Anal. Chen?. 1983,55, 196R-202R (33N) Kitayama, Y.; Inoue, M.; Tamase, K.; Imou, M.; Hasulke, A,; Sasakl, M.; Tanlgawa, K. Eiyo to Shokuryo 1982, 35, 121; Chem. Absfr. 1982, 9 7 , 143228~. (34N) Koborl. S.; Kawakami, S. Ufsunorniya Daigaku Kyoikugakubu Kiyo, Dal-2 bu 1980, 30, 67; Chem. Absfr. 1981, 9 5 , 167204t. (35N) Kurzawa, J.; Wojclechowski, J. Fleischwirfschaft 1980, 60, 1896; Anal. Absfr. 1982, 42, 1F28. (36N) Landen, W. O., Jr. J. Chromafogr. 1981, 211. 155. (37N) Ibid., J . Assoc. Off. Anal. Chem. 1982, 65,610. (38N) Lechlen, A.; Valenta, P.; Nuernberg, H. W.; Patriarche, G. J. Fresenlus’ 2.Anal. Chem. 1982, 371, 105; Anal. Absfr. 1982, 43, 4E51. (39N) Leklem, J. E.; Reynolds, R. D. “Methods in Vitamin 6-6 Nutrition”; Plenum Press: New York, 1981. (40N) Llm, K. L. Diss. Absfr. Inf. 8 1982, 42, 4021. (41N) Loeiiger, J.; Saucy, F. 2.Lebensm-Unters. Forsch. 1980, 170, 413. (42N) Lookhart, G. L.; Hail, S. B.; Finney, K. F. CerealChem. 1982, 5 9 , 69. (43N) Lumley, I.D.; Wlgglns, R. A. Anaiysf (London) 1981, 106, 1103. (44N) Lyle, S. J.; Tehranl, M. S. J. Chromatogr. 1982, 236, 31. (45N) Macholan, L.; Londyn, P.; Flscher, J. Collect. Czech. Chem. Commun. 1981, 46, 2871; Anal. Absfr. 1982. 42. 6D9. (46N) Manz, U.; Phlllpp, K. Inf. J . Vitam. Nuh. Res. 1981, 5 1 , 342; Anal. Absfr. 1982, 43, 4619. (47N) Marzo, S. Riv. Ifal. Sosfanze Grasse 1981, 5 8 , 115; Anal. Absfr. 1981, 41, 4F84. (48N) Matsumoto, K.; Yamada, K.; Osajlma, Y. Anal. Chem. 1981, 53, 1974. (49N) Mouillet, L.; Luquet, F. M.; Gagnepaln, M. F. Sorgue, Y. LaR 1982, 6 2 , 44; Chem. Abstr. 1982, 9 6 , 1795300. (50N) Munlz. J. F.; Wehr, C. T.; Wehr, H. M. J. Assoc. Off. Anal. Chem. 1982, 65, 791. (51N) Nasner, A.; Kraus, L. Fette, Seifen, Anstrichm. 1981, 8 3 , 70. (52N) Obata, H.; Tsuchlhashl, W.; Tokuyama, T. Agric. 8iol. Chem. 1980, 44, 1435. (53N) Okano, T.; Takeuchi, A,; Kobayashl, T. J. Notr. Sci. Vlfaminol. 1981, 2 7 , 539; Chem. Absfr. 1982, 9 6 , 102584t. (54N) Parolarl, 0. Ind. Conserve 1982, 5 7 , 19; Chem. Absfr. 1982, 9 7 , 70903~. (55N) Parrlsh, D. B. CRC Crlf. Rev. Food Sci. Nufr. 1979, 12, 29. (56N) Ibid. 1980, 13, 337. (57N) Press, K.; Sheeley, R. M.; Hurst, W. J.; Martin, R. A. J . Agric. Food Cham. i-9- a- -, i . -29. 1096. (58N)-Rhee. J. S.; ShiniM. G. JAOCS J . Am. Oil. Chem. S O ~1982, . 59, 98. (59N) Reingoid, R. N.; Plcciano, M. F. J. Chromatogr. 1982, 234, 171. (60N) Rose, R. C.; Nahrwold, D. L. Anal. 8iochem. 1981, 114, 140. (61N) Roy, R. B. Top. Autom. Chem. Anal. 1979, 1 , 138. (62N) Rubach, K.; Breyer, C. Dtsch. Lebensm-Rundsch. 1980, 7 6 , 228. (63N) Rueckemann, H. 2.Lebensmdnters. Forsch. 1980, 177, 357. (64N) Rugraff, L.; Demanze, C.; Karlesklnd, A. Ind. Allment. Agric. 1981, 9 8 , 305; Anal. Absfr. 1982, 43, 3F77. (65N) Shaw, P. E.; Wllson, C. S., 111 J. Agric. FoodChem. 1982, 30, 394. (66N) Skurray, G. R. FoodChem. 1981, 7 , 77. (67N) Soiiman, A. J. Assoc. Off. Anal. Chem. 1981, 64, 616. (68N) Stancher, B.; Zonta, F. J . Chromafogr. 1982, 236,217. (69N) Tanabe, K.; Yamaoka, M.; Kato, A. Yukagaku 1981, 30, 116; Chem. Absfr. 1981, 9 4 , 155064~. (70N) Taylor, P.; Barnes, P. Chem. Ind. (London) 1981, 722. (71N) Tesmer, E.; Leinert, J.; Hoetzel, D. Nahrung 1980, 2 4 , 697; Chem. Absfr. 1980, 9 3 , 237032~. (72N) Thompson, J. N.; Hatina, G.; Maxwell, W. B.; Duval, S., J . Assoc. Off. Anal. Chem. 1982, 65, 624. (73N) Tono, T.; Fujlta, S., Agric. Biol. Chem. 1981, 45, 2947. (74N) Vaidya, S. K.; Damodaran, C., Farmaco, Ed. Praf. 1882, 3 7 , 9; Anal. Absfr. 1982, 43, 3E43.
(75N) Vanderslice, J. T.; Maire, C. E., J. Chromafogr. 1980, 196, 176. (76N) Vandersllce, J. T.; Brown, J. F.; Beecher, G. R.; Maire, C. E.; Brownlee, s. G., J . Chromafogr. 1981, 216, 338. (77N) Van Nleklrk, P. J.; Smit, S. C. C., J. Am. 011Chem. SOC. 1980, 5 7 , 417. (78N) Verma, K. K.. Talanfa, 1982, 2 9 , 41. (79N) Vlncenzlnl Foppa, G. F., Riv. Ifal. Sosfanze Grasse 1981, 58, 296; Anal. Abstr. 1982, 4 2 , 1F80. (EON) Watada, A. E., HortSclence 1982, 17, 334; Chem. Absfr. 1982, 9 7 , 90 509c (81N) Wiggins, R. A.; Zal, E. S.; Lumley, I., Chromafogr. Scl. 1982, 2 0 , 327. (82N) Woollard, D. C.; Wooiiard, G. A., N.Z. J. Dairy Sci. Technol. 1981, 16, 99. (83N) Yurchenko, N. I.; Bogusiavskaya, L. V.; Gol’denberg, V. I., Kinef. Katal. 1979, 2 0 , 1434; Anal. Absfr. 1981, 40, 3F91. (84N) Zonta. F.; Stancher, B.; Blelawny, J., J. Chromafogr. 1982, 246, 105.
.
