Petroleum - Analytical Chemistry (ACS Publications)

Jun 15, 1989 - G. E. McGuire , M. A. Ray , Steven J. Simko , F. Keith Perkins , Susan L. Brandow , Elizabeth A. Dobisz , R. J. Nemanich , A. R. Choura...
0 downloads 0 Views 5MB Size
Anal. Chem. 1989, 61, 243R-269R (110) D P ~Sokolova, -7 L. V.; Shershnev, V. A. Polym. S d . USSR 1985, 2 7 ,

(92) Tanaka , Yasuyuki; Nunogaki. Kazuki; Adachi, Junichi Rubber Chem. Techno/. 1988, 6 7 , 36-41. (93) Tanaka, Yasuyuki; Nakafutami, Yasunobu; Kashlwasaki, Yasushi; Dachi, Junlchi; Tadokoro, Kaoru Rubber Chem. Techno/. 1987, 60, 207-16. (94) Farling. Michael S. Rubber WorM 1988, 797, 20-3, 48. (95) Gonzalez Hernandez, L.; Ibarra Rueda, L. Kautsch. Gummi Kunstst. 1988, 4 7 , 50-3. (96) Kishore, K.; Pandey, H. K. Prog. Polym. Sci. 1986, 72, 115-78. (97) Kishore, K.; Pandey, H. K. J. Polym. Sci. Polym. Lett. 1988, 2 4 , 393-7. (98) deBarros Lobo Filho, E.; Reyx, D.; Campsltron, I.;Casals. P. F. Makromol. Chem. 1988, 787, 1573-82. (99) Gan, S.-N.; Burfield, D. R.; S w ,K. Macromdec~les1985, 78, 2684-8. (100) Lattimer, R. P.; Harris, R. E. Rubber Chem. Techno/. 1988, 6 4 , 639-657. (101) Lattimer, R. P. Rubb. Chem. Techno/. 1988, 6 4 , 658. (102) Yln, Chuanyuan, Zhou, Caihua; Shen, Dexun; Ten, Mlnkang Hejishu 1988, 7 7 , 34-7. (103) Kammer, H. W.; Kummerioewe, C.; Greco, R.; Mancarella, C.; Martuscelii. E. Polymer 1988, 2 9 , 963-9. (104) Stein, R. S. Materials Science Monographs 36.627 US National Science Foundation. (105) Persson, Sture Polymer 1988, 802-7. (106) Kammer, H. W. Plest. Rubb. Process. Appln. 1988, 9 , 23-7. (107) Ho, Susanna, M.; Xanthopoulo, Valentino 0. U.S. US4747959A. 1988. (108) Stupak, P. R.; Donovan, J. A. J. Meter. Sci. 1988. 2 3 , 2230-42. (109) Romankevich, 0. V.; Suprun, N. P.; Frenkel's, Ya Polym. Sci. USSR 1985, 2 7 , 1534-40.

---

..

(1 11) Vimalasiri, P. A. D. T.; Tillekeratne, L. M. K.; Weeraman, S.; Dekumpitiya, A. S. Polym. Test. 1987, 7 , 317-23. (112) Abou Fella, R.; El Aiem, Y.; Parasiewicz, W. B. NR Technoi. 1986, 77, 66-70. ..

(113) Sviridenko, V. G.; Lin, D. G.; Eiiseeva, I.M. Zh.Anal. Khim. 1987, 42, 1525-7. (1 14) Nakauchi, Hideo; Utsunomiya, Tadashi; Masuda. Kinji; Inoue, Sakae; Naito, Kazou Nippon Gomu Kyokaishi 1987, 6 0 , 267-72. (115) Nakauchi. Hideo; Kato, Shigo; Inoue. Sakae; Naito, Kazuo Nippon Gomu Kyokaishi 1987. 6 0 , 273-9. (1 16) Warley, R. L.; DeiVecchio, R. J. Rubber WorM 1987, 796, 30-2, 34-6, 38. (117) Pestov, S. S.; Shershnev, V. A.; Gabibullaev, I.D.; Soboiev, V. S. Kauch. Rezina 1988, 2 , 10-13. (118) Schoon, Douglas D. Int. S A M E Sympo . Exhib. 1988, 3 3 , 433-43. (1 19) Queslel, Jean Pierre; Fontaine, Frederic; Monnerie, Lucien Polymer 1988, 2 9 , 1086-90. (120) Tsujikaido, Isao; Matsuda, Yojiro Jpn Kokai Tokkyo Koho JP 62/ 194439 A2 (87/194439), 1987. (121) Rozenboim, N. A.; Ovchlnnikov, V. N.; Pestov, S . S . Kauch. Rezina 1987, 8, 27-8. (122) Luo, Jing Hua; Jlan, Ke Jian; Li Zhong Hua; Tan, Y Shan Proc. SPIEInt. SOC.Opt. Eng. 1987, 814, 449-54. (123) Puacz. Wojciech Acta Chim. Hung. 1987, 724, 293-8. (124) Soos, I.; Marik-Korda, P. Kautsch. Gummi. Kunstat. 1988, 4 7 , 572-4.

Surface Characterization J. E. Fulghum, G. E.McGuire,* I. H. Musselman, R. J. Nemanich, J. M. White, D. R. Chopra, a n d A. R. Chourasia Microelectronics Center of North Carolina, P.O. Box 12889, Research Triangle Park, North Carolina 27709

be decreased through postionization of the sputtered particles. There are currently three different methods being investigated for postionization. Sputtered neutral mass spectrometry (SNMS) uses electron impact ionization. Resonance laser ionization is used to selectively ionize a single element without interferences from other species; this technique is referred to by many names, including sputter-initiated resonance ionization spectroscopy (SIRIS) and surface analysis by resonance ionization of sputtered atoms (SARISA). Nonresonant ionization by laser photons, surface analysis by laser ionization (SALI), is also under development. Laser microprobe mass spectrometry (LAMMS) uses a laser as the primary beam for both sputtering and ionizing particles which are then massfiltered by a time-of-flight mass analyzer. Laser desorption/laser ionization methods use separate lasers for the desorption and ionization processes. Developments in mass spectrometry were discussed by Delgass and Cooks (A15). Mass spectrometrictechniques have been compared by Balasanmugam et al. (A16),Grasserbauer (A17),and Ortner et al. (A18). Secondary ion and secondary neutral mass spectrometry in a quadrupole instrument were compared by Tuempner, Wilsch, and Benninghoven (A19). SIMS and acclerator-based mass spectrometries have also been compared (A20, A21).

INTRODUCTION Reviews of surface characterization have appeared in Analytical Chemistry every two years since 1977. (1-6) During this time the field has grown significantly in the volume of papers published as well as the number of applications and diversity of surface characterization tools. In the last two reviews ( 5 6 ) a table format was adopted to handle the large number of applications. With the ready availability of computer searches, this format does not provide the critical assessment of the literature that may be desirable. This review is being written by multiple authors with specialties in one or more of the broad categories of surface analysis in an attempt to highlight some of the more important advances in each of these areas. This review begins with literature from January 1987 and ends with literature from November 1988.

A. ION SPECTROSCOPY General Reviews

The application of ion spectroscopies in the analysis of materials was discussed by Briggs ( A I ) and Davies (A2);the use of nuclear microprobe techniques has been reviewed by McMillan (A3),Gossman and Feldman (A4),and Conlon (A5). The use of ion spectroscopies in the analysis of wave- uides (A6),thin films ( A n , H in metals (At?),microelectronic tfevices (A9, AIO), fusion devices ( A l l ) ,biological specimens (A12), and polymers (A13) has also been reviewed. The accuracy of various surface analysis methods was evaluated by Powell (A14). There are several different ion spectroscopies involving mass analysis of secondary ions created by one of several different ionization methods. In secondary ion mass spectrometry (SIMS), a primary ion beam (normally of 1-10 keV) is used to bombard the sample surface. A small fraction of the sputtered secondary particles are ionized and can be mass filtered and detected. If the primary beam consists of neutral atoms, the technique is referred to as fast atom bombardment (FAB). Since only a small fraction of the sputtered material is ionized, the severe matrix effects observed in SIMS should 0003-2700/89/0361-243R$06.50/0

Secondary Ion Mass Spectrometry

(SIMS)

Recent developments in SIMS were summarized by Katz and Newman (A22) and Adams and Moen (A23). Progress in SIMS imaging was discussed by Bernius and Morrison ( A B ) ,while static SIMS and FAB were evaluated by Fenselau and Cotter (A25) and Vickerman (A26). SIMS analysis of electronic materials has been discussed by Grasserbauer ( A 2 3 and Boudewijn and Janssen (A28). The use of SIMS in the analysis of thin layers in electronic materials has been reviewed by Galuska and Morrison (A29) and Vandervorst and Shepherd (A30). Several reviews of the metallurgical applications of SIMS have been written, including those of Degreve et al. (A31),Virag and Friedbacher (A32),and Gijbels (A33). The use of ion microscopy in marine research (A34) and organic 0

1989 American Chemical Society

243 R

SURFACE CHARACTERIZATION

Table I. Abbreviations AEAPS AES AFM

Auger electron appearance potential spectroscopy Auger electron spectroscopy atomic force microscope

attenuation length appearance potential spectroscopy ballistic electron emission microscope CDW charge density wave EAPFS extended apparence potential fine structure EELS electron energy loss spectroscopy ESD electron-stimulated desorption ESDIAD electron-stimulated desorbed ion angle distributions EXAFS extended X-ray absorption fine structure FAB fast atom bombardment IMFP inelastic mean free path AL

APS BEEM

IR ISS

infrared

ion scattering spectroscopy LAMMS laser microprobe mass spectrometry laser-induced desorption LID NBISS neutral beam incident ion scattering spectroscopy NRA nuclear reaction analysis PIXE particle-induced X-ray emission RBS Rutherford backscattering spectrometry SAL1 surface analysis by laser ionization SARISA surface analysis by resonance ionization of sputtered atoms SEM scanning electron microscopy SEXAFS surface extended X-ray absorption fine structure secondary ion mass spectrometry SIMS sputter-initiated resonance ionization spectroscopy SIRIS scanning kinetic spectroscopy SKS SNMS sputtered neutral mass spectrometry scanning tunneling microscopy STM scanning tunneling spectroscopy STS SXAPS soft X-ray appearance potential spectroscopy thermal desorption spectroscopy TDS time-of-flight TOF ultrahigh vacuum UHV wavelength dispersive spectrometer WDS X-ray photoelectron spectroscopy XPS XRD X-rav diffraction film analysis (A35) has also been reviewed. The analysis of insulators has been discussed by Borchardt et al. (A36) and Inoue and Isogai (A37). Several developments in SIMS instrumentation have been published. Extensive work has gone into developing timeof-flight (TOF) SIMS instruments for use with liquid metal ion guns (A38-A42). Combined SIMS/SNMS instruments have been reported (A43, A44). Liebl (A45) discussed a compact double-focusing mass spectrometer. Homma and Ishii (A46) reported on the use of a cryopanel surrounding the sample in order to reduce H, C, and 0 background levels. Bernius et al. (A47)decreased image distortion in a stigmatic ion microscope by using a combination electrostatic octupole stigmator and cosine deflector. An electron mirror configuration for regulating the potential on insulators was discussed by Slodzian (A48). The use of liquid metal ion sources for high-resolution imaging was discussed by Thurstans and Wolstenholme (A49) and Chabala et al. (A50). Nihei et al. (A51) reported the development of an instrument using a liquid metal ion beam with a multichannel detector for more rapid data acquisition. Several groups investigated the use of fluorine-containing primary beams. Vincenti and Cooks (A521 examined the use of (CHF )+ and (C2H2F)+for the sputtering of adsorbed species. is reported to result in (A53). The use of CF3+versus higher sputter yields than 02+ 02+primary beams was evaluated by Reuter (A54);depth profiling performance was reported by Reuter and Scilla (A55). They stated that steady-state secondary ion emission conditions were reached more quickly under CF3+bombardment. The use of neutral SF, primary particles for the analysis of insulators has also been discussed (A56). Efforts in quantitative SIMS have been reviewed by Grasserbauer (A57). The influence of experimental conditions on matrix effects has been discussed by Gao (A58) and Michiels and Adams (A59). Ray et al. (A60) proposed quantitative analysis of rare gases in solids through the detection of (CsR)+molecular ions where R is a rare gas. Thorne and

FP

244R

ANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

Degreve (A61) proposed a new method for exact mass determination based on methods used in other mass spectrometry techniques. Resolution limits of imaging microanalysis have been reviewed by Chabala et al. (A62). Applications of high-resolution liquid metal ion sources for imaging have been discussed by Levi-Setti et al. (A63) and quantitative aspects by Satoh et al. (A64). The use of three-dimensional SIMS has been reviewed by Brown (A65);the effects of sputter redeposition on three-dimensional SIMS have been reported by Rudenaur and Steiger (A66). SIMS continues to be used in the analysis of a wide variety of inorganic materials. Scilla et al. (A67) reported improved C detection limits in GaAs through detection of the As13Csecondary ion. Clegg et al. (A68) compared depth profiles from five instruments by using Cr, Fe, and Zn implanted GaAs standards. SIMS analysis of shallow junctions in Si (A69-A72) and GaAs (A73) has been investigated. Secondary ion yield variations due to topography changes in Si and GaAs were investigated by Stevie et al. (A74). Stingeder et al. (A751 reported on the use of SIMS in the characterization of surface contamination in the native oxide of Si wafers. Shadow-cone enhanced desorption was utilized to determine the atomic geometry of GaAs(ll0) by Blumenthal et al. (A76). Determination of B, As, and Sb in Si02/Si systems has been reported by Stingeder (A77). Detection limits for impurities in W (A78) and InP (A79) have also been evaluated. Counterion effects in the analysis of perrhenate salts were reported by Hand et al. (A80). The use of SIMS in geologic materials analysis was furthered by Metson et al. ( A M ) who used high energy secondary ions to reduce matrix effects and Muir et al. (A82) in a comparison of conventional and specimen isolation filtering techniques. As with many techniques, SIMS has recently been used in the analysis of superconductors (A83, A84). Depth profiling of trace constituents has been discussed by Magee (A85). McPhail et al. (A86) have compared depth resolution of five SIMS instruments. The effects of sample layer thickness (A87),primary ion energy (A88),primary beam type (A89),and sputter angle (A90)on depth resolution have also been reported. SIMS and Auger depth profiles have been compared by Mitchell and Graham (A91)and by Mathieu and Landolt (A92). Factor analysis has been applied to secondary ion energy distributions obtained during SIMS depth profiles in order to obtain chemical state profiles (A93-A95). SIMS imaging has been used to study silicon nitride ceramics (A96), aluminum-lithium alloys (A97),and nickel oxide scales (A98). Three-dimensional SIMS has been used to examine 13C implanted steels by Fleming et al. (A99) and to characterize trace element distributions in individual coal particles by Cox et al. (A100). The use of SIMS in the analysis of biological and medical materials has been reviewed by Ratner (A101) and by Burns (A102). Sample thickness effects on depth profiling of Langmuir-Blodgett films have been discussed by Wittmack et al. (A103),and Saave et al. (A104) have investigated the effect of sample thickness on desorption of small biomolecular ions. The analysis of small proteins (A105) and the sequencing of peptides (A106) using SIMS were reported. Demirev et al. (A107) discussed high mass ion fragmentation as a function of molecular weight and ion lifetime. Odom et al. (A108) demonstrated the quantitative analysis of microdroplet residues. Imaging of biological materials has been discussed by Levi-Setti (A109). Imaging SIMS has been used in the study of drug delivery systems (AIIO),A1 and Ca localization in neurons (A111),and Be localization in rat tissue (AI12) and to evaluate matrix effects in freeze-fractured, freeze-dried cells (A113). The use of a glycerol matrix in SIMS analysis of biological or organic molecules has been reviewed by Ligon and Dorn (A114). Olthoff et al. (A115) reported the use of a TOF spectrometer with a glycerol matrix in order to observe fragment ions from metastable decompositions. The effect of primary ion beam parameters on secondary ion emission from liquid matrices has been investigated by Cole et al. (A116), Aberth and Burlingame (A117), and Olthoff and Cotter (A118). Ligon and Dorn (A119) reported that adding strong acids or bases to glycerol solutions had significant effects on secondary ion yields. SIMS has been used in conjunction with both TLC and HPLC. Busch (A120) has discussed the in situ SIMS analysis of mixtures separated by TLC or electrophoresis. The analysis

SURFACE CHARACTERIZATION

Julia E. fulghun is a Postdoctoral Associate 81 the MicroeleClroniCs Center 01 North Carolina. She received her B.S. degree from the University 01 North Carolina at Chapel Hili (19811 and M.S. degree trom Corneil University (19831 and Obtained a ph. D. in analytical chemistry wwking With Dr. Richard Linton st the University 01 Nwth Carolina at Chapel Hili (1987). Her dissertation focused on XPS qumliition and the waiwlion 01 inorganic adsorption using XPS. FTIR. and SIMS. Current interests include quantitative surlace analysis. applicatins 01 surface and microbeam techniques. and environmentai analytical Chemistry. Dr. Fulghum will be joining the chemistry taculiy ai neni ware universily 8n August.

Gar). E. Mffidre is Dtectw of Materiak Research at the MiCrOtlleCtmnlCs Center of North Carolina where his responsibilitis inciule the devebpment and charscterizatbn 01 new semicondwtw materials. Previously wPh Tektronix. he was Manager 01 the Materials Cevelopment and Characterization Labwatory. He began his career at Texas Instruments where he dd research on surlace characterization techniques investbgating thin films and metallization systems used in the micrOeleCtrOnicI indmtry. He is E d ~ w 01 the Jwrnel of Electron Spschorcopv end Related Phenomena and Materials Sclence and Process Technology Series Editor lw Noyer Publicalions. He is also &lor 01 the recent publication Serniconduciw Materlelr and f7OCocBSs Technology. He is a member of the Board of Directors of the American Vacuum Society and MI the Executive Comminee of the Electronic Materials and PTocess Division. He is Program Chairman for the Lnternational Conference on Metallurgical Coatings (1989) and one 01 the organizers 01 the Fourth International Conference on Electmn Spectroscopy

John M1Cha.I Whlie received the Ph.D. in Chemistry from the University of Illinois in 1986 under the supervision of A r m Kupperman. He then idned the lacunv at the UIIYwsMy 01 lexa/at Austin. where his early revearch was in the area of gas phase hot atom photochemistry. Subsequently. he turned his anention to the emerging disciplines 01 s ~ r l s c eand materials Chemistry. focusing on ~tructureand reaction kinetics. He was named Norman Heckerman Professor in 1985 and currently directs the Center lor Materiais Chemistry at the University of Texas. A 1989 HumbcMt FeiiowshiD will suppwt a stay at the Fritz-Haber-In&l in Berlin. where he will collaborate wim Gerhard Ertl on sunace reac~iondynam lcs studies. He is active in several Christian organizations and 5 ~ ~ on 8 the % Science Advisory Boards ot Harding Universw and Abilene Christian University.

c

0. R. Ckopra received his M.S. in physics from the UnivemW of Nebraska and ph.D. in physics ham New Mexico State Universtly in 1984. Currently. he is FToIessw 01 Physics st East Texas State University. He has over 25 years 01 experience in teaching and reSearch. His fields of research include surface physics. materials science. and chemical DhYSicS. He utilizes a~waranceootential.' X-ray photoelectron: 'and soH'X-ray

BY, surface science Letters, ~ournalof Less C o m m Metals, and AppfM Surface Science He serves on the executive Committee of the Texas Chapter 01 American Vacuum Societv and is a member of American Phvsical Smctv ,~~~ and Society 01 Sigma Xi. He ha5 also received numerow prole~~ional citations including Distinguished Facuny Award IETSU Faculty Senate), Distinguished Facub Teaching Award (Texas Association 01 College Teachers). and Distinguished Scientist (Society 01 Sigma Xil. ~~~~

(19891.

Inga noll Muurnan is a Postdoctoral Research Associate in the Department 01 Materials Science and Engineering st Nwlh Carolina State Universliy (NCSUI and conducts part of her research in the hecisbn Engineering Center also at NCSU. She received her B.A. w e e horn Genysbvg Coilege in 1982 and her Ph.0. in anablical chemistry from the University 01 North Carolina-Chapl Hill in 1988 under the direction of Richard W. Linton. Research lor

nob.rt J. ~ r n a n l dr&ea l me m.0.w e e in physics hom the uniiersliy of Chlcago. Chicago. IL. In 1977. Hs joined t b Xerox Pal0 A b Research Center (PARC). and in 1982 became a Project Leader In their Integrated Clrcul Labcratory. I n 1985 he became S a n i a Member 01 the Research Stall in the General Sciences Labotatrxy at PARC and in 1986 became an Associate Prdessw in the Depanment 01 physlcs at N a M Carolina State Universtly. He ha5 published 75 artiClf)s end his current research interests include heteroepiiaxy and thln film growth. silicide formation. a m r p h o w semlconductorr. Raman rcanering. surtace science. and h e r annealing of semiconductors. He has served 8s Os.3airman tor the Materiais Research Society's (MRS) 1985 SympDSium on Thin Films-Interlaces and Phenome"on. He serves on the Publications Commmee tor lha MRS. is Co-Chairman 01 the Symposium on Heteroepiiaxy on Silicon: Fundamentals. Structures and Devices. MRS. and is meeting Co-Chair fw the 1989 MRS Fail Meeting.

