (47.1mg, 65%), mp: 70-73oC; PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.807.78(m, 2H), 7.58(t, J=7.6Hz, 1H), 7.49-7.45(m, 2H), 7.34-7.24(m, 7H), 7.21-7.18(m, 1H), 7.12(d, J=6.8Hz, 2H), 6.25(d, J=16.0Hz, 1H), 5.98-5.91(m, 1H), 3.67-3.61(m, 1H), 2.82-2.80(m, 1H), 2.60-2.53(m, 2H), 2.12-2.08(m, 1H);

13

C NMR (100 MHz,

CDCl3) δ: 139.9, 138.6, 137.3, 135.7, 133.6, 129.1, 128.8, 128.6, 128.5, 128.4, 128.3, 126.5, 126.3, 120.8, 68.6, 32.4, 28.6; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C23H22O2SNa: 385.1238; found: 385.1239. (E)-(3-((4-chlorophenyl)sulfonyl)pent-1-ene-1,5-diyl)dibenzene

(3-24):

yellow

solid (52.3mg, 66%), mp: 68-71oC; PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.71(d, J=8.4Hz, 2H), 7.44(dd, J=2.0Hz, J=6.8Hz, 2H), 7.34-7.28(m, 7H), 7.21-7.18(m, 1H), 7.13-7.12(m, 2H), 6.27(d, J=16.0Hz, 1H), 5.93(dd, J=9.6Hz, J=16.0Hz, 1H), 3.65-3.59(m, 1H), 2.86-2.79(m, 1H), 2.60-2.52(m, 2H), 2.12-2.04(m, 1H); 13C NMR (100 MHz, CDCl3) δ: 140.4, 139.8, 138.7, 135.9, 135.5, 130.6, 129.1, 128.7, 128.6, 128.5, 128.4, 126.6, 126.4, 120.5, 68.7, 32.3, 28.6; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C23H21ClO2SNa: 419.0848; found: 419.0846. (E)-(3-((4-methoxyphenyl)sulfonyl)pent-1-ene-1,5-diyl)dibenzene (3-25): yellow solid (63.6mg, 81%), mp: 75-77oC; PE/EA=17/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.70(dd, J=2.0Hz, J=6.8Hz, 2H), 7.32-7.23(m, 7H), 7.19(d, J=7.2Hz, 1H), 7.14-7.12(m, 2H), 6.91(dd, J=2.0Hz, J=7.2Hz, 2H), 6.28(d, J=16.0Hz, 1H), 5.985.91(m, 1H), 3.82(s, 3H), 3.64-3.58(m, 1H), 2.82-2.78(m, 1H), 2.60-2.52(m, 2H), 2.08-2.04(m, 1H); 13C NMR (100 MHz, CDCl3) δ: 163.6, 140.0, 138.3, 135.8, 131.2,

ACS Paragon Plus Environment

Page 17 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

128.8, 128.6, 128.5, 128.4, 126.5, 126.2, 121.1, 114.0, 68.8, 55.6, 32.4, 28.9; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C24H24O3SNa: 415.1344; found: 415.1343. (E)-(3-(m-tolylsulfonyl)pent-1-ene-1,5-diyl)dibenzene (3-26): yellow solid (49.6 mg, 66%), mp: 86-88oC; PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.57(d, J=5.2Hz, 2H), 7.39-7.23(m, 9H), 7.21-7.17(m, 1H), 7.11(d, J=7.2Hz, 2H), 6.26(d, J=16.0Hz, 1H), 5.97-5.91(m, 1H), 3.65-3.59(m, 1H), 2.85-2.77(m, 1H), 2.602.51(m, 2H), 2.33(s, 3H), 2.12-2.06(m, 1H);

13

C NMR (100 MHz, CDCl3) δ: 134.0,

139.0, 138.5, 137.1, 135.8, 134.3, 129.5, 128.6, 128.5, 128.4, 128.3, 126.5, 126.3, 120.9, 68.6, 32.4, 28.6, 21.1; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C24H24O2SNa: 399.1395; found: 399.1394. (E)-(3-((3-fluorophenyl)sulfonyl)pent-1-ene-1,5-diyl)dibenzene

