Performance Relationships in Surfactants - ACS Publications

low s u r f a c t a n t c o n c e n t r a t i o n s from the s t u d i e s on p r e c i p i t a t i n g systems ..... Killam Foundation for the award ...
0 downloads 0 Views 1MB Size
15 Binding of Alkylpyridinium Cations by Anionic Polysaccharides 1

2

A. MALOVIKOVA and KATUMITU HAYAKAWA

Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J3 JAN C. T. KWAK

Downloaded by UNIV OF ARIZONA on January 5, 2013 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch015

Département de chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1

Solid state electrodes selective for alkylpyridinium cations are used to study the binding of these surfactants cations, with C , C and C alkyl chainlengths, to a number of anionic polyelectrolytes. The electrodes are shown to be effective from very low surfactant concentrations to the cmc, and can be used for accurate cmc determinations in solutions of high ionic strength. Binding isotherms of the alkylpyridinium cations with polyacrylate, alginate, pectate and pectinates are presented. A l l isotherms are highly cooperative. The surfactant chainlength dependence of the overall binding constant is identical to the case of micelle formation of the free surfactant, but for a given surfactant the overall binding constant depends strongly on the charge density of the polyion. 12

14

16

The binding of ionic surfactants by polyions of opposite charge distinguishes itself from the much more widely studied case of binding by neutral water soluble polymers mainly because binding occurs at much lower free surfactant concentrations ( 1 2 ) · Thus, while the binding of ionic surfactants by neutral polymers is normally studied at concentrations close to or above the cmc of the surfactant, in the case of oppositely charged polyions and surfactant ions the first binding may take place at concentrations orders of magnitude below the cmc of the surfactant. It is therefore not surprising that a detailed study of this, binding process had to await the development of suitable analytical methods, notably surfactant selective electrodes (2-10). The pioneering paper by Satake and Yang (2) demonstrates the strongly cooperative 5

1

Current address: Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Czechoslovakia Current address: Department of Chemistry, Kagoshima University, Kagoshima, 890 Japan 2

0097-6156/ 84/ 0253-0225S06.00/ 0 © 1984 American Chemical Society

In Structure/Performance Relationships in Surfactants; Rosen, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Downloaded by UNIV OF ARIZONA on January 5, 2013 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch015

226

STRUCTURE/PERFORMANCE RELATIONSHIPS IN SURFACTANTS

c h a r a c t e r of the b i n d i n g of d e c y l s u l f a t e anions by h i g h l y charged cationic polypeptides. These a u t h o r s i n t e r p r e t t h e i r b i n d i n g i s o therms i n terms of a n e a r e s t n e i g h b o u r i n t e r a c t i o n model, w i t h h y d r o p h o b i c i n t e r a c t i o n s b e t w e e n n e i g h b o u r i n g bound s u r f a c t a n t i o n s a c c o u n t i n g f o r the i n c r e a s e of the apparent b i n d i n g c o n s t a n t with increased binding. They a p p l y t h e t h e o r y o f Zimm and B r a g g , developed to d e s c r i b e the h e l i x c o i l t r a n s i t i o n i n p o l y p e p t i d e s (11), to the case of s u r f a c t a n t b i n d i n g by polymers, e f f e c t i v e l y f i t t i n g t h e o b s e r v e d b i n d i n g i s o t h e r m t o two p a r a m e t e r s , i . e . K, the " i n t r i n s i c b i n d i n g c o n s t a n t " between a n i s o l a t e d polymer b i n d i n g s i t e and a s i n g l e s u r f a c t a n t i o n , and u , a " c o o p e r a t i v e t y parameter" presumably determined by the hydrophobic i n t e r a c t i o n s b e t w e e n n e i g h b o u r i n g s u r f a c t a n t s . The S a t a k e - Y a n g t r e a t m e n t p a r a l l e l s the t h e o r y o f Schwarz developed t o d e s c r i b e t h e b i n d i n g of a n i o n i c d y e s t o l i n e a r b i o p o l y m e r s ( 1 2 ) , and i n f a c t t h e b i n d i n g o f l o n g c h a i n s u r f a c t a n t s may b e a much b e t t e r t e s t o f s u c h a t h e o r y t h a n t h e c a s e o f r e l a t i v e l y b u l k y and s t i f f dye m o l e c u l e s . S i n c e t h e w o r k o f S a t a k e and Y a n g , a number o f o t h e r s t u d i e s have appeared employing s u r f a c t a n t s e l e c t i v e e l e c t r o d e s to study t h e b i n d i n g o f a n i o n i c s u r f a c t a n t s b y c a t i o n i c p o l y m e r s (13-15) o r of c a t i o n i c s u r f a c t a n t s b y a n i o n i c polymers (7,10,16-19), w i t h m o s t o f t h e s e s t u d i e s r e l y i n g o n t h e t h e o r i e s o f Schwarz and S a t a k e and Yang t o d e s c r i b e t h e o b s e r v e d h i g h l y c o o p e r a t i v e b i n d i n g isotherms. A l t h o u g h i n a number o f c a s e s s p e c i a l a t t e n t i o n was g i v e n to c o n f o r m a t i o n a l changes o f the polymer induced b y s u r f a c t a n t a d s o r p t i o n (2,7,20,21) i t i s o f i n t e r e s t t o n o t e t h e d i f f e r e n c e b e t w e e n t h e m o d e l s u s e d t o d e s c r i b e t h e s e d a t a a t v e r y low s u r f a c t a n t and p o l y m e r c o n c e n t r a t i o n s , and t h e much more w i d e l y s t u d i e d c a s e o f b i n d i n g measurements c l o s e t o o r p a s t t h e s u r f a c t a n t cmc ( 1 , 2 2 - 2 8 ) . T h u s , w h e r e a s t h e g e n e r a l l y a c c e p t e d m o d e l f o r m i c e l l a r b i n d i n g e n v i s a g e s a complex where t h e polymer envel o p s many d i s t i n c t , m i c e l l a r - l i k e s u r f a c t a n t a g g r e g a t e s (24,26) i n s u r f a c t a n t i o n p o l y i o n b i n d i n g s t u d i e s a t low s u r f a c t a n t concent r a t i o n s i t i s g e n e r a l l y assumed t h a t t h e p o l y i o n m a i n t a i n s a w e l l d e f i n e d s o l u t i o n conformation, o r the p o l y i o n conformation i s not considered a t a l l , w i t h a d e s c r i p t i o n of the b i n d i n g isotherm i n t e r m s o f a n e a r e s t n e i g h b o u r m o d e l . Such a d e s c r i p t i o n l e a v e s open t h e q u e s t i o n w h e t h e r t h e h y d r o p h o b i c p a r t o f t h e bound s u r f a c t a n t r e m a i n s e x p o s e d t o t h e aqueous p h a s e , o r w h e t h e r a f t e r b i n d i n g the s u r f a c t a n t s aggregate i n t o m i c e l l e - l i k e groups, w i t h the polymer s u r r o u n d i n g the aggregates. I t i s important to note t h a t t h e b i n d i n g b e t w e e n o p p o s i t e l y c h a r g e d s u r f a c t a n t i o n s and p o l y i o n s i n i t i a l l y t a k e s p l a c e w i t h o u t p h a s e s e p a r a t i o n , and i s fully reversible. T h i s d i s t i n g u i s h e s t h e b i n d i n g measurements a t low s u r f a c t a n t c o n c e n t r a t i o n s f r o m t h e s t u d i e s o n p r e c i p i t a t i n g systems w i t h or w i t h o u t subsequent r e d i s s o l u t i o n (1,24). I n p r e v i o u s s t u d i e s we h a v e d e s c r i b e d t h e b i n d i n g o f a l k y l trimethylammonium i o n s to a v a r i e t y of p o l y a n i o n s (16-19). A s has been observed b y o t h e r a u t h o r s , b o t h the a l k y l c h a i n l e n g t h depend e n c e and t h e i o n i c - s t r e n g h t d e p e n d e n c e o f t h e b i n d i n g p r o c e s s