A. R. Ckwrasla is a Roben A. Wekh Foundelion Postdoctoral Fellow at East Texas State Univerrily. His area 01 research is surlace characterization ot materials by appaarenee potential and X-ray photoelechon spectroscopie6. He has utilized EXAFS lor strudural studies 01 IntermetalliCS st Nagpur University. Intia. Anogether he has over 8 years of experience in condensed maner physics.

of phenothiazine drugs (A121, AIZZ), neostigmine and pyridostigmine bromides (A123), and drug metabolites (A124) have been reported. HPLC and SIMS have been combined in the analysis of oligosaccharides (A125), metal chelates ( A 126). and apolipoprotein C-111 isoforms (A127). Polymer characterization with SIMS has heen included in a review by Gillberg (A128). Wittmack (A129) has discussed charge compensation in the analysis of polymer foils. TOFSIMS of polymers has been evaluated by Lub (A1301 and by Bletsos et al. (A131,A132). Fragmentation patterns from a variety of polymers have been reported including polyurethane (A133, A134), poly(methylmethacry1ate) (A135),copolymers (A136),acrylic and methacrylic homopolymers (A137),polystyrene (A138),polycarbonate (A1391, and simple aliphatic polymers (A140). Briggs and Munro (A141)investigated the use of isotopically substituted reagents for the identification of polymer surface functionalities. The potential of FAB-MS for characterization of Teflon was reported by Michael and Stulik (A142). Static SIMS was used in studies of rubber cross-linking (A143) and in adhesion studies (A144).

Postionization of Sputtered Neutrals The use of SNMS has been disrussed by Kaiser and Huneke (A145)and hy Oechsner (A146,. SNMS has heen evaluated ANALYTICAL CHEMISTRY, VOL. 61, NO. 12. JUNE 15. 1989

245R

SURFACE CHARACTERIZATION

in terms of SIMS matrix effects by Kelly and Kaiser (A147); analysis of insulators has been reported by Gieger et al. (A148). Quantification of SNMS data has been studied by Wucher et al. (A149) who determined relative sensitivity factors for 29 elements and by Jede et al. (A150)who evaluated the effect of electron plasma and particle emission processes on the analysis. SNMS has been used in the determination of He in Ni and Si (A151),in depth-profiling of Ta-Si multilayer samples (A152),and in the analysis of chemical vapor deposition films of Ti and W silicides (A153). The analysis of high purity solids by SIRIS has been discussed by Parks et al. (A154). Pellin et al. (A1551 have evaluated sub-ppb levels of Fe in Si by SARISA. SIRIS has been used in the measurement of uranium in solids (A156, A157), in quantification of Cu, Zn, Mo, Se and V in neonatal blood (A158),and in depth profiling (A159). SALI has been overviewed by Pallix, Becker and Newman (A160). The use of SALI for the surface analysis of inorganic materials has been demonstrated by Pallix et al. (AI61) and by Shimizu et al. (A162). Thin film analysis (A163, A164) including superconducting thin films (A165) has been reported. Depth profiling applications have been reviewed by Pallix et al. (A166). The analysis of bulk polymers by SALI was reported by Schuhle et al. (A167);Huth and Denton (A168) have analyzed organics in complex matrices. Laser Microprobe Mass Spectrometry (LAMMS)

LAMMS was reviewed by Cotter (A169),Simons (A170), and Hercules (A171). Verdun et al. (A172) reported increased sensitivity in LAMMS analysis by coupling a dye laser to a laser microprobe mass analyzer for resonant ionization. Coupling a pulsed-laser with field ion microscopy for studying reconstruction and thin film growth was reported by Tsong et al. (A173). Improvement in LAMMS instrumentation for art analysis were described by Carriveau et al. (A174). Wilk and Hercules (A175) modified a LAMMS instrument to produce high lateral resolution ion maps. The use of principal component analysis in obtaining information from LAMMS data was discussed by Fletcher and Currie (A176). LAMMS has been used in the study of electronic materials, organic and biomedical samples, and in particulate analysis. Quantitative results from phosphosilicate glasses have been reported by Odom et al. (A177). The analysis of impurities in semiconductors has been demonstrated by Grainger and Roberts (A178). Musselman et al. (A179) studied cluster ion formation using NiS particles mounted on an isotopically enriched 34Sfilm. The use of LAMMS in medicine was reviewed by Verbueken (A180). Polymer analysis was discussed by Holm et al. (A181),and LAMMS has been used for organic analysis by Hercules et al. (A182) and compared to FAB-MS for organic analysis by Kelland et al. (A183). Intermediates and reaction products of the Wittig synthesis were characterized by Claereboudt et al. (A184). Biological applications include analysis of imazaquin on soybeans (A185),and analysis of elements in hard and soft tissues (A186,A187). The ability to ionize single particles or fibers makes LAMMS a useful technique for environmental studies. LAMMS and electron microprobe data were correlated in a study of Ni speciation in fluidized-bed roaster particles (A188). These two techniques have also been used in the study of leachate from a limestone cathedral (A189), aerosol samples from the Amazon basin (A190),the characterization of estuarine and marine particles (A191),and chrysotile asbestos fibers (A19.2). Carbonaceous aerosol particles have been studied by Yokozawa et al. (A193), Currie et al. (A194), and Mauney (A195). A second laser can be added to ionize the neutral, ablated particles. The use of separate lasers for the desorption and ionization states was discussed by Boesl et al. (A196). Zare et al. (A197) reviewed the use of laser desorption/laser ionization methods for the analysis of molecular adsorbates; Odom and Schueler (A198) demonstrated the usefulness of this technique for thin film microanalysis. Materials analysis applications include gallium arsenide and mercury cadmium telluride samples (A199), as well as direct analysis of meteorites (A200). Matrix effects in biological samples were evaluated by Beavis et al. (A201). Hahn et al. (A202) demonstrated subfemtomole quantitation of adsorbed biomolecules. Additionally, phenylthiohydantoin amino acids (A203, A204) and nonaromatic peptides (A205) have been analyzed 246R

ANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

by using laser desorption/laser ionization. Nuclear Reactlon Analysis (NRA)

In nuclear reaction analysis, light MeV projectiles induce nuclear reactions in light elements (2< 15). Reaction products are detected from a depth determined by the nuclear reaction cross-section maximum as a function of energy. Analytical applications of NRA for depth profiling have been reviewed elemental analysis has been reviewed by Downing et al. (A206), by Peisach (A207). NRA was compared to Auger depth profiling for thickness measurements of thin oxide films by Tapping et al. (A208). Bradshaw et al. (A209) reported a method for the determination of oxygen-18 in microsamples of biological fluids. A chamber for NRA of H profiles in nonvacuum environments was developed by Horn et al. (A210). An interlab comparison of NRA measurements on tantalum pentoxide films was evaluated by Seah et al. (A211, A21 2 ) . NRA has been used to determine B implantation profiles in Si (A213) and in polymer films (A214). Petit et al. (A215) used NRA for H-depth profiling in cationic silicate minerals. The complementarity of nuclear reaction analyses induced by protons and deuterons was demonstrated on zeolite samples by Decroupet et al. (A216). Izsak et al. (A217) used I6N to analyze hydrogenated carbon. The analysis of low 2 elements in a matrix containing high 2 elements was reported in a study of gold artifacts by Demortier and Gilson (A218). Bethge (A219)evaluated the utility of NRA for the study of modified materials. Particle-Induced X-ray Emisslon (PIXE)

PIXE uses 1-4 MeV particles to excite X-rays which can then be detected by wavelength-dispersive (WDS) or energy-dispersive (EDS) spectrometers. The present status of X-ray spectral analysis was reviewed by Klockenkamper (A220),and methods for exciting X-rays have been compared by Klockenkamper et al. (A221). A variety of applications have been discussed by Maenhaut (A222),trace element applications have been reviewed by Traxel (A223),and biological applications were reviewed by Legge et al. (A224). Oliver and Miranda (A225) compared PIXE and RBS. Peisach (A226) and Saleh and Al-Saleh have discussed PIXE-induced XRF (A227). The spatial resolution of PIXE was evaluated by Legge (A288) and the accuracy in standardless analyses by Rogers et al. (A229). Chemical effects in PIXE spectra have been discussed by Uda et al. (A230). The analysis of thick targets and detection limits in thick targets were discussed by Campbell et al. (A231, A232). Several instrumental and technique developments have been announced. Koyama-Ito et al. (A233) produced a cyclotron microbeam for the PIXE analysis of biomedical samples. Narusawa et al. (A234) used a WDS spectrometer for Si, B, and Mg determination in G A . Beam pulsing systems were reported by Al-Armaghani et al. (A235)and by Zeng and Li (A236). External proton beam systems were evaluated by Wookey and Rouse (A237) and by Martinsson (A238). Grime et al. (A239) reported instrument modifications resulting in a 0.5-pm beam spot diameter. The use of PIXE in aerosol analysis resulted in the development of solar-powered samplers (A240) and an automatic target chamber (A241). Calibration of a proton microprobe was discussed by Themner et al. (A242),and yield calibration stability of a silicon (lithium) detector was reported by Bombelka and Richter (A243). A method for the correction of surface roughness was proposed by Smit (A244). A forward scattering technique for the determination of target thickness was discussed by Pallon (A245),and application of a parameter-fitting technique to depth profiles was reported by Yamada and Kid0 (A246) and by Regnier and Brissaud (A247). Inorganic analyses using P E E included a study of radiation damage in GaP single crystals (M), depth profiling in metal alloys (A249) and multilayer samples (A250), improved 0 detection limits in Be (A251),and the spatial distribution of uranium on thin foils (A252). The three-dimensional Li distribution in stainless steel was obtained by using a scanning microprobe (A253). PIXE has also been used to evaluate different methods for preparing superconductors (A254),and for the external analysis of fusion reactor components (A255).

SURFACE CHARACTERIZATION

Cecchi et al. (A256) and Hansson et al. (A257) used PIXE for the analysis of metals in water samples. Geological applications of PIXE have been reviewed by Cabri (A258) and by Benjamin et al. (A259). Horn and Traxel (A260)studied fluid inclusions through PIXE, and Durocher et al. (A2611evaluated rare-earth elements in apatite. Calibration of micro-PIXE for analysis of sulfide minerals was reported by Campbell et al. (A262). Electron microprobe and PIXE analysis were correlated in a study of trace elements in sulfides by Remond et al. (A263). The use of PIXE in mineral prospecting was evaluated by Malmqvist et al. (A264). Archeological and historical studies were discussed by Swann and Fleming (A265),Brissaud et al. (A266), and Kusko and Schwab (A267). The use of PIXE in aerosol and particulate sampling was discussed by Hansson et al. (A2681, Annegarn et al. (A269), and Maenhaut et al. (A270). Background subtraction methods in the analysis of aerosols were evaluated by Tang et al. (A271). PIXE and XRF results were compared in a study of aerosol particles by Tomic et al. (A2721, and multivariate analysis techniques were applied by Maenhaut and Cafmeyer (A273). PIXE was also used extensively in biological and medical research. Biomedical applications were reviewed by Vis (A274) and by Gonsior et al. (A75). External beam biomedical studies were reviewed by Raisanen (A2761 and the use of PIXE in biology and medicine was reviewed by Williams (A277). Preparation and analysis of small biological samples was evaluated by Hertel and Thorlacius-Ussing (A278). The analysis of thick biological samples was discussed by Clayton (A279). PIXE analysis of biological reference materials was reported by Maenhaut et al. (A280). Applications included studies of calcified tissues (A281, A282), analysis of trace elements in blood cells and tumors (A283),and external beam analysis of cerebrospinal fluid (A284). Damage effects caused by a 1-km, 4-MeV proton beam were evaluated on a single pollen grain (A285). Mapping of biological samples using a scanning microprobe was reviewed by Vaux et al. (A286) and by Watt and Grime (A287). Concentration maps from unsectioned biological samples were obtained by Schofield et al. (A288). Ion Scattering Spectroscopy (ISS)

ISS involves elastic scattering of a low energy noble gas ion off of a solid surface. Only ions scattered from the topmost layer of atoms are detected, and the mass of the scatterer can be determined from the initial and final energies of the scattered ion. Surface analysis by ISS was reviewed by Creemen et al. (A289). Polymer characterization was reviewed by Gardella (A290),catalyst characterization by Horrell and Cocke (A291). ISS using a neutral ion beam (neutral beam incident ion scattering spectroscopy, NBISS) was compared to ISS by Souda et al. (A292). A two-dimensional positionsensitive detection system for use in an ion scattering spectrometer was reported (A293). Young and Hoflund (A294) discussed quantification and resolution in ISS. Sputter depth rofiling of thin Fe/Ta films on Si using ISS was evaluated gy Puranik and King (A295). ISS was used in the analysis of polymer systems by Hook et al. (A296) and Salvati et al. (A297). NBISS was used in a surface crystallography study of As on Si(OO1) by Neihus et al. (A298). Rutherford Backscattering Spectrometry (RBS)

In RBS, MeV helium ions, deuterium ions, or protons are inelastically scattered from the surface or from a distance of up to microns in the solid. A nondestructive surface, depth, and composition analysis results. RBS analysis was overviewed by Perriere (A299),Gossmann and Feldman (A300), and Leavitt (A301). The use of RBS in the analysis of glass surfaces was discussed by Hsiung and Trocellier (A302);thin film analysis was reviewed by Finstad and Chu (A303). Smith et al. (A304) reported on a UHV system for both RBS and X-ray photoemission spectroscopy, and Maree et al. (A305) described a UHV system for MBE growth and high resolution RBS analysis. Riddolls and Shanker (A306) developed a multiple sample holder for in situ thin-film deposition and subsequent RBS analysis. A microbeam line using focussed He or H ions for RBS mapping was characterized by Kinomura et al. (A307). The consequences of surface topography on Rutherford backscattering spectra were

discussed by Hobbs et al. (A308). Several variations of RBS were evaluated. Channeling RBS discriminates against the signal from crystalline substrates by aligning the sample along a crystalline axis. This improves the S / N for elements in amorphous layers. Carter (A309) reported on channeling RBS for depth profiling in amorphization studies. Intermixing a t the platinum-silicon interface was investigated by Abelson et al. (A310). Solid-liquid and solid-gas interfaces were studied by using a thin window cell for both RBS and channeling RBS (A311). A computer-controlled goniometer for channeling experiments was described by Clark et al. (A312). Knox and Harmon (A313) discussed the use of non-Rutherford scattering to enhance light elements. Resonant scattering was used to analyze thin films on GaAs and compared to conventional RBS by Yu et al. (A314). Elastic recoil detection (ERD), which uses an energetic heavy ion beam to remove light elements from the sample, was evaluated by Gujrathi et al. (A315). Inorganic applications include semiconductors, metals, geological materials, and superconductors. Abel et al. (A316) optimized As detection in Si using a Ne+ primary beam. Redistribution of Ag in oxygen-bombarded Si was evaluated through RBS by Wittmaack and Menzel (A31 7 ) . Deuteron channeling was used for defect analysis in S i c (A318),and ERD and RBS were combined to evaluate H depth profiles and impurities in hydrogenated amorphous Si (A319)and in crystalline Si (A320). CdTe crystals (A321) and multilayer GaAs structures (A322) were studied by using a 12Cion beam to enhance mass and depth resolution. Simultaneous RBS and resonant nuclear reaction analysis were used to measure A1 concentrations in AlGaAs (A323). 19Fwas used to obtain depth profiles of ion-implanted Ge (A324). Brizzolara et al. (A325) used RBS to determine the composition of the flux from the sputtering of a eutectic Ag/Cu alloy. The sticking of low-energy metal atoms to different substrates was investigated by Emmoth and Bergsaker (A326). Chromiumplatinum (A327) and Ru-implanted Ti electrodes (A32)were characterized by RBS. Fluorine depth analysis was evaluated by Khubeis and Ziegler (A329). RBS has also been used in the analysis of rare-earth and actinide zeolites (A330)and in the characterization of topaz stones (A331). A variety of studies of superconductors have been reported (A332-A340). RBS can also be used in the characterization of polymers. Hui et al. (A341, A342) studied diffusion of iodohexane in polystyrene. The diffusion of metal films on polyimide was evaluated by Shanker and MacDonald (A343). Implant distributions in polyacetylene (A344) and the effect of deuterium implantation on polyethylene (A345) have been investigated. Fluorine distributions in plasma-fluorinated POlyimide (A346)and in poly(viny1idene fluoride) (A347) have also been studied. Rafailovich et al. ( A M ) examined interface formation in a partially miscible polymer blend.

6. ELECTRON SPECTROSCOPY General Reviews

The application of the electron spectroscopies, X-ray photoelectron (XPS) and Auger electron spectroscopy (AES) in materials characterization was reviewed by Harris and Trigg ( B I ) ,Briggs (B2) and Sexton (B3). Fundamental principles, instrumentation, methods and applications of XPS and AES were reviewed by Hochella (B4),Grunthaner (B5),and Porter and Turner (B6). Powell (B7)has provided an overview of the data for electron attenuation lengths (ALS) and inelastic mean free paths (IMFPs) in the energy range of interest for the electron spectroscopies. Derivatization of surfaces to allow more selective analysis was reviewed by Batich (B8)with an emphasis on polymer surfaces. X-ray Photoelectron Spectroscopy (XPS)

One of the key aspects of the electron spectroscopies that limits their quantitation is an accurate knowledge of the IMFP of electrons in solids. Reich et al. (B9)has reported a method of independent atomic centers approximation for calculation of IMFPs, while Ebel and Krocza (BIO)investigated the energy dependence of the attenuation lengths of electrons in low 2 elements. The use of reflection electron energy loss spectroscopy (EELS) in deconvoluting the inelastic background signal from XPS and AES spectra from homogeneous samples was studied by Chorkendoriff and Tougaard (B11) and forANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

* 247R

SURFACE CHARACTERIZATION

mulas developed for the deconvolution of the inelastic background signal from measured electron spectra (B12). Recent progress in the quantitative analysis of the distortion of surface electron spectra, resulting from inelastic electron scattering, was reviewed by Tougaard (B13). Incorporation of these corrections for background subtraction in the analysis of XPS peak shapes was reported by Tougaard (B14) while Chornik et al. (B15) reviewed the most common methods of deconvolution for electron spectroscopy. Nefedov and Bashchenko (B16) proposed a numerical method for the nondestructive restoration of the in-depth concentration profile of 5-10 nm surface layers based on the angular distribution of XPS intensities. Other developments in the understanding of electron spectroscopy data reduction/interpretation include a study by Koenig and Grant (B17) of the effects of specimen nonhomogeneity on kinetic energy and peak intensities. Bryson (B18)showed that placement of a metal screen above a nonconducting sample increased the effectiveness of an electron flood gun for charge control leading to better resolution and reproducibility. Boland (B19) has taken advantage of the ability to bias various components of a device in the development of spatially resolved XPS, voltage contrast XPS. Energy calibration is a very basic aspect of XPS which Carroll et al. (B20) suggest needs some correction. They suggest that the use of Mg K L YX-ray ~ , ~ spectrum centroid a t 1253.53 eV corrects some previous inconsistencies. New methods of obtaining spatial information using XPS have been developed. Smith and Seah (B21) demonstrated 1 5 0 - ~ mresolution with a spherical sector analyzer operated in the selected area mode. Deflection plates were introduced between the input lens and the sample, allowing the virtual image of the input aperture to be raster-scanned across the sample surface. The image was formed by using the customary spectrometer output to 2-modulate a synchronously rasterscanned video monitor. Petersen et al. (B22) proposed an approach using synchrotron radiation in combination with a stigmatically focusing type plane grating monochrometer and a zone plate to create a microspot of less than 5 wm in diameter. Clarke et al. (B23).described a display type spectrometer based on the principle of mirror-electron microscopy employing an electrostatic projection lens system. The photocurrent is amplified onto a phosphor screen via a channel electron multiplier array. The phosphor emission is detected through the use of a CCD camera allowing the digitized image to be both position and energy analyzed. The Auger parameter, involving correlation of both Auger and photoelectron line energies, has increased in popularity as a means of obtaining chemical state information without the necessity for charge correction or work function measurements. The current body of knowledge on the Auger parameter, including illustrations and special situations, was reviewed by Wagner and Joshi (B24). Moretti (B25) compared the different approaches to the Auger parameter developed by Wagner, Hohlneicher, and Lang and Williams. The advantages of present X-ray sources in the excitation of Auger transitions was discussed by Yu (B26) and Yu et al. (B27). The use of the X-ray excited Auger transitions in quantitative surface analysis was reviewed by Ebel et al. (B28). Kohiki et al. (B29) used the Auger parameter to determine the dielectric constant of very thin insulators and demonstrated that the Auger parameter and dielectric constant were related to the catalytic activity of homogeneous semiconductor catalysts (B30). The use of spin-resolved photoemission in the analysis of magnetic and nonmagnetic surfaces has evolved rapidly. A review of the principles and recent results of the investigation of 3d-transition metal magnetism was given by Kisker (B31). The use of spin-polarization analysis in electron spectroscopy of magnetic and nonmagnetic materials was illustrated (B32). Abraham and Hopster (B33) demonstrated that the mean magnetic probing depth is only 3-4 atomic layers. Carbone and Kisker (B34) investigated the growth of Gd on Fe(100) surfaces while monitoring the spin-polarization of Gd 4F and Fe valence bands. The damage in the surface magnetism of iron oxide particles induced by ion sputtering was reported by Aeschlimann et al. (B35). Angle resolved photoelectron studies have evolved along several different directions. Tougaard (B36) examined the use of XPS peak shapes for various path lengths traveled by the photoelectron in the solid as a means t o obtain nonde248R

ANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

structive in-depth composition information. More traditionally, the peak intensities are examined as a function of angle (B37). Halbritter (B38)used this approach in a very detailed analysis of the compounds present at the Si-SiOp interface. Photoelectron diffraction from single crystalline materials provides information on adsorption sites of atoms, the orientation of molecules bound to surfaces, and physical properties of epitaxially grown films (B39,B40). Trehan et al. (B41) discussed the relationship between photoelectron diffraction and Kikuchi bands and their application to surface structure studies. X-ray photoelectron diffraction was used by Wesner et al. (B42)to study the orientation of CzH4, CzH4, and CO on Pt(ll1) and P t ( l l 0 ) surfaces and by Bardi et al. (B43) to determine the disordered layer thickness created by ion bombardment of TiOz surfaces. A new method to detect energy-band bending was proposed by Ogama (B44) which measures the changes in the binding energy with the change in the detection angle of photoelectrons. Jugnet et al. (B45) found evidence for segregation of Pt on PtNi alloy surfaces from photoelectron diffraction. Barton (B46) has extended photoelectron diffraction to accomplish photoelectron holography. In a photoelectron hologram, direct photoemission plays the role of a reference wave and the scattered waves are the object waves. In the area of semiconductor surfaces, XPS was utilized in the evaluation of the heteroepitaxial growth of ,&Sic on Si(100) surfaces subjected to ethylene at elevated temperatures by Kim et al. (B47). Yu et al. (B48) investigated the wavelength dependence of optically induced oxidation of GaAs(100) while Wada (B49) explored the electron beam oxidation of Si(100) and GaAs(100). Wada and Maeda ( B O ) also reported on the use of electron beam irradiation in the solid-phase epitaxial growth of A1,Gal,Sb. Changes in the surface composition of InP and InGaAs exposed to H, NzO, N, and NH3 plasmas were evaluated by XPS by Thomas et al. (B51). Rapid thermal annealing of ion implanted InP was investigated by Biedenbender et al. (B52). XPS has also been used extensively in the evaluation of metal-semiconductor interfaces. Brillson et al. (B53) examined GaP(110) surfaces with In, Al, Ge, Cu, and Au overlayers and found near-ideal correlation between Schottky-barrier height and metal work function. Hirose et al. (B54) found a linear correlation between the XPS chemical shift and silicide-n-type Si Schottky-barrier heights of 10 different silicides. XPS was used to identify the Ni silicide phase formed on S i ( l l 1 ) grown by solid-phase epitaxy (B55). McConica and Cooper (B56) explored W nucleation on thermal SiOz during low pressure chemical vapor deposition of W on Si by the H reduction of WF6. In the area of plasma etching/deposition of thin films, Grossman et al. (B57) examined the changes in the photoelectron binding energies induced by XeFz etching of W( 100) and W silicide (B8).In situ XPS measurements indicate that etching of polyimide in a microwave 0 plasma results in increased carbonyl bonds on the etched surface (B59). Addition of CF4 enhances the etch rate but also gives rise to F coverages which scale with the F concentration in the gas mixture. Matienzo et al. (B60)showed that the depth of fluorination of polyimide films increased nonlinearly with treatment time. Low-power magnetron ion etching plasmas of CF4/Hzproduce fluorocarbon films on Si which are characterized by C-CF,, CF, CFz, and CF3 groups (B61).Ultraviolet-light irradiation during fluoropolymer plasma sputtering was used as an excitation source to enhance the dissociation of molecular species in the plasma (B62). XPS of the chemical states of plasma anodized Si was compared to capacitance-voltage measurements of these films by Nelson et al. (B63). Gas separation membranes made by plasma polymerization of perfluorobenzene/CF, and pentafluorobenzene/CF, mixtures were examined by XPS (B64). Glass et al. (B65) used XPS and other techniques to study diamond and diamond-like films grown on Si by microwave-plasma-enhanced chemical vapor deposition. The application of XPS to the study of corrosion of metals and glasses was reviewed by Maschhoff et al. (B66). The capacity of XPS in the characterization of oxides through the use of 0 Is spectra was reviewed by Paparazzo (B67). Reichl and Gaukler (B68)used sputter depth profiling as well as the inelastic mean free path of the photoelectrons in an investigation of the thickness of the passivation layer on Y.

SURFACE CHARACTERIZATION

When analyzing an insulating organic powder, Chehimi and Delamar (B69)applied an external bias to the sample holder which resulted in shifts of different magnitudes for the XPS lines of the sample and that of the sample holder. This permits the separation of the sample signals from those of the sample holder or the substrate. The method described by Bryson (B18) of placing a metal grid above the sample in combination with a low kinetic energy electron flood gun was applied to a variety of organic materials in order to establish a uniform surface potential (B70). Spectral line widths of 0.9-1.3eV were routinely obtainable for the C 1s core level with icO.1 eV reproducibilty. Hansson (B71)reviewed the experimental, angle-resolved XPS, LEED, and theoretical studies of surface electronic states of semiconductor-adsorbed layers for GaAs and Si. Chuang and Domen (B72) investigated CHzIzmolecules adsorbed on A1203 and Al surfaces as a model system for studying the photofragmentation and desorption processes involving electronic excitation of the adsorbate. In an investigation of clean and H S covered GaAs, Ranke et al. (B73) observed orientation-cfependent surface core-level shifts of up to 0.55 eV for As and -0.35 eV for Ga. Various instrumental and chemical methods used to characterize polymer surfaces were reviewed by Gillberg (B74). The pros and cons of XPS and derivatization schemes to enhance the detectability of functional groups were emphasized. Hook et al. (B75) used XPS and ion scattering spectroscopy to determine that HzO/Ar plasma-modified poly(methylmethacrylates). Surface modification extended to a limited depth of 50-100 A. The interaction of a hydrogen plasma with fluoropolymer surfaces was shown by Clark and Hutton (B76)to result in rapid defluorination to a depth of approximately 20 A. Nitrogen plasma treatment of polypropylene resulted in improved wettability and adhesion (B77). The field that has grown the most in general interest as well as for the application of XPS is superconducting materials. XPS has been used extensively in investigations of the YBazCu3O7_,superconductor. XPS was used to determine the mixture of Cu, Cu+, Cu2+,Cu3+valence states, by looking a t the Cu 2p shake-up peak intensity (B78-B80) as well as the valence band (B81). The valence band has a resolved feature which is different for orthorhombic and tetragonal material. A correlation was found between the intensity of the Cu 2p shake-up peak and a feature in the 0 1s spectra at the high binding energy side (B82,B83). The 0 1s spectra were used to study various stoichiometrics of YBanCu30, (B84). The intensities of 0 and Cu spectra were monitored as a function of temperature in order to more clearly determine which features were more clearly associated with the superconducting transition temperature ( B 8 5 4 8 7 ) . The Cu 2p spectra were also studied in the series Laz-,M,Cu04 (M = Sr, Ba) to determine the effect of increasing M content on the presence of the ratio of Cu3+/Cu2+valence states (B88). In contrast to the YBazCu307, superconductor, the 0 1s spectra of Bi&aSrCu,O +, exhibit only one peak (B89). Addition of Ag to YBa2Cu367-, results in Ag in voids and along grain boundaries (B90). XPS has been used in the investigation of the electronic structure of a variety of other compositions. In addition, XPS has been used in the analysis of buffer layers used to prevent interdiffusion/reaction with the substrate (B91). During the past two years there has been a significant increase in the number of papers on ion beam modification of materials. In many of these papers, XPS is used to examine the changes in surface composition. These investigations tend to fall into three or four key areas. The first of these is ion beam implantation at energies from 20 to 400 keV which are sufficient to form a thin film of modified material. Applications include increasing the hardness or wear resistance of A1 (B92,B93),T i (B94,B95), and stainless steel (B96) through the implantation of N, C, and other species that form precipitates of refractory materials. This approach is also used to impart oxidation resistance to materials like Ti (B97)and U (B98)which in the pure state are very reactive. Ion induced adhesion is a second category where XPS is used to monitor changes in the surface composition. Both high energy, 1 MeV (B99),and low energy, 500 eV (BIOO),ion beams have been found to promote adhesion to inorganic and organic surfaces. The third category is focused on chemical changes in the

surface composition of materials. Poplavskii (BIOI)implanted transition-metal ions in order to alter the electrocatalytic activity of carbon materials. XPS was used by Waesche et al. (B102) in a study of poly(viny1idene fluoride) surface irradiated by low-energy Ar+. A decrease in the F content and formation of a carbonized layer were observed. Argon ion bombardment also produced a carbonized layer on polyimide (B103). Loh et al. (B104) used this effect to produce electrically conducting polymers. Suzuki et al. (B105)used 50-100 keV C+, N+, 0+,and Ar+ to alter the surface composition as well as to alter the surface roughness for improved wettability of silicone rubber. Marletta (B106) and Ho et al. (B107) examined the ion beam induced chemical changes of inorganic salts. Ion bombardment of most transition metal carbonates and oxyanions resulted in reduction of the transition metal to lower oxidation states. In contrast, alkali-earth carbonates and some metal oxides appeared to be more stable. Following the ion beam-solid interactions with XPS indicated that a steady-state composition is attained at a total irradiation dose of ions/cm2. Auger Electron Spectroscopy (AES)

Aspects of AES, the electron beam excitation of Auger electron transitions, relating to the analysis of solid material surfaces were reviewed by Paterson (B108). Industrial applications of AES were highlighted by Chase and Cole (B109) while Hofmann (B110)reviewed the characterization of nitride coatings. Seah (B111) reported on progress in the quantification of AES and XPS data and Wei (B112) reviewed methods for reducing charging in the AES analysis of bulk nonconducting and semiconducting materials. The precise shape of the whole electron spectrum in AES is influenced by many factors. Smith and Seah (B113) have made detailed measurements on reference materials to show how equivalent data can be recorded from different instruments. El Gomati (B114) critically evaluated the use of the Auger peak height to that of the background in qualitative and quantitative AES,while Maschhoff et al. (B115)discussed methods for improved description of line shapes and energy loss backgrounds. The spatial resoution achieved by lowenergy, 2 kV, beams was discussed by Tokutaka et al. (B116) and by high-energy, 100 kV, beams by Cazaux (B117) and Chazelas et al. (B118). For two component systems Tokutaka et al. (B116)demonstrated spatial resolution of -30 A. The spatial resolution is influenced by backscattering and secondary electron generation which was modeled by Jablonski et al. (B119) and Ding and Shimizu (B120). Jablonski et al. (B121)have reported on the influence of the matrix on boron detection by AES. Semiempirical sensitivity factors were presented by Payling and Szajman (B122)that were calculated by the dielectric theory of the electron mean free path. Many et al. (B123) presented an analysis that showed that the measured line intensities do not represent accurately the atomic concentration unless the ratio of the instrumental resolution width to the natural Auger line width is less than about 0.3. Practical depth profiling by ion sputtering in combination with AES is strongly influenced by sample roughness. The depth resolution of multilayered Cr/Ni thin films deposited on Si substrates with different roughness amplitudes and angular distribution of microplanes was investigated by Zalar and Hofmann (B124, B125). Improvement in the depth resolution was achieved through the use of two incident ivn beams (B126)or sample rotation (B127). Redeposition during sputter depth profiling was also shown to have a strong influence on the depth resolution (B128). The rapid evolution of high density recording media has resulted in the increased use of AES and other surface analysis techniques. Kobayashi et al. (B129) used AES in the characterization of multilayered Fe C films while Shin et al. (B130) investigated multilayered Tb/ eCo thin films. The oxidation behavior of CoNi magnetic thin films was studied by Majumdar et al. (B131) and the corrosion-resistant rare-earth/ transition-metal amorphous films for magneto-optical recording were evaluated by Kawamoto et al. (B132). Local magnetization can be probed by Auger electron spin polarization which has been reviewed by Allenspach et al. (B133). Oxidation resistance of TeSe optical recording films was achieved with the addition of 14% atomic Se. Motoyasu et

i

ANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

249R

SURFACE CHARACTERIZATION

al. (B134) used AES depth profiling to show that a layer of Se is present a t the surface. A method was reported by Van Veen (B135)that allows for the retrieval of depth information in AES and XPS by measuring the angular distribution of outgoing electrons with respect to the surface normal. Angular dependence of AES signals from single crystalline GaAs surfaces show a strong variation with the angle of rotation (B136). Angle-resolved AES and SIMS of A1 oxidation show that 0 chemisorbs on Al( 100)without reconstructing the A1 surface for 0 exposures below 120 Langmuir (B137). A new application of AES that has developed over the past two years is the evaluation of high T , superconductors. Venkatesan et al. (B138) and Wu et al. (B139)used AES to evaluate the interface reactions of laser deposited YBazCu307, films on Si substrates with a ZrOz buffer layer and SrTiO,, respectively. Electron beam evaporated thin films of desposited on sapphire substrates were investigated by AES in a study by Schellingerhout et al. (B140). AES was used along with other techniques by Yang et al. (B141)to determine the phase diagram and stoichiometry of Y Ba Cu oxide thin films. The Auger valence electron spectra were utilized by Nakayama et al. (B142)to study the Coulomb interaction energy of Cu 3d electrons in superconducting films of various compositions. Kroeger et al. (B143,B144) evaluated the grain boundary composition of YBazCu307-, fracture surfaces by AES and determined that there was a deficiency of 0 and enrichment of Cu. The application of AES in the evaluation of ion beam modified surfaces saw increased emphasis. AES was utilized by Shrivastava et al. (B145) to evaluate the extent of oxidation of stainless steel implanted with N to improve its wear resistance. Wei and Lankford (B146) and Wei et al. (B147) reported their results of characterizing ion beam modified ceramic wear surfaces for use in high-temperature adiabatic engines. Ion beam mixing of thin Al films deposited on GaAs was shown by Fastow et al. (B148) to form AlAs whereas implantation at 400 "C results in the formation of A!, GaI7As. AES and XPS were used by Todorov et al. (B149)and Chen et al. (8150) to evaluate the stoichiometry of thin oxide and nitride films formed on Si by low energy ion bombardment. Oosting et al. (B151) used AES and T E M to study buried nitride layers on Si formed by high energy ion implantation. The effects of ion implanting Kr, As, F, C1, and S on the electrical and structural properties of poly(dimethylsily1eneco-methylphenylsilylene) were reported by Basheer et al. (B152). AES continues to be a key technique for the evaluation of grown or deposited thin films. Hori et al. (B153) reported on the use of AES to determine the extent of nitridization of SiOz films rapid thermally annealed in ammonia. Electron beam damage of thin dielectric films frequently occurs during AES analysis. Chao et al. (B154) reported on the conditions necessary to minimize this artifact. Electron beam induced surface reactions are beneficial in the selective deposition of W or Si from WF6 (B155). AES was also used in the evaluation of amorphous titanium carbide films produced by lowtemperature chemical vapor deposition (B156)and laser desorption of polymer in a plasma reactor (B157). Numerous applications of AES in the analysis of semiconductor materials have been demonstrated. Some novel new applications include the use of AES in measuring resist patterns (B158). This is a function normally performed in a scanning electron microscope (SEM). Lu et al. (B159) demonstrated the capability of distinguishing the crystallographic polarity of CdTe surfaces by observing the ratip of the low energy Te (NOO) peak and the high energy Te (MNN) peak. AES was used by Matsui et al. (B160)to monitor the monolayer growth of a capping layer of GaAs on an InP substrate. Other applications which illustrate new areas of emphasis in the semiconductor field include the study of the epitaxial growth of cubic silicon carbide on Si (B161). Fontaine et al. (B162)reported on the growth of CaFz on GaAs and De Fresart et al. (B163) studied B surface segregation during Si molecular beam epitaxy (MBE). Metal induced crystallization of Si at temperatures as low as 525 "C was studied by AES (B164). AES was used in the development of new methods of depositing metal contacts. Higuchi-Rusli et al. (B165) reported on ion beam deposition from a binary B-Pt liquid-metal ion source, Cacouris et al. 250R

ANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

(B166) described their results of laser direct writing of A1 conductors and Gluck et al. (B167)investigated the C and 0 incorporation into thin meal films grown by laser photolysis. New developments in the search for a stable contact to n-GaAs include a Mo/Ge/ W ohmic contact reported by Murakami et al. (B168)and a NiAl bimetallic Schottky contact developed by Sands et al. (B169). The use of rapid thermal annealing (RTA) as a means to reduce the thermal budget during device processing was investigated extensively. In many of these studies AES was used to characterize the thin film interactions. Ho and Poulin (BI 70) investigated self-aligned TiSiz formation while Morgan et al. (23171)studied self-aligned COSz and Edelman et al. (B172) reported on the Nisi and Nisiz formation. The use of AES in the study of segregation continued a t a healthy pace. Some illustrative examples are the work of Godowski (B173) in the investigation of the surface site competition of S and P in a polycrystalline Co-Ru alloy and the study of the anisotropic Ca segregation to the surface of A120, by Baik and White (B174). Ellison et al. (B17.5) attempted to correlate the high temperature surface segregation on Cc-Rh alloys with the combined bond breaking and lattice strain theories of segregation. Lejcek (B176) reviewed the methods of determining surface composition using AES and reported on its use during the initial stages of ion sputtering of Fe-Si alloy bicrystals containing traces of P and N. Fracture surfaces of nonconductive ceramic materials may be examined a t low beam current and voltage (B177). Several of the numerous studies of metal/alloy surfaces by AES include the investigation of Nb/Cu superlattices by Hu et al. (B178). Magnetron sputtering was used to produce alternating Nb and Cu layers on a scale of 1-30 nm. Dugger et al. (BI 79) used AES to investigate the role of oxygen in the frictional behavior of steel lubricated with poly-a-olefin. AES was also used in the quantitative analysis of copper implanted Co/Ni alloys by Wandass and Turner (B180). The application of AES depth profile analysis to thin f i interdiffusion studies was reviewed by Pamler (B181). One of the more interesting studies dealing with oxidation/passivation was the study of ultraviolet-light-enhanced reaction of 0 with GaAs surfaces reported by Yu et al. (B182). The onset of a strong wavelength dependence of the enhanced oxidation was observed after the 0 coverage reached >0.5 monolayer at a wavelength of -4.1 eV. Sullivan and Saied ( B I B )studied protective tribological oxides formed as a result of diffusion or agglomeration and compaction of smaller oxide particles. Frankenthal et al. (B184)reported on the oxidation of amorphous Fe-Tb alloys. Initially, the alloy undergoes internal oxidation of T b followed by the formation of a two layer oxide, the outer being Fe rich and the inner being T b rich. The use of AES has been reported in a number of areas where it is almost routine. These include adsorption at surfaces, catalysts, and electrochemistry. AES has also been used in the investigation of a wide range of inorganic and organic/polymer materials. AES has certainly found wide spread acceptance as a surface analysis tool.