(3-27):

yellow

solid (41.8mg, 55%), mp: 98-101oC; PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.57(d, J=8.0Hz, 1H), 7.53-7.50(m, 1H), 7.48-7.42(m, 1H), 7.33-7.20(m, 9H), 7.12(d, J=6.8Hz, 2H), 6.28(d, J=15.6Hz, 1H), 5.97-5.91(m, 1H), 3.67-3.61(m, 1H), 2.87-2.81(m, 1H), 2.61-2.52(m, 2H), 2.14-2.08(m, 1H);

13

C NMR (100 MHz,

CDCl3) δ: 139.7, 139.5, 139.0, 135.5, 130.6, 130.5, 128.7, 128.6, 128.5, 128.4, 126.6, 126.4, 125.0, 125.0, 121.0, 120.8, 120.4, 116.5, 116.2, 68.7, 32.3, 28.6; HRMS (ESITOF) m/z: [M+Na]+, calcd for C23H21FO2SNa: 403.1144; found: 403.1141. (E)-(3-(o-tolylsulfonyl)pent-1-ene-1,5-diyl)dibenzene (3-28): NMR yield; yellow solid (67%), mp: 70-74oC; NMR yield; PE/EA=20/1 as eluent; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C24H24O2SNa: 399.1395; found: 399.1391. (E)-(3-(benzylsulfonyl)pent-1-ene-1,5-diyl)dibenzene (3-29): yellow solid (40.6mg, 54%), mp: 78-81oC; PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.467.44(m, 2H), 7.41-7.33(m, 8H), 7.27-7.24(m, 2H), 7.20-7.18(m, 1H), 7.11(d, J=7.2Hz, 2H), 6.56(d, J=16.0Hz, 1H), 6.17(dd, J=8.0Hz, J=16.0Hz, 1H), 4.25-4.17(m, 2H), 3.60-3.54(m, 1H), 2.81-2.78(m, 1H), 2.57-2.49(m, 2H), 2.15-2.09(m, 1H);

13

C NMR

(100 MHz, CDCl3) δ: 139.9, 138.5, 135.4, 130.8, 128.8, 128.5, 128.4, 127.4, 126.7, 126.3, 121.4, 64.8, 56.9, 32.2, 27.6; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C24H24O2SNa: 399.1395; found: 399.1390.

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(E)-2-((1,5-diphenylpent-1-en-3-yl)sulfonyl)thiophene (3-30): yellow solid (42.0 mg, 57%), mp: 93-95oC; PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.65(dd, J=1.2Hz, J=5.2Hz, 1H), 7.56(dd, J=1.2Hz, J=3.6Hz, 1H), 7.34-7.24(m, 7H), 7.20(d, J=6.8Hz, 1H), 7.13(d, J=6.8Hz, 2H), 7.08(dd, J=3.6Hz, J=4.8Hz, 1H), 6.38(d, J=16.0Hz, 1H), 6.04-5.98(m, 1H), 3.74-3.69(m, 1H), 2.87-2.80(m, 1H), 2.65-2.57(m, 2H), 2.16-2.10(m, 1H);

C NMR (100 MHz, CDCl3) δ: 139.9, 138.8, 138.1, 135.7,

13

135.1, 134.3, 128.7, 128.5, 128.4, 127.6, 126.7, 126.3, 120.7, 69.8, 32.4, 28.9; HRMS (ESI-TOF) m/z: [M+Na]+, calcd for C21H20O2S2Na: 391.0802; found: 391.0798. (E)-(3-methyl-3-tosylpent-1-ene-1,5-diyl)dibenzene (3-31): yellow oil (55.4mg, 71%); PE/EA=20/1 as eluent; 1H NMR (400 MHz, CDCl3) δ: 7.65(d, J=8.4Hz, 2H), 7.34(d, J=8.4Hz, 4H), 7.31-7.22(m, 5H), 7.20-7.15(m, 3H), 6.34(d, J=16.4Hz, 1H), 6.24(d, J=16.4Hz, 1H), 2.67-2.52(m, 2H), 2.39(s, 3H), 2.36-2.31(m, 2H), 1.56(s, 3H); C NMR (100 MHz, CDCl3) δ: 144.5, 141.0, 136.0, 134.9, 132.3, 130.6, 129.0, 128.7,