In Structure/Performance Relationships in Surfactants; Rosen, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

15.

MALOVIKOVA ET AL.

Alkylpyridinium Cation Binding

227

were found t o be r e m a r k a b l y s i m i l a r t o t h e case o f m i c e l l e forma­ t i o n , a p p a r e n t l y independent o f whether t h e p o l y i o n has a w e l l d e f i n e d b a c k b o n e c o n f i g u r a t i o n s u c h a s w i t h DNA o r p e c t i c a c i d ( 1 8 , 1 9 ) , o r may b e presumed t o b e e x t r e m e l y f l e x i b l e , e . g . d e x t r a n s u l f a t e o r p o l y ( s t y r e n e s u l f o n a t e ) (16,17). On t h e o t h e r h a n d , the b i n d i n g c o n s t a n t s f o r a g i v e n alkylammonium c a t i o n a r e found t o depend s t r o n g l y o n t h e p o l y m e r s t r u c t u r e a n d c h a r g e d e n s i t y (19). I n t h i s p a p e r we e x t e n d t h e s e measurements t o t h e c a s e o f a l k y l p y r i d i n i u m c a t i o n s w i t h d o d e c y l , t e t r a d e c y l , and h e x a d e c y l a l k y l groups ( t o be a b b r e v i a t e d as C i 2 y * C ^ P y ^ a n d C ^ P y * r e s p e c ­ t i v e l y ) . A s p o l y a n i o n s we c h o o s e two p o l y s a c c h a r i d e s o f w e l l d e ­ f i n e d s t r u c t u r e , i . e . a l g i n i c a c i d , a copolymer o f mannuronic and g u l u r o n i c a c i d , and p e c t i c a c i d , a l i n e a r polymer o f D - g a l a c t u r o n i c a c i d ( 2 9 ) . The i n f l u e n c e o f t h e c h a r g e d e n s i t y o f t h e p o l y i o n i s s t u d i e d by comparing p e c t a t e w i t h p e c t i n a t e s w i t h degrees o f e s t e r i f i c a t i o n o f t h e c o r r e s p o n d i n g p e c t a t e v a r y i n g f r o m 20 t o 70%. I n a d d i t i o n , r e s u l t s a r e p r e s e n t e d f o r b i n d i n g t o t h e sodium s a l t o f p o l y ( a c r y l i c a c i d ) ( P A A ) . P o l y m e r s t r u c t u r e s a r e shown i n F i g u r e 1.

Downloaded by UNIV OF ARIZONA on January 5, 2013 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch015

p

Experimental Surfactants. C - ^ P y C l a n d C-^PyBr w e r e c o m m e r c i a l p r o d u c t s (Tokyo K a s e i K o g y i Co., L t d a n d Eastman Kodak Co., r e s p e c t i v e l y ) . T h e s e p r o d u c t s were p u r i f i e d b y repeated r e c r y s t a l l i z a t i o n from acetone and t r e a t m e n t w i t h a c t i v e c h a r c o a l . C-^PyBr was s y n t h e s i z e d b y r e a c t i n g t h e c o r r e s p o n d i n g a l k y l b r o m i d e (Eastman Kodak), p u r i f i e d by f r a c t i o n a l d i s t i l l a t i o n , w i t h a s l i g h t e x c e s s o f p y r i d i n e ( 3 0 ) . The c r u d e p r o d u c t was p u r i f i e d b y e x t r a c t i o n w i t h d i e t h y l e t h e r , f o l l o w e d b y up t o 6 r e c r y s t a l l i z a t i o n s f r o m a c e t o n e a n d t r e a t m e n t with active charcoal. Polysaccharides. N a - a l g i n a t e was i s o l a t e d f r o m L a m i n a r i a H y p e r b o rea. The g u l u r o n i c a c i d c o n t e n t was f o u n d t o b e 63.6%, c o r r e s p o n ­ d i n g t o a n M/G ( m a n n u r o n i c a c i d / g u l u r o n i c a c i d ) r a t i o o f 0.57. The t o t a l c a r b o x y l a t e c o n c e n t r a t i o n was d e t e r m i n e d b y i o n e x c h a n g e t o t h e a c i d f o r m f o l l o w e d b y t i t r a t i o n w i t h NaOH. P e c t i n s o f v a ­ r i o u s d e g r e e s o f e s t e r i f i c a t i o n , E, w e r e p r e p a r e d f r o m a p u r i f i e d c i t r u s p e c t i n (Genu P e c t i n , K o p e n h a g e n , Denmark) b y c o n t r o l l e d a l k a l i n e d e e s t e r i f i c a t i o n (31). Degree o f e s t e r i f i c a t i o n , i n t r i n ­ s i c v i s c o s i t y [η] and v i s c o s i t y m o l e c u l a r w e i g h t w e r e d e t e r m i n e d u s i n g standard procedures (31,32). The c o n c e n t r a t i o n o f f r e e c a r b o x y l groups i n t h e i n i t i a l ( s t o c k ) s o l u t i o n s o f potassium p e c t a ^ t e a n d s o d i u m p e c t i n a t e w e r e d e t e r m i n e d b y p r e c i p i t a t i o n w i t h Cu (33,34). A n a l y t i c a l grade NaCl, p o l y v i n y l c h l o r i d e ( A l d r i c h , h i g h mol. w t . ) , b i s ( 2 - e t h y l h e x y l ) p h t a l a t e (GR, A l d r i c h ) , a n d t e t r a h y d r o f u r a n (AR, BDH C h e m i c a l s ) w e r e u s e d w i t h o u t f u r t h e r p u r i f i c a t i o n . Polya c r y l i c a c i d , m o l . w t . 250,000 ( A l d r i c h ) was t i t r a t e d w i t h NaOH t o o b t a i n a s t o c k s o l u t i o n o f NaPAA o f known c a r b o x y l a t e c o n c e n t r a ­ tion. +