C. SCANNING TUNNELING MICROSCOPY (STM) AND ATOMIC FORCE MICROSCOPY (AFW In STM, a tip is brought to within several angstroms of a sample surface so that a tunneling current flows when a small bias (2 mV-2 V) is applied between them (CI-C4). The tunneling current is related exponentially to the tip-to-sample distance. The STM can be operated in either of two modes. In the constant current mode, a feedback loop adjusts the z position of a piezoelectric tube, to which the tip is attached, maintaining a constant current and therefore tip-to-sample distance as it is scanned across the surface. A topographic image is produced by plotting the tip height versus lateral position. Alternatively, in the constant height mode, the current is measured as the tip is scanned across a sample at a constant height and voltage. With the STM, it is also possible to conduct spatially resolved surface tunneling spectroscopy by measuring the tunneling current as a function of tunneling voltage at specific points on the sample surface. Because of the nature of the sensing mechanism, a current created by electron tunneling, STM can be applied only to

SURFACE CHARACTERIZATION

electrical conductors. The array of samples studied has included metals, semiconductors, superconductors, polymers, layered, and biological materials. In 1986 an instrument known as the “atomic force microscope” (AFM) was proposed which images surface topography on the atomic scale by detecting the interatomic force between tip and sample atoms (C5). The AFM is a promising new surface analysis technique for the study of insulating as well as conducting surfaces. In AFM, a tip is scanned over a sample surface while the interaction of the force fields (50 8, ((7131, C132). STM has been used to study the STM of GaAs (001) immersed in aqueous solutions has been surface structure of other Langmuir-Blodgett films including used to assess the effectiveness of a standard Br MeOH Ba stearate and diacetylenic acid on h hly doped Si substrates chemomechanical polish to produce flat surfaces over length (C133),dimyristoylphosphatidic acif and Cd arachidate on scales of 5-1000 nm (C92). graphite (C134),protoporphyrin and vicilin molecules (C135), The basal planes of molybdenum disulfide have been and stearic, u-tricosenoic, and 12,8-diynoic acids and phthalocyaninatopolysiloxanedeposited on various substrates probed by STM (C93). Atomically resolved images obtained with both positively and negatively biased samples yielded (C136). the hexagonal symmetry of the surface of the crystal. ScanA number of papers have addressed STM at the liquid-solid ning tunneling spectroscopy (STS) was used to infer the interface for both aqueous (C137, C138) and nonpolar (C139) density of states of the valence and conduction bands. Semliquids. By far the most studied application of STM in this iconductor clusters deposited on graphite have been imaged aqueous environment is the monitoring of in situ electrowith atomic resolution (C94). chemical processes. The STM was used to follow the in situ Like many other spectroscopic techniques, STM has been anodic oxidation of HOPG in 0.1 M sulfuric acid (C36). The instrumental in the analysis of superconductors. The studies electrochemical deposition and dissolution of Ag have been can generally be divided into investigations of their surface investigated (C140). In situ STM was applied to observe Pt morphology or the nature of their superconducting energy gap. surfaces in aqueous sulfuric acid solutions during oxidation These studies have been initiated for YBaoCulOvIC95-C106L and reduction cycles (C141). An STM study of the surface LaSrCuO (C102, C106, C107),E ~ B a , C u ~ b , - ~ " ( d ~ Bi2Sri: Ol), of an operating (externally polarized) Ni electrode illustrates z C U ~ O ~that , ~ STM + ~ can be used to monitor in situ potential-driven CaCu20s (C108, C l o g ) , Y o . ~ ~ A ~ ~ . o ~ B ~(C971, ErGalCu90,-* (C101). GdBalCu107-. (C101). NbN (C110. phase transitions in the area of corrosion and passivation of C l l l f , a i d FbBi (CiiO). metals (C142). STM a t potential controlled electrode surfaces STM and STS have been applied to the study of other has also been conducted for a graphite substrate and a Ta tip ceramic materials. The surface topography and crystal in a 0.1 M NaC104 electrolyte (C143). The STM images of structure of Sic and ZnO (Cl12,C113) as well as the mid-band a Ag electrode in a 0.1 M KC1 electrolyte solution exhibited gap electronic states of S i c (C112) have been investigated. large asymmetric peaks resulting from large asymmetric The surfaces of composite ceramics of Si3N4and TiN were current spikes (C144). A plot of the current versus time for studied in ultrahigh vacuum (C114). After desorption of the a single current spike satisfies the Cottrell equation thereby adsorbed conductive layer, the surface areas of the nonconillustrating that STM can observe diffusion-controlled elecductive Si,N4 grains were recognized as highly resistive areas trochemical reactions. High-resolution photoelectrochemical in the d I / d S map. etchin of n-GaAs in 5 mM NaOH and 1mM EDTA has been Molecules adsorbed on metal and graphite surfaces have descriEed (c145). Photoanodic etching of GaAs is accomplished by photogenerated holes at the semiconductor/solubeen studied by STM. STM images of the (3x3) superlattice tion interface. of benzene and carbon monoxide molecules coadsorbed on the Rh (111)surface reveal a well-ordered array of ringlike features A 1-nm structure created with the STM on graphite and associated with the benzene molecules (CI 15). In addition, a 300-nm structure electrodeposited with the STM on Au have the images show translational domain boundaries, step-edge been imaged by STM (C146). By use of voltage pulses on the structures, and evidence for surface diffusion. The arrangeSTM tip, poly(octadecy1 acrylate) (1) fibrils were locally ments of sulfur adatoms chemisorbed on Rh (0001) (C116) modified and apparently cut through (C147). By use of orand Mo (001) (C117) have also been imaged by STM. STM ganometallic gases such as Me2Cd, STM has been used to has been used to study phosphotungstic acid and Re carbonyl induce the chemical vapor deposition of metallic features as cluster complexes adsorbed on graphite (C118). The adsorsmall as 20 nm directly onto metallic and semiconductor e

252R

u

I

.

.

I ,

ANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

SURFACE CHARACTER I ZAT I O N

surfaces (C148). Me2Cd was used to deposit Cd on Cu pretreated with dimethyldisilazane. With an increase in temperature or electric field, the surface of a glassy Rh Zr sample has been modified in the nanometer range by (C149). High-resolution deposition of silver on Nafion films by STM has been described (C150). A line 75 nm long and 5 nm wide drawn by STM on a liquid covered Au (111)surface has been imaged (C137). A 22 nm wide metal line created by STM exposure of PMMA resist followed by liftoff has been reported (C151). Results from this paper include the first working device created by STM, a thin-film resistor 2 pm in length and 130 nm in width. Features 110 nm, written and imaged by STM on a Au surface, appear distorted by diffusion within one hour (C152). The ability of STM to expose lines in CaFz with line widths from tens to hundreds of nanometers was demonostrated (C153).

8Tg

Atomic Force Microscopy (AFM)

There has been one review of AFM as a method for studying conductors and insulators (C154). Since its inception in 1986 (CS),several AFM’s have been built, although none are currently available commercially. An important consideration when building an atomic force microscope is the design of a force-sensing mechanism. The force resolution must be considered when choosing a cantilever with a particular spring constant. Tungsten wire has been used as a cantilever (C155, C156). Microfabrication procedures for constructing low-mass, force-sensing thin film Si02 cantilevers have been discussed (C157). Different shapes and styles of levers (C158) formed from Pt, Pt/Ir, W, C, Au, and various composites of vacuum-evaporated metal films on sputtered carbon cores have been investigated (C159). Tips utilized include electrochemically etched metallic foils (C160-C162), small sharp cones grown on levers by evaporation of material through a small hole (C157),and diamond fragments attached with glue to cantilevers (C157, C163). The deflection of the cantilever has been detected by tunneling between the lever and a second electrode (C159, C163, C164), by optical interferometry (C160, C165),by heterodyne interferometry (C166),and by capacitive techniques (C167). Another detection method involves measuring cantilever displacement by detecting the deflection of a laser-beam reflected off its back side with a positionsensitive detector (C155). Combined scanning tunneling and atomic force microscopies have been described (C159, (2163, C168). By using the same metallic probe for both modes of operation, one can obtain STM and AFM images from the same sample area enabling the separation of geometric and electronic contributions to the images. A low-temperature atomic force microscope has been reported which can resolve atoms in air at room temperature as well as when immersed in liquid helium a t 4.2 K (C169). Control electronics for an atomic force microscope have been described (C170). The articles published over the past two years about the applications of the emerging technique of AFM are summarized below. The a plicability of AFM to the materials research of both confuctive, i.e. Cu, and dielectric materials, i.e. mica and selenite, was examined (C171).The AFM has been shown to resolve features on conducting and nonconducting surfaces down to the atomic level as illustrated for highly oriented pyrolytic graphite and the “native” oxide of silicon (C172) and for graphite, MoS2, and BN (C173). In addition, rows of molecules that are separated by 0.5 nm have been resolved in a polymerized monolayer of N-(2-aminoethyl)-l0,lP-tricosadiynamide(C174). The usefulness and high sensitivity of AFM for imaging surface dielectric properties and for potentiometry through the detection of electrostatic F) have been demforces (capacitances as low as 8 X onstrated by detecting the presence of a dielectric material over silicon and by making measurements of the voltage over a p-n junction with submicrometer resolution (C175). The AFM has been used to image arrays of molecules at the surface of DL-leucine crystals (C176).Atomic scale images have been obtained with AFM from poly(octadecy1 acrylate) (1) films on graphite substrates (C147). AFM has been applied to the study of magnetic materials such as Co-Ni and rapidly quenched Fe-Nd-B recording media by measuring magnetic forces (C177). Atomic resolution images of liquid-covered surfaces have been obtained for graphite covered with oil

revealing hexagonal rings of carbon atoms (C178). In addition, a monoatomic step has been observed for a NaCl surface protected from moisture by oil.

D. OPTICAL SPECTROSCOPY Optical measurements of semiconducting and insulating materials have proven to be valuable methods of characterizing materials and growth processes. The methods that have proven most important in these aspects have been infrared absorption and reflectivity and Raman spectroscopy. The application to thin film and surface characterization is often difficult because of sensitivity limitations of these techniques. While there have been some novel technical methods which have enhanced the sensitivity of the techniques, most applications have relied on highly optimized experimental apparatus or particular materials which exhibit particularly strong signals. These methods are most often used to measure the vibrational modes of the materials which are then related to the atomic structural properties by either a model analysis or by comparison with known vibrational spectra. The spectroscopic techniques can also be used to measure electronic excitations of the materials. In some cases, these results can also be related to atomic structure. Spectroscopic ellipsometry also focuses on the electronic transitions, and because of the high sensitivity of this technique, it can be used for both chemical and atomic structural characterization, especially in cases where surface structures are changing. With the recent emphasis on GaAs semiconductor technology, implant properties have been the subject of many studies. Raman scattering measurements of implanted GaAs showed that portions of the near surface exhibited an amorphous structure (01-04). An important recent application of Raman spectroscopy is to relate the shift of the optical phonons to the strain in the film. The strain relationships can be determined from measurements of the bulk crystals, and these measurements have been carried out for many semiconductors including Si and GaAs. For the implanted GaAs surfaces, the shift of the LO mode was related to the strain in the near surface crystalline regions ( 0 2 , 0 3 , 05, 0 6 ) . Defect and interstitial concentrations could be inferred from the TO-LO splitting ( 0 2 ) . Resonant Raman scattering from the implanted materials also showed low frequency acoustic modes which were related to microcrystalline regions (07). Raman scattering was also used to characterize diffusion induced disordering from annealing of implanted GaAs/GaAlAs multilayer structures (08). The strain and disorder in polished GaAs and InP were measured by analysis of the Raman active LO phonons of the materials (09). High dose implants followed by thermal annealing is a new method of thin film growth. One of the most novel applications of these techniques is the formation of a buried insulator by implantation into Si resulting in an Si on insulator (SOI) structure. Raman scattering measurements of the shift of the optical mode have been used to characterize the strain in silicon-on-silica structures formed by high dose 0 implantation and annealing (010). The buried layers formed by N have been characterized by IR spectroscopy. This technique is particularly sensitive to Si-N structures ( 0 1 1 ) . For C implantation into Si, IR absorption and spectroscopic ellipsometry were used to verify the formation of buried Si-C ( 0 1 2 ) . In other studies Raman spectroscopy was used to identify GeSi formation induced by ion beam mixing of Ge/Si( 111) structures (013) and after Ge implantation and oxidation (014). Infrared spectroscopy showed that hexagonal-layered BN could be formed by high dose N implant into B films ( 0 1 5 ) . Raman spectroscopy has been used to examine implanted C structures. Ar implanted diamond shows amorphous graphitic structures (016) and implanted glassy carbon also shows amorphous regions which result in improved wear resistance ( 0 17 ) . Raman scattering has been used to characterize the damage in laser processed surface8 (018-021). The Raman microprobe has proven particularly useful for determining the spatial dependence of the strain and disorder of the laser processed samples. Superlattice and quantum well thin film structures require characterization of buried layers. The excitations can extend over several layers for superlattices or exhibit quantum conANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

* 253R

SURFACE CHARACTERIZATION

finement to a single layer. These aspects are reflected in the vibrational modes of the structures, and recent developments have been reviewed (022,023).For crystalline superlattice structures formed with lattice matched materials, Raman spectra show additional sharp features from acoustic modes which are due to Brillouin-zone-foldingcorresponding to the superlattice period. These features can be used to accurately determine the superlattice period. If the materials used to form the superlattice exhibit different optic vibrations, then the optic modes will be confined to the layer and additional features are detected in the Raman spectra characteristic of the optic phonon confinement. These aspects have been described for GaAs/AlGaAs superlattice structures (022028). Multilayered crystalline structures of GaAs/AlAs and GaSb/AlSb formed with layer ordering following a Fibonacci series also exhibited additional features due to acoustic phonons. These features were broad and reflected the localization characteristics of the structures (029,030). Raman scattering has been used to characterize ordered superlattices of other crystalline structures including GaSb (031, 032),GaInAs/AlInAs (033),GaInP/GaAs (034),and superlattices of diluted magnetic semiconductors CdMnTe/ CdMnTe and ZnSe/ZnMnSe (035). Resonant Raman scattering can be obtained by varying the wavelength such that the incident or scattered photons have the same energy as electronic transitions and in GaAs this corresponds to visible wavelengths. Recent resonant Raman scattering measurements have been used to observe interface modes in GaAs/AlGaAs superlattice and quantum well structures (027,036-041). The three predicted interface modes have been observed (036),and the magnetic field and laser power dependences have been measured (037,038). In quantum well structures, the electronic bands are broken into quantized subbands, and electronic transitions between the subbands can be measured by IR absorption. IR absorption has been used to characterize the intersubband transitions of single and multiple quantum well structures of GaAs/AlGaAs (042-045). Spectroscopic ellipsometry has been applied to Characterize the transition from the multiple quantum-well regime to the superlattice regime in structures (046). Raman spectroscopy has been used to characterize the strain in GeSi:Si strained layer superlattice structures (047). The zone folding of the acoustic phonons has been observed in far-IR reflectivity measurements (048). Amorphous materials can also be grown in periodic structures, and features corresponding to the “folded acoustic modes“ in a-Si:H a-SiN:H and a-Si:H/a-Ge:H have been used to characterize t e periodicity of the structures (049,050). The relative intensities and line widths of the high-frequency modes have been used to characterize interface sharpness and defect structures in “amorphous superlattices” (051-054). As requirements advance in semiconductor technologies, heteroepitaxialfilm growth processes have become increasingly important, and optical techniques have been applied in several ways to characterize the growth process. The strain in heteroepitaxial films is due to factors such as lattice mismatch, different coefficients of thermal expansion, and interface misfit formation. Raman spectroscopy has been used to measure strain in heteroepitaxial layers by measuring shifts in the LO phonon. Strain measurements include GaAs Si, (055)GaInAs/GaAs (D56),GaP/GaAs (057),InGa s/GaP (058), ZnSe GaAs (059),Ge Si (D60),B and Ge doped Si (D61), and i/Quartz (062). aman spectroscopy has been used to study the initial stages of film growth at the submonolayer coverages of Ge on Si (063)and Sb on GaAs or InP (064). Spectroscopic ellipsometry (065),electroreflectance (D66), and reflectance difference spectroscopy (067)have also been used to characterize 111-V epitaxial layer growth. While most measurements are made after the sample is removed from the growth system, the reflectance-difference spectra were accomplished during MBE growth of GaAs and AlAs films (067).In other applications Raman spectroscopy has been used to identify interfacial layers in the growth of InSb on CdTe (068),to characterize diamond-cubic GeSn layers on Ge or GaAs (069),and to obtain in situ measurements on the surface properties of 111-V semiconductors at high temperatures (070).While Raman spectroscopy has been used extensively to characterize high T , superconductors, IR measurements have been used to measure the superconducting

h

Q

254R

it

1

ANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

gap in epitaxial films of YBa2Cu307-d(P71). While Raman scattering from metallic films and surfaces is often very weak, important information can be gained from the vibrational spectra of these systems. Raman measurements have been used to observe the formation of silicides after thermal annealing of metal films deposited on Si. Recent results have noted the formation of WSiz (072)and PtSi (073).In the case of PtSi formation, in situ experiments were obtained. Raman scattering has also been used to characterize amorphous Ni- and Cr-silicides (074).In the amorphous films, interference enhanced Raman scattering techniques were employed, and broad bands characteristic of the vibrational density of states were detected. While most applications have focused on observation of phonon modes which can be related to atomic structures, the electric fields at semiconductor surfaces due to surface or interface band bending can affect the Raman scattering from phonons. Aspects of these processes have been recently reviewed (075). The LO phons of polar materials can couple to the electric fields in the space ch e layer. To observe this affect, a polarization geometry is u s such that the LO mode is normally forbidden. The observed strength of the mode can be related to the band bending in the surface region. By in situ measurements of the Raman forbidden LO mode on p-type InP, the band bending change due to Sb coverage was determined (076,077).Similar measurements were carried out on GaAs on which epitaxil ZnSe layers were grown (078). The results noted a lower band bending for pseudomorphic growth with increased band bending after misfit dislocations are formed. The effects were also used to characterize heavily doped n-type GaAs (079). The surface carrier density due to photoexcitation could also be determined by the same effect, and results were reported for epitaxil InP layers (080). While plasmon excitations cannot be directly observed in Raman scattering, for LO allowed geometry coupled plasmon-LO-phononmodes are detected. Recent results on p-type GaAs and AlGaAs show that the frequency of the features can be used to characterize the hole concentrations (D81,082). In other Raman measurements involving electronic excitations in 111-V materials, resonance Raman measurements of p-type modulation doped AlGaAs/GaAs/AlAs quantum wells indicated strong enhancements at energies corresponding to confined electron states (083),and picosecond Raman measurements were used to characterize the photoexcited carriers in GaAs and InP (084,085).Raman measurements of ferroelectric KN03 also showed effects related to space charge regions (086). Oxides and oxy-nitrides formed on crystalline Si are the basis of integrated circuit technologies. IR spectroscopy has proven to be the most used characterization method for the atomic structural properties of these films. While standard techniques can often be applied to the films, new techniques yielding higher sensitivity have been developed (087,088). One of the issues related to SiOz on Si is the stress a t the interface. Recent measurements have related the IR Si-0 mode at -1070 cm-’ to the Si-0-Si bond an le and to the stress in the films (089-092). The results femonstrate a higher strain near the interface. Because of the importance of the Si02-Si structure, research into new deposition techniques continues. IR spectroscopy will exhibit features due to Si-0, Si-OH, Si-H, and impurity structures, and it has been used to characterize the atomic bonding configurations for several studies of SiOz deposition and Si oxidation (0930102). Raman scattering in an LO forbidden geometry was used to monitor the interface character during the oxidation of Si and Ge (0103).The sharpness of the Si02-Si interface has been characterized by using diffuse reflective methods (0104). Because oxynitrides can act as a diffusion barrier, they are preferred for some applications. IR spectroscopy has been used to characterize the effects on nitridation of SiOp films (0105-0107). Plasma enhanced CVD methods have recently been used to deposit silicon nitride and silicon oxynitride, and IR spectroscopy has been used to identify and characterize Si-N, Si-H, N-H, and other bonding configurations (0108,0109). The techniques have been applied to the characterization of other nitride growth processes (01 10-01 12). Hydrogenated amorphous Si films and alloys have applications in solar cells and large area electronic devices. Raman and IR spectroscopy have been extensively used in the past

SURFACE CHARACTERIZATION

to characterize the atomic bonding properties of these and related materials. IR measurements tend to emphasize the H bonding environments while Raman scattering emphasizes the Si network vibrational modes. IR spectroscopy has continued to be used to characterize the H environments in hydrogenated amorphous Si and alloy filmsunder various growth and processing conditions ( D l 13-01 19). Hydrogenated amorphous S i c alloys combined with a-SkH films could prove useful for photovoltaic applications, and a-SiC:H films grown under different conditions have been characterized with IR spectroscopy (0120,0121).The defects in the bandgap of the films have been measured by using the optical technique, photothermal deflection spectroscopy (0122).Raman spectroscopy has been used to characterize hydrogenated amorphous carbon, a-C:H (0123,0124),and S i c layers have been detected a t the interface of the a-C:H and the Si substrate (0123). The H environments of amorphous carbon nitride films have been characterized by IR (0125). IR measurements have been combined with Raman scattering to characterize a-Si:H films with microcrystalline structures (0126-0128).In a related material, Raman scattering has been used to study the oxidation of polycrystalline Si which results in semiinsulating polycrystalline Si or SIPOS (0129). Recent advances in CVD techniques have demonstrated the deposition of diamond filmson Si and other substrates. These films have many potential applications including optical coatings, use as wide band gap semiconductors, and X-ray windows. Raman scattering has proven particularly useful for distinguishing between diamond and graphitic structures in the films. The potential crystalline and amorphous C bonded structures that appear in CVD films have been described (0130). Raman spectroscopy has been used to characterize the diamond structures in films prepared by different CVD methods (0131-0136).While the films with a diamond structure show little H incorporation, IR spectroscopy has identified C-H vibrational modes (0137). Raman spectroscopy has also been used to characterize the surface of graphite (0138),and Raman and IR spectroscopies have also been used to characterize diamond-like films produced by pulsed laser evaporation (0139). BN and S i c crystalline films have been used to deposit these materials. IR spectroscopy has been used to characterize BN films (0140),and Raman spectroscopy has been applied to distinguish the different polytypes of S i c (0141). Several other oxide films have been characterized by Raman or IR spectroscopies. One of the most notable is high-temperature superconducting materials. Raman scattering has been used to describe the oxidation DroDerties (0142-0144). while IR has been used to measure ihe superconducting gap (071.0145. 0146). The oxidation process is due to chemical interactions a t semiconductor surfaces. For multiple component materials such as 111-V compounds, additional layers can often be observed at the interface. Raman spectroscopy has been used to characterize the oxidation of InGaAsP quaternary films, and crystalline As was detected a t the interface (0147).The technique has also been used to identify a thin layer of Te on the surface of CdTe after chemical treatment (0148). Reflectance spectra of electronic transitions can be enhanced by using surface differential reflectivity to study semiconductor surfaces, and this technique has demonstrated success for characterization of the oxidation of GaAs (0149). An important area of chemical processing is reactive-ion or dry etching processes. Raman scattering has been used to detect damaged regions on etched GaAs surfaces (0150,0151). Raman scattering has also been used to measure the surface carrier concentration after chemical passivation (0152). Surface films that form after CF4 plasma etch of Si3N4have been identified by using IR measurements (0153). One of the most common passivation methods of semiconductor surfaces includes the exposure to H or chemical etching resulting in H bonding at the surface. IR spectroscopy has been used to characterize the H bonding a t the surface of GaAs (0154)and Si (0155-0157).Raman spectroscopy has revealed that crystalline Si samples exposed to atomic H form internal defects (0158). In situ IR spectroscopy has also been used to measure the H bonding during the growth of a-Si:H (0159).The adsorption of 0 on Si has been studied by using differential reflectivity (0160))and 0 out diffusion from Si has been measured with IR (0161).The interactions

of organometallic molecules on Si surfaces were also studied (0162). IR spectroscopy has proven useful for characterizing molecular interactions on insulator surfaces. Measurements obtained include SiOz substrates, adsorption of CC14 (0163), H 2 0 (0164))and TiC14 (01651,and for NaCl substrates, adsorption of CO (0166)and C 0 2 (0167). The properties of molecules adsorbed on metal surfaces have been the subject of numerous studies, and IR measurements have proved particularly useful for identifying atomic structures. Some of these have been recently reviewed (0168,0169). One of the most studied single systems is that of CO on Pt. IR spectroscopy has been used on a series of CO absorbates on crystalline Pt with different processing conditions (D17O-0178). All of these studies focused on the strong IR active C-0 stretching mode. A feature has also been detected which is assigned to the metal-C stretch mode (0179).IR measurements of other molecules on Pt include ethylidyne (0180-0182),methanol (0138),and PF3 (0184). The properties of CO adsorbed on Ni have also been extensively studied using IR spectroscopy (0185-0188), and NO on Ni has also been reexamined (0189).The aspects of N2 on Si have focused on the N-N stretching mode (0190,0191). Stretching modes of other molecules on Ni have been related to atomic bonding and structure (0192-0195). Raman scattering results have also been observed for monolayer coverages of pyridine on Ni surfaces in UHV (0196). CO adsorption on Cu (0197,0198) and Ru (0199)crystalline surfaces have been measured. Copper deposited on Ru crystalline substrates with CO have also been studied (0200, 0201). Other molecules adsorbed on Cu have been detected with IR spectroscopy (0202-0204). An extensive study of H adsorbed on tungsten and molybdenum has shown derivative line shapes characteristic of Fano resonances (0205). While this review has addressed applications of Raman scattering, IR spectroscopy, and optical spectroscopy, there are new techniques which may lead to significant advances in the future for optical characterization of semiconductors. The technique of IR-visible sum generation holds promise of monolayer sensitivity for metal and semiconductor surfaces (0206).There have been several advances in Raman spectroscopy that could become more widely applied. Fourier transform Raman spectroscopy allows near-IR excitation to avoid luminescence background signals (0207).Use of a prism coupler in the Kretschmann geometry can give an enchancement by a factor of up to 1000 (0208).Interference enhanced Raman scattering can enhance the signal at metal surfaces and interfaces (0209).Optical characterization of electronic transitions in semiconductors and insulators could be greatly advanced by electroreflectance and modulation spectroscopy. While these techniques were demonstrated in the past, new understanding has led to a resurgence of their use (0210-0216).