13

128.4, 128.3, 128.3, 126.6, 126.4, 126.1, 68.0, 35.1, 30.3, 21.5, 17.1; HRMS (ESITOF) m/z: [M+Na]+, calcd for C25H26O2SNa: 413.1551; found: 413.1548.

AUTHOR INFORMATION Corresponding Authors E-mail: [email protected]; E-mail: [email protected]; E-mail: [email protected].

NOTES The authors declare no competing financial interest.

SUPPORTING INFORMATION The copies of 1H, 13C spectra for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org. Crystallographic data (CIF) for compound 3-1 (CIF)

ACS Paragon Plus Environment

Page 18 of 23

Page 19 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

ACKNOWLEDGEMENTS This work was supported by grants from the National Natural Science Foundation of China (21702177), Key Scientific Research Project of Higher Education of Henan Province, China (18A150045), and the program of China Scholarships Council (201708410040)

REFERENCES (1) (a) Simpkins, N. S.; Sulfones in Organic Synthesis, Pergamon, Oxford, 1993. (b) Taylor, R. J. K.; Casy, G. The Ramberg-Bäcklund Reaction. Org. React. 2003, 62, 357. (c) Plesniak, K.; Zarecki, A.; Wicha, J. The Smiles Rearrangement and the Juliakocienski Olefination Reaction. Top. Curr. Chem. 2007, 275, 163. (d) El-Awa, A.; NoShi, M. N.; du Jourdin, X. M.; Fuchs, P. L. Evolving Organic Synthesis Fostered by the Pluripotent Phenylsulfone Moiety. Chem. Rev. 2009, 109, 2315. (e) Alba, A. R.; Companyó, X.; Rios, R. Sulfones: New Reagents in Organocatalysis. Chem. Soc. Rev. 2010, 39, 2018. (2) (a) Reck, F.; Zhou, F.; Girardot, M.; Kern, G.; Eyermann, C. J.; Hales, N. J.; Ramsay, R. R.; Gravestock, M. B. Identification of 4-Substituted 1,2,3-Triazoles as Novel Oxazolidinone Antibacterial Agents with Reduced Activity against Monoamine Oxidase A. J. Med. Chem. 2005, 48, 499. (b) Pabba, C.; Gregg, B. T.; Kitchen, D. B.; Chen, Z. J.; Judkins, A. Design and Synthesis of Aryl Ether and Sulfone Hydroxamic Acids as Potent Histone Deacetylase (HDAC) Inhibitors. Bioorg. Med. Chem. Lett. 2011, 21, 324. (c) Chen, X.; Hussain, S.; Parveen, S.; Xhang, S.; Yang, Y.; Zhu, C. Sulfonyl Group-Containing Compounds in the Design of Potential Drugs for the Treatment of Diabetes and Its Complications. Curr. Med. Chem. 2012, 19, 3578. (3) (a) Solladie, G.; in Comprehensive Organic Synthesis, ed. Trost, B. M.; Fleming, I.; Pergamon Press, Oxford, U.K., 1991, vol. 6, p.133. (b) Procter, D. J. The Synthesis of Thiols, Selenols, Sulfides, Selenides, Sulfoxides, Selenoxides, Sulfones and Selenones. J. Chem. Soc., Perkin Trans. 1. 2001, 335. (c) Choi, S.; Yang, J.-D.; Ji, M.; Choi, H.; Kee, M.; Ahn, K.-H.; Byeon, S.-H.; Baik, W.; Koo, S. Selective Oxidation