Y I SCELLANEOUS
(1P) Ailvin, B., Kem. Tidskr. 1980, 9 2 , 24; Anal. Absfr. 1981, 41, 1F1. (2P) Aivarez, R., J . Assoc. Off. Anal. Chem. 1980, 6 3 , 806. (3P) Arneth, W., Fleischwirfschaft 1982, 6 2 , 974; Chem. Absfr. 1982, 9 7 , 143227t. (4P) Baites, W.; Czedik-Eysenberg, P. B.; Pfannhauser, W., “Recent Developments In Food Analysis: Proceedings of the First European Conference in Food Chemistry (EURO FOOD CHEM I)”; Verlag Chemie, 1982. (5P) Bjarnoe, 0. C., J. Assoc. Off. Anal. Chem. 1981, 6 4 , 1392. (6P) Ibld. 1982, 65, 696. (7P) Egan, H.; Kirk, R. S.; Sawyer, R., “Pearson’s Chemical Analysis of Foods”; Churchill Livingstone: Edinburgh, U. K., 1981. (8P) Ettre, L. S., Chromafogr. Newsl. 1981, 9 , 46. (9P) Frank, J. F.; Birth, G. S., J. Dairy Sci. 1982, 85, 1110. (1OP) Hardin, J. M.; Stutte, C. A., J . Chromafogr. 1981, 208, 124. (11P) Iwamoto, M.; Norris, K. H.; Kimura, S., Nippon Shokuhin Kogyo Gakkalshl1981, 2 8 , 85; Chem. Absh. 1881, 9 4 , 155103a. (12P) Kaffka, K., Prum. Pofravln 1981, 3 2 , 634; Anal. Absfr. 1982, 4 3 , 5F7. (13P) Kaffka, K. J.; Norris, K. H.; Kulcsar, F.; Draskovits, I., Acta Aliment. 1982, 1 1 , 271. (14P) Kaffka, K. J.; Norrls, K. H.; Peredl, J.; Balogh, A,, ibid. 253. (15P) Kaffka, J. K.; Norris, K. H.; Rosza-Kiss, M., IbM. 199. (16P) Kas, J.; Fukal, L.; Rauch, P. Chem. Lisfy, 1981, 75, 963; Anal. Absfr. 1982, 43, 5F1. (17P) King, R. D., “Developments in Food Analysls Techniques-2”; Applied Science: London, 1980. (18P) Kobayashi, T.; Saga, K.; Shimlzu, S.; Goto, T., Agrlc. 8/01. Chem. 1881, 45, 1403; Anal. Absfr. 1982, 4 2 , 2D11. (19P) Kohashl, M.; Tomita, K.; Iwai, K., ibid. 1980, 44, 2089; Anal. Absfr. 1981, 40, 4F6. (20P) Murphy, P. A. J . Chromafogr. 1881, 217, 166. (21P) Noble, R. C.; Shand, J. H.; West, I.G., J. Dairy Sci. 1981, 6 4 , 14. (22P) Osborne, B. G.; Douglas, S.; Fearn. T., J . Food Technol. 1982, 17, 355. (23P) Shenk, J. S.; Landa, I.; Hoover, M. R.; Westerhaus, M. O., Crop Sci. 1981, 2 1 , 355; Anal. Absfr. 1982, 43, 1G18. (24P) Sloman, K. G.; Foitz, A. K.; Yeranslan, J. A., Anal. Chem. 1981, 53, 242R. (25P) Stewart, K. K. “Nutrient Analysls of Foods: The State of the Art for Routine Analysls”; Assoc. Off. Anal. Chem.: Arllngton, VA, 1980. (26P) Tessler, A.; Delaveau, P.; Hoffelt, J., 2. Lebensm-Unters. Forsch. 1982, 174, 132; Anal. Ab&. 1982, 43, 3F26. (27P) Watson, C. A,, Anal. Proc. (London) 1982, 19, 12. (26P) Winkler. F. J.; Schlmldt, H., 2.Lebensm-Unfers Forsch. 1980, 171, 85.
Geological and Inorganic Materials Carleton B. Moore” and Julle A. Canepa Department of Chemistry, Arizona State University, Tempe, Arlzona 85287
This review discusses publications describing methods for analysis of geological and inorganic materials during the period November 1980 through November 1982. The topical boundaries of the inorganic and geological materials are somewhat diffuse since closely related topics are reviewed in both the fundamental and application reviews. These related reviews include air pollution, fertilizers, ferrous metallurgy, nonferrous metallurgy, surface characterization, and water 196 R
0003-2700/83/0355-196R$01.50/0
analysis in the application reviews and many of the fundamental reviews especially emission spectrometry, ion exchange chromatography, and ion selective electrodes. The citations of this review may well, by necessity, include some of those listed in other reviews, but for the most part they have been selected from the many thousands available to give the reader an overview of recent advances in each analytical technique reviewed together with mentions of particularly interesting 0 1983 American
Chemical Society
GEOLGGICAL AND INORGANIC MATERIALS
lution mas8 spectrometry (1.5).analysis by spark source maSS spectrometry (16) and reference materials for marine trace analysis (17). The well used textbook "Fundamentals of Analytical Chemistry" by Skoog and West (18) has very nice sections of analytical method selection and sample preparation. Topics are often worthwhile to review.
ANALYTICAL TECHNIQUES
specific or specialized contributions.
GENERAL REVIEW LITERATURE
As has been noted in earlier review in this series ( I ) , there seem to he pulses of activity especially with respect to the publication of important monographs. A 2-year period is d y quite short. and 1981-1982 appears to be a time of moderate activity in this area as compared to 1976-1978 which was bountiful in inorganic analytical literature. Among the major publications are a new third edition of Jeffery and Hutchison's "Chemical Methods of Rock Analysis" (2) a reference whose usefulness has stood the test of time. Johnson and Maxwell's 'Rock and Mineral Analysis" ( 3 )was published in the same year. In the Kolthoff nnd Elving 'Treatise on Analytical Chemistry', Volumes 5 and 7 of Part I have been brought up-to-date with second editions (4,5). Kateman and Pijpers have authored "Quality Control in Analytical Chemistry- (6) a book of potential interest to inorganic analysts. Included in the number of interesting contributions from Wiley-lnterscience is Windawi and Ho's 'Applied Electron Spectroscopy for Chemical Analysis" (7) one of the many high technology instrumental techniques making inroads in geological and inorganic analysis. "Ion chromatography' (8)by Fritz, Gjerde, and Pohlandt holds potential interest in developing this relatively new analytical technique for inorganic analysis. The Mineralegical Association of Canada published a Short Course Handbook, Vol. 5, a 'Short Course in Neutron Activation Analysis in the Geosciences" (9). Included in this volume are contrihutions on the general aspects of neutron activation analysis and specific applications to mineralogy and petrology. A similar book 'Modern Trace Analysis, Vol. 6 Trace Element Determination by Neutron Activation" (IO) by Pfrepper. Goerner, and Niese has been published in German. A review of 'Scanning Electron Microscopy and X-Ray Microanalysis" by Goldstein et al. (ZI) has been published by Plenum Press. An entrge to the Eastern European analytical literature is given by Minczewski, Chwastowska, and Dybczynski's "Separation and Preconcentration Methods in Inorganic Trace Analysis (12). Volume 1 of the 'CRC Handbook of Physical Properties of Rocks" edited by Carmichael (13) has chemical information of potential interest to chemists. CRC Critical Reviews in Analytical Chemistry contains an article of interest to our area. This is on X-ray fluorescence analysis of materials in the iron and steel industry (14). Trends in Analytical Chemistry has reviews on isotope di-
Inductively Coupled Plasma. Year after year, the use of inductively coupled plasma (ICP) spectroscopic techniques continues to grow. Improvements and modifications in ICP systems involving sample introduction, characterization, and detection have been thoroughly reviewed by Boyko et al., (19). ICP techniques have developed to such a point that analyses of major, minor, and trace elements in geologic and inorganic samples have become routine. A series of papers from a plasma spectroscopy conference has been edited by Ramon M. Barnes (20). Papers of interest include a thorough evaluation by Church (21) of the ICP-AES method for routine trace element determinations in total digests of geological materials. This evaluation addressed instrument optimization, spectral interference, and matrix calibration. Other conference papers include the analysis of precious metals in industrial and refinery effluents by Hodkinson and Hawkins (22) and procedures for simultaneous multielement determinations by Botto (23). ICP techniques together with creative sample preparations and elemental separations have lent themselves to a variety of geochemical applications thus allowing for greater geochemical interpretation. For example, Motooka (24) detailed the analysis of oxalic acid leachates of geologic materials providing information about mineral fractions and their ability to scavenge trace metals. Koga (25) used ICP to determine major and minor elements in two Japanese standards. Riandey et al. (26)analyzed major and minor elements in soils and rocks. and trace elements were determined in marine sediments by McLaren (27). An interesting separation and preconditioning scheme for the analysis of rare earth elements was described by Crock and Lichte (28). Total trace metal determination in freshwaters using a modified spray chamber was reviewed by Goulden et al. (29). Other applications of ICP to water analysis include determining leachable trace elements in Mount St. Helens volcanic ash by Sung et al. (30)and the analysis of trace metals in seawater (31). An ICP fluorescence technique was developed by Demers et al. (32)to determine trace metals in an SRM water sample and high-alloy steels, and Omenetto et al. (33) reviewed ICP and atomic fluorescence as a tool for major, minor, and trace metal analysis. The list of geologic samples utilizing ICP techniques also includes meteorites. Hirano et al. (34)simultaneously determined 17 elements in a variety of chondrites. Many papers deal with the optimization of ICP techniques for single elemental analysis. These include the determination of boron in silicate reference materials (35)and the analysis of trace zirconium in silicate rocks (36). The analysis of inorganic materials by ICP exhibits a wide range of applications. A renew of trace element determination in steels by Koch (37) discusses the use of ICP. Jones and Dixon (38)determined trace elements in manganese dioxide after a complex separation. and trace amounts of rare earths were determined in yttrium oxide (39). Another inorganic application hy Whiteley and Merrill (40) involved the analysis of chromium(II1) extracted from chromate and dichromate matrices. Ion Chromatography. The full potential of ion chromatography is currently being recognized in all areas of the scientific community. Its capabilities have greatly expanded due to continued technological developments. A comprehensive hook by Fritz et al. (8) has recently been published as part of a series on chromatographic methods. This valuable hook is an excellent review of current IC techniques with discussions on resins, new eluents, and a variety of detection systems. Specific attention is also paid to all cations and anions analyzahle hy IC. Other references of general interest include a review by Small (41) of the applications of IC in trace analysis and a study of the effects of major ions on the determination of trace ions given by Bynum et al. (42). A perusal of abstracts from the annual Rocky Mountain Conference, Ion Chromatography section, may also he of interest. ANALYTICAL CHEMISTRY. VOL. 55. NO. 5. APRIL 1983
l97R
GEOLOGICAL AND INORGANIC MATERIALS