E. DESORPTION TECHNIQUES-ELECTRONSTIMULATED DESORPTION (ESD), LASER-INDUCED DESORPTION (LID), AND THERMAL DESORPTION SPECTROSCOPY (TDS) Electron-Stimulated Desorption (ESD)

Electron-stimulated desorption work has continued to develop along several major lines, both experimental and theoretical. One review article on electron-stimulated desorption was published ( E l ) . Relevant experimental work is listed in Table 11. Angle-resolved ion distributions (ESDIAD) continue to provide information about the orientation of adsorbed structures on well-characterized single crystal surfaces. This is just the kind of information desperately needed in the development of surface chemical structural concepts and rules. There is also a developing interest in ESDIAD of coadsorbed layers which provides insight into how coadsorbates interact to alter each other’s surface bonding structure (E6,E7). Negative ion ESD has also been investigated and represents an important extension of stimulated desorption for examining surface structures as well as providing new kinds of experimental yield data against which various theoretical descriptions can be tested (E4).While theory continues to advance (E18-E20),the detailed description in terms of ab initio ANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

255R

SURFACE CHARACTERIZATION

Table 11. Electron-Stimulated Desorption substrate

adsorbate

measurement

purpose

ref

Metals

o/w ( 100)

Rh(ll1) Rh(ll1) Ar/Pt Cr(ll0) CO/Ni(lll) CO/Ni(llO) Ni( 111) Ni(ll0)

Li, Na, Cs co + 02 CH, + 0 2

X+, (n = 1-7)

0 2

0-

co+,o+

“3 “3

H+ H+ H+

co NH, NH3

+ CO + CO

cross-section vs energy for monolayer and multilayer alkali identify reaction intermediates identify reaction intermediates role of image charge coverage dependence angular distribution angular distribution angular distribution angular distribution

coz+ O+

H+

Metal Oxides none none none none

high resolution electron microscopy

high energy reduction

Metals Compound Semiconductors

O+

CdS GaAs

CO+, C02+,C+, O+

cross section vs energy cross section vs energy

Elemental Semiconductors Si(ll1) F/Si(lll) Si(100) Si(lOO), stepped

H

H+

contaminant HIO, “3, HF

F+ F+ F+,H+

LiF LiF LiBr RbF

none none none none

cross-section vs energy mechanism of desorption ion angular distributions ion angular distributions Ionic Solids

Li

Li+ Li+ Li+

role of F-centers mechanism of ion desorption mechanism of ion desorption mechanism of ion desorption

calculations is still technically not feasible. With regard to systems under study, semiconductors, both compound and elemental, have been reported. This is an area of considerable potential impact for the future, particularly as it addresses problems of electronic materials. Work continues on metals and metal oxides. Maximally valent oxides have been discussed in terms of Auger-like transitions but other mechanisms, including covalent excitations, must be included because yield curves as a function of incident electron energy often do not correlate precisely with core level excitation energies. Metals continue to be examined in detail and the role of various excitation and relaxation channels occupy the attention of surface physicists interested in this area. Little work has been done on the electron-stimulated desorption of neutrals and this is an important area for the future, particularly for adsorbates. I t may be possible to identify, particularly in conjunction with secondary ion mass spectrometry measurements, what the structure and concentration of adsorbed species on surfaces is as a function of temperature and initial coverage. In the context of surface analytical chemistry, electronstimulated desorption still finds little application because the relation between the measured ion signals and the surface concentrations are difficult to establish. It is not part of conventional commercial surface analytical instrumentation. Laser-Induced Desorption (LID)

Most laser-induced desorption work is focused on connections with analytical mass spectroscopy (section A). We list here a small number of articles of this type that connect in one way or another to the problems of surface analysis. As it applies to surface analysis some of the most interesting work involves the rapid heating of metal surfaces that by conventional resistive heating decompose hydrocarbons (E21). With the rapid heating rates available it is often possible to get to high temperatures so quickly that desorption dominates decomposition. As a practical application, there is a very interesting report of analysis of the surface of a computer 256R

ANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

magnetic hard disk (E22). This area offers excellent promise as a surface analytical tool to extend coventional thermal desorption capabilities. Relevant work is summarized in Table 111. Thermal Desorption Spectroscopy (TDS)

Thermal desorption spectroscopy continues to be one of the standard tools of surface chemical science, serving to give global characterization of numerous adsorbate-substrate systems. Selected work is listed in Table 111. Among the emerging standard uses of TDS are its combination with high-resolution electron energy loss spectroscopy to study the thermal evolution of adsorbate structures (E33, E34), its use in a kinetic mode in what has been called “scanning kinetic spectroscopy” (SKS) (E35, E36), its use to study high T , superconductors (E37),in conjunction with thermal annealing and postdosed bismuth (E38), in an angle-resolved mode (E39),in conjunction with metastable quenching spectroscopy (E40),and its use in the study of semiconductor-adsorbate interactions (E41, E42). The use of TDS to extract detailed kinetic information continues to be frustrated by the lack of sufficient data over a sufficiently wide parameter space to unambiguously determine kinetic orders and rate constant parameters as a function of coverage. As such, the future of this kind of kinetics lies in using other complementary tools such as static secondary ion mass spectrometry, laser induced desorption, and time dependent forms of the various electron and optical spectroscopies, all of which have the advantage of addressing directly the species on the surface. With regard to interpretation and analysis, there have been interesting papers on the compensation effect-as the activation energy goes u p the preexponential factor also tends to go up-in desorption kinetics (E75-377). There has also been an investigatian of how the heating rate alters the distribution of molecules in separate desorption states (E78). The interpretation of thermal desorption phenomena in high pressure (ca. 1 atm) gas streams also continues to be pursued

SURFACE CHARACTERIZATION

Table 111. Laser-Induced Desorption

substratea Pd(100) Cu(100) Ir Pt magnetic hard disk polymer NA NA

NA NA

metal films ionic crystal sucrose NA NA

adsorbate H H CO, H2 C2H4 none

none biomolecules biomolecules sultaines biomolecules none

none none dye molecules explosives

measurement fluorescence and ionization fluorescence and ionization methanation FTMS FTMS FTMS mass spec mass spec mass spec mass spec mass spec mass spec mass spec power dependence ion mobility spectroscopy

purpose

ref

desorption dynamics desorption dynamics reaction intermediates desorption desorption

polymer analysis wavelength dependence matrix effects comparison with other techniques femtomole quantitation ion formation process ion formation process ion formation process non-linear optical effects high sensitivity

"NA = not applicable.

(E65-E67, E79, E80). Beyond the ultrahigh vacuum environment typical of modern surface science, thermal desorption spectroscopy continues to be widely used in the study of technical materials, particularly ceramics and heterogeneous catalysts, but with an emergence of work on polymers (E46). We include, in Table IV, some references to high-pressure work because of potential connections to vacuum work.

F. X-RAY TECHNIQUES Appearance Potentlal Spectroscopy (APS)

Appearance potential spectroscopy (APS) is a promising technique for the study of the unfilled density of states (DOS) above the Fermi level, EF, in a system (F1,F2). APS measures the probability for electronic excitation of a core level as a function of incident electron energy. The sample is bombarded with electrons of gradually increasing energy; when the electron energy equals that of the binding energy of the core levels of atoms in the surface region, a sudden change of signal is observed. The signal is extracted by a potential modulation technique. Elements having a high DOS above EF (e.g. the light metals, 3d transition metals, and the rare earths) are well suited for study by this technique. The excitation of the core level electrons can be monitored in several ways. The changes observed in the signal can be due to the emission of X-rays (soft X-ray APS or SXAPS) or secondary electrons (Auger electron APS or AEAPS), or a decrease in elastically scattered electrons (disappearance potential spectroscopy, DAPS). Information about the unoccupied DOS, chemical bonding, and the nearest neighbor configuration in the surface layer results from APS spectra. The experimental arrangements for APS have been described elsewhere (F3-F7). Chourasia and Chopra (F8)have used SXAPS to study the surface of a Ni74Fe26alloy and observed surface enrichment of Fe. The direction of charge transfer, from Fe to Ni, could be determined from chemical shifts observed in the L3 levels of Fe and Ni in the spectrum. Eckertova et al. (F9) have compared AEAPS spectra with AES spectra of different thicknesses of Cr deposited over T i in order to determine the relative sampling depth. The N4,5levels of the rare earths have been studied by Chopra (F10)using SXAPS in order to better understand the localized and correlated character of the 4f electrons. Hinkers et al. (F11)examined Ce compounds by SXAPS in order to study the multiplet structure of 3d spectra. Extended X-ray absorption fine structure (EXAFS) has proven to be a reliable technique for obtaining structural information from bulk materials. In contrast to the bulk information available from EXAFS data, extended appearance potential fine structure (EAPFS) gives information about the surface structure by recording the APS spectra as a function of primary beam energy. Recent work has shown EAPFS to be analogous to EXAFS. Chopra and Chourasia (F12) reviewed the use of EAPFS for the determination of surface structure parameters in Ti-Si systems. Guo and Baer (F13) studied clean and oxidized iron surfaces by EAPFS and found good agreement between interatomic distances from EAPFS,

EXAFS, and crystallographic data. Glanclng Angle X-ray Diffraction

For the analysis of the elemental composition and crystalline phases of thin films, glancing angle geometries for X-ray diffraction are used to limit the penetration of the X-ray beam and to enhance the diffraction pattern of the film relative to the substrate. Using a glancing angle of incidence allows a relatively large volume to be sampled, even in thin films. Individual crystalline phases are identified by their characteristic diffraction pattern which also gives information about the orientation and size distribution of the crystallites. Chang et al. (F14) have studied the thin film metal-metal interactions in the Si SiOz W-Ti Al-1% Si system by glancing angle XRD, T M, R S, an SIMS. They observed a complete transformation of the AI-W interaction to the A$,W phase at 500-520 "C. Orientation relationships between epitaxial germanides and the substrate and the configuration of the interfacial dislocation of 300 A of epitaxial Co were analyzed by Hsieh et al. (F15). The initial phases of epitaxy were observed above 280 "C with CoGe2 being formed for samples annealed at 600-700 "C. Ogale et al. (F16)examined the laser-induced transformation at solid-liquid interfaces with small angle XRD in an investigation of the synthesis of new metastable phases of materials.

l4Li

Extended X-ray Absorptlon Fine Structure

X-ray absorption spectroscopy is a classic technique for the investigation of electronic structure and local environment of specific atoms in matter. The oscillations (FI 7) on the high energy side (30-1000 eV) of an X-ray absorption ed e are called extended X-ray absorption f i e structure (EXAF8) and have been widely used as a tool for determining structural parameters associated with short-range environment. The advent of high flux synchotron radiation sources has extended the application of EXAFS to the determination of structural parameters in a variety of systems, such as intermetallics, proteins, catalysts, crystalline materials, amorphous solids, polymers and glasses. Extensive articles have appeared in the literature regarding the importance and applications of EXAFS (F18). Maeda (F19) has studied the EXAFS spectra of pure iron, pure platinum, and the intermetallic compound Fe2Zr in the temperature range 20-300 K. Kunquan and Jun (F20)have provided a method to analyze EXAFS for mixed-coordination systems in order to determine accurately the coordination number of an atom occupying different sites. This method was tested with Gd3Ga5OI2,in which the Ga atoms are known to occupy two different sites. An extension of this method to Li20-ZnO-Ge02 glass yielded two different coordination states for Ge atoms. Buffat and Tuilier (F21)have investigated iron-oxygen and cobalt-oxygen distances in different oxidation states by EXAFS. Sakashita et al. (F22) studied the K-edge of FJb in Nb3Sn as the material undergoes structural phase transition from cubic to tetragonal. The existence of local tetragonal distortion in the premartensitic phase (below T,)was confirmed. Joensen et al. (F23) analyzed ANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

257R

SURFACE CHARACTERIZATION

Table IV. Thermal Desorption Spectroscopy substrate

adsorbate

purpose

A. Metals Pd(ll0) stainless steel Fe Pyrex Teflon Ni(100)

co BN CClsF, CClzFz CClsF, CClzFz

Ni(100)

Pt(ll1) Ni( 111) Ni(ll1) Y BazCu307 Pt(ll1) Fe(ll0) CO/Ru(0001)

surface phases outgassing desorption energy desorption energy etching of Teflon thermal decomposition thermal decomposition thermal desorption reaction kinetics reaction kinetics oxygen loss benzene formation angle-resolved desorption stability of Cu over

co

B. Metal Oxides zeolites zeolites mordenite zeolite LaMnOS LaMn03 mica-montmorillonite zeolites ZnO Zn, Cr oxide

acid-base sites adsorption capacity acidity desorption-diffusion

3 "

p-xylene pyridine 3 "

Hz, CO, COz H2

pyridine CZH, alcohols CH30H

reduction properties reduction properties acid sites UHV desorption adsorption capacity adsorption/ desorption

C. Small Metal Particles (Vacuum) Cu/ZnO P t / A1203 Rh/A1203 Pt/A1203 Pd/SiOz co/c Co/A1203 Mo/C MO/A1203 Pt/CeO,

adsorption/ desorption character of small Pt particles decomposition of NO aging of P t subsurface H thiophene, C2H4 reaction activity thiophene, C2Hl reaction activity thiophene, CIHl reaction activity thiophene, CzHl reaction activity role of lattice co, coz oxygen

D. Small Metal Particles (Pressure) Ni/SiOz

CO, Hz

TDS analysis

Pd/SiOz Rh/SiOz Rh/C Fe, Ni/A1203 Pt/SiOz A1

HZ HZ HZ Hz HZ none

subsurface H Rh character Rh character metal character desorption analysis outgassing

E. Semiconductors Si(ll1) CdTe a-Si

Nz

HZ

Sulfides

CO, Hz

co

chemisorption desorption energy thermal desorption F. Other

alcohol products

(E74)

single layers of MoSz in aqueous suspension using EXAFS, reporting that the two nearest Mo-Mo distances are different from the bulk sample. The distances revert to the bulk distance in dry, restacked Most. Satow et al. (F24) studied EXAFS associated with K-edges of Ce, Pr, and Sm compounds and determined the nearest neighbor distances. Durbin et al. (F25) investigated the epitaxial growth of Cr on Au (100) and confirmed the bcc phase of Cr. Yang and Kirz (F26) 258R

ANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

studied EXAFS of the oxygen K-edge in liquid water and found good agreement with the theoretical 0-0 pair correlation function in water. Comelli et al. (F27) observed the carbon K-edge EXAFS in diamond and graphite and reported nearest neighbor distances. Bridges et al. (F28) investigated the decagonal phase of AI-Mn alloys and found that each Mn atom has an average of eight A1 neighbors in the first coordination shell. Orton et al. (F29)performed an EXAFS study of tin through the solid-liquid transition and found an increase in the interatomic distance in the liquid phase, with no concurrent change in the coordination number. An important application of EXAFS is in the study of metalloproteins. Scarrow et al. (F30) studied the K-edge Fe spectra in methemerythrin azide, semimethemerythrin azide, and ribonucleotide reductase derived from Escherichia coli. The analysis indicates structural differences between met- and semimet- hemerythrin. Feiters et al. (F3l) studied the Fe K-edge EXAFS in the compound poly [p-hexakis(2-methylimidazolato-N,N')triiron(II)] and found good agreement between EXAFS and crystal structure parameters for the first two shells of the compound. In determination of the structure for higher shells of the imidazole group, evidence of multiple-scattering is reported. Mochida et al. (F32) investigated bis(2,4,6-tri-tert-butylphenyl)germanium(II)in solution. No evidence of a Ge=Ge bond was found, and the Fe atoms are associated with only two aryl groups. Bunker (F33) has discussed the role of EXAFS in the investigation of impurities implanted in semiconductors. In an EXAFS study of Se-Te mixed chains, Inui et al. (F34) determined Se-Se and Te-Te bond lengths. Bond lengths in isolated chains were found to be shorter than those in trigonal Se or Te. Ichimura and Sasaki (F35) studied the GaAsl,Px 111-IV ternary alloy semiconductors to determine average bond lengths, taking into consideration the five different tetrahedra types in the system. Oyangi et al. (F36) studied the formation of ordered Si Ge Si heterointerfaces through the analysis of Ge K-edge ELAF/S. The Ge-Si bonds were found to dominate the heterostructure. The temperature dependence of Ga and Zn K-edge EXAFS in defect chalcopyrite ZnGa.$e, have been studied by Lottici et al. (F37, F38). The use of EXAFS in identifying main bond stretching modes and obtaining qualitative effective bond strengths in complex materials was demonstrated. Measurements on a-SiGe, a-SiGe:H, c-SiGe, and c-SiGe were reported by Wakagi et al. (F39). The disorder of the network structure in the SiGe alloy system pr increases for c-SiGe, a-SiGe, and a-SiGe:H. M%ri?% Filipponi (F40) have reviewed the application of EXAFS to amorphous silicon alloys. Wakagi et al. (F41) studied a-Ge, a-Ge:H and found that first nearest neighbor distances are longer than in c-Ge. Greegor et al. (F42) examined two glasses containing 9.8 and 24 w t 70 Ge02 in Si02, determining the coordination number of Ge and Ge-0 bond lengths in the system. Sette et al. (F43, F44) studied the hydrogenated a-Si-Ge and Si-SiN, multilayers and found the interfaces to be atomically abrupt. Yamashita et al. (F45)investigated local structural changes in both the Cu and Zr K-edges of a-Cus&Lr@. Ma et al. (F46)studied the Zr K-edge in BaF2-ZrFz glasses to obtain the local structure parameters of Zr atoms in this system. EXAFS has been successfully utilized in the study of high-temperature superconductors. The local structure, role of oxygen content, and the valence and coordination of Cu ions in these compounds have been extensively studied (F47-F56). Since EXAFS involves the short range order of the absorbing atom, the technique is particularly suitable for the investigation of catalysts. Bart and Vlaic (F57) have reviewed the importance of EXAFS for studying catalysts. Investigations on the structural changes in various catalysts have been reported (F18, F58-F60). Surface EXAFS (SEXAFS) has been identified as an ideal tool for surface structural determinations, since it is a direct probe of adsorbate atom environment. This technique has been extensively reviewed (F18, F61, F62). SEXAFS has been applied to the study of clean surfaces, molecular adsorption, surface reconstructions,and adsorbatesubstrate bond length determinations (F63-F72).