In Structure/Performance Relationships in Surfactants; Rosen, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

STRUCTURE/PERFORMANCE RELATIONSHIPS IN SURFACTANTS

Downloaded by UNIV OF ARIZONA on January 5, 2013 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch015

228

Potentiometry. F r e e s u r f a c t a n t c o n c e n t r a t i o n s were determined by means o f s o l i d s t a t e membrane e l e c t r o d e s r e s p o n d i n g t o t h e a l k y l ­ p y r i d i n i u m c a t i o n s . The e l e c t r o d e s w e r e made as b e f o r e (16-19) e x c e p t t h a t t h e c a r r i e r c o m p l e x was p r e p a r e d b y r e a c t i n g t h e r e ­ q u i r e d p u r i f i e d a l k y l p y r i d i n i u m bromide w i t h h i g h l y p u r i f i e d sod i u m d o d e c y l s u l f a t e and r e p e a t e d r e c r y s t a l l i z a t i o n f r o m a c e t o n e o f the r e s u l t i n g p r e c i p i t a t e . B i n d i n g curves were determined b y means o f a t i t r a t i o n t e c h n i q u e , w h e r e s u r f a c t a n t s o l u t i o n i s added t o t h e p o l y m e r s o l u t i o n b y means o f a m o t o r i z e d p i s t o n b u r e t . The polymer c o n c e n t r a t i o n i s kept c o n s t a n t by adding an equal volume of polymer s o l u t i o n of double the i n i t i a l c o n c e n t r a t i o n from a se­ cond p i s t o n b u r e t ( 1 8 ) . I n a r e c e n t improvement of our experimen­ t a l s e t - u p , t h e e l e c t r o m e t e r o u t p u t i s now d i g i t i z e d and s t o r e d i n j a m i c r o c o m p u t e r w h i c h a l s o c h e c k s f o r c o n s t a n c y o f t h e e.m.f. a n d a c t i v a t e s the p i s t o n b u r e t s . Thus c o m p l e t e b i n d i n g c u r v e s c a n b e determined unattended. I n a l l m e a s u r e m e n t s t h e t e m p e r a t u r e was c o n s t a n t a t 30.0 ± 0.1°C. R e s u l t s and

Discussion

The s u r f a c e t e n s i o n o f t h e p y r i d i n i u m s u r f a c t a n t s a t 30°C a s a f u n c t i o n o f c o n c e n t r a t i o n w e r e m e a s u r e d b y means o f a Du Nouy r i n g tensiometer (Figure 2). No m i n i m a a r e a p p a r e n t i n t h e C-^ and c u r v e s , b u t a s m a l l minimum i n t h e C-j^ c u r v e i n d i c a t e s t h e p r e s e n ­ c e o f a m i n o r i m p u r i t y i n t h e c o m m e r c i a l C-joPyCl u s e d , e v e n a f t e r repeated r e c r y s t a l l i z a t i o n s . I n s p i t e of t h i s , our r e s u l t f o r the cmc, 1.40 (± 0.04) χ 10~2 m i s i n v e r y r e a s o n a b l e a g r e e m e n t w i t h l i t e r a t u r e d a t a r e p o r t e d a s 1.46 χ 10"" , 1.48 χ 10""* and 1.78 χ 10~2 f r o m c o n d u c t a n c e ( 3 5 - 3 7 ) and 1.62 χ 10"^ f r o m s u r f a c e t e n s i o n ( 3 7 ) , a l l a t 25°C. F o r C P y B r we f i n d a cmc o f 2.65 (± 0.05) χ 10""^ m, t y p i c a l l i t e r a t u r e v a l u e s a r e g i v e n a s 2.57 χ 10"" 3 m f r o m s u r f a c e t e n s i o n (35) and 2.63 χ 10"^ m f r o m c o n d u c t a n c e ( 3 6 ) . F i ­ n a l l y , f o r C P y B r we o b t a i n 6.2 (± 0.1) χ 10"^ m, w h e r e l i t e r a t u ­ r e v a l u e s v a r y r a t h e r w i d e l y , i . e . 5.8 χ 10~4 (35,38) a t 2 5 ° C and 7.05 χ 10""^ a t 3 0 ° C ( 3 6 ) , b o t h v a l u e s f r o m c o n d u c t a n c e , and 6.6 χ 10-4 25°C f r o m s u r f a c e t e n s i o n ( 3 9 ) . N o t e t h a t A n a c k e r (40) has p o i n t e d o u t some d i f f i c u l t i e s i n t h e d e t e r m i n a t i o n o f t h e cmc of C ^ P y C l by conductance. T y p i c a l e l e c t r o d e p e r f o r m a n c e s a r e shown i n F i g u r e 2 f o r C - j ^ and C;L£ p y r i d i n i u m c a t i o n s i n t h e p r e s e n c e o f a l a r g e e x c e s s o f N a C l . We n o t e t h a t t h e e l e c t r o d e s h a v e a n e x c e l l e n t s e l e c t i v i t y f o r t h e s u r f a c t a n t c a t i o n . R e s p o n s e i s N e r n s t i a n f r o m b e l o w 10~6 m t o t h e cmc f o r C ^ P y t and f r o m a b o u t 3 χ 10"^ m t o t h e cmc f o r C-j^Py and C - ^ P y ^ i n o t shown). In f a c t , the e l e c t r o d e s provide f o r a c o n v e n i e n t and a c c u r a t e m e t h o d t o d e t e r m i n e t h e cmc i n p a r t i c u ­ l a r of the higher chainlength c a t i o n i c s u r f a c t a n t s i n s o l u t i o n s o f h i g h i o n i c s t r e n g t h , w h e r e o t h e r m e t h o d s become i n c r e a s i n g l y more d i f f i c u l t ( 4 0 ) . An example of t h e p o s s i b l e a p p l i c a t i o n of t h e s e e l e c t r o d e s i n t h e r m o d y n a m i c s t u d i e s i s shown i n F i g u r e 4, w h e r e t h e cmc a s o b t a i n e d f r o m d a t a s u c h a s i n F i g u r e 3 i s p l o t t e d v s the t o t a l c o u n t e r i o n c o n c e n t r a t i o n . When e x t r a p o l a t e d t o = 2

1 4

1 6

a

t

In Structure/Performance Relationships in Surfactants; Rosen, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

MALOVIKOVA ET AL.

V T

229

Alkylpyridinium Cation Binding

oTk

poly mannuronic acid

ΗθΥ^\

θ /

ALGINIC ACID

Downloaded by UNIV OF ARIZONA on January 5, 2013 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch015

H O

polyguluironic acid

°/o^°^/

polygalacturonic acid MO-V^

HO

PECTIC ACID

1

-fÇH-CH^

POLYACRYLIC ACID

COOH

F i g u r e 1.

Polymer

structures.

logm

F i g u r e 2.

D

S u r f a c e t e n s i o n o f a l k y l p y r i d i n i u m h a l i d e s a t 30°C. ο Ci PyCl; Δ C PyBr; • C PyBr. N o t e s h i f t s i n v e r t i c a l s c a l e f o r C]_2 a n d C ^ . 2

1 4

i 6

4

In Structure/Performance Relationships in Surfactants; Rosen, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

STRUCTURE/PERFORMANCE RELATIONSHIPS IN SURFACTANTS

Downloaded by UNIV OF ARIZONA on January 5, 2013 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch015

230

In Structure/Performance Relationships in Surfactants; Rosen, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

15.

MALOVIKOVA ET AL.

231

Alkylpyridinium Cation Binding

0, we o b t a i n f o r p u r e C - ^ P y C l l o g cmc = -2.37 ± 0.03, a n d f o r C-i^PyCl l o g cmc = -3.07 ± 0.02. O b v i o u s l y b e t t e r accuracy can be o b t a i n e d i n a more c o m p l e t e s t u d y w i t h d a t a a t l o w e r N a C l c o n c e n ­ t r a t i o n s , b u t even t h e s e numbers a r e i n r e a o n a b l e a g r e e m e n t w i t h l i t e r a t u r e d a t a a t 25°C f o r l o g cmc q u o t e d a s -2.40 (36) a n d -3.05 (35) f o r C-j^PyCl a n d C ^ ^ P y C l r e s p e c t i v e l y . S i m i l a r l y , i f we c a l ­ c u l a t e t h e f r e e e n e r g y o f m i c e l l i z a t i o n , AG f r o m t h e i n t e r c e p t a t l o g m c i = 0 we o b t a i n -29.9 k J / m o l e f o r C ^ P y C l a n d -23.5 k J / m o l e f o r C - ^ P y C l , i . e . a c o n t r i b u t i o n p e r CH2 g r o u p o f 3.2 k J / m o l e o r 1.27 RT, a n d f r o m t h e s l o p e o f t h e l o g cmc v s l o g m c ^ c u r v e s we c a l c u l a t e a n a p p a r e n t d e g r e e o f c o u n t e r i o n d i s s o c i a t i o n o f 0.30 ± 0.02 i n b o t h c a s e s . T h e s e numbers a r e i n good agreement w i t h e x p e c t e d v a l u e s ( 4 1 ) , perhaps even s u r p r i s i n g l y s o g i v e n t h e h i g h i o n i c s t r e n g t h o f t h e systems from w h i c h t h e s e v a l u e s have been c a l c u l a t e d . F o r t h e moment t h e y s e r v e t o u n d e r l i n e t h e r e ­ l i a b l e performance o f the e l e c t r o d e s i n s o l u t i o n s o f w i d e l y v a ­ r y i n g i o n i c s t r e n g t h , such as encountered i n the p r e s e n t b i n d i n g s t u d i e s , and we l e a v e t h e a p p l i c a t i o n o f t h e e.m.f. method t o cmc d e t e r m i n a t i o n s e s p e c i a l l y o f s y s t e m s w i t h l o w cmc a n d h i g h c o n c e n ­ t r a t i o n o f v a r i o u s added e l e c t r o l y t e s , i n c l u d i n g m u l t i v a l e n t c o u n t e r i o n s , t o the future. I n p r e v i o u s p u b l i c a t i o n s (10,16) we h a v e d e s c r i b e d t h e p r o c e ­ d u r e u s e d t o o b t a i n t h e d e g r e e o f b i n d i n g , 3, d e f i n e d a s N a

Downloaded by UNIV OF ARIZONA on January 5, 2013 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch015

Na

β =

-

(

%

ν ξ ) /

%

(1)

f

where m i s t h e t o t a l s u r f a c t a n t c o n c e n t r a t i o n , m t h e f r e e s u r ­ f a c t a n t c o n c e n t r a t i o n and m t h e monomolar p o l y i o n c o n c e n t r a t i o n ( i . e . m o l e s COO /kg H 0 ) , f r o m t h e e.m.f. d a t a . A l l o u r d a t a w i l l be p r e s e n t e d a s " b i n d i n g i o s t h e r m s " , w h e r e 3 i s p l o t t e d v s l o g m^. As h a s b e e n d e m o n s t r a t e d b e f o r e (19) t h e a v e r a g e l i n e a r c h a r g e s e ­ p a r a t i o n on the polymer i s the predominant f a c t o r i n d e t e r m i n i n g the m|) r e g i o n w h e r e c o o p e r a t i v e b i n d i n g i s o b s e r v e d . T h i s c h a r g e s e p a r a t i o n on the p o l y i o n i s o f t e n expressed i n the form o f a charge d e n s i t y parameter ξ , D

D

p

2

ξ = e /cbkT 2

(2)

where e i s the p r o t o n i c c h a r g e , ε the d i e l e c t r i c c o n s t a n t , k t h e B o l z m a n n c o n s t a n t and Τ t h e t e m p e r a t u r e , a n d b i s t h e a v e r a g e l i ­ near charge s e p a r a t i o n on the polymer, i . e . the average d i s t a n c e between charged groups on the f u l l y extended polymer. Thus t h e c h a r g e d e n s i t y p a r a m e t e r ξ o f p o l y a c r y l a t e has t h e v a l u e 2.83 t y ­ p i c a l f o r v i n y l i c p o l y m e r c h a i n s . F o r p e c t a t e ξ = 1.61 i f we a s ­ sume t h a t t h e 1 0 % n e u t r a l s u g a r s i n t h i s p o l y m e r a r e n o t r a n d o m l y distributed. A s i s d i s c u s s e d i n r e f . 19, i n t h e c a s e o f a l g i n a t e t h e r e a r e good r e a s o n s t o assume t h a t t h e c h a r g e d e n s i t y p a r a m e t e r ξ i s s l i g h t l y l a r g e r t h a n t h e v a l u e o f 1.43 e x p e c t e d f o r a polymannuronic acid chain. Both the presence o f g u l u r o n i c a c i d b l o c k s , and t h e l a r g e r f l e x i b i l i t y o f t h i s p o l y m e r (42) w o u l d i n d i c a t e a v a l u e i n b e t w e e n 1.43 a n d 1.61, t h e v a l u e f o r p e c t a t e ( 1 9 ) . A t y ­ p i c a l e x a m p l e o f t h e i n f l u e n c e o f t h e c h a r g e d e n s i t y i s shown i n

In Structure/Performance Relationships in Surfactants; Rosen, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

232

STRUCTURE/PERFORMANCE RELATIONSHIPS IN SURFACTANTS

F i g u r e 5 , w h e r e we compare t h e b i n d i n g o f C-j^Py*" i n t h e p r e s e n c e o f 0 . 0 1 m N a C l t o PAA, p e c t a t e and a l g i n a t e . We n o t e t h a t t h e o r d e r o f t h e o v e r a l l b i n d i n g c o n s t a n t Ku, d e f i n e d b y ( _ 2 , J ^ » 1 2 » 1 6 ) v a r i e s

Downloaded by UNIV OF ARIZONA on January 5, 2013 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch015

Ku =

( J ^

(3)

i n t h e o r d e r PAA » a l g i n a t e > p e c t a t e . This order of Ku i s the same as was o b s e r v e d f o r a l k y l t r i m e t h y l a m m o n i u m i o n s ( 1 9 ) , b u t i n the p r e s e n t case of a l k y l p y r i d i n i u m i o n s the d i f f e r e n c e between a l g i n a t e and p e c t a t e i s s l i g h t l y more p r o n o u n c e d . A number o f o t h e r minor but t y p i c a l c h a r a c t e r i s t i c s can b e observed i n F i g u r e 5. B i n d i n g t o PAA r e a c h e s a s e c o n d c r i t i c a l p o i n t a r o u n d 3 = 0 . 7 , a g a i n s i m i l a r to the case of the corresponding trimethylammonium ions. A l l a l k y l p y r i d i n i u m b i n d i n g curves g i v e i n d i c a t i o n s of a t w o - s t e p b i n d i n g p r o c e s s , as may b e d e d u c e d f r o m t h e b e h a v i o u r o f the b i n d i n g isotherms below 3 0.5. The p e c t a t e b i n d i n g c u r v e seems t o l e v e l o f f above 3 = 1 , p o s s i b l y i n d i c a t i n g that the a l ­ k y l p y r i d i n i u m i o n can b i n d t o the a p p r o x i m a t e l y 1 0 % n e u t r a l sugars present i n p e c t a t e but not i n a l g i n a t e . A l l the p e c t a t e b i n d i n g curves e x h i b i t a s i g n i f i c a n t l y lower c o o p e r a t i v i t y , i . e . the r i s e i n 3 w i t h i n c r e a s i n g m^ i s l e s s s t e e p , t h a n t h e c o r r e s p o n d i n g a l ­ ginate binding curve. I n F i g u r e 6 we compare t h e b i n d i n g o f C i 2 P y a n d C-j^Py*" t o PAA to the case of t h e c o - r e s p o n d i n g d o d e c y l - and t e t r a d e c y l t r i m e t h y l ammonium i o n s (DTA and T T A ) b o t h i n t h e p r e s e n c e o f 0 . 0 1 m N a C l , and i n F i g u r e 7 a s i m i l a r c o m p a r i s o n i s made f o r C ^ 4 P y a n d C-j^Py"*" b i n d i n g t o a l g i n a t e and p e c t a t e . The r e m a r k a b l y c o n s i s t e n t b i n ­ d i n g p a t t e r n s o f the v a r i o u s c a t i o n s and p o l y i o n s a t t e s t not o n l y t a the r e p r o d u c i b i l i t y of the r e s u l t s , but a l s o to the h i g h l y spe­ c i f i c c h a r a c t e r of the b i n d i n g p r o c e s s . In the case of p o s t - m i c e l l a r b i n d i n g the polymer c o n c e n t r a t i o n i s an important parameter (24). I n the p r e s e n t case the r e l a t i o n between t h e degree of b i n ­ d i n g , 3 , and t h e f r e e s u r f a c t a n t c o n c e n t r a t i o n , m^, i s c o m p l e t e l y independent of the e q u i v a l e n t polymer c o n c e n t r a t i o n . For i n s t a n ­ c e , «curves i n F i g u r e s 5-8 r e p r e s e n t p o l y m e r m o n o m o l a l c o n c e n t r a ­ t i o n s o f 1 0 " 4 , 5 χ 1 0 4 , n d i f j - 3 , w i t h o u t any n o t i c e a b l e d i f f e ­ r e n c e i n t h e t r e n d s o b s e r v e d . F i n a l l y , i n F i g u r e 8 we show t h e i n f l u e n c e of the polymer backbone, v a r y i n g the degree of e s t e r i f i c a t i o n o f t h e c a r b o x y l g r o u p i n p e c t i n a t e s d e r i v e d f r o m t h e same polypectate. R e l e v a n t p a r a m e t e r s c h a r a c t e r i z i n g t h e p e c t a t e and p e c t i n a t e s used are given i n Table I ( 3 1 , 4 3 ) . A l l binding iso­ therms i n F i g u r e 8 a r e f o r a n e q u i v a l e n t p o l y i o n c o n c e n t r a t i o n (COO c o n c e n t r a t i o n ) o f 1 χ 1 0 " 3 m, n o t e t h a t t h e r e f o r e t h e a c t u a l polymer c o n c e n t r a t i o n i n c r e a s e s as the degree of e s t e r i f i c a t i o n increases. The i n f l u e n c e o f t h e c h a r g e d e n s i t y i s e v i d e n t . I n a d d i t i o n , t h e i n f l u e n c e o f t h e added N a C l c o n c e n t r a t i o n shows a n i n t e r e s t i n g p a t t e r n : t h e d i f f e r e n c e b e t w e e n t h e m^ v a l u e s a t t h e h a l f - b o u n d p o i n t ( 3 = 0 . 5 ) between m i = 0 . 0 1 and 0 . 0 2 i s l a r ­ g e s t f o r p e c t a t e (and a p p r o x i m a t e l y as e x p e c t e d compared e.g. t o t h e c a s e o f d e x t r a n s u l f a t e ( 1 6 ) ) and becomes p r o g r e s s i v e l y s m a l l e r as t h e p o l y i o n c h a r g e d e n s i t y d e c r e a s e s . =

+

+

+

+

_

a

m

N a C

In Structure/Performance Relationships in Surfactants; Rosen, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

MALOVIKOVA ET AL.

Alkylpyridinium Cation Binding

Downloaded by UNIV OF ARIZONA on January 5, 2013 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch015

15.

In Structure/Performance Relationships in Surfactants; Rosen, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

233

Downloaded by UNIV OF ARIZONA on January 5, 2013 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch015

234

STRUCTURE/PERFORMANCE RELATIONSHIPS IN SURFACTANTS

m

m

F i g u r e 7. P o l y u r o n i d e b i n d i n g i s o t h e r m s . ^ " 0.01 « ο Na-alginate; à K-pectate. C u r v e s 1: C P y B r (1 χ 10_3 m u r o n i d e ) ; 2: C ^ P y B r , 3: C P y C l (1 χ 10 m u r o n i d e ) . N

a

C

1 6

1 2

In Structure/Performance Relationships in Surfactants; Rosen, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

15.

MALOVIKOVA ET AL.

TABLE I .

C h a r a c t e r i z a t i o n o f P e c t a t e and P e c t i n a t e s Polyuronides

K-pectate Na-pectinate (2) Na-pectinate (3) Na-pectinate (4)

Downloaded by UNIV OF ARIZONA on January 5, 2013 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch015

3 M* η r

Ε -1

%

%

1 2 3

235

Alkylpyridinium Cation Binding

0 20.6 46.1 70.0

84.9 86.1 83.8 88.9

29,000 41,000 56,000 22,000

0.133 0.211 0.327 0.092

Degree o f e s t e r i f i c a t i o n Intrinsic viscosity M o l e c u l a r weight c a l c u l a t e d from v i s c o s i t y

1.61 1.28 0.87 0.48

( r e f . 43).

A l l b i n d i n g parameters d e r i v e d from f i t t i n g the b i n d i n g i s o ­ therms t o t h e e q u a t i o n s o f S c h w a r z o r S a t a k e and Yang (2,16,19) a r e c o l l e c t e d i n T a b l e I I . A s has b e e n s t a t e d b e f o r e , t h e o v e r a l l b i n d i n g c o n s t a n t Ku can b e d e t e r m i n e d a c c u r a t e l y ( e s t i m a t e d a t ± 2 % ) , b u t t h e d e t e r m i n a t i o n o f Κ and u s e p a r a t e l y i s much more inaccurate. G e n e r a l l y we e s t i m a t e t h e p o s s i b l e e r r o r i n u a t ± 20%. Even i f the model c o n s i d e r a t i o n s w h i c h equate u t o a coop e r a t i v i t y p a r a m e t e r d e s c r i b i n g t h e a g g r e g a t i o n o f bound s u r f a c ­ tant m o l e c u l e s , prove i n c o r r e c t o r i n a p p l i c a b l e , from a n e x p e r i ­ m e n t a l p o i n t o f v i e w u may b e s e e n s i m p l y a s a p a r a m e t e r i n d i c a ­ t i n g the s l o p e o f the b i n d i n g i s o t h e r m i n the c o o p e r a t i v e r e g i o n , i . e . h i g h e r u v a l u e s mean s t e e p e r b i n d i n g i s o t h e r m s . What i s m o s t obvious from Table I I i s the i d e n t i c a l s u r f a c t a n t c h a i n l e n g t h d e ­ pendence o f the Ku v a l u e s f o r a l l p o l y m e r s , independent o f the py­ r i d i n i u m o f trimethylammonium head group o f the s u r f a c t a n t and o f t h e p r e s e n c e o f added s a l t . The d i f f e r e n c e p e r CIL? g r o u p i n I n Ku f o r a l l cases presented i n T a b l e I I averages 1.19 kT, v e r y c l o s e t o t h e v a l u e o f 1.23 kT f o u n d f o r t h e c a s e o f DTA a n d TTA b i n ­ d i n g t o DNA w i t h o r w i t h o u t added N a C l ( 1 8 ) . I t i s hard t o f i n d any o t h e r e x p l a n a t i o n f o r t h i s r e m a r k a b l e c o n s t a n c y t h a n t o assume t h a t t h i s f a c t o r r e f l e c t s only the d i f f e r e n c e i n hydrophobic i n ­ t e r a c t i o n s between the C ^ > 14> 1 6 l k y l groups, and t h a t t h e i n t r i n s i c b i n d i n g between s u r f a c t a n t and p o l y i o n i s u n a f f e c t e d b y the s u r f a c t a n t hydrophobic c h a i n l e n g t h . Of c o u r s e t h e s i m i l a r i t y between t h i s h y d r o p h o b i c e f f e c t i n s u r f a c t a n t b i n d i n g b y polymers and m i c e l l e f o r m a t i o n has b e e n p o i n t e d o u t many t i m e s , b u t i t i s n e v e r t h e l e s s s a t i s f y i n g t o see t h i s a l m o s t p e r f e c t c o r r e s p o n d e n c e between such w i d e l y v a r y i n g systems. +

c

o

r c

+

a

F i n a l l y , we w i l l c o n s i d e r t h e v a r i a t i o n i n K u w i t h s u r f a c t a n t h e a d g r o u p , p o l y m e r s t r u c t u r e a n d c h a r g e d e n s i t y , and added s a l t concentration. G e n e r a l l y , Ku d e c r e a s e s w i t h i n c r e a s i n g s a l t con­ c e n t r a t i o n , w h i c h i s e a s i l y e x p l a i n e d i n terms o f i n c r e a s e d s h i e l ­ ding o f the polymer charges. I t remains t o be seen whether i n f a c t t h i s i s a c o r r e c t i n t e r p r e t a t i o n , i t might f o r i n s t a n c e be argued t h a t s i m i l a r t o the case o f m e t a l i o n b i n d i n g b y p o l y e l e c -

In Structure/Performance Relationships in Surfactants; Rosen, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

In Structure/Performance Relationships in Surfactants; Rosen, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

1 2

NaCl

1 2

+ c Py

45

3.42

1

200 100

u

3.69 3.58

l o g Ku

p r e c i s i o n ± 20% 19.

0 0.01 0 0.01 0 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02

(mol/kg)

m

14

:

4.08 4.52 3.99 3.82 3.83 3.68 3.55 3.45 3.32 3.28

4.67

l o g Ku

C

+ Py

250

1

2300 770 250 320 26 50 12 26 12 26

u

16

5.00

5.08

l o g Ku

C

P y

1100

4800

u"'"

+

B i n d i n g C o n s t a n t s Ku and P a r a m e t e r s u f o r S u r f a c t a n t - P o l y i o n

Estimated reference

Pectinate ( 2 0 . 6 % Ε) Pectinate ( 4 6 . 1 % Ε) Pectinate ( 7 0 % Ε)

Pectate

Alginate

PAA

Polymer

TABLE I I .

3.35

5.39 4.48 4.48 3.88 4.46 3.86 70

15 500 70

4.43 3.43 3.30

Τ TA l o g Ku

+ 2

l o g Ku u"^

DTA

Binding.

Downloaded by UNIV OF ARIZONA on January 5, 2013 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch015

1

20 600 150 2000 60 2000

u

2

15.

MALOVIKOVA ET AL.

Alkylpyridinium Cation Binding

t r o l y t e s i t i s the entropy gain of the released counterions ( i . e . Na ) which should be considered (44,45). Both approaches would p r e d i c t a d e c r e a s e i n Ku w i t h i n c r e a s i n g s a l t c o n c e n t r a t i o n f o r a g i v e n p o l y i o n - s u r f a c t a n t s y s t e m , and b o t h a p p r o a c h e s w o u l d a l s o p r e d i c t a s m a l l e r d e p e n d e n c e o f Ku o n t h e added s a l t c o n c e n t r a t i o n the s m a l l e r t h e p o l y i o n charge d e n s i t y . This l a s t e f f e c t i s sens i t i v e l y demonstrated not only i n our data f o r the p e c t i n a t e s , b u t a l s o i n t h e c o m p a r i s o n b e t w e e n t h e s a l t d e p e n d e n c e o f Ku f o r d e x t r a n s u l f a t e , p o l y s t y r e n e s u l f a t e (16) a n d p o l y a c r y l a t e ( T a b l e I I ) , a l l w i t h c h a r g e d e n s i t y p a r a m e t e r s o f 2.8, a n d a l g i n a t e a n d p e c t a te. The i n f l u e n c e o f t h e h e a d g r o u p , i . e . p y r i d i n i u m o r t r i m e thylammonium, o n t h e o v e r a l l b i n d i n g c o n s t a n t K u a n d t h e c o o p e r a t i v i t y parameter u i s r e l a t i v e l y s m a l l . I t i s perhaps s u r p r i s i n g t h a t i n a l l cases Ku f o r t h e p y r i d i n i u m s a l t i s l a r g e r t h a n f o r t h e t r i m e t h y l a m m o n i u m s a l t , a s c a n b e s e e n b e s t e.g. b y c o m p a r i n g C-j^Py and T T A , j u s t a s t h e cmc f o r p y r i d i n i u m s a l t s i s a l w a y s l o wer t h a n t h e cmc o f t h e c o r r e s p o n d i n g t r i m e t h y l a m m o n i u m s a l t . T h i s may b e c a u s e d b y two f a c t o r s . F i r s t o f a l l , i n t h e c a s e o f p y r i d i n i u m s a l t s t h e r e may b e a c o n t r i b u t i o n f r o m t h e h y d r o p h o b i c i n t e r a c t i o n s b e t w e e n n e i g h b o u r i n g bound h e a d g r o u p s ( a n e f f e c t which would n o t c o n t r i b u t e t o t h e f r e e energy o f m i c e l l e format i o n ) . S e c o n d l y , a s t e r i c h i n d r a n c e e f f e c t may p r e v e n t t h e p o s i t i v e c h r g e on t h e trimethylammonium head group from a p p r o a c h i n g c l o s e t o the p o l y i o n charge. In comparing b i n d i n g d a t a f o r t h e v a r i o u s polymers, i t i s c l e a r t h a t indeed t h e charge d e n s i t y i s t h e dominant f a c t o r govern i n g Ku. The i n v e r s i o n i n Ku v a l u e s o b s e r v e d b e t w e e n a l g i n a t e a n d p e c t a t e should then be a t t r i b u t e d t o t h e l a r g e r f l e x i b i l i t y o f t h e a l g i n a t e p o l y i o n (42) , a l l o w i n g i t t o b i n d a n d " e n v e l o p " t h e s u r f a c t a n t a g g r e g a t e s more e f f i c i e n t l y . I t i s noteworthy t h a t t h e Ku v a l u e s f o r D T A a t 0.01 m N a C l w i t h d e x t r a n s u l f a t e a n d p o l y a c r y l a t e a r e v i r t u a l l y i d e n t i c a l (16,190 b u t t h a t i n t h e c a s e o f p o l y s t y r e n e s u l f o n a t e K u f o r D T A i s much l a r g e r , and u v e r y much l o w e r . T h e s e t h r e e p o l y i o n s a l l h a v e a n i d e n t i c a l c h a r g e d e n s i t y paramet e r o f 2.8, and we c o n c l u d e t h a t o n l y i n t h e c a s e o f p o l y s t y r e n e s u l f o n a t e a t l e a s t p a r t o f t h e s u r f a c t a n t a l k y l group b i n d s t o t h e h y d r o p h o b i c p o l y m e r b a c k b o n e , a n d does n o t c o n t r i b u t e t o t h e c o o p e r a t i v e b i n d i n g b e t w e e n n e i g h b o u r i n g s u r f a c t a n t s . Thus i t seems l i k e l y t h a t , a l l o t h e r t h i n g s b e i n g e q u a l , more f l e x i b l e p o l y m e r s a r e more e f f i c i e n t i n b i n d i n g s u r f a c t a n t s , a s i s p a r t i c u l a r l y c l e a r f r o m t h e c a s e o f DNA ( 1 8 ) . We h a v e p o i n t e d o u t t h e s i m i l a r i t y between p o l y i o n s u r f a c t a n t i o n i n t e r a c t i o n and m i c e l l e formation of free surfactants. T h i s s i m i l a r i t y c a n b e s e e n f r o m e.g. the c h a i n l e n g t h dependence o f t h e o v e r a l l b i n d i n g c o n s t a n t a s d i s cussed above, o r from a comparison o f t h e thermodynamic parameters d e s c r i b i n g both processes (46). I n t h e p r e s e n t c o n t e x t i t now seems l i k e l y t h a t t h i s s i m i l a r i t y e x t e n d s t o t h e a c t u a l a g g r e g a t i o n p r o c e s s o f t h e bound s u r f a c t a n t s , w i t h t h e p o l y i o n e n v e l o p i n g the m i c e l l e - l i k e aggregates and n e u t r a l i z i n g t h e charge o f t h e +

Downloaded by UNIV OF ARIZONA on January 5, 2013 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch015

237

+

+

+

+

In Structure/Performance Relationships in Surfactants; Rosen, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

STRUCTURE/PERFORMANCE RELATIONSHIPS IN SURFACTANTS

238

s u r f a c t a n t head groups. The r e m a r k a b l e f a c t r e m a i n s t h a t t h i s charge n e u t r a l i z a t i o n allows aggregation t o take p l a c e a t f r e e s u r f a c t a n t c o n c e n t r a t i o n s o r d e r s o f m a g n i t u d e b e l o w t h e cmc, d e ­ pendent on t h e p o l y i o n charge d e n s i t y .