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 20 of 23

of Allylic Sulfides by Hydrogen Peroxide with the Trirutile-type Solid Oxide Catalyst LiNbMoO6. J. Org. Chem. 2001, 66, 8192. (d) Chandrasekhar, S.; Jagadeshwar, V.; Saritha, B.;

Narsihmulu, C. Palladium-Triethylborane-Triggered Direct

and

Regioselective Conversion of Allylic Alcohols to Allyl Phenyl Sulfones. J. Org. Chem. 2005, 70, 6506. (e) Gais, H.-J. in Asymmetric Synthesis with Chemical and Biological Methods, ed. Enders, D.; Jäger, K.-E.; Wiley-VCH, Weinheim, Germany, 2007, p. 215. (f) Reddy, M. A.; Reddy, P. S.; Sreedhar, B. Iron(III) Chloride-Catalyzed Direct Sulfonylation of Alcohols with Sodium Arenesulfinates. Adv. Synth. Catal. 2010, 352, 1861. (g) Ueda, M.; Hartwig, J. F. Iridium-Catalyzed, Regio- and Enantioselective Allylic Substitution with Aromatic and Aliphatic Sulfinates. Org. Lett. 2010, 12, 92. (4) (a) Xiao, Q.; Zhang, Y.; Wang, J. Diazo Compounds and N-Tosylhydrazones: Novel Cross-Coupling Partners in Transition-Metal-Catalyzed Reactions. Acc. Chem. Res. 2013, 46, 236; (b) Xia, Y.; Wang, J. N-Tosylhydrazones: Versatile Synthons in the Construction of Cyclic Compounds. Chem. Soc. Rev. 2017, 46, 2306. (c) Xia, Y.; Qiu, D.; Wang, J. Transition-Metal-Catalyzed Cross-Couplings through Carbene Migratory Insertion. Chem. Rev. 2017, 117, 13810. and references therein. (5) For rencently work on palladium catalysed insertion diazo compund, followed by β-hydride elimination see: (a) Zhou, Y.; Ye, F.; Wang, X.; Xu, S.; Zhang, Y.; Wang, J. Synthesis of Alkenylphosphonates through Palladium-Catalyzed Coupling of α-Diazo Phosphonates with Benzyl or Allyl Halides. J. Org. Chem. 2015, 80, 6109. (b) Luo, H.; Wu, G.; Xu, S.; Wang, K.; Wu, C.; Zhang, Y.; Wang, J. Palladium-Catalyzed CrossCoupling of Aryl Fluorides with N-tosylhydrazones via C-F Bond Activation. Chem. Commun. 2015, 51, 13321. (c) Wang, K.; Chen, S.; Zhang, H.; Xu, S.; Ye, F.; Zhang, Y.; Wang, J. Pd(0)-Catalyzed Cross-Coupling of Allyl Halides with α-diazocarbonyl Compounds or N-mesylhydrazones: Synthesis of 1,3-Diene Compounds. Org. Biomol. Chem. 2016, 14, 3809. (d) Ngo, T. N.; Dang, T. T.; Villinger, A.; Langer, P. Regioselective Synthesis of Naphtho-fused Heterocycles via Palladium(0)-Catalyzed Tandem Reaction of N-Tosylhydrazones. Adv. Synth. Catal. 2016, 358, 1328. (e) Mao,

ACS Paragon Plus Environment

Page 21 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

M.; Zhang, L.; Chen, Y.-Z.; Zhu, J.; Wu, L. Palladium-Catalyzed Coupling of Allenylphosphine Oxides with N-Tosylhydrazones toward Phosphinyl [3]Dendralenes. ACS. Catal. 2017, 7, 181. (f) Paraja, M.; Valdés, C. Pd-Catalyzed Autotandem Reactions with N-Tosylhydrazones. Synthesis of Condensed Carbo- and Heterocycles by Formation of a C-C Single Bond and a C=C Double Bond on the Same Carbon Atom. Org. Lett. 2017, 19, 2034. (6) (a) Zhou, L.; Ye, F.; Zhang, Y.; Wang, J. Pd-Catalyzed Three-Component Coupling of N-Tosylhydrazone, Terminal Alkyne, and Aryl Halide. J. Am. Chem. Soc. 2010, 132, 13590. (b) Xia, Y.; Hu, F.; Liu, Z.; Qu, P.; Ge, R.; Ma, C.; Zhang, Y.; Wang, J. Palladium-Catalyzed Diarylmethyl C(sp3)-C(sp2) Bond Formation: A New Coupling Approach toward Triarylmethanes. Org. Lett. 2013, 15, 1784. (c) Gutman, E. S.; Arredondo, V.; Van Vranken, D. L. Cyclization of η3-Benzylpalladium Intermediates Derived from Carbene Insertion. Org. Lett. 2014, 16, 5498. (d) Paraja, M.; PérezAguilar, M. C.; Valdés, C. The Pd-catalyzed Synthesis of Benzofused Carbo- and Heterocycles through Carbene Migratory Insertion/Carbopalladation Cascades with Tosylhydrazones. Chem. Commun. 2015, 51, 16241. (e) Arunprasath, D.; Muthupandi, P.; Sekar, G. Palladium-Catalyzed Intermolecular Carbene Insertion Prior to Intramolecular Heck Cyclization: Synthesis of 2-Arylidene-3-aryl-1-indanones. Org. Lett. 2015, 17, 5448. (f) Paraja, M.; Valdés, C. Pd-Catalyzed Cascade Reactions between o-iodo-N-alkenylanilines and Tosylhydrazones: Novel Approaches to the Synthesis of Polysubstituted Indoles and 1,4-Dihydroquinolines. Chem. Commun. 2016, 52, 6312. (g) Xia, Y.; Hu, F.; Xia, Y.; Liu, Z.; Ye, F.; Zhang, Y.; Wang, J. Synthesis of Di- and Triarylmethanes through Palladium-Catalyzed Reductive Coupling of N-Tosylhydrazones and Aryl Bromides. Synthesis. 2017, 49, 1073. (7) (a) Zhang, Z.; Liu, Y.; Gong, M.; Zhao, X.; Zhang, Y.; Wang, J. PalladiumCatalyzed Carbonylation/Acyl Migratory Insertion Sequence. Angew. Chem., Int. Ed. 2010, 49, 1139. (b) Zhou, P.-X.; Zhou, Z.-Z.; Chen, Z.-S.; Ye, Y.-Y.; Zhao, L.-B.; Yang, Y.-F.; Xia, X.-F.; Luo, J.-Y.; Liang, Y.-M. Palladium-Catalyzed Insertion of αdiazocarbonyl Compounds for the Synthesis of Cyclic Amino Esters. Chem. Commun.

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

2013, 49, 561. (c) Arunprasath, D.; Bala, B. D.; Sekar, G. Stereoselective Construction of α-Tetralone-Fused Spirooxindoles via Pd-Catalyzed Domino Carbene Migratory Insertion/Conjugate Addition Sequence. Org. Lett. 2017, 19, 5280. (8) (a) Zhou, P.-X.; Luo, J.-Y.; Zhao, L.-B.; Ye, Y.-Y.; Liang, Y.-M. PalladiumCatalyzed Insertion of N-tosylhydrazones for the Synthesis of Isoindolines. Chem. Commun, 2013, 49, 3254. (b) Ye, Y.-Y.; Zhou, P.-X.; Luo, J.-Y.; Zhong, M.-J.; Liang, Y.-M. Palladium-Catalyzed Insertion of α,β-unsaturated N-tosylhydrazones and Trapping with Carbon Nucleophiles. Chem. Commun. 2013, 49, 10190; (c) Zhou, P.X., Ye, Y.-Y., Zhao, L.-B., Hou, J.-Y., Kang, X., Chen, D.-Q., Tang, Q., Zhang, J.-Y., Huang, Q.-X., Zheng, L., Ma, J.-W., Xu, P.-F. Liang, Y.-M. Using N-tosylhydrazone as a Double Nucleophile in the Palladium-Catalyzed Cross-Coupling Reaction to Synthesize Allylic Sulfones. Chem. Eur J. 2014, 20, 16093. (9) (a) Khanna, A.; Maung, C.; Johnson, K. R.; Luong, T. T.; Van Vranken, D. L. Carbenylative Amination with N-Tosylhydrazones. Org. Lett. 2012, 14, 3233. (b) Zhou, P.-X.; Ye, Y.-Y.; Liang, Y.-M. Palladium-Catalyzed Insertion of Ntosylhydrazones and Trapping with Carbon Nucleophiles. Org. Lett. 2013, 15, 5080. (c) Xia, Y.; Xia, Y.; Zhang, Y.; Wang, J. Palladium-Catalyzed Coupling of NTosylhydrazones and β-bromostyrene Derivatives: New Approach to 2H-chromenes. Org. Biomol. Chem. 2014, 12, 9333. (d) Premachandra, I. D. U. A.; Nguyen, T. A.; Shen, C.; Gutman, E. S.; Van Vranken, D. L. Carbenylative Amination and Alkylation of Vinyl Iodides via Palladium Alkylidene Intermediates. Org. Lett. 2015, 17, 5464. (10) (a) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Parisi, L. M. Unsymmetrical Diaryl Sulfones through Palladium-Catalyzed Coupling of Aryl Iodides and Arenesulfinates. Org. Lett. 2002, 4, 4719. (b) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Parisi, L. M.; Bernini, R. Unsymmetrical Diaryl Sulfones and Aryl Vinyl Sulfones through Palladium-Catalyzed Coupling of Aryl and Vinyl Halides or Triflates with Sulfinic Acid Salts. J. Org. Chem. 2004, 69, 5608. (11) (a) Chen, Z.-S.; Duan, X.-H.; Wu, L.-Y.; Ali, S.; Ji, K.-G.; Zhou, P.-X.; Liu, X.Y.; Liang, Y.-M. Palladium-Catalyzed Coupling of Propargylic Carbonates with N-

ACS Paragon Plus Environment

Page 22 of 23

Page 23 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

tosylhydrazones: Highly Selective Synthesis of Substituted Propargylic Nsulfonylhydrazones and Vinylallenes. Chem. Eur. J. 2011, 17, 6918. (b) Chen, Z.-S.; Duan, X.-H.; Zhou, P.-X.; Ali, S.; Luo, J.-Y.; Liang, Y.-M. Palladium-Catalyzed Divergent Reactions of α-diazocarbonyl Compounds with Allylic Esters: Construction of Quaternary Carbon Centers. Angew. Chem. Int. Ed. 2012, 51, 1370. (c) Zhou, P.-X.; Zheng, L.; Ma, J.-W.; Ye, Y.-Y.; Liu, X.-Y.; Xu, P.-F.; Liang, Y.-M. PalladiumCatalyzed/Norbornene-mediated C-H Activation/N-tosylhydrazone Insertion Reaction: a Route to Highly Functionalized Vinylarenes. Chem. Eur. J. 2014, 20, 6745. (12) Denmark, S. E.; Wang, Z. Palladium Catalyzed Cross-Coupling of (Z)-1Heptenyldimethylsilanol with 4-Iodoanisole: (Z)-1-Heptenyl-4-methoxybenzene. Org. Synth. 2005, 81, 42. (13) Negishi, E.; Van Horn, D. E.; T. Yoshida, Controlled Carbometalation. 20. Carbometalation Reaction of Alkynes with Organoalene-zirconocene Derivatives as a Route to Stereo-and Regiodefined Trisubstituted Alkenes. J. Am. Chem. Soc. 1985, 107, 6639. (14) Fulton, J. R.; Aggarwal, V. K.; de Vicente, J. The Use of Tosylhydrazone Salts as a Safe Alternative for Handling Diazo Compounds and Their Applications in Organic Synthesis. Eur. J. Org. Chem. 2005, 1479.

ACS Paragon Plus Environment