ACKNOWLEDGMENT The authors acknowledge Chemical Abstracts Service for providing access to STN International to aid in the literature

SURFACE CHARACTERIZATION

search used in the preparation of this work. LITERATURE CITED

INTRODUCTION Kane, P. F.; Larrabee, G. B. Anal. Chem. 1977, 49, 221R-230R. Kane, P. F.; Larrabee, G. B. Anal. Chem. 1979, 57, 308R-31713. Larrabee, G. D.; Shaffner, T. J. Anal. Chem. 1981, 53, 163R-174R. Bowling, R. A.; Larrabee, G. B. Anal. Chem. 1983, 55, 133R-156R. Bowling, R. A.; Shaffner, T. J.; Larrabee, G. B. Anal. Chem. 1985. 57, 130R- 15 1R. (6) McGuire, 0. E. Anal. Chem. 1987, 59, 294R-308R.

(1) (2) (3) (4) (5)

A. ION SPECTROSCOPY ( A l ) Briggs. D. Surf. Sci. 1987, 789-790, 801. (A2) Davles, J. A. J. Trace Mlcroprobe Tech. 1987, A(4), 245. (A3) McMlllan, J. W. N w l . Instrum. M e w Phys. Res. 1988, @30(3). 474. (A4) Gossman, H. J.; Feldman. L. C. MRSBull. 1987, 72(6), 30. (A5) Conlon, T. W. Nucl. Instrum. Methods Phys. Res. 1987, 824-25(2). 705. (A6) Mazzoldi, P.; Carnera, A. Cfyst. Lattice Defects Amorphous Meter. 1987, 74(3-4), 319. (A71 Hlchwa, B. P. Nucl. Instrum. Methods Phys. Res. 1987, 824-24(1), 584. (A8) Sastrl, V. S . Talanra 1987, 34(5), 489. (A91 Morrls, W. G.; Fesseha, S . ; Bakhru, H. Nucl. Instrum. Methods Phys. Res. 1987, 824-25(2), 635. (A10) Grasserbauer, M. Pure Appi. Chem. 1988, 60(3). 437. ( A l l ) Taglauer, E.; Staudenmaler, G. J. Vac. Sci. Technol. A 1987, 54(4, Pt.2), 1352. (A12) Roomans, G. M.; Wrobiewskl, J.; Wroblewskl, R. Scanning Microsc. 1988, 2(2), 937. (A13) Garbassi, F.; Occhiello, E. Anal. Chim. Acta 1987, 797, 1. (A14) Powell, C. J. J. Res. Natl. Bur. Stand. ( U S . ) 1988, 93(3), 387. (A15) Deigass, W. N.; Cooks, R. G. Sclence 1987, 235(4788), 545. (A16) Balasanmugarn, K.; Viswanadham, S.K.; Hercules, D. M.; Cotter, R. J.; Heller, D.; Bennlnghoven, A.; Sichterman, W.; Anders, V.; Keough, T.; et ai. Appl. Spectrosc. 1987, 47(5), 821. (A17) Grasserbauer, M. Mikrochlm. Acta 1987, 7(1-6), 291. (Ale) Ortner, H. M.; Wllhelm, F. 0.; Grasserbauer, M.; Krlvan, V.; Virag. A,; Wilhartltz, P.; Wuensch, G. Mlkfochim. Acta 1987, 7(1-6), 233. (A19) Tuempner, J.; Wllsch, R.; Benninghoven, A. J. Vac. Scl. Technol. A 1987. 5(4, Pt. 2), 1186. (A20) Lafortune, F.; Beavls, R.; Tang, X.; Standing, K. 0.; Chait, B. T. RapM Commun. Mess Spectrom. 1987, 7(7-8), 114. (A21) Anthony, J. M.; Donahue, D. J. Nucl. Instrum. Methods Phys. Res. 1987, 629( 1-2), 77. (A22) Katz, W.; Newman, J. G. MRS Bull. 1987, 72(6), 40. (A23) Adams, F.; Moens, M. Spectrochim. Acta 1987, 426(9), 1013. (A24) Bernlus. M. T.; Morrison, G. H. Rev. Sci. Instrum. 1987, 58(10), 1789. (A25) Fenselau, C.; Cotter, R. J. Chem. Rev. 1987, 87(3), 501. (A26) Vlckerman, J. C. Surf. Sci. 1987, 789-790, 7. (A27) Grasserbauer, M. Microchem. J. 1988, 38(1), 24. (A26) Boudewijn, P. R.; Janssen, K. T. F. Fresenius' Z . Anal. Chem. 1987, 329(2-3), 215. (A29) Galuska, A. A.; Morrison, G. H. Pure Appl. Chem. 1987. 59(2), 229. (A30) Vandervorst, W.; Shepherd, F. R. J. Vac. Sci. Technol. A 1987, 5(3), 313. (A31) Degreve, F.; Thorne, N. A.; Lange, J. M. Fresenius' 2.Anal. Chem. 1987, 329(2-3). 410. (A321 Vlrag, A.; Frledbacher, G. Mikrmhim Acta 1987, 7(1-8), 313. (A33) Gijbels, R. Inorg. Chim. Acta 1987, 740(1-2), 215. (A34) Chassard-Bouchard, C. Anal. Chim. Acta 1987, 795, 307. (A35) Bolbach, G.; Beavis, R.; Della Negra, S.;Deprun, C.; Ens, W.; Lebeyec, Y.; Main, D. E.; Schueler, 6.; Standing, K. 0. Nucl. Instrum. Methods phvs. Res. 1988, 630(1), 74. (A36) Borchardt, G.; Scherrer, S.; Weber, S. Fresenius's Z . Anal. Chem. 1987, 329(2-3), 129. (A37) Inoue, K.; Isogai, A. J. Appl. Phys. 1987, 62(8), 3343. (A38) Nlehuls, E.; Heller, T.; Feld, H.; Bennlnghoven, A. J. Vac. Sci. Techno/. A 1987. 5(4. Pt. 2). 1243. (A39) Matsuo,'T.;'Sukurai; T i Matsuda, H. Nucl. Instrum. Methods Phys. Res. 1987. A258(31. 327. (A40) Tang, X.; Beevis;'R.; Ens, W.; Lafortune, F.; Schueler, 6.; Standing, K. Int. J. Mass Spectrom. Ion Processes 1988, 85(1), 43. (A41) Standing, K. G.; Beavls, R.; Boibach, G.; Ens, W.; Lafortune, F.; Main, D.; Schueler, 6.; Tang, X.: Westmore, J. B. Anal. Instrum. 1987, 76(1), 173. . . _. (A421 Waugh. A. R.; Klngham. D. R.: Richardson, C. H.; Goff, M. J . Phys. Colloq. 1987, C6, 577. (A43) Jede, R.; Seifert. K.; Duennebier, G. Fresenius' Z . Anal. Chem. 1987, 32912-3). 116. (A44) Nagai, K. Nucl. Instrum. Methods Phys. Res. 1988, 633(1-4). 486. (A451 Llebi, H. Nucl. Instrum. Methods Phys. Res. 1987, A258(3), 323. (A46) Homma, Y.; Ish4 Y. Rev. Electr. Commun. Lab. 1987, 35(6), 719. (A47) Bernius, M.; Ling, Y. C.; Morrison, 0. H. J. Appl. P h p . 1987, 67(5), 1677. (A48) Siodzlan, 0. Optik 1987, 77(4), 148. (A49) Thwstans, R. E.; Wolstenholme, J. Vacuum 1987, 37(3-4), 289. (A50) Chabala, J. M.; Levi-Setti, R.: Wang, Y. L. J. Vac. Sci. Technol. 6 1988, 6(3), 910. (A51) Nlhel, Y.; Sato, H.; Tatsuzawa, S.;Owari, M.; Ataka, M.; Alhara. R.; Azuma, K.; Kammei, Y. J. Vac. Sci. Technol. A 1987, 5(4 Pt. 2), 1254. (A52) Vlncenti, M.; Cooks, R . G. Org. Mass Spechorn. 1988, 23(5), 317.

(A53) Reuter, W.; Clabes, J. G. Anal. Chem. 1988, 60(14). 1404. (A54) Reuter, W. Anal. Chem. 1987, 59(17). 2081. (A55) Reuter, W.; Scilla, 0. J. Anal. Chem. 1988. 60(14), 1401. (A56) Appelhans, A. D.; Delmore. J. E.; Dahl, D. A. Anal. Chem. 1987, 59(13), 1685. (A571 Grasserbauer, M. J. Res. Natl. Bur. Stand. 1988, 93(3), 510. (A581 Gao, Y. Appl. Surf. Sci. 1988, 32(4). 420. (A59) Michiels, F.; Adams, F. J. Anal. At. Spectrom. 1987, 2(8), 773. (A60) Ray, M. A.; Baker, J. E.; Loxton, C. M.; Greene, J. E. J. Vac. Sci. Techno/. A 1088, 6(i), 44. (A61) Thorne, N. A,; Degreve, F. Swf. Interface Anal. 1988, 77(4), 189. (A62) Chabala, J. M.; Levi-Setti, R.; Wang, Y. L. Appl. Surf. Sci. 1988, 32(1-2), 10. (A63) Levl-Settl, R.; Chabala, J. M.; Yang, Y. L. Ulhamlcroscopy 1988, 24(2-3), 97. (A64) Satoh, H.; Owari, M.; Nihei, Y. J. Vac. Scl. Technol. 6 1988, 6(3), 915. (A65) Brown, J. D. Scanning Mlcrosc. 1988, 2(2). 853. (A66) Rudenauer. F. G.; Steiger, W. Ulhamlcroscopy 1988, 24(2-3), 115. (A67) Scllh. G. J.; Kuech, T. F.; Cardone. F. Appl. phys. Lett. 1988, 52(20), 1704. (A68) Clem. J. 6.; Gale, I. 0.; Blackmore, G.; Dowsett, M. G.; McPhall, D. S.; Spiller, G. D. T.; Sykes, D. E. Surf. Interface Anal. 1987, 10(7), 338. (A69) Naem, A. A.; Calder, D. J. Appl. Phys. 1987, 62(2), 569. (A70) Bryan, S. R.; Llnton, R. W.; Griffis, D. P. J. Vac. Sci. Technol. A 1987, 5(1), 9. (A71) Clegg. J. B. Surf. Interface Anal. 1987, 70(7), 332. (A72) Turner, J. E.; Amano, J.; Gronet, C. M.; Gibbons, J. F. Appl. Phys. Lett. 1987. 50(22), 1601. (A73) Graf, V.; Heuberger, W. Nucl. Instrum. Methods Phys. Res. 1987, 679-20 (Pt. l), 388. (A74) Stevie, F. A.; Kahora, P. M.; Slmons, D. S.;Chi, P. J. Vac. Sci. Technol. A 1988, 6(1), 76. (A75) Stlngeder, 0.; Grundner, M.; Grasserbauer, M. Swf. Interface Anal. 1988, 77(8), 407. (A76) Blumenthal, R.; Donner, S. K.; Herman, J. L.; Trehan, R.; Caffey, K. P.; Furman, E.; Winograd, N.; Weaver, B. D. J . Vac. Sci. Technol. 6 1988, 6(4), 1444. (A77) Stlngeder, G. Fresenlus' Z . Anal. Chem. 1987, 327(2), 225. (A78) Wilhartltz. P.; Virag, A.; Frhdbacher, 0.; Qasserbauer, M.; Ortner, H. M. Fresenius' 2.Anal. Chem. 1987, 329(2-3), 228. (A79) Tanaka, T.; Homma, Y.; Kurosawa, S. Anal. Chem. 1988, 60(1), 58. (A80) Hand, 0. W.; Schelfers, S.M.; Cooks, R. 0. Znt. J. Mess Spectrom. Ion Processes 1987, 78, 131. (A811 Metson, J. 6.; Tul, D. L.; Muir, I. J.; Bancroft, 0. M. Scanning Microsc. 1988, 2(2), 663. (A82) Muir, I. J.; Bancroft, G. M.; Metson. J. B. Int. J . Mas Spectrom. Ion Processes 1987, 75(2), 159. (A83) Routbort, J. L.; Rothman, S. J.; Flandermeyer, B. K.; Nowicki, L. J.; Baker, J. E. J. Meter. Res. 1988, 3(1), 116. (A84) Cavalleri, A.; Dapor, M.; Qlacomozzi, F.; Guzman, L.; Ossl, P. M. Scotoni, M. Meter. Sci. Eng. 1988. 99, 201. (A85) Magee, C. W. J. Res. Natl. Bur. Stand. 1988, 93(3), 390. (A86) McPhail, D. S.;Clark, E. A.; Clegg, J. 6.; Dowsett, M. 0.; Gold. J. P.; Spiller, 0. D. T.; Sykes, D. Scannlng Microsc. 1988, 2(2), 639. (A87) Marton, D. Thin Sol@Films 1987, 746(2), L l l . (A88) Yamamoto, H.; Kikuchl, T.; Fwuya. K. Surf. Sci. 1988, 794(1-2), 217. (A89) Taylor, E.; Bianchard, 6.; Vlllegler, J. C. Surf. Interface Anal. 1987, 70(4), 1. (A90) Maruo, T.; Homma, Y. Nucl. Instrum. Methods Phys. Res. 1987. 633(1-4), 556. (A91) Mitchell. D. F.; Graham, M. J. Swf. Interface Anal. 1987, 70(5), 259. (A92) Mathieu, H. J.; Landolt, D. Surf. Interface Anal. 1988. 77(1-2), 88. (A93) Solomon, J. S. Surf. Interface Anal. 1987, 70(2-3), 75. (A94) Solomon, J. S. Surf. Interface Anal. 1987, 70(4). 216. (A95) Sokmon, J. S. J. Vac. Sci. Technol. A 1988, 6(1), 81. (A96) Chabala, J. M.; LevCSettl, R.; Bradley, S. A,; Karasek, K. R. Appl. Surf. Sci. 1987, 29(3), 300. (A971 Wiiilams, D. 6.; Levl-Setti, R.; Chabala, J. M.; Newbuty, D. E. J. Mlcrosc. 1987, 748(3), 241. (A98) Moon, D. P. Surf. Interface Anal. 1987, 72(1-12), 27. (A99) Fleming, R. H.; Meeker, G. P.; Blattner. R. J. Thin SolM Films 1987. 753. 197. ( ~ 1 0 0 'COX, ) X. B., III; Bryan, S. R.; Linton, R. w.; @iffis, D. P. AM/. m m . 1987. 591171. 2018. (A101) Ratner,'B. D. frog. Blomed. Eng. 1988, 5 , 87. (A102) Burns, M. S . Uttramlcroscopy 1988, 24(2-3). 269. (A103) Wktmack, K.; Laxhuber, L.; Moehwald, H. Nucl. Instrum. Methods Phys. Res. 1987, 678(4-6). 639. (A1041 Saeve. G.; Haakansson, P.; Sundqvlst. 8. U. R. Lect. Notes Phys. 1987, 269, 249. (A105) Barber, M.; Green, B. N. RapM Commun. Mess Spectrom. 1987, 7(5), 80. (A1061 Kausler, W.; Schnelder. K.; Splteller, G. Biomed. Envkon. Mess Spectrom. 1988, 76(1), 1.5. (A107) Demlrev. P.; Olthoff, J. K.; Fenselau, C . ; Cotter, R. J. Anal. Chem. 1987, 59(15), 1951. (A108) Odom, R. W.; Lux, G.; Fleming, R. H.; Chu, P. K.; Nlemeyer, I. C.; Blattner, J. Anal. Chem. 1988, 60(19). 2070. (AlO9) LevCSetti, R. Annu. Rev. Biophys. Biophys. Chem. 1988, 77, 325. (A1101 Davies, M. C.; Brown, A.; Newton, J. M.; Chapman, S. R. Surf. I n terface Anal. 1988, 77(12). 591. ( A l l l ) Llnton, R. W.; Bryan, S. R.; Griffls, D. P.; Shelburne, J. D.; Fiwi, C. E.; Garruto, R. M. Trace Elem. Med. 1987, 4(3), 99. (A112) Levi-Setti, R.; Berry, J. P.; Chabaia, J. M.; Galle, P. 8/01.Cell 1988. 77. ANALYTICAL CHEMISTRY, VOL. 61,

NO. 12, JUNE 15, 1989 259R

SURFACE CHARACTERIZATION (A113) Chandra, S.; Ausserer, W. A.; Morrison, 0. H. J . Mlcrosc. 1987, 748(3). 223. (A114) Ligon, W. V.; Dorn, S. 8. Int. J . Mass Spectrom. Ion Processes 1987, 78, 99. (A115) Olthoff, J. K.; Honovich, J. P.; Cotter, R. J. Anal. Chem. 1987,59(7), 999. (A1161 Cole, R. 6.: Guenat, C.; Hass, J. R.; Linton, R. W. Anal. Chem. 1987, 59(15). 1930. (A117) Aberth, W. H.; Burlingame, A. L. Anal. Chem. 1988,60(14), 1426. ( A I 18) Olthoff, J. K.; Cotter, R. J. Nucl. Instrum. Mehods Phys. Res. 1987, 826(4), 566. (A119) Ligon, W. V.; Dorn, S.B. J . Am. Chem. SOC. 1988, 110(20), 6684. (A1201 Eusch, K. L. Trends Anal. Chem. 1987,6(4), 95. (A121) Stanley, M. S.;Duffin, K. L.; Doherty, S.J.; Busch. K. L. Anal. Chlm. Acta 1987,200(1), 447. (A122) Stanley, M. S.;Busch, K. L. Anal. Chlm. Acta 1987, 794, 199. (A123) Stanley, M. S.; Eusch, K. L.; Vincze, A. J. Planar Chromat0gr.-Mod. T i c 1988,1(1),76. (A124) Iwabuchi, H.; Nakagawa, A.; Nakamura, K. J . Chromatogr. 1987, 474(1). 139. (A125) Weber, J. W.; Jiang, K.; Gillece-Castro, B. L.; Tarentino, A. L.; Plummer, T. H.; Byrd, J. C.; Fisher, S.J.; Burlingame, A. L. Anal. Biochem. 1988, 769(2), 337. (A126) Wenclawiak, 6.; Eicke, A.; Sichtermann, W. K.; Benninghoven, A. Fresenlus’ 2.Anal. Chem. 1987,329(4), 447. (A127) Jabs, H. U.; Assmann, G. J . Chromafogr. 1987,414(2). 323. (A128) Gillberg, G. J . Adhes. 1987,27(2), 129. (A129) Wittmaack. K. Surf. Interface Anal. 1987, 10(6), 311. (A1301 Lub, J.; Van Velzen, P. N. T.; Van Leyen, D.; Hagenhoff, E.; Eenninghoven, A. Surf. Interface Anal. 1987, 72(1-12), 53. (A131) Bletsos, 1. V.; Hercules, D. M.; Maglll, J. H.; VanLeyen, D.; Niehuis, E.; Benninghoven, A. Anal. Chem. 1988,60(9), 938. (A132) Bietsos, I.V.; Hercules, D. M.; VanLeyen, D.; Eenninghoven, A. Macromolecules 1987,20(2), 407. (A133) Hearn, M. J.; Ratner, B. D.; Briggs, D. Macromolecubs 1988, 21(10), 2950. (A134) Hearn, M. J.; Brlggs, D.; Yoon, S.C.; Ratner, 8. D. Surf. Interface Anal. 1987, 10(8), 384. (A135) Erinkhuis, R. H. G.; Van Ooij, W. J. Surf. Interface Anal. 1988, 71(4), 214. (A136) Briggs, D.; Ratner, B. D. Polym. Commun. 1988,29(1), 6. (A137) Hearn, M. J.; Briggs, D. Surf. Interface Anal. 1988, 77(4), 198. (A138) Goldblatt, R. D.; Scilla, G. J.; Park, J. M.; Johnson, J, F.; Huang, S.J. J . Appl. Polym. Scl. 1988,35(8), 2075. (A139) Lub, J.; Van Vroonhoven, F. C. E. M.; Van Leyen. D.; Eenninghoven, A. Polymer 1988,29(6), 998. (A140) Van Oolj, W. J.; Brlnkhuis, R. H. G. Surf. Interface Anal. 1988, 11(8), 430. ( A M I ) Brlggs, D.; Munro, H. S. folym. Commun. 1987,28(11). 307. (A142) Michael, R.; Stuiik, D. Appl. Surf. Sci. 1987,28(4). 367. (A143) Van Ooij, W. J.; Nahmlas, M.; Brown, A. Surf. Interface Anal. 1988, 11(10), 539. (A144) Briggs, D. J . Adhes. 1987, 21(3-4), 343. (A145) Kaiser, U.; Huneke, J. C. MRS Bull. 1987, 12(6), 48. (A146) Oechsner, H. Scanning Microsc. 1988,2(1), 9. (A147) Kelly, N.; Kaiser, U. Res. Dev. 1987,29(8), 58. (A148) Gieger, J. F.; Kopnarksi, M.; Oechsner, H.; Paulus. H. Mikrochim. Acta 1987, 1(1-6), 407. (A149) Wucher, A.; Novak, F.; Reuter, W. J . Vac. Sci. Technol. A 1988, 6(4), 2265. (AI501 Jede, R.; Peters, H.; Duennebier, G.; Ganschow, 0.; Kaiser, U.; Seifert, K. J . Vac. Scl. Technol. A 1988,6(4), 2271. (A151) Gnaser, H.; Bay, H. L.; Hofer, W. 0. J . Vac. Sci. Technol. A 1987, 5(4, Pt. 2), 1194. (A152) Oechsner, H. Nucl. Instrum. Methods Phys. Res. 1987,833(1-4). 918. (A1531 Streit, L. A.; Williams, P. J . Vac. Sci. Technol. A 1987,5(4 Pt.3), 1979. (A154) Parks, J. E.; Spaar, M. T.; Cressman, P. J. J . Cryst. Growth 1988, 89(1), 4. (A159 Pellin, M. J.; Young, C. E.; Cakway, W. F.; Burnett, J. W.; Jorgensen, 6.; Schweitzer, E. L.; Gruen, D. M. Nucl. Instrum. Methods Phys. Res. 1987,818(4-6), 446. (A156) Hutchinson, J. M. R.; Inn, K. G. W.; Parks, J. E.; Beekman, D. W.; Spaar, M. T.; Fairbank, W. M. Nucl. Instrum. Mefhods Phys, Res, 1987. 826(4), 578. (A157) Goeringer, D. E.; Christie, W. H.; Valiga, R. E. Anal. Chem. 1988, 60(4), 345. (A158) Moore. L. J.; Parks, J. E.; Spaar, M. T.; Beekman. D. W.; Taylor, E. H.; Lorch, V. J . Res. Natl. Bur. Stand. 1988,93(3), 328. (A159) Parks, J. E.; Spaar, M. T.; Moore, L. J.; Fairbank, W. M.; Hutchinson, J. M. R. J . Res. U t / . Bur. Stand. 1988, 93(3), 383. (A160) Pallix. J. B.; Eecker, C. H.; Newman. N. MRSBull. 1987, 72(6), 52. (A161) Pallix, J. 6.; Gillen, K. T.; Becker, C. H. Nucl. Instrum. Methods Phys. Res. 1987, 833(1-4), 912. (A162) Shimizu, H.; Hashlzume, H.; Ichimura, S.; Kokubun, K. Jpn. J . Appl. Phys ., Part 2 1988,27(4). L502. (A163) Pallix, J. 6.; Eecker, C. H.; Newman, N. J . Vac. Sci. Technol. A 1988,8(3 Pt. l), 1049. (A164) Eecker. C. H. J . Vac. Scl. Technol. A 1987. 514 pt. 2). 1181. (A165) Pallix, J. E.; Eecker, C. H.; Missert, N.; Char, K.; Hammond, R. H. AIP Conf. Proc. 1988. 165, 413. (A166) Pallix, J. E.; Becker, C. H.; GHlen, K. T. Appl. Surf. Sci, 1988,32(12). 1. (Al67) Schuhle. U.; Pallix, J. 8.; Becker. C, H. J . Vac. Sci. Technol. A 1988, 6(3, Pt. l), 936.