Downloaded by UNIV OF ARIZONA on January 5, 2013 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch015

Acknowledgments We a r e g r a t e f u l t o t h e N a t u r a l S c i e n c e s a n d E n g i n e e r i n g R e s e a r c h C o u n c i l o f Canada a n d t h e C z e c h o s l o v a k Academy o f S c i e n c e s f o r t h e award o f a s c h o l a r s h i p u n d e r t h e a u s p i c e s o f t h e s c i e n t i f i c e x ­ c h a n g e s agreement b e t w e e n t h e C o u n c i l a n d t h e Academy, and t h e K i l l a m F o u n d a t i o n f o r t h e award o f a p o s t d o c t o r a l f e l l o w s h i p t o one o f t h e a u t h o r s (A.M.). The a u t h o r s a r e g r a t e f u l t o D r s . B. L a r s e n and 0. S m i d s r ^ d , I n s t i t u t e o f M a r i n e B i o c h e m i s t r y , U n i v e r ­ s i t y o f T r o n d h e i m , Norway f o r t h e d o n a t i o n o f a f u l l y c h a r a c t e r i ­ z e d s a m p l e o f N a - a l g i n a t e , a n d t o D r . R. Kohn, I n s t i t u t e o f Che­ m i s t r y , S l o v a k Academy o f S c i e n c e s , B r a t i s l a v a , C z e c h o s l o v a k i a , f o r p r e p a r i n g a n d c h a r a c t e r i z i n g p e c t i n s a m p l e s w i t h d i f f e r e n t de­ grees o f e s t e r i f i c a t i o n . This research i s supported by t h e Natu­ r a l S c i e n c e s a n d E n g i n e e r i n g R e s e a r c h C o u n c i l o f Canada t h r o u g h g r a n t s t o J.C.T.K.

Literature Cited 1. Goddard, D.E., Hannan, R.B. J. Colloid Interface Sci. 1976, 55, 73. 2. Satake, I., Yang, J.T. Biopolymers 1976, 15, 2263. 3. Gavach, C., Bertrand, C. Anal. Chim. Acta 1971, 55, 385. 4. Birch, B.J., Clarke, D.E. Anal. Chim. Acta 1973, 67, 387. 5. Cutler, S.G., Meares, P., Hall, D.G. J. Electroanal. Chem. 1977, 85, 145. 6. Yamauchi, Α., Kunisaki, T., Minematsu, T., Tomokiyo, Υ., Yamaguchi, T., Kimizuka, H. Bull. Chem. Soc. Jpn. 1978, 51, 2791. 7. Satake, I., Gondo, T., Kimizuka, H. Bull. Chem. Soc. Jpn. 1979, 52, 361. 8. Kale, K.M., Cussler, E.L., Evans, D.F. J. PHys. Chem. 1980, 84, 593. 9. Maeda, T., Ikeda, M., Shibaharu, M., Haruta, T., Satake, I. Bull. Chem. Soc. Jpn. 1981, 54, 94. 10. Hayakawa, K., Ayub, A.L., Kwak, J.C.T. Colloids Surf. 1982, 4, 389. 11. Zimm, B.H., Bragg, J.K. J. Chem. Phys. 1980, 84, 593. 12. Schwarz, G. Eur. J. Biochem. 1970, 12, 442. 13. Shirahama, K., Yuasa, H., Sugimoto, S. Bull. Chem. Soc. Jpn. 1981, 54, 375. 14. Fukushima, K., Murata, Y., Nishikido, N., Sugihara, G., Tanaka, M. Bull. Chem. Soc. Jpn. 1981, 54, 3122. 15. Fukishima, Κ., Murata, Υ., Sugihara, G., Tanaka, M. Bull. Chem. Soc. Jpn. 1982, 55, 1376.

In Structure/Performance Relationships in Surfactants; Rosen, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

15.

16. 17. 18. 19. 20. 21.

Downloaded by UNIV OF ARIZONA on January 5, 2013 | http://pubs.acs.org Publication Date: May 21, 1984 | doi: 10.1021/bk-1984-0253.ch015

22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46.

MALOVIKOVA ET AL.

Alkylpyridinium Cation Binding

239

Hayakawa, K., Kwak, J.C.T. J. Phys. Chem. 1982, 86, 3866. Hayakawa, Κ., Kwak, J.C.T. J. Phys. Chem. 1983, 87, 506. Hayakawa, K., Santerre, J.P., Kwak, J.C.T. Biophys. Chem. 1983, 17, 175. Hayakawa, Κ., Santerre, J.P., Kwak, J.C.T. Macromolecules 1983, 16, 1642. Satake, I., Yang, J.T. Biopolymers 1975, 14, 1841. Hayakawa, Κ., Ohara, Κ., Satake, I. Chem. Lett. (Jpn.) 1980, 647. Robb, I.D. in "Surfactant Science Series", Vol. 11, E.H. Lucassen-Reynders, ed., Marcel Dekker, New York, 1981, p. 109. Oteri, R., Dubin, P.L. Polymer Preprints 1982, 23, 45. Dubin, P.L. Oteri, R. J. Coll. Interface Sci. 1983, 95, 453. Murata, M., Arai, H. J. Coll. Interface Sci. 1973, 44, 475. Gilanyi, T., Wolfram, E. Colloids Surf. 1981, 3, 181. Nagarajan, R. Colloids Surf., in press. Cabane, Β., Colloids Surf., in press. Kohn, R. Pure Appl. Chem. 1975, 42, 371. Knight, Α., Shaw, B.D. J. Chem. Soc. 682, 1938. Kohn, R., Furda, I. Collect. Czech. Chem. Commun. 1967, 32, 1925. Owens, H.S., Lotzkar, H., Schultze, T.H., Mackay, W.D., J. Amer. Chem. Soc. 1946, 68, 1628. Tibensky, V., Rosik, J., Zitko, V. Nahrung 1963, 7, 321. Kohn, R., Tibensky, V. Chem. Zvesti 1965, 19, 98. Mukerjee, P., Mysels, K.J., "Critical Micelle Concentrations of Aqueous Solutions", NSRDS-NBS 36, USA, 1971. Hoffman, H., Nagel, R., Platz, G., Ulbricht, W. Colloid Polymer Sci. 1976, 254, 812. Rosen, M.J., Dahanayake, Μ., Cohen, A.W. Colloids Surf. 1982, 5, 159. Evers, I.C., Kraus, C.A. J. Amer. Chem. Soc. 1948, 70, 3049. Paluch, M. J. Coll. Interface Sci. 1978, 66, 582. Anacker, E.W. J. Phys. Chem. 1959, 62, 41. Anacker, E.W. in "Cationic Surfactants", Jungerman, Ε., Ed., Marcel Dekker, New York, 1970, p. 203. Aspinall, G.O., "The Carbohydrates, Chemistry and Biochemis­ try", Academic Press; New York, 2nd ed., 1970, II, p. B515. Kohn, R., Luknar, O. Collect. Czech. Chem. Commun. 1975, 40, 959. Manning, G.S. Q. Rev. Biophys. 1978, 2, 179. Mattai, J., Kwak, J.C.T. J. Phys. Chem. 1982, 86, 1026. Santerre, J.P., Hayakawa, Κ., Kwak, J.C.T. Colloids Surf. in press.

RECEIVED

March 6,

1984

In Structure/Performance Relationships in Surfactants; Rosen, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.