The scope of ion chromatography and its use in the analysis of geologic and inorganic materials is large. Of considerable interest though, are particular ion analyses such as the determination of alkaline earths and divalent transition metal cations by Nordmeyer et al. (43) using suppressed barium and lead eluents. Also, Wimberley (44) effectively separated alkaline earth metals by a Zn2+-nitric acid eluent. An interesting coupling of IC with atomic absorption spectrometric detection determining or anic and inorganic arsenic species is given by Ricci et al. (457. Ion chromatographic determination of anions has produced many applications ranging from the analysis of chloride-doped cadmium sulfate (46) to the simultaneous determination of free sulfide and cyanide with electrochemical detection (47). An interesting pyrohydrolytic IC technique by Evans et al. (48) determining fluorine, chlorine, and sulfur in geologic samples expands on an earlier combustion technique developed by Evans and Moore (49). Fluorine in geologic samples was also determined utilizing a sodium carbonate fusion (50). Other anion analyses include the determination of boric oxide by IC and ICE (exclusion chromatography) (51), and a characterization of phosphate rock mining materials and kiln dust by Kramer and Haynes (52). Another characterization of phosphorite ores is also given by Jenke and Diebold (53). The above applications deal particularly with rock analysis but IC has also been applied to gaseous samples specifically; Inn et al. (54) determined gaseous constituents in the plume from eruptions of Mount St. Helens, and Takamine et al. (55) determined HCN and SO2in the atmosphere after collection on alkali filters. Atomic Absorption Spectroscopy. Atomic absorption spectroscopy continues to be a dependable and adaptable method of analysis. Some general applications are given in the following. An analysis of international rock standards is given by Juang (56). A comparative study of flameless AAS with classical methods by Gonzalez and Tello (57) determines Cd, Cr, Cu, Fe, Mn, and Zn, and a review of the effect of anions, complexing agents, and colloidal substances on the determination of trace elements by flameless AAS is given by Lieser et al. (58). A general application of AA for determining lanthanides in ores and rare earth concentrates is detailed by Sicinska and Michalewska (59). A multitude of applications of AAS to the analysis of geologic and inorganic materials deal with element separation and concentration for both flame and flameless AAS. Elemental separation by use of fusion techniques was applied by Sprenz and Prager (60) analyzing tungsten in ores, and Harley (61)determined tin in geologic samples after fusion, reduction, and extraction procedures. Flame and flameless AA were used for a myriad of applications involving sample decomposition by acid treatment. Using flame AAS, Kiss (62) determined silica in geological materials utilizing HF. The technique was extended to microdeterminations of silica a t microgram sizes and trace levels in water. An HF-boric acid solution used after citratebicarbonate-dithionite treatment selectively removed pyrite from samples allowing for accurate pyrite determination in sedimentary material (63). Selective removal and determination of pyritic Fe in coal was also done by Kos (64). TWO decomposition procedures involving carbonate rocks are available, with Mazzucotelli et al. (65) determining the chemical composition utilizing ion exchange chromatography and Duchi and Vinci (66) investigating the manganese content in the carbonate fraction. Acid decomposition also enabled the analysis of Ca and Mg oxides in kaolins (67). Decomposition techniques with subsequent use of flameless AA are represented by Farmer and Gibson (68) in their use of the graphite furnace to determine Cd, Cr, Cu, and P b in siliceous standard reference materials, by Sturgeon et al. (69) in determining trace metals in estuarine sediments, and by Kobayashi et al. (70) in analyzing trace tin in iron steels. Analysis by graphite furnace also involved the coprecipitation of elements of interest after dissolution. Particularly, Kujirai et al. (71) determined T e in heat resisting alloys after coprecipitation with As, and Sen Gupta (72) analyzed Sc and La in silicate rocks after coprecipitation with Ca oxalate. Chemical separation by dissolution and organic extraction was used to determine Cd, Co, Cu, and Ni in high purity uranium (73) and to determine thallium in geologic materials (74, 75). Both analyses were done by graphite furnace including the determination of tungsten (76) and bismuth (77). 198R
ANALYTICAL CHEMISTRY, VOL. 55, NO. 5, APRIL 1983
Graphite furnace AAS has been useful for the development of solid sampling. Arsenic in coal was determined by Ebdon and Pearce (78),As, Sb, Se, and T e in nickel-base alloys by Headridge and Nicholson (79),and trace elements in metals by Headridge and Riddington (80). Elemental hydride formation has also been useful as a separation technique. Trace analyses of As, Pb, and Sn were determined by Brodie and Rowland (81), and a semiautomatic method for tin determination in rocks is given by Chan and Baig (82). Mercury has always been a difficult element for AA analysis. Bartha and Ikrenyi (83) discuss interference effects in determining low Hg in geological materials by using a cold vapor technique, while Frick and Tallman (84) determined Hg in water by using a thin-layer electrodeposition flow cell employing a graphite tube working electrode. Mercury was also analyzed in suspended dust (85). A variety of other applications involve the determination of lithium isotopes (86), nickel in seawater by carbonyl generation (877, and a multielement analysis of manganese nodules without chemical separation (88). New developments include the introduction of a novel atomizer using a new type of separative column atomizer module for the determination of volatile elements (89),and a signal averager which increases the sensitivity and reproducibility for T h and Cd determinations in rock samples (90). Finally, the uses of the Zeeman effect were evaluated for correcting nonspecific absorption with applications to silicate rocks and minerals (91). Activation Analysis. Current work in activation analysis is principally involved in developing better methods for the analysis of various elements. Several new schemes for analyzing the rare earth elements were developed involving radiochemical separation of the rare earth elements and then analysis by one (92-94) or several types of activation analysis (95). New radiochemical procedures were also developed for the separation of suites of elements from whole samples to facilitate analysis of the elements of interest (96-99). Methods for determining suites of elements by epithermal neutron activation analysis were developed by Parry (100)and Rosenberg et al. (101). Neutron-capture prompt y-ray activation analysis (PGAA) is finding use as an analytical technique that can account for -99% of the mass of small samples (102,103). An absolute method for analyzing trace elements in single grains was developed by Watterson et al. (104) as a complementary technique for scanning electron microscope and electron microprobe analysis of major and minor elements. Graham et al. (105) developed a procedure using instrumental neutron activation analysis (INAA) and PGAA to look at geological materials. An internal monitor method that eliminates many of the errors probable with activation analysis was developed by Chen and Tsai (106). Data reduction programs for INAA developed by Lindstrom and Korotev (107) are now available. Several new activation methods were investigated. A deuteron activation to analyze boron via the 1°B(d,n)llC reaction was studied by Mortier et al. (108). An investigation of cadmium decay schemes and their applications in neutron activation analysis was done by Taha (109). Watterson et al. (110)developed a new (Am-Be) neutron activation that is used for process control in samples with volumes of 1L. Geisler and Gerstenberger (111)looked at the possibility of using y-ray activation for geological samples. New applications for activation analysis include determining heavy metals in samples for evaluation of their eco-toxic effects on the biosphere (112), identifying and modeling mantle properties (113),and locating where trace elements are positioned in phosphate ores (114). New facilities were established by using photoactive analysis (115)and neutron-capture y-ray spectroscopy (116). Several current reviews of activation analysis and its applications are available. Albert (117) reviewed the development of activation analysis and its current status. Krivan (118) reviewed the application of refractory metals and Hoffman and Ernst (119) did a similar review for gold analytical techniques. X-ray and Electron Microprobe Techniques. X-ray fluorescence continues to be a major technique in geochemical and inorganic analysis. A variety of geochemical applications are made possible by X-ray fluorescence. Trace element analyses of rock samples with special emphasis on small size
-
GEOLOGICAL AND INORGANIC MATER [ALS
sampling is given by Schroeder et al. (120). Sugisaki et al. (121) reported an automated XRF method for trace element determination in silicate rocks. Trace and minor elements were also determined in obsidian from a volcanic field in Northern Arizona in which the data helped identify the locality of archeological artifacts (122). XRF was used to determine rare earths, uranium, and thorium in allanites (123). Arikan and Alkan (124)also determined uranium and thorium in radioactive ores by radioisotope-excited XRF. Routine analyses of iron ores is given by Feret (125). The optimization of XRF is desirable for the analysis of Ga, Zn, Cu, Ni, Mn, and Cr in laterite and bauxites. A standard addition method was used (126). Kato (227) separated trace amounts of arsenic from Cu and Pb by precipitation. The problem of sulfur volatilization in fusion techniques for disk preparation was addressed by Baker (128). Application of XRF to water analysis is represented by a two part review by Ellis et al. (129, 130). This review deals with preconcentration methods for determining trace elements in water including discussion of response characteristics and interference effects. Chakravorty and Van Grieken (131) determined a variety of trace elements after preconcentration by coprecipitation on Fe(OH),. U1tratrace uranium and thorium concentration in natural waters also involved coprecipitation as hydroxides (132). The monitering of air particulates detailed by Rhodes et al. (133) involved new portable XRF analyzers that enabled in situ analysis capabilities. XRF is constantly being fine tuned by the availability of computer programs and interference and statistical evaluations. Keenan and Holmes (134) applied the computer program NRLXRF to trace analysis of Al alloys and NBS standards. Evaluation of the Rasberry-Heinreich model for absorption and secondary fluorescence corrections in silicate rock analysis is given by Lindsay et d.(135), and linear overlap coefficients were obtained by Smith (136) for interelement effect corrections in rare earth analyses of monazite. Finally, a statistical comparison of data on preparation techniques by Dow (137) discusses error from matrix effects and sample variability. Of considerable interest to those fascinated by the cosmos are two articles by a Russian team of scientists discussing the XRF techniques used in the Venus probes, Venera 13 and Venera 14. A description of the landing sites, sampling and analytical procedures, and raw data are included (138,139). An analysis of traces of heavy metals in inorganic salts and organic solvents is given by Foerster and Lieser (140). Energy-dispersive X-ray fluorescence analysis and flameless AA were used. Energy-dispersive analysis was also done on some common rock-forming minerals with spectra collected by use of a windowless detector (141). Specific analyses include the determination of Sr and Y in laterites by wavelength and dispersive X-ray fluorescence (142) and lithium tetraborate fused single and multielement standards for use in the analysis of major and minor elements in river and lake sediments by energy-dispersive XRF (143). A review of electron probe microanalyses in geosciences is given by Gooley (144). A method for probe analysis of small inclusions by Eegkovai and Tatarintsev (145) involved corrections for X-ray emission of the adjacent matrix. The coupling of a computer with the energy-dispersive X-ray spectrometer of an electron microprobe analyzer enabled the investigation of the distribution of ore mineral inclusions (146). Specific applications of electron microprobe include analysis of trace elements in rninerals a t 10 ppm concentration by McKay and Seymour (147),and an analysis of hydrous niinerals by Hamada et al. (148)using probe and ICP techniques. REE geochemistry of eclogites was also investigated by microprobe (149),and a simple method of preparing glasses from silicate rock powders for probe analysis involves an interesting use of a graphite furnace for sample heating in a Pt crucible. The Pt crucible was subsequently mounted for preparation and polishing. Major elements were analyzed (150). Other X-ray emission techniques include proton induced X-ray emission ( P E E ) for material characterization (151)and trace element detection by high-energy heavy ion-induced X-ray emission for environmental analysis and calibrating standards (152). This technique was compared with XRF and PIXE. EmisRion Spectrometry. For many decades emission spectrometry was a workhorse of geological analysis. It has
fallen from use as the major technique for trace element analysis but is wisely used for selected elements and purposes. The detection of gold and other noble metals in geological samples was reporl,ed in a large number of papers particularly in the Russian literature. Many of these used emission spectrometry as the detection method after preconcentration. A search of “Chemical Abstracts” or a computer based literature search will reveal large numbers of rather routine contributions. Those of general interest included a new meithod of internal standardization by Marathe, Murty, Rao, and Rao (153) and an interesting contribution on the determination of nanogram and picogram concentrations of several elements by electrolytic preconcentration and emission spectroscopy by Volland, Tschoepel, and Toelg (154). A respectable nurnber of elements were determined by metastable transfer emisision spectroscopy by Na and Niemczyk (155). A paper by Champ, Church, and Bender (156)updates the techniques used by the Geological Survey of Canada. It reports improved sensitivity for 21 elements. A general use technique using electrically vaporized thin film by Goldberg and Sacks (157)was used for eight metallic elements. Specific applications of interest include zircon in aluminum by Cerjan-Stefanovic and Kastelan-Macan (158), rare earth elements in ore by Johnson and Sisneros (159),transition elements in asbestos and feldspar by Reddy and Sarma (160) and barium and strontium in sediments by Bowker and Manheim (161). Heavy mineral concentrates were analyzed by 01sen and Edge (162). From the precious metals papers, one by Anderson, Parr, Stone, and Metcalf (163) is a review with 36 references and a Russian paper by Kolosova (164) details a preconcentration technique in lead. Colorimetry. Colorimetric and spectrophotometric techniques continue to be developed or refined particularly for rock analysis. The old problem of ferrous and ferric iron analysis in small samples is given by Hey (165). Trace ferrous iron in the presence of ferric iron (166), trace ferric iron in quartz (167), and iron and aluminum (168,169) in rocks and ores and in alloys (170,171) are reported. Other papers cover a varied number of‘individual elements in rocks including; Mo (172),Si (173),Th (174),T1 (1751,Nb (176),and U in different oxidation states with a combined polarographic and spectrophotometric telchnique (177). Rakovskii and co-workers (178) used neutron activation and spectrophotometry to determine noble met als in fire assay lead buttons, Sastri (179) determined W in ores and Rao and co-workers (180) anabyzed Cd in pure Zn. A flow injection spectrophotometric method for the continuous determination of Ti in rocks has been developed by Mochizuki and Kuroda (181).
OTHER TECHNIQUES Mass spectrome1,ry tends to be a method of choice for many inorganic analyses when high precision is more important than speed or cost. It is a standard method for the rare earth elements. Becker and Dietze discuss its methodology in rlocks with relatively high REE (182). Noble metals have been analyzed with this technique by Rucklidge et al. (183) and S in ferroalloys by Saito and Sudo (184). Analysis without standards is reported by Radermacher and Beske (185) and by plasma source mass spectrometry by Date and Gray (186). Using this technique Knab (187) determined 20 trace elements in carbonaceous chondrites. Coal investigations are reviewed by Jacobs (188) and REE by Van Puymbroeck and Gijbels (189).
Gold ore has been studied by photoacoustic, Raman, and EPR spectroscopy by Nelson et al. (190). Moessbauer spectroscopy has been used for ferrous ferric studies (191) and sulfur forms (192). ESR has been used to study the distribution of some elements in shale by Inazumi et al. (193). Optical spectra are reported to discriminate Ni and Fe ions in ores (194). ‘Phis technique has application to remote sensing of econclmic deposits. Laser spectroscopic techniques for trace elements are reviewed by Narasimham (195). A review of phyaiical microanalysis of solids with applications to semiconductors has been written by Grasserbauer (196). Capacitance transient spectroscopy of sillicon has been developed by Benton and Kimerling (197). Volcanic glasses have been investigated by using laser Raman spectroscopy by Ishizaki and Tu (198). A large review on malgnetometry with some inorganic applications have been written by Mulay and Mulay (199). ANALYTICAL CHEMISTRY, VOL. 55, NO. 5, APRIL 1983
109 R
GEOLOGICAL AND INORGANIC MATERIALS
Ion selective electrode techniques find wide application in water analysis. In solids, papers on B in rocks (200) and Cu in corrosion samples (201) have been published. Metal chelate gas chromatography for trace elements is reviewed by Neeb (202). A technique for determining low concentrations of total carbonate using head space gas chromatography has been developed by Barker and Chatten (203). Auger electron analysis of solid surfaces contaminents on many materials is published by Luktuke et al. (204). Oxygen partial pressures in geological samples have been determined with solid electrolyte cells (205). A review of trace analysis and ultrapurification of materials has been written by Mitchell (206).
The age old problem of water in silicates has been reconsidered by DeLong and Lyman (207).
GENERAL APPLICATIONS General articles on inorganic analysis worthy of attention include reviews in Trends in Analytical Chemistry on ICPAES by Barnes (208) and ICP-OES by Broekoert (209). The second article contains useful tables of detection limits and applications of ICP-OES for the analysis of geological samples. A comparison of trace methods for elements has been published as an IUPAC report (210). An ASTM publication covers trace analysis for metallic systems (211). Experimental design is reviewed by Tschoepel (212), standardization of techniques for heavy metals by DeGroot et al. (213),and an evaluation of three different methods for K in rocks by Vankova et al. (214). An interesting article by Kahn (215) compares AA and ICP. Zolotov (216) has written a broad review of microtrace analysis in minerals, and Erzinger reviewed methods for the determination of trace elements, in geological materials (217). Available techniques in the precious metals field are reviewed by Hochheimer (218). Sampling. Many geochemical problems utilize analytical techniques described in earlier analytical literature but which require changes in sampling or separations before they can find use on complex samples. Sampling techniques in rocks have been reviewed by Kratochvil and Taylor (219),Khvostova and Golovnya (220), and Kodymova (221). Sampling devices for water are reviewed by Bewers and Windom (222). Preconcentration and contamination problems are discussed by Kuz'min (223),Schwedt (224),Frigieri (225),and Mitchell (226). A pyrolysic apparatus for geochemical purposes is reviewed by Dubansky and Straka (227). Standard Reference Materials. The preparation, study, and use of standards especially geochemical standards is essential to analytical chemistry. Readers are reminded that the journal Geostandards Newsletter is available, important, and interesting. This journal was mentioned in the 1981 review and prompted a number of letters to this author requesting its mailing address which is 15 rue Notre Dame des Pauvres, B.P. 20,54501 Vandoeuvre-les-Naney Cedex, France. Again, I urge the reader to support the efforts of the publishers, editors, and authors of this important journal. Most articles in Geostandards Newsletter are interesting and several have been included in topical reviews. Of general interest is an article on the evaluation of analytical data by Lister (228) and reasons for the rejection of a sample due to ambient oxidation by Steger (229). Kramer and Puchelt (230) discuss reproducibility tests and new data for 17 geochemical reference materials. Other articles on standards are moderately numerous, but important. Date (231) has reviewed reference materials. The preparation of reference materials has been reviewed by several authors (232-234, 17). Mass spectrometric analysis of standard rock samples has been discussed by Dietze (235), and INAA of standards is given by Potts et al. (236). Jaffrezic et al. (237) compared different methods of trace analysis of a standard and Basten et al. (238) discussed the use of reference materials for hi h-accuracy commercial analysis. Interlaboratory standardg, for trace elements in sediments are discussed by Marchandese et al. (239).
ACKNOWLEDGMENT The authors gratefully acknowledge the assistance of Melissa M. Strait and Thomas M. Primus in the preparation of this review paper and Charles F. Lewis for the identification 200 R
ANALYTICAL CHEMISTRY, VOL. 55, NO. 5, APRIL
1983
of important articles. Special thanks are given to Joan Wrona for her efforts and patience in producing the final version. LITERATURE CITED (1) Moore, C. 8. Anal. Chem. 1981, 5 3 , 38R-44R. (2) Jeffery, P. G.; Hutchison, D. "Chemical Methods of Rock Analysis", 3rd ed.; Pergamon: New York, 1981; Ser in Anal Chem 4, 385 pp. (3) Johnson, W. M.; Maxwell, J. "Rock & Mineral Analysis", 2nd ed.; WileyInterscience: New York, 1981; 489 pp. (4)Kolthoff, I.; Elvina, P. "Treatise on Analytical Chemistry"; 2nd ed.; 1981; Part 1, Vol. 7, 763 pp. (5) Kolthoff, 1.; Elving, P. "Treatise on Analytical Chemlstry"; 2nd ed.; 1981; Part 1, Vol. 5, 632 pp. (6) Kateman, G.; Pijpers, F. W. '' Quality Control in Analytical Chemistry"; Wilev-Interscience: - - - - - - - New Yark. 1981: 276 OD. (7) Windawi, H.; Ho, F. F.-L "Applled-Ei&troArSpectroscopy for Chemlcal Analvsis": Wilev-Interscinece: New York. 1982: 224 DD. ( 8 ) F r i k J. S.; derde, D. T.; Pohlandt, C. "Ion Chromatbgraphy"; Huthig: Heidelberg, New York, 1982; 203 pp. (9) Muecke, G. K. Ed. "Mineralogical Association of Canada Short Course Handbook, Vol. 5; Short Course in Neutron Activation Analysis in the Geosciences, Halifaz, Nova Scotia" 1980; 279 pp. (10) Pfrepper, G.; Goerner, W.; Niese, S. "Modern Trace Analysis, Vol. 6: Trace Element Determinatlon by Neutron Activation"; 1981; 260 pp (German). (11) Goldstein, J. 1.; Newbury, D. E.; Echlln, P.; Joy, D. C.; Flori, C.; Lifshin, E. "Scanning Electron Microscopy and X-Ray Microanalysls"; 1981, 673 PP. (12) Minczewski, J.; Chwastowska, J.; Dybczynski, R. "Separation and Preconcentration Methods in Inorganic Trace Analysis"; Wiley: New York, 1982; 550 pp. (13) Carmlchael, R. S. Ed. "CRC Handbook of Physical Properties of Rocks"; CRC Press: Boca Raton, FL, 1982; Voi. 1, 416 pp. (14) Nikolshy, A. P. CRC Crltlcal Rev. Anal. Chem. 1982, 373-417. (15) Heumann, K. G. Trends Anal. Chem. 1982, 375-361. (16) Ure, A. M. Trends Anal. Chem. 1982, 314-317. (17) Guevremont, R.; Jamieson, W. D. Trends Anal. Chem., 1982, 1, 113-1 16. (18) Skoog, D. A.; West, D. M. "Fundamentals of Analytical Chemistry", 4th ed.; Saunders, Philadelphia, PA, 1982; 859 pp. (19) Boyko, W. J.; Keliher, P. N.; Patterson, J. M. I11 Anal. Chem. 1982, 5 4 , 188R-203R. (20) Barnes, R. M., Ed. "Dev. At. Plasma Spectrochem. Anal., Proc. Int. Winter Conf. 1980"; Heyden: London, 1981. (21) Church, S. E. "Dev. At. Plasma Spectrochem. Anal., Proc. Int. Winter Conf. 1980"; Heyden: London, 1981; pp 410-434. (22) Hodkinson, C. F.; Hawkins, D. A. S. "Dev. At. Plasma Spectrochem. Anal., Proc. Int. Winter Conf. 1980"; Heyden: London, 1981; pp 540-549. (23) Botto, R. "Dev. At. Plasma. Spectrochem. Anal., Proc. Int. Winter Conf. 1980", Heyden: London, 1981; pp 141-166. (24) Motooka, J. M.; Sutley, S. J. Appl. Spectrosc. 1982, 3 6 , 524-533. (25) Koga, S. GanseckiKobutsu Kosho Gakkalshl 1980, 75, 266-271. CA, 98: 134913r. (26) Riandey, C.; Alphonse, P.; Gavinelii, R.; Pinta, M. Analusls 1982, 70, 323-332; CA, 97: 229321f. (27) McLaren, J. W.; Berman, S. S.; Boyko, V. J.; Russell, D. S. Anal. Chem. 1981, 53, 1802-1806. (28) Crock, J. G.; Lichte, F. E. Anal. Chem. 1982, 5 4 , 1329-1332. (29) Goulden, P. D.; Anthony, D. H. J. Anal. Chem. 1982, 5 4 , 1678-1681. (30) Sung, F. C.; Nevissi, A. E.; Dewalle, F. B. J . Envlron. Sci. Health, Part A 1982, A 77(1), 45-55. (31) McLeod, C. W.; Otsuki, A.; Okamoto, K.; Haraguchi, H.; Fuwa, K. Anakst (London) 1981, 706, 419-428. (32) Demers, D. R.; Busch, D. A.; Allemand, C. D. Am. Lab. (Fairfield. Conn.) 1982, 74, 167-8, 170-2, 175-6. (33) Omenetto, N.; Cavalli, P.; Rossi, G. Rev. Anal. Chem. 1981, 185-205. (34) Hirano, M.; Notsu, K.; Onuma, N. Mem. Natl. Inst. Polar Res ., Spec. Issue 1980, 77, 152-158; CA, 98: 55753k. (35) Owens, J. W.; Gladney, E. S.; Knab, D. Anal. Chlm. Acta 1982, 735, 169-1 72. (36) Uchida, H.; Iwasakl, K.; Tanaka, K.; Iida, C. Anal. Chim. Acta 1982, 734, 375-378. (37) Koch, K. H. Radex Rundsch. 1982, ( 7 - 2 ) , 780-788. CA , 97: 48699q. (38) Jones, E. A,; Dixon, K. Rep.-Natl. Inst. Metall. ( S . Afr.) 1981, 2737, 25 PP. (39) Tanaka, T.; Yamada, T.; Johnokuchi, T.; Yamada, J.; Kumamoto, K.; Hattori, K. Bunsekl Kagaku 1982, 3 7 , 385-390. CA, 97: 174023~. (40) Whitely, R. V., Jr.; Merrili, R. M. Fresnlus' Z . Anal. Chem. 1982, 377, 7-10. (41) Small, H. Trace Anal. 1981, 7, 267-322. (42) Bynum, M. 0.; Tyree, S. Y.; Weiser, W. E. Anal. Chem. 1981, 5 3 , 1935-1936. (43) Nordmeyer, F. R.; Hansen, L. D.; Eatough, D. J.; Rollins, D. K.; Lamb, J. D. Anal. Chem. 1980, 5 2 , 852-856. (44) Wimberly, J. W. Anal. Chem. 1981, 53, 2137-2138. (45) Ricci, G. R.; Shepard, L. S.; Colovos. G.; Hester, N. E. Anal. Chem. 1981, 5 3 , 610-613. (46) Koch, W. F.; Stolz, J. W. Anal. Chem. 1982, 5 4 , 340-342. (47) Bond, A. M.; Herltage, I. D.; Wallace, G. G. Anal. Chem. 1982, 5 4 , 582-585. (48) Evans, K. L.; Tarter, J. G.; Moore, C. B. Anal. Chem. 1981, 5 3 , 925-928. (49) Evans, K. L.; Moore, C. B. Anal. Chem. 1980, 5 2 , 1908-1912. (50) Wilson, S. A,; Gent, C. A. Anal. Lett. 1982, 75 (A 70),851-864. -I
GEOLOGICAL AND INORGANIC MATERIALS (51) Wiishire, J. P.; Brown, Ml. A. Anal. Chem. 1982,54, 1647-1650. (52) Kramer, G. W.; Haynes, B. W. Rep. Invest-US., Bur. Mines 1982,R I 8661, 1‘1 pp. (53) Jenke, D. R.; Diebold, F. E. Anal. Chem. 1982,54, 1008-1011. (54) Inn, E. C. Y.; Vedder, J. F.; Condon, E. P. Science 1981, 277, 821-823. (55) Takamine, K.; Tanaka, S.; Hashlmoto, Y. Bunsekl Kagaku 1982, 37, 692-696. ..- .... (56) Juang, Wen Shing Chung-kuo Ti Chlh Hsueh Hul Hul K’an 1981,24, 28-39. CA. 9 7 : 219900e. (57) Gonzales Jorgs, C.; Teiio Aiberto, R. Mlnerales 1982,3 7 , 53-55. 6 A , 9 7 : 229315g. (58) Lieser, H. H.; Sondermeyer, S.; Kliemchen, A. Fresenius’ Z. Anal. Chem. 1982,312, 520-522; CA 9 7 : 229352s. (59) Slcinska, P.; Michalweska, M. Fresenlus’ Z Anal. Chem. 1982, 372, 530-532. (60) Sprenz, E. C.; Prager, M. J. Analyst (London) 1981, 106, 1210-1213. (61) Harley, M. L. A t . Spectrosc. 1982,3, 76-78. (62) Kiss, E. Anal. Chim. Acta 1962, 140, 197-204. (63) Lord, Charles #J. I11 Sediment. Petrol. 1982,5 2 , 664-666. (64) Kos, C. H. Recl.: J. 19. Neth. Chem. SOC. 1982, 701, 361-362. (65) Mazzucotelli, A.; Vannui:ci, R.; Vannucci, S.; Rubiera, R. Rend. SOC. Ital. Mlneral. Petrol. 1981,3 7 , 913-920. CAI 97: 148074a. (68) Duchi, V.; Vinci, A. Rend. SOC. Ital. Mlneral. Petrol. 1980, 38, 639-649. CA, 96: 9 6 6 4 0 ~ . (67) Demplr, J.; Dempirova, 1. Sklar Keram. 1982,3 2 , 153-157, CA, 07: 186963~. (68) Farmer, J. G.; Gibson, Mi. J. At. Spectrosc. 1981,2, 176-178. (69) Sturgeon, R. E.; Desaulnlers, J. A. H.; Berman, S. S.; Russell, D. S. Anal. Chim. Acta 1982, 734, 283-291. (70) Kobayashl, T.; Ide, K. Sudo, E. Nlppon Klnzoku Gakkalshi 1982,46, 603-606. CAI 9 7 : 103536m. (71) KuJirai, 0 . ;Kobayashi, T.; Ide, K.; Sudo, E. Talanta 1982,2 9 , 27-30. (72) Sen Gupta, J. G. Anal. (:him. Acta 1982, 738, 295-302. (73) Bangia, T. R.; Kartha, K. N. K.; Varghese, M.; Dhawale, B. A.; Joshi, B. D. Fresenius’ Z.Anal. Chem. 1982. 310, 410-412. (74) Elson, C. M.; Albuquerque, C. A. R. Anal. Chim. Acta 1982, 134, 393-396. (75) Kell, R. Fresenius’ Z.Anal. Chem. 1981, 309, 181-165. CA, 9 6 : 90603h. (76) Souza, C.; Barrios, N. Mherales 1982,3 7 , 51-52. CAI 97: 2293141. (77) Howell, D. J.; Dohnt, B. IR. Talanta 1982,2 9 , 391-395. (76) Ebdon, L.; Pearce. W. C. Analyst (London) 1982, 107, 942-950. (79) Headridge, J. B.; Nicholson, R. A. Analyst (London) 1982, 107, 1200-1211. (60) Headridge, J. B; Riddington, I.M. Mikrochim. Acta 1982 2 , 457-467. (61) Brodie, K. G.; Rowland, J. J. Eur. Spectrosc. News 1981, 36 41-42, 44. (82) Chan, C. Y.; Baig, M. W. A. Anal. Chim. Acta 1982, 736, 413-419. (83) Bartha, A.; Ikrenyi, K. Anal. Chlm. Acta 1982, 139, 329-332. (84) Frlck. D. A.; Teiiman, D. E. Anal. Chem. 1982,5 4 , 1217-1219. (85) Kermoshchuk, J. 0.; Warner, P. 0. Heavy Met. Environ., I n t . Conf., 3rd 1981,603-606. (86) Meier, A. L. Anal. Chem. 1982,54 2158-2161. (87) Lee, D. S.Anal. Chem. 1982,54, 1182-1184. (88) Kane, J. S.;Harnly, J. M. Anal. Chim. Acta 1982, 139, 297-305. (89) Yanagisawa, M.; Kltagawa, K.; Tsuge, S. Spectrochlm. Acta. Part 6 1982,376, 493-500. (90) Cammnn, K.; Anderssori, J. T. Fresenius’ 2.Anal. Chem. 1982,310, 45-50. (91) Plnta, M.; De Kersabiec, A. M.; Richard, M. L. Analusis 1982, 10, 207-215. CA, 9 7 : 4 6 7 2 0 ~ . (92) Voidet, P. Trends Anal. (:hem. 1982, 1 , 262-267. CAI 9 7 , 155491n. (93) Meionl, S.; Oddone, M.; Cecchi, A.; Poli. G. J. Radioanal. Chem. 1982. 7 7 , 429-446; CA, 9 7 , 84283h. (94) Zllllacus, R.; Kaistlla, M.; Rosenberg, R. J. J. Radloanal. Chem. 1982, 71. 323-332:, CA. . , 97. 842!80e. (95) Laul, J. C;. Lepel, E. A.; Weimer, W. C.; Wogman, N. A. J. Radioanal. Chem. 1982. 6 9 . 181-196: CA. 96. 173555~. (96) Van der Sloot, H. A.; Hoede, b.; Kiinkers, T. J. L.; Das, H. A. J. Radloanal. Chem. 1982, 71. 463-478; CA 9 7 , 84285k. (97) Shlma, M.; Yabukl, S.; Kimura, T.; Yabukl, H. Bull. Natl. Scl. Mus., Ser. E: (Tokyo) 1981,4, 19-30; CA, 97. 103507~. (98) Rammensee, W.; Palme, H. J. Radioanal. Chem. 1982, 7 1 , 401-418; CA, 97, 842811. Begzhanov, R. 8.; Akkermantsev, S. M. Im. (99) Mamadzhanov, F. I.; Akad. Nauk SSSR, Ser. e o / . 1981, (12), 99-105; CA, 9 6 , 55474~. (100) Parry, S. J. J. Radloanal. Chem. 1982, 72, 195-207; CA, 97 174101b. (101) Rosenberg, R. J.; Kaistila, M.; Zllliacus, R. J. Radioanal. Chem. 1982, 71, 419-428; CA, 97, 64282g. (102) Anderson, D. L.; Pheian, J. M.; Vossler, T.; Zoller, W. H. J. Radloanal. Chem. 1982, 71, 47-58; CA, 9 7 , 84278k. (103) Anderson, D. L.; Zoller, W. H.; Gordon, 0. E.; Waiters, W. B.; Lindstrom, R. M. Conf. Ser.-ln,st. Phys. 1982,62 (Neutron-capture GammaRay Spectrosc. Relat. Top.), 655-668; CA, 97. 12795d. (104) Watterson, J. I.W.; Mngadi, J. T.; Seilschop, J. P. F. J. Radioanal. Chem. 1982, 71 377-399; CA, 97, 15548411. (105) Graham, C. C.; Glascock, M. D.; Carni. J. J.; Vogt, J. R.; Spaldlng, T. G. Anal. Chem. 1982,5 4 , 1623-1627; CA, 9 7 , 48898d. (106) Chen. S. G.; Tsai, H. T. Radiochem. Radioanal. Lett. 1982, 57, 199-213. CAI 97, 48813~. (107) Llndstrom, D. J.; Korotev, R. L. J. Radioanal. Chem. 1982. 7 0 , 439-458. CA, 9 7 , 32730g. (108) Mortier, R.; Vandecasteele, C.; Hertogen, J.; Hoste, J. J. Radioanal. Chem. 1982, 7 1 , 189-198. CA, 9 7 , 84279m.
..~.._
I
(109) Taha, M. Report 1960, GKSS-60/E/19, 118 p. From INIS Atomindex 1981, 72, Abstr. No. 590749. CA. 9 6 , 75467% (110) Watterson, J. I.W.; Andeweg, A. H.; Ramanio, J. J. Radioanal. Chem. 1982, 77. 36!5-375. CA, 9 7 , 155483m. (111) Gelsler, M.; Gerstenberger, H. ZfI-Mitt. 1981,48, 69-84. CA, 9 6 , 192472g. (112) Orvini, E.; Gallorinl, M. J. Radloanal. Chem. 1982, 7 1 , 75-95. ICA. 97,4891 CI. (113) Treuil, M.; Joron, J. L.; Jaffrezic, H. J. Radioanal. Chem. 1982, 77, 347-363. CAI 9 7 , 417953. (114) Guirguis, L. A.; Wassef, M. A. Radlochlm. Acta 1982,3 1 , 103-’i05. CA . 97.. 2 2 9 3 7 0 ~ . (115) Ivanov, I.N.; Burmistenko, Yu. N.; Feoktistov, Yu. V. J. Rad/oa,nal. Chem. 1982, 72, 14!5-154. CA, 9 7 , 174100a. (116) Anderson, D. L.; Ftalley, M. P.; Zoller, W. H.; Walters, W. B.; Gordoni, G. F.; Llndstrom, R. M. J. Radloanal. Chem. 1981,63,97-119. (117) Albert, P. Pure Appl. Chem. 1982,5 4 , 689-713. CA. 9 7 , 65499s. (118) Krivan, V. Pure Appl. Chem. 1982,5 4 , 787-806. CA, 9 7 , 65501m. (119) Hoffman, E. L.; Ernst, P. C. J. Radioanal. Chem. 1982, 77, 447-462. CA 9 7 , 842843. (120) Schroeder, B.; Thompson, 0.; Sulanowska, M. Am. Lab. (Fairfield, Conn.) 1982, 74, 66, 68, 70-72. (121) Sugisaki, R.; Kinoshita. T.; Shimomura, T.; Ando, K. Chishitsugeku Zasshll981,8 7 , 675-688. CA, 97: 4 8 8 4 9 ~ . (122) Sanders, S.; Zahrt, J.; Bell, G. Adv. X-Ray Anal. 1982,25,121-1125. (123) Beiiary, V. P.; Deshpande, S. S.; Dixit, R. M.; Sankaran, A. V. Fresen/us’ 2.Anal. Chem. 1981. 309, 380-382. (124) Arikan. P.; Alkan, I.J. Radioanal. Chem. 1981,6 7 , 403-411. (125) Feret, F. Spectrochlm. Acta, Part 6 1982,376, 349-357. (126) Shorin, H. Adv. X-Ray Anal. 1982,2 5 , 127-131. (127) Kato, K. Kenkyu Uokoku-Kanagana-ken Kogyo Shikensho 1982,52, 111-112. CA, 97: 103513b. (126) Baker, J. W. Adv. X-Ray Anal. 1982,25, 91-94. (129) Ellis, A.; Leyden, D. E.; Wegscheider, W.; Jablonski, B. B.; Bodnar, W. B. Anal. Chlm. Acta 1982, 142, 73-87. (130) Ellis, A.; Leyden, PI. E.; Wegscheider, W.; Jabionskl, B. B.; Bodnar, W. B. Anal. Chim. Acta 1982, 742, 89-100. (131) Chakravorty, F.; Van Grieken, R. I n t . J. Envlron. Anal. Chem. 18182, 77, 67-80. (132) Stewart, J. H.; Brooksbank, R. D. Nucl. Instrum. Methods. Phys. Ales. 1982, 793, 315-318. (133) Rhodes, J. R.; Stout, J. A., Schindler, J. S.; Plorek, S. ASTM Spec. Tech. Publ. 1982, 786, 70-82. (134) Keenan, J. A.; Holmes, D. Appl. Spectrosc. 1982,36, 19-22. (135) Lindsay, J. R.; Rose, H. J. Jr.; Larson, R. R. Appl. Spectrosc. 18182, 36,520-523. (136) Smith, T. K. Adv. X-Ray Anal. 1982,2 5 , 133-137. (137) Dow, R. H. Adv. >(-Ray Anal. 1982,2 5 , 117-120. (138) Surkov, Yu.; Shchegiov, 0. P.; Moskalyeva, L. P.; Kirichenko, V. S.; Dudin, A. D.; Gimadov. V. L.; Kurochkin. S. S.; Rasputnyi, V. N. Zh. Anal. Khlm. 1982,37, 1348-1359, CA 97: 2292270. (139) Surkov, Yu.; Shcheglov, 0. P.; Moskalyeva, L. P.; Kirichenko, V. S.; Dudin, A. D.; Gimadov, V. L.; Kurochkin, S. S.;Rasputnyi, V. N. Anal. Chem. 1982, 54, 957A-960A, 963A, 964A, 966A. (140) Foerster, M.; Lleser, H. L. Fresenlus’ Z. Anal. Chem. 1981, 309, 355-358. CA 9 6 : 1545512. (141) Merkle, A. B.; Sandborg, A. 0. Mlcrobeam Anal. 1982, 7;7th, 44 1-444. (142) Labrecquie, J. J.; Schorln, H.; Rosaies, P.; Parker, W. C. Chem. Geol. 1982,35,357-366. (143) Mahan, K. I.; Leyden, D. E. Adv. X-Ray Anal. 1982,25, 95-102. (144) Gooiey, R. Scanning flectron Mlcrosc. 1981, 7 , 493-502. (145) Legkova, G. V.; Tatarintsev, V. I.MlneralZh. 1981,3, 97-101. (146) Plmminger, M.; Terenyi, W. M.; Kostelka, L.; Cerny, I.; Grasserbauer, M. Mikrochlm. Acta 1982, 7 , 403-416. (147) McKay, G. A.; Seymour, R. S. Microbeam Anal. 1982, 77th, 431-434. (148) Hamada, M.; Tanuma, S.; Nagashima, K. Bunseki Kagaku 1982,31, T61-T64. CA , 9 7 : 207303Z. (149) Bernard-Grlffiths, 41.; Jahn, B. M. Lithos 1981, 14, 263-274. (150) Foiand, K. A.; Wagner. M. E. Am. Mineral. 1981, 66, 1086-10188. (151) Bourrieau, J.; Marco, J. Rech. Aerosp. 1982,207, 121-130. (152) Scheer, J.; Maywald, C.; Rieks, H. H.; Klrschke, P.; Wehrse, R.f; Schrelber, P. Nucl. Irtstrum. Methods Phys. Res. 1981, 197, 565-566. (153) Marathe, S. M.; Murty. P. S.; Rao, M. Sreenivasa; Rao, K. V. Subba Fresenlus’ 2.Anal. Ghem. 1982,371, 507-510. (154) Volland, G Tschoepei, P.;Toelg, G. Spectrochim. Acta, Part 6 1981, 366, 901-917. CA, 96: 9 6 6 6 0 ~ . (155) Na, H. C.; Niemczyk, T. M. Anal. Chem. 1982,54, 1839-1843. (156) Champ, W. H.; Chiurch, K. A.; Bender, G. P. Pap. Geol. Surv. Can. 1982. 82-18, 306. (157) Goldberg, J.; Sacks, R. Anal. Chem. 1982,54. 2179-2186. (156) Cerjan-Stefanovlc, S.; Kasteian-Macan, M. Fresenius’ 2.Anal Chstm, 1981,309, 394-395. CA, 96: 154557f. (159) Johnson, 0. W.; Sisineros, T. E. Rare Earths M o d . Sci. Techno/. 1982, 3, 525-529. (160) Reddy. B. J.; Sarma, K. B. N. Indian J. Pure Appl. Phys. 1982,.20, 74-75. (161) Bowker, P. C.; Manheim, F. T. Appl. Spectrosc. 1982,36,378-382. (162) Olsen, S. D.; Edge, R. A. Bull. -S. Afr., Geol. Sum.1981, 71, 1-35. (183) Anderson, T. N.; Parr, J. C.; Stone, L. C.; Metcalf, D. Gold Silver: Leaching, Recovery€con.. Proc. 1981,109-119. (164) Koiosova, L. P. Ziivod. Lab. 1982, 48, 6-12. CA, 9 7 : 229271q. (165) Hey, M. H. MlneraIMg. 1982,46, 111-118. (166) Hashmi, I.H.; Menion, M. H.; Arain, I. J. Chem. SOC. Pak. 1981,3, 187-192. I
~
~~~~
ANALYTICAL CHEMISTRY, VOL. 55, NO. 5, APRIL 1983
20’1R
Anal. Chem. 1983, 55, 202R-214R (167) Nal-Kul, S.; Wen-Tien, C.; Fu-Sheng, W.; Shan-Shan, S . Analyst (London) 1981. 706. 1229-1233. (168) Mochlzukl, T:; Toda, Y.; Kuroda, R. Talanta 1982, 2 9 , 659-662. (169) Sarma, R. N. S.; Majumdar, M. K. J . Indian Chem. SOC. 1982, 5 9 , 790-791. (170) Narayanan, A.; Pantony, D. A. Analyst (London) 1981, 706, 1145-1 149. (171) Wang, 2.; Cheng, K. L. Talanta 1982, 2 9 , 551-556. (172) Carel, A. B.; Wlmberly, J. W. Anal. Lett. 1982, 75, 493-505. (173) Sarkay, R. C.; Das, M. S. Anal. Chim. Acta 1982, 734, 401-405. (174) Victor, A. H.; Streiow, F. W. E. Anal. Chlm. Acta 1982, 738, 285-294. (175) Perez Rulz, T.; Sanchez-Pedreno, C.; Ortuno, J. A. Analyst (London) 1982, 707, 165-189. (176) Sanz-Mendei, A.; Diaz Garcia, M. E. Ana/yst (London) 1981, 706, 1268- 1274. (177) Von Borstel, D.; Halbach, P. Fresenlus' Z . Anal. Chem. 1982, 370, 431-432. (178) Rakovskii, E. E.; Zdorova, E. P.; Kullgln, V. I.; Popova, N. N.; Flshkova, N. L.; Shvedova, N. V. Zavod. Lab. 1982, 4 6 , 11-12. C A , 9 7 : 229337r. (179) Sastrl, V. S. Talanta 1982. 2 9 , 405-406. (180) Rao, T. P.; Ramakrlshna, T. V. Analyst(London) 1982, 707, 704-707. (181) Mochlzukl, T.; Kuroda, R. Analyst (London) 1982, 707, 1255-1260. (182) Becker, S.; Dietze, H. J. ZfI-Mitt. 1981, 4 6 , 49-59. C A , 96: 1545638. (183) Rucklidge, J. C.; Gorton, M. P.; Wilson, G. C.; Klllus, L. R.; Litherland, A. E.; Elmore, D.; Gove, H. E. Can. Mlneral. 1982, 2 0 , 111-119. (184) Salto, M.; Sudo, E. Nippon Klnzoku Gakkalshi 1982, 4 6 , 691-695. CA, 9 7 : 192363t. (185) Radermacher, L.; Beske, H. E. Fresenius' Z . Anal. Chem. 1981, 309, 319-324. CA, 9 6 : 6 2 1 7 6 ~ . (186) Date, A. R.; Gray, A. L. Analyst (London) 1981, 706, 1255-1267. (187) Knab, H. J. Geochlm. Cosmochlm. Acta 1981, 45, 1563-1572. (168) Jacobs, M. L. J . CoalQual. 1981, 7, 20-22, 24. (189) Van Puymbroeck, J.; Gljbels, R. Fresenlus' Z . Anal. Chem. 1981, 309, 312-315. (190) Nelson, J. H.; MacDougall, J. J.; Baglin, F. G.; Freeman, D. W.; Nadler, M.; Hendrlx, James L. Appl. Spectrosc. 1982, 3 6 , 574-576. (191) Bahgat, A. A.; Fayek, M. K. Phys. Status SolidiA 1982, 7 7 , 575-581. (192) Giulianelli, J. L.; Williamson, D. L. At. Nucl. Methods Fossil Energy Res. (Proc. Am. Nucl. SOC Conf .) 7980 1982, 443-458. (193) Inazuml, A.; Isobe, T.; Tarutanl, T. Geochem. J . 1981, 75, 325-332. (194) Maquet, M.; Cetveile, B. D.; Gouet, G. Mlner. Deposlta 1981, 76, 357-373. (195) Narasimham, N. A. Pure Appl. Chem. 1982, 5 4 , 641-846. (196) Grasserbauer, M. Angew. Chem. 1981, 9 3 , 1059-1068. C A , 96: 78948s. (197) Benton, J. L.; Klmerllng, L. C. J . Electrochem. SOC. 1982, 729, 2098-2102. (196) Ishlzaki, H.; Tu, A. T. Appl. Spectrosc. 1982, 3 6 , 587-588. (199) Mulay, L. N.; Mulay, I. L. Anal. Chem. 1982, 5 4 , 216R-227R. (200) Dolaberldze, L. D.; Kamkamidze, D. K.; Dzhallashvlll, A. G.; Alkhazlshvili, T. M. Soobshch. Akad. Nauk Gruz. SSR 1982, 705, 279-300. CAI 9 7 : 1197159.
.
(201) Varma, A. Talanta 1981, 2 8 , 705-787. (202) Neeb, R. Pure Appl. Chem. 1982, 5 4 , 847-852. (203) Barker, J. F.; Chatten, S. Chem. Geol. 1982, 3 6 , 317-323. (204) Luktuke, R. D.; Gopalaraman, C. P.; Rohatgi, V. K. Curr. Sci. 1981, 5 0 , 1055-1057. (205) Amosse, J.; Fouletier, J.; Kleitz, M. Bull. Mineral. 1982, 705, 188-1 92. (206) Mltchell, J. W. Pure Appl. Chem. 1982, 5 4 , 819-834. (207) DeLong, S. E.;Lyman, P. Chem. Geol. 1982, 35, 173-176. (208) Barnes, R. M. Trends Anal. Chem. 1981, 7 , 51-55. (209) Broekaert, J. A. C. Trends Anal. Chem. 1982, 7, 249-253. (210) IUPAC Pure Appl. Chem. 1982, 5 4 , 1565-1577. (211) Javler-Son, A. ASTM Spec. Tech. Pub/. 1981, 747, 4-20. (212) Tschoepel, P. Pure Appl. Chem. 1982, 5 4 , 913-925. (213) De Groot, A. J.; Zschuppe, K. H.; Salomons, W. Hydrobiologia 1982, 9 7 -92, 689-695. (214) Vankova, V.; Minarik, L.; Houdkova, 2. Acta Mont. 1981, 5 7 , 101-111. (215) Kahn, H. L. Ind. Res. Dev. 1982, 2 4 , 150-153. (216) Zolotov, Y. A. Nat ., Aim Methods Microchem ., Proc. Int. Microchem. Symp., 8th 7960 1981, 231-256. (217) Erzlnger, J.; Puchelt, H. Errmetall 1982, 3 5 , 173-179. C A , 9 7 : 48871q. (218) Hochheimer, J. T. Preclous Met. (Proc. Int. Precious Met. Inst. Conf.) 5th 7967, 1982, 333-341. (219) Kratochvil, B.; Taylor, J. K. Chemtech 1982, 72, 564-570. (220) Khvostova, V. P.; Golovnya, S. V. Zavod. Lab. 1982, 4 6 , 3-7. C A , 9 7 : 229156f. (221) Kodymova, A. Geol. Pruzkum 1982, 2 4 , 56-57. CA 97: 4 1 9 7 1 ~ . (222) Bewers, J. M.; Windom, H. L. Mar. Chem. 1982, 7 7 , 71-86. (223) Kuz'min, N. M. Zavod. Lab. 1982, 4 6 , 11-15, CA, 96: 192392f. (224) Schwedt, G. LaborPraxls 1982, 6, 452, 454, 459-460. CA, 97: 28201t. (225) Frlglerl, P. Int. Envlron . Saf. 1982, 36-37. (226) Mltchell, J. W. J . Radioanal. Chem. 1982, 6 9 , 47-105. (227) Dubansky, A.; Straka, P. Chem. Llsty 1982, 76, 430-434, CA, 97: 48738b. (228) Lister, B. Geostandards Newsletter 1982, VI, 175-205. (229) Steger, H. F. Geostandards Newsletter 1982, VI, 249-255. (230) Kramer, U.; Puchelt, H. Geostandards Newsletter 1982, VI, 221-227. (231) Date, A. R. Anal. Proc. (London) 1982, 79, 7-12. (232) Ring, E. J.; Hansen, R. G.; Steele, T. W. Rep.-MINTEK 1981, M 2 , 31 PP. (233) Flora, L.; Matteuccl, E.; Restlvo, G.; Sandrone, R. Rend. SOC. Ita/. Mlneral. Petrol. 1981, 3 7 , 517-524, C A , 9 6 : 184617t. (234) Lange, J. Sllikaftechnlk 1981, 3 2 , 362-363. CA, 96: 186012r. (235) Dletze, H. J. ZfI-Mitt. 1981, 46, 13-47. CA, 9 8 : 154562d. (236) Potts, P. J.; Thorpe, 0. W.; Watson, J. S . Chem. Geol. 1981, 3 4 , 331-352. (237) Jaffrezlc, H.; Joron, J. L.; Treuil, M. J . Radioanal. Chem. 1982, 69, 235-238. CA, 96: 1734404. (238) Bastin, J.; Bomans, M.; Dugaln, F.; Mlchaut, C.; Pujade-Renaud, J. M.; Van Audenhove, J. Analusis 1982, 70, 253-265. CA, 97: 103444e. (239) Marchandise, P.; Olie, J. L.; Robbe, D.; Legret, M. Environ. Techno/. Lett. 1982, 3 , 157-166. C A , 9 7 : 48873s.
CIinicaI Chemistry J. E. Davis," Robert L. Soisky, Linda Giering, and Saroj Malhotra Clinical Systems Division, E.
I. do Pont de Nemours and Company, Wilmington, Delaware 19898
This review covers the nominal time period from November 1980 to November 1982. The clinical chemistry literature is so extensive that we have chosen to review only a portion covering four main topics where significant change has occurred: instrumentation, ion selective electrodes, immunoassay techniques, and analytes of clinical interest. Clinical chemistry is a mature field having evolved from the "side-room" testing once practiced by physicians. The methodology and instrumentation for today's common tests evolved rapidly during the past 2 decades. These common tests are general metabolic indicators which are perturbed by many diseases. The newer tests evolving from research in molecular biology and medicine are more disease specific. The clinical needs for diagnosis and patient management are met by tests which are (1)sensitive to the presence of disease, (2) indicative of degree or extent of disease, (3) specific for a 202 R
0003-2700/83/0355-202R$01.50/0
disease, (4) robust in methodology, (5) precise and accurate, and (6) economical. This sequence makes clear that clinical utility of a test must be established before substantial method development is warranted. Some analytes discussed in the Analytes of Clinical Interest section are early in the sequence of evolution. Analytes in the immunoassay Techniques and Ion Selective Electrodes sections are more established, while the most common tests are implicit in the section on Instrumentation. Additional information on specific topics can be found in Chemical Abstracts, Biological Abstracts, and Index Medicus. Medline and other computer literature searches are also available. In the United States the most popular journal in this field is Clinical Chemistry (Winston-Salem). Other popular journals are Clinica Chimica Acta, American Journal of Clinical Pathology, N e w England Journal of Medicine, 0 1983 American
Chemical Society