260R

ANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

(A1681 Huth, T. C.; Denton, M. E. Anal. Chim. Acta 1987, 192(2), 165. (A169) Cotter, R . J. Anal. Chem. Acta 1987, 795, 45. (A170) Simons, D. S. Appl. Surf. Scl. 1988, 31(1), 103. (A171) Hercules, D. M. Mlcrochem. J . 1988,38(1), 3. (A172) Verdun. F. R.; Krier. G.; Muller, J. F. Anal. Chem. 1987, 59(10), 1383. (A173) Tsong, T. T.; Liu, H. M.; Gao, 9.; Liou, Y.; Feng, D. L. Surf. Sci. 1988, 200(2-3). 220. (A174) Carriveau, G. W.; Lin. C.; Coleman, D. M. Scanning Microsc. 1987, 7(2), 479. (A175) Wilk, Z. A.; Hercules, D. M. Anal. Chem. 1987,59(14), 1819. (A176) Fletcher, R. A.; Currie, L. A. Microbeam Anal. 1987, 22nd, 369. (A177) Odom, R. W.; Hitzman, C. J.; Schueler, B. W. Mater. Res. SOC. Symp. Proc. 1987,69, 265. (A178) Grainger, F.; Roberts, J. A. Semicond. Sci. Technol. 1988,3(8), 802. (A179) Musselman, I.H.; Linton, R. W.; Simons, D. S.Anal. Chem. 1988, 60(2), 110. (A180) Verbueken, A. H.; Van de Veyver, F.; De Broe, M.; Van Grleken. R . CRC Crlt. Rev. Clin. Lab. Sci. 1987,24(4), 263. (A181) Holm, R.; Karas, M.; Vogt, H. Anal. Chem. 1987,59(2), 371. (A182) Hercules, D. M.; Novak, F. P.; Viswanadham, S. K.; Wilk. 2. A. Anal. Chim. Acta 1987, 195, 61. (A183) Kelland, D.; Wallach, E. R.; Cottee, F. H.; Williamson, F. A. Anal. Chim. Acta 1987, 195, 81. (A184) Claereboudt, J.; Van Vaeck, L.; Baeten, W.; b i s e , H.; Gljbels, R.; Claeys, M. Anal. Chim. Acta 1987, 795, 343. (A185) Erinen, J. S.;Los. M.; Kelland, D.; Wallach, E. R. Surf. Interface Anal. 1988, 11(1l), 559. (A186) Schroder, W. H.; Einerhand, A.; Lauer, J.; Eschweiler, H.; Langner, R.; Fain, G. L.; Bauch, J. Microbeam Anal. 1987,22nd, 359. (A187) Verbueken. A. H.; Van de Vyver, F. L.; Roels, F.; Van Grieken, R. E.; De Broe, M. E. Blol. Trace Elem. Res. 1987, 13, 397. (A188) Musselman, I.H.; Rickman, J. T.; Linton, R. W. Microbeam Anal. 1987,22nd, 381. (A189) Leysen, L. A.; De Waele, J. K.; Roekens, E. J.; Van Grieken, R. E. Scanning Microsc. 1987, 1(4), 1617. (A190) Eruynseels, F. J.; Artaxo, P.; Storms, H. M.; Van Grieken, R. E. Mlcrobeam Anal. 1987,22nd, 356. (A191) Wouters, L.; Bernard, P.; Van Grieken, R. Int. J . Environ. Anal. Chem. 1988. 34(1), 17. (A192) De Waele, J. K.; Adams, F. C. Scanning Microsc. 1988,2(1), 209. (A193) Yokozawa, H.; Kikuchi, T.; Furuya, K.; Anod, S.;Hoshino, K. Anal. Chim. Acta 1987, 195, 73. (A194) Currie, L. A.; Fletcher, R. A.; Klouda, G. A. Nucl. Instrum. Methods Phys. Res. 1987,829(1-2), 346. (A195) Mauney, T. Anal. Chim. Acta 1987, 795, 337. (A196) Eoesl, U.; Grotemeyer, J.; Walter, K.; Schlag, E. W. Anal. Instrum. 1987, 16(1),151. (A197) Zare, R. N.; Hahn, J. H.; Zenobi, R. Bull. Chem. SOC.Jpn. 1988, 61(1), 87. (A198) Odom, R. W.; Schueier, B. Thin Solid Films 1987, 154(1-2), 1. (A199) Schueler, 6.; Odom, R. W. J . Appl. Phys. 1987,61(9), 4652. (A200) Hahn, J. H.; Zenobi, R.; Bada, J. L.; Zare, R. N. Science 1988, 239(4847), 1523. (A201) Beavis, R. C.: Lindner, J.; Grotemeyer, J.; Schlag, E, W. Chem. Phys. Lett. 1988. 146(3-4), 310. (A202) Hahn, J. H.; Zenobi, R.; Zare, R. N. J . Am. Chem. SOC. 1987, 109(9), 2842. (A203) Engelke, F.; Hahn, J. H.; Henke, W.; Zare, R. N. Anal. Chem. 1987, 59(6), 909. (A204) Grotemeyer, J.; Waiter, K.; Boesl, U.; Schlag, E. W. Int. J . Mass Spectrom. Ion Processes 1987,78, 69. (A205) Li, L.; Lubman, D. M. Appl. Spectrosc. 1988,42(3), 411. (A206) Downing, R. G.; Maki, J. T.; Fleming, R. F. J . Radloanal. Nucl. Chem. 1987, 112(1),33. (A207) Peisach, M. S.A h . J . Chem. 1987,40(4), 209. (A208) Tapping, R. L.; Davidson, R. D.; Jackman, T. E.; Davies, J. A. Surf. Interface . -..Anal. - 1988. 1118). 441. (A209) Bradshaw, SD.’; Cohen, D.; Katsaros, A.; Tom, J.; Owen, F. J. J . ADD/.Phvslol. 1987. 63(3). 1296. (A21’0) Horn, K. M.; Lanforh’W. A.; Rodbell, K.; Ficalora, P. Nucl. Instrum. Methods Phys. Res. 1987,826(4), 559. (A211) Seah, M. P.; Holbourn, M. W.; Ortega, C.; Davies, J. A. Nucl. Instrum. Methods Phys. Res. 1988,830(2), 128. (A212) Seah, M. P.; David, D.; Davies, J. A.; Jackman, T. E.; Jeynes, C.; Ortega, C.; Read, P. M.; Sofield, C. J.; Weber, G. Nucl. Instrum. Methods Phys. Res. 1988,830(2), 140. (A213) Rldgway, M. C.; Scanlon, P. J.; Whitton, J. L. J. Appl. Phys. 1987, 62(9). 3682. (A214) Fink, D.; Mueller, M.; Stettner, U.; Behar, M.; Fichtner, P. F. P.; Zawislak, F. C.; Koul, S.Nucl. Instrum. Methods Phys. Res. 1988,832(14). 150. (A215) Petit, J. C.; Della Mea, G.; Dran, J. C.; Schott, J.; Eerner. R. A. Nature 1987,325(6106), 705. (A216) Decroupet, D.; Meurisse, H.; Demortler, G. Zeolites 1987,7(6), 540. (A217) Izsak, K.; Kalbitzer, S.;Weiser, M.; Zinke-Allmang. M. Nucl. Instrum. Methods Phys. Res. 1987,833(1-4), 578. (A218) Demortier. G.; Gilson, A. Nucl. Instrum. Methods Phys. Res. 1987. 818(3), 286. (A219) Eethge, K. Nucl. Instrum. Methods Phys. Res. 1987,824-25(Pt.l), 587. (A220) Klockenkamper, R. Spectrochim. Acta 1987, 428(3), 423. (A221) Klockenkamper, R.; Raith, E.; Divoux, S.; Gonsior, E.; Brueggerhoff. S.; Jackwerth, E. Fresenius’ Z . Anal. Chem. 1987,326(2). 105. (A222) Maenhaut. W. Anal. Chim. Acta 1987, 195, 125.

SURFACE CHARACTERIZATION (A223) Traxel, K. Nucl. Instrum. Methods Phys. Res. 1988,A268(2-3), 567. (A224) Legge, 0. J. F.; O'Brien, P. M.; Kirby, B. J.; Allan, G. L. UltramicrosCOPY 1988,24(2-3), 283. (A225) Oliver. A.; Miranda, J. Nucl. Instrum. Methods Phys. Res. 1987, 829(3), 521. (A226) Peisach, M. J . Radioanal. Nucl. Chem. 1987 770(2), 461. (A227) Saleh, N. S.; AI-Saleh, K. A. J. Radloanal. Nucl. Chem. 1987, 708(6), 363. (A228) Legge, G. J. F. Nucl. Instrum. Methods Phys, Res. 1987,822(1-3), 115. (A229) Rogers, P. S. 2.; Duffy, C. J.; Benjamin, T. M. Nucl. Instrum. Methods Phys. Res. 1987,822(1-3), 133. (A230) Uda, M.; Benka, 0.; Fuwa, K.; Maeda, K.; Sasa, Y. Nucl. Instrum. Methods Phys. Res. 1987,822(1-3), 5. (A231) Campbell, J. L.; Perujo, A.; Teesdale, W. J.; Maxwell, J. A. Scanning Microsc. 1987, 7(4), 1631. (A232) Campbell, J. L.; Perujo, A.; Teesdale, W. J.; Cookson, J. A. Nucl. Instrum. Methods Phys. Res. 1988, 830(3), 317. (A233) Koyama-Ita, H.; Wada, E.; Ito, A. Nucl. Instrum. Methods Phys. Res. 1987,822(1-3), 205. (A234) Narusawa, T.; Ohyama, H.; Nakashima, H.; Hayashi, S.; Koyanagi, K.; Kumashlro, S.; Soejlma, H. Surf. Interface Anal. 1988, 77(5), 234. (A235) ACArmaghani, M. S.; Crumpton, D.; Cooper, P. N. Nucl. Instrum. Methods Phys. Res. 1987,878(3), 297. (A236) Zeng, X.; Li, Xiaomei Nucl. Instrum. Methods Phys. Res. 1987, 822(1-3), 99. (A237) Wookey, C. W.; Rouse, J. L. Nucl. Instrum. Methods Phys. Res. 1987,878(3), 303. (A238) Martinsson, B. G. Nucl. Instrum. Methods Phys. Res. 1987,822(13), 356. (A239) Grime, G. W.; Wan, F.; Chapman, J. R. Nuci. Instrum. Methods Phys. Res. 1987,822(1-3), 109. (A240) Feeney, P. J.; Cahill. T. A.; Annegarn, H. J.; Dixon, R.; Beveridge, P. Nucl. Instrum. Methods Phys. Res. 1987,822(1-3), 349. (A241) Tang, G.; Sun, C.; Zhu, L.; Chen, J. Nucl. Instrum. Methods Phys. Res. 1987,822(1-3), 364. (A242) Themner, K.; Loevestam, N. E. G.; Tapper, U. A. S.; Malmqvist, K. G. Nucl. Instrum. Methods Phys. Res. 1987,822(1-3), 126. (A243) Bombelka, E.; Richter, F. W. X-Ray Spectrom. 1988, 77(1), 23. (A244) Smlt, 2. Nucl. Instrum. Methods Phys. Res. 1987,828(4), 567. (A245) Pallon, J. Nucl. Instrum. Methods Phys. Res. 1987,822(1-3), 87. (A246) Yamada, K.; Kldo, Y. J. Appl. Phys. 1987,62(9), 3936. (A247) Regnier. P.; Brissaud, I.J . Radioanal. Nucl. Chem. 1987, 777(2), 111. (A248) Ascheron, C.; Flagmeyer, R.; Otto, G.; Vogt, J.; Frey, H. U. Cryst. Res. Technol. 1987,22(12), 1497. (A249) Drueke, V.; Hecker, R.; Stoever, D. Mikrochlm. Acta 1987, 7(1-6), 85. (A250) Rlckards, J.; Zlroni, E. P.; Nucl. Instrum. Methods Phys. Res, 1988, 829(3), 527. (A251) Musket, R. 0. Nucl. Instrum. Methods Phys. Res. 1987,824-825(2), 698. (A252) Franklyn, C. 6.; Mingay, D. W.; Stadler. E. Nucl. Instrum. Methods Phys. Res .-l987, 823(3); 382. (A253) Heck, D. Nucl. Instrum. Methods Phys. Res. 1988,830(3), 486. (A2541 Gabelica, Z.;Demortier, G.; Deconkklnck, G.; Bodart, F.; Lucas, A. A.; Renier, M.; Lambin, P.; Vigneron, J. P.; Derouane, E. G. SolM State Commun. 1987,64(8), 1137. (A255) Doyle. B. L.; McGrath, R . T.; Pontau, A. E. Nucl. Instrum. Methods Phys. Res. 1987,822(1-3), 34. (A256) Cecchi, R.; Ghermandi, G.; Calvelli, G. Nucl. Instrum. Methods Phys . Res. 1987,822(1-3), 460. (A257) Hanson, H. C.; Ekholm, A. K. P.; Ross, H. B. Environ. Scl. Tech. 1988,22(5), 527. (A258) Cabri, L. J. Nucl. Instrum. Methods Phys. Res. 1988,830(3), 459. (A259) Benjamin. T. M.; Duffy, C. J.; Rogers, P. S. 2.Nucl. Instrum. Methods Fhys. Res. 1988,830(3), 454. (A260) Horn, E. E.; Traxel, K. Chem. e o / . 1987,67(1-4), 29. (A26 1) Durocher, J. J. G.; Halden, N. M.; Hawthorne, F. C.; McKee, J. S. C. Nucl. Instrum. Methods Phys. Res. 1988,830(3), 470. (A262) Campbell, J. L.; Cabrl, L. J.; Rogers, P. S. 2.; Traxel, K.; Benjamin, T. M. Nucl. Instrum. Methods Phys. Res. 1987,822(1-3), 437. (A263) Remond, G.; Cesbron, F.; Traxel, K.; Campbell, J. L.; Cabri, J. L. Scanning Microsc. 1987, 1(3), 1017. (A264) Malmqvist, K. G.; Baage, H.; Carlsson, L. E.; Kristiansson, K.; Malmqvist, L. Nucl. Instrum. Methods Phys. Res. 1987. 822(1-3), 386. (A265) Swann, C. P.; Fleming, S. J. Scanning Microsc. 1988,2(1), 197. (A266) Brissaud, I.; Lagarde, G; Sabir, A.; Houdayer. A. J. Radioanal. Nucl. Chem. 1987, 776(1), 99. (A267) Kusko, B. H.; Schwab, R. N. Nucl. Instrum. Methods Phys. Res. 1087,822(1-3), 401. (A268) Hansson, H. C.; Martinsson, B. G.; Swietlicki, E.; Asking, L.; Heintzenberg, J.; Ogren, J. A. Nucl. Instrum. Methods Phys. Res. 1987,822(1-3), 235. (A2691 Annegarn, H. J.; Cahill, T. A.; Sellschop, J. P. F.; Zucchiani. A. Phys. Scr. 1988,37(2), 282. (A270) Maenhaut, W.; Raemdonck. H.; Andreae, M. 0. Nucl. Instrum. Methods Phys. Res. 1987,822(1-3), 248. (A271) Tang, S. M.; Eldred, R . A.; Feeney, P. J.; Cahill, T. A. Nucl. Instrum. Methods Phys. Res. 1087,822(1-3), 372. (A272) Tomic, S.; Valkovic, V.; Budnar, M.; Starc, V.; Smit, 2.Nuci. Instrum. Methods Phys. Res. 1987,824-825(2), 609. (A273) Maenhaut, W.; Cafmeyer, J. J. Trace Microprobe Tech. 1887,5(23). 135. (A274) Vis, R . D. Scanning Microsc. 1988,2(2), 977

(A275) Gonsior, B.; Bischof, W.; Hoefert, M.; Raith, B.; Stratmann, A,; Rokita, E. B o / . Trace Hem. Res. 1987, 72. 33. (A276) Raisanen, J. Bo/. Trace Elem. Res. 1987, 12, 55. (A277) Williams, E. T. Bo/. Trace Elem. Res. 1987, 72, 19. (A278) Hertel, N.; Thorlacius-Ussing, 0. Nucl. Instrum. Methods Phys. Res. 1987,822(1-3), 149. (A279) Clayton, E. Nucl. Instrum. Methods Phys. Res. 1987, 822(1-3), 145. (A280) Maenhaut, W.; Vandenhaute, J.; Duflou, H. Fresenius' 2. Anal. Chem. 1087,326(7), 736. (A281) Coote, G. E.; Vickrldge, I. C. Nuci. Instrum. Methods Phys. Res. 1988,630(3), 393. (A282) Cichocki, T.; Heck, D.; Jarczyk, L.; Rokita, E.; Strzalkowskl, A,; Sych. M. Nucl. Instrum. Methods Phys. Res. 1988,837(3), 449. (A283) Johansson. E.; Lindh, U.; Johansson, H.; Sunstroem, C. Nucl. Instrum. Methods Phys. Res. 1987,822(1-3), 179. (A284) Raisanen, J.; Hyvonen-Dabek, M.; Lapano, R.; Dabek, J. T. Appl. Radiat. h o t . 1987,38(7), 573. (A285) Wan, F.: Grime, G. W.; Perry, C. C. Nucl. Instrum. Methods Phys. Res. 1988,830(3), 331. (A286) Vaux, D. J. T.; Grime, G. W.; Wan, F. Bioi. Trace Elem. Res. 1987, 73, 115. (A287) Wan, F.; Grime, G. W. Nucl. Instrum. Methods Phys. Res. 1988, 830(3), 356. (A288) Schofield, R. M. S.; Lefevre, H. W.; Overley, J. C.; MacDonald, J. D. Nuci. Instrum. Methods Phys. Res. 1988,830(3), 398. (A289) Creemers, C.; Van Hove, H.; Neyens, A. Corios. Rev. 1987, 7(1), 51. (A290) Gardella, J. A., Jr. Appl. Surf. Sci. 1988,37(1), 72. (A291) Horrell, B. A.: Cocke, D. L. Catal. Rev.-Sci. Eng. 1987,29(4), 447. (A292) Souda, R.;Aono, M.; Oshima, C.; Otani, S.; Ishizawa, Y. Surf. Sci. 1987, 779(1), 199. (A2931 Knibbeler, C. L. C. M.; Helllngs, G. J. A,; Maaskamp, H. J.; Ottevanger, H.; Brongersma, H. H. Rev. Sci. Instrum. 1987,58(1), 125. (A294) Young, V. Y.; Hoflund, G. B. Anal. Chem. 1988,60(3), 269. (A295) Puranik, S. G.; King, B. V. Appl. Surf. Sci. 1987,28(2), 180. (A2961 Hook. K. J.; Gardella, J. A.. Jr.; Salvati. L.. Jr. Macromolecules 1987, 20(9), 21 12. (A297) Salvati, L., Jr.; Hook, T. J.; Gardella, J. A., Jr.; Chin, R. L. Polym. Eng. Sci. 1987,27(13), 939. (A2981 Niehus, H.; Mann, K.; €idrage, B. N.; Yu, M. L. J . Vac. Sci. Technol. 625. A 1988,6(3, Pt. l), (A299) Perrlere, J. Vacuum 1987. 37(5-6), 429. (A300) Gossmann, H. J.; Feklman, L. C. MRS Bull. 1987, 72(6). 26. (A301) Leavitt, J. A. Nucl. Instrum. Methods Phys. Res. 1987,824-825(Pt. 2), 717. (A302) Hsiung, P.; Trocellier, P. J. Radioanal. Nucl. Chem. 1987, 709(2), 459. (A303) Flnstad, T. G.; Chu, W. K. Treatlse Mater. Sci. Technol. 1088,27, 391. (A304) Smith, R. J.; Whang, C. N.; Mingde, X.; Worthington, M.; Hennessy, C.; Kim, M.; Holland, N. Rev. Sci. Instrum. 1987,58(12), 2284. (A305) Maree, P. M. J.; De Jongh, A. P.; Derks, J. W.; Van der Veen, J. F. Nuci. Instrum. Methods Phys. Res. 1987. 828(1), 76. (A306) Rlddolls, T.; Shanker, K. J. Vac. Scl. Technol. A 1987,5(3), 385. (14307) Kinomura, A.; Takai, M.; Inoue, K.; Matsunaga, K.; Izumi, M.; Matsuo, T.; Gamo, K.; Namba, s.; Satou. M. Nucl. Instrum. Methods Phys. Res. 1987,833(1-4), 862. (A308) Hobbs, C. P.; McMillan. J. W.; Palmer, D. W. Nuci. Instrum. Methods Phys. Res. 1988,830(3), 342. (A309) Carter, G. Radlat. Eff. Express. 1987, 7(1), 31. (A310) Abelson, J. R.; Sigmon, T. W. Mater. Res. SOC. Symp. Proc. 1987, 77, 283. (A31 1) Padrnanabhan, K. R.; Bhowmick, S.; Hua, 2. 2. Swf. Interface Anal. 1987, 70(2-3), 126. (A312) Clark, E. A.; Kirbitson, R.: Norman, E. Nucl. Instrum. Methods Phys. Res. 1987,823(3), 395. (A313) Knox, J. M.; Harmon, J. F. Nuci. Instrum. Methods Phys. Res. 1987, 624-8251R. 2). 688. -~ (A314) Yu, K. Mi'Jaklevic, J. M.; Haller, E. E. Nucl. Instrum. Methods Phys. Res. 1988,830(4), 551. (A315) Gujrathi, S. C.; Aubry, P.; Lemay, L.; Martin, J. P. Can. J. Phys. 1987. 6518). 950. (A316) 'Abei, 'F.; Agius, 6.; Gyulai, J. Nucl. Instrum. Methods Phys. Res. 1987, 827(1), 77. (A317) Wittmack, K.; Menzel, N. Appl. Phys. Lett. 1987,50(13), 815. (A318) Nashiyama, I.; Nishijima, T.; Sakuma, E.; Yoshida, S. Nucl. Instrum. Methods Phys. Res. 1988,833(1-4), 599. (A319) Zentai, G.; Paszti. F.; Manuaba, A. J. Non-Cryst. Sollds 1987,90(13), 163. (A320) Yamaguchi, S.; Takahiro, K.; Nakajima. H.; Fujino, Y.; Sagara, S.; Kamada, K.; Shiomi-Tsuda, N. Nucl. Instrum. Methods Phys. Res. 1987, 833(1-4), 163. (A321) Mancini, A. M.; Quirini, A,; Vasanelli, L.; Perillo, E.; Spadaccini. G.; Vigilante, M.; Giorgi. R. Nucl. Instrum. Methods Phys. Res. 1987,833(14), 587. (A322) Guoba, L.; Zubauskas, G.; Kameneckas, J.; Sakalas, A. Phys. Status SolidiA 1987, 707(2), 445. (A3231 Yan, D.; Farrell, J. P.; Lesser, P. M. S.; Pollak, F. H.; Kuech, T. F.; Wolford, D. J. Nucl. Instrum. Methods Phys. Res. 1987,824-25(Pt. 2), 662. (A324) Kiger, S.; Compaan, A.; Eck, J. S. J. Phys. Chem. Solids 1987. 48(3), 237. (A325) Brizzolara, R. A.; Cooper, C. B.; Fou, C. M. Nucl. Instrum. Methods Phys. Res. 1987,826(4). 528. ~~

ANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

261 R

SURFACE CHARACTERIZATION (A326) Emmoth, 8.; Bergsaker, H. Nucl. Instrum. Methods Phys. Res. 1987, 833(1-4). 435. (A327) Paffett, M. T.; Beery, J. G.; Gottesfeld, S. J . Electrochem. SOC. ieea. 13516). 1431. .. (A328) Kelly,'E.'J.; Heatherly, D. E.; Vallet, C. E.; White, C. W. J . Electrochem. SOC. 1987, 134(7), 1667 lA329) Khubeis, I.G.; Zlegler. J. F. Nucl. Instrum. Methods Phys. Res. . 1967,624-825(Pt. 2), 682. (A330) Baumann. S. A.; Strathman, M. D.; Suib, S. L. Anal. Chem. 1988, 60(10), 1046. (A331) Rubel, M.; Bergsaaker, H.; Emmoth. 8.; Nagata, S. Nucl. Instrum. Methods Phys. Res. 1987,828(2), 284. (A3321 Venkatesan, T.; Wu, X. D.; Inam, A,; Wachtman, J. 8. Appl. Phys. Lett. 1988,52(14). 1193. (A333) Stoffel, N. G.; Bonner, W. A.; Morris, P. A.; Wilkens, 8.J. Mater. Res. SOC. Symp. R o c . 1988,99, 507. (A334) Naito, M.; Hammond. R. H.; Oh, 8.; Hahn, M. R.; Hsu, J. W. P.; Rosenthal, P.; Marshell, A. F.; Beaseley, M. R.; Geballe, T. H.; Kapitulnik, A. J . Mater. Res. 1987, 2(6), 713. (A335) Risbud, S. H.; Bania, W. R.; McIntyre, L. C., Jr.; Leavltt, J. A. Physica C 11). 1679. - 1988. 153-7551Pt. ._ . ..,. . . (A3361 Martin, J. A.: Nastasi, M.; Tesmer, J. R.; Maggiore, C. J. Appl. Phys. Lett. 1988. 52125). 2177. (A337) Ohkubo, M.; Hloki, T. Jpn. J . Appl. Phys., Part 2 1988,27(4), L613. (A338) Stoffel, N. G.; Morris, P. A,; Bonner, W. A,; Wllkens, 8 . J. Phys. Rev. 6.: Condens. Matter 1988,37(4), 2297. (A339) Wu, X. D.; DIJkkamp, D.; Ogaie, S. 8.;Inam, A.; Chase, E. W.; Miceli, P. F.; Chang, C. C. Appl. Phys. Lett. 1987,57(11), 861. (A340) Batlogg, 8.; Kourouklls, G.; Weber, W.; Cava, R. J.; Jayaraman, A.; White, A. E.; Short, K. T.; Rupp, L. W.; Rietman, E. A. Phys. Rev. Lett. 1987 59181 .___ -, ~ - 912 ,, (A341) Hui, C. Y.: Wu, K. C.; Lasky, R. C.; Kramer, E. J. J . Appl. Phys 1987.61111). 5129. (A342) 'Hui,'C.'Y.; Wu, K. C.; Lasky, R. C.; Kramer, E. J. J . Appl. Phys. 1987,67(11), 5137. (A343) Shanker, K.; MacDonald, J. R. J . Vac. Sci. Technol. A 1987,5(5), 2894. (A344) Davenas, J.; Xu, X. L.; Maitrot, M.; Mathis, C.; Francois, 8. Nucl. Instrum. Methods Phys. Res. 1988,632(1-4), 166. (A345) Chaturvedi, U. K.; Patnaik, A.; Nigam. A. K. Radlef. Eff. 1987, 704(1-4). 43. (A346) Matienzo, L. J.; Emmi, F.; Egitto, F. D.; Van Hart, D. C.; Vukanovic, V.; Takacs, G. A. J . Vac. Sci. Technol. A 1988,6(3 Pt. 1). 950. (A347) Chaturvedi, U. K.; Patnalk, A.; Chakraborty, R. N.; Nigam, A. K. Radlet. EH. 1988, 105(3-4), 269. (A348) Rafallovlch, M. H.; Sokolov. J.; Jones, R. A. L.; Krausch. G.; Klein, J.; Mills, R. Europhys. Lett. 1988,5(7), 657.

---.

..I

6. ELECTRON SPECTROSCOPY

Harris, P. G.; Trigg, A. D. Mater. Des. 1988,9(3), 127-134. Briggs, D. Surf. Sci. 1987, 189-190, 801-822. Sexton, 8 . A. Mater. Forum. 1987. 70(2), 134-143. Hocheiia. M. F., Jr. Rev. Mineral. 1988. 18, 573-637. (85) Grunthaner. F. J. MRS Bull. 1987, 72(6), 60-64. (86) Porter, H. Q.; Turner, D. W. Anal. Chem. 1987. 59(10), 1343-1406. (87) Powell, C. J. J . Electron Spectrosc. Relet. Phenom. 1988, 47, 197-214. (88) Batich. C. D. Appl. Surf. Sci. 1988. 32(1-2), 57-73. (89) Relch, T.; Yarzhemskl, V. 0.; Nefedov, V. I.J. Electron Spectrosc. Relet. Phenom. 1988,46(3), 255-267. (810) Ebei, M.; Krocza, H. J . Electron Spectrosc. Relet. Phenom. 1987, 43(1), 11-15. (811) Chorkendorff, I.; Tougaard, S. Appl. Surf. Sci. 1987. 29(1), 101-112. (812) Tougaard, S. J. Vac. Sci. Technol. 1987,5(4), 1230-1234. (813) Tougaard, S. Surf. Interface Anal. 1988. 71(9), 453-472. (814) Tougaard, S. J. Vac. Scl. Technol. 1987. 5(4), 1275-1278. (815) Chomlk, 8.; Soplzet, R.; Le Gressus, C. J. Electron Spectrosc. Relet. Phenom. 1987,42(4), 329-50. (816) Nefedov, V. I.; Bashchenko, 0. A. J. Electron Spectrmc. Relat. phenom. 1988,47, 1-25. (817) Koenig, M. F.; Grant, J. T. Surf. Interface Anal. 1988, 71(6-7), 383-388. (818) Bryson, C. E., 111 Surf. Sci. 1987, 789-190, 50-58. (Bl9) Boland, J. J. Surf. Interface Anal. 1987, 70(2-3), 149-152. (820) Carroll, T. X.; Slggel. M. R. F.; Thomas, T. D. J . Electron Spectrosc. Relet. Phenom. 1988,46(3), 249-253. (821) Smith, G. C.; Seah, M. P. J . Electron Spectrosc. Relet. Phenom. 1987,42(4), 359-363. (822) Petersen, H.; Braun, W.; Koch, E. E.: Rudolph, D. Proc. SPIE-Int. SOC. o p t . EW. 1987.733,426-431. (823) Clarke, A.; Jennings, G.; Campuzano, J. C.; Willis, R. F. Phys. Scr. 1987. 35(4), 423-426. (824) Wagner, C. D.; Joshl. A. J . Electron Spectrosc. Relet. Phenom. 1988. 47, 283-313. (825) Morettl, G. Surf. Interface Anal. 1987, 70(8), 434-439. (826) Yu, X. Surf. Interface Anal. 1987, 70(5), 262-264. (827) Yu, X.; Liu, F.; Wang, 2. J . Electron Spectrosc. Relat. Phenom. 1987, 43(1), 83-93. (828) Ebel, H.; Ebel, M.; Krocza, H. Surf. Interface Anal. 1988, 12(1-12), 137-143. (829) Kohiki. S.; Ozaki. S.; Hamada, T.; Taniguchi. K. Appl. Surf. Scl. 1987, 28(2), 103-110. (830) Kohiki. S.; Oraki, S.; Hamada, T.; Tabata, K. Appl. Surf. Sci. 1887, 28(1), 85-91. (831) Kisker, E. Top. Curr. Phys. 1987,47, 57-108. (832) Kirschner, J. Appl. Phys. A 1987,A 4 4 ( 1 ) , 3-11. (81) (82) (83) (84)

2 6 2 ~ ANALYTICAL

CHEMISTRY,

VOL. 61, NO. 12, JUNE 15, 198i9

(833) Abraham, D. L.; Hopster. H. Phys. Rev. Lett. 1987, 58(13), 1352-1354. (834) Carbone. C.; Kisker. E. Phys. Rev. 6: Condensed Matter 1987, 36(2), 1280-1283. (835) Aeschlimann, M.; Bona, G. L.; M e r , F.; Stampanoni, M.; Zampieri. G. Helv. PhyS. Acta 1987. 60(5-6), 794-798. (836) Tougaard, S. Surf. Interface Anal. 1988. 8(6), 257-260. (837) Yih, R. S.; Ratner. 8. D. J . Electron Spectrosc. Relet. Phenom. 1987, 4311). 61-82. (838) 'kklbritfer, J. J . Mater. Res. 1988,3(3), 506-513. (839) Fadley, C. S. Phys. Scr. 1987, T77, 39-49. (840) Egelhoff, W. F., Jr. Phys. Rev. Lett. 1987, 59(5), 559-562. (841) Trehan, R.; Osterwalder, J.; Fadley. C. S. J . Electron Spectrosc. Rela t . Phenom. 1987,42(3), 187-215. (842) . . Wesner, D. A.; Coenen, F. P.; Bonzel, H. P. J . Vac. Scl. Technol. A . 1987,5(4, pt I), 927-931. (843) Bardi, U.; Tamura, K.; Owari, M.; Nihei, Y. Appl. Surf. Sci. 1988, 32(4), 352-362. (844) Ogama, T. J . Appl. Phys. 1988,64(2), 753-757. (845) Jugnet, Y.; Prakash, N. 8.; Grenet, G.; Tran Mlnh Duc; Poon, H. C. Surf. Sci. 1987, 189-190, 649-655. (846) Barton, J. J. Phys. Rev. Len. 1988,67(12), 1356-1359. (847) Kim, H. J. ;Davis, R. F.; Cox, X. 8.; Linton, R. W. J . Electrochem. Soc. 1987, 134(9), 2269-2275. (848) Yu, C. F.; Schmidt, M. T.; Podlesnik, D. V.; Osgocd, R. M., Jr. J . Vac. Sci. Technol. 6 1987,5(4), 1087-1091. (849) Wada, T. Appl. Phys. Lett. 1988,52(13), 1056-1058. (850) Wada, T.; Maeda, Y. Appl. Phys. Lett. 1988. 52(1), 60-82. (851) Thomas, J. H., 111; Kaganowicaz. G.; Robinson, J. W. J . Electrochem. SOC. 1988, 135(5),1201-1206. (852) Biedenbender, M. D.; Kapoor, V. J.; Williams, W. D. J . Vac. Sci. Technol., A . 1987,5(4, Pt. 2). 1437-1441. (853) Brillson, L. J.; Viturro, R. E.; Slade, M. L.; Charada, P.; Kllday. D.; Kelly. M. K.; Margaritondo, G. Appl. Phys. Lett. 1987, 50(19), 1379- 1381. (854) Hirose, K.; Ohdomari, I.; Uda, M. Phys. Rev. 8 : Condens. Matter 1988,37(12), 6929-6932. (8551 Von Kaenel, H.; Graf. T.: Henz, J.; Ospeit, M.; Wachter, P. J . Ctyst. GO& 1987,81(1-4), 470-475. (856) McConica, C. M.; Cooper, K. J . Electrochem. SOC. 1988, 135(4), 1003-1 008. (857) Grossman, E.; Bensaoula, A,; Ignatiev, A. Surf. Sci. 1988,201(1-2), 269-277. (858) Grossman, E.; Bensaoula, A.; Ignatiev, A. Surf.Sci. 1988, 197(1-2), 99-108. (859) Chou, N. J.; Paraszczak, J.; Bablch. E.; Heidenreich, J.; Chaug, Y. S.; Goldblatt, R. D. J . Vac. Sci. Technol., A 1987, 5(4, Pt. 2), 1321-1326. (860) Matlenzo, L. J.; Emmi, F.; Egitfo. F. D.; Van Hart, D. C.; Vukanovlc, V.; Takacs, G. A. J . Vac. Sci. Technol., A . 1988, 6(3, Pt. l), 950-953. (861) Oehrlein, G. S.; Bright, A. A.; Robey, S. W. J . Vac. Scl. Technol., A 1988,6(3, Pt. 2), 1989-1993. (862) Sugimoto, I.;Miyake, S. J . Appl. Phys. 1988, 84(5), 2700-2705. (863) Nelson, S. A.; Hallen, H. D.; Buhrman, R . A. J . Appl. Phys. 1988. 63(10), 5027-5035. (864) Inagaki, N.; Kobayashi, N.; Matsushima, M. J. Membr. Sci. 1988, 38(1), 85-95. (865) Glass, J. T.; Williams, 8 . E.; Davis, R . F. Proc. SPIE-Int. SOC.Opt. Eng. 1988,877, 56-63. (866) Maschhoff, B. L.: Zavadil, K. R.; Nebesny, K. W.; Armstrong, N. R., J . Vac. Sci. Technol., A 1988,6(3, Pt. I), 907-913. (867) Paparazzo, E. Surf. Interface Anal. 1988, 72(1-12), 115-118. (868) Reichl, R.; Gaukler. K. H. Appl. Surf. Sci. 1988, 26(2), 196-210. (869) Chehimi, M.; Delamar, M. Anal. Lett. 1987,20(3), 369-378. (870) Barth. G.; Linder. R.; Bryson, C. Surf. Interface Anal. 1988, 7(6-7), 307-311. (871) Hansson, G. V. Phys. Scr. 1987, T77, 70-76. (872) Chwng. T. J.; Domen. K. J . Vac. Sci. Technol.. A 1987,5(4, Pt. l ) , 473-475. (873) Ranke, W.; Finder, J.; Kuhr, H. J. Surf. Sci. 1987, 187(1). 112-132. (874) Glllberg, G. J . Adhes. 1987,27(2), 129-154. (875) Hook, T. J.; Gardeiia, J. A., Jr.; Salvati, L., Jr. J . Mater. Res. 1987, 2(1), 117-131. (876) Clark, D. T.; Hutton, D. R. J . Polym. Sci., A 1987, 25(10), 2643-2664. (877) Mutel, 8.; Dessaux, 0.; Goudmand, P.; Grlmblot, J.; Carpentier, A.; Szarzbynski, S. Rev. Phys. Appl. 1988,23(7), 1253-1255. (B78) Balzarotti, A.; De Crscenzi, M.; Motta, N.; Patella, F.; Sgarlata, A. Phys. Rev. 6: Condens. Matter 1988,38(10). 6461-6469. (879) Ihara, H.; Jo, M.; Terada, N.; Hirabayashi, M.; Oyanagl, H.; Murata, K.; Kimura, Y.; Sugise. R.; Hayashida, I. Physica C 1988, 153-155(Pt. 1). 131-132. (B80) Healy, P. C.; Myhra, S.; Stewart, A. M. Phllos. Mag. 6 1988. 58(3), 257-270. (Bel) Frommer, M. H. Phys. Rev. 6: Condens. Matter 1988, 38(4), 2444-2449. (882) Horn, S.; Cai, J.; Shaheen, S.; Chang, C. L.; DenBoer, M. L. Rev. SolM State Sci. 1987, 1(2), 411-421. (883) Dei, Y.; Manthiram, A.; Campion, A.; Goodenough, J. 8. Phys. Rev. 6: Condens. Matter 1988,38(7). 5091-5094. (884) Ford, W. K.; Chen, C. T.; Anderson, J.; Kwo, J.; Liou, S. H.; Hong, M.; Rubenacker, G. V.; Drumheller, J. E. Phys. Rev. 6: Condens. Matter 1988,37(13), 7924-7927. (865) Kohiki, S.; Hamada, T.; Wada, T. Phys. Rev. 6 : Condens. Matter 1987,36(4), 2290-2293. (886) Kim, D. H.; Berkely. D. D.; Goldman, A. M.; Schulze, R. K.; Mecartney, M. L. Phys. Rev. B: Condens. Matter 1988,37(16), 9745-9748. '

SURFACE CHARACTERIZATION

(887)Gourleux, T.; Krill, G.; Maurer, M.; Ravet, M. F.; Menny, A.; Tolentino, H.; Fontaine, A. Phys. Rev. 6: Condens. Matter 1088, 37(13), 7516-7524. (888) Steiner, P.; Courths. R.; Kinsinger, V.; Sander, I.; Siegwart, 8.; Huefner, S.; Politis, C. Appl. Phys. A 1087, A44(1), 75-79. (889) Shen. 2 . X.; Llndberg, P. A. P.; Lindau, 1.; Spicer, W. E.; Eom, C. 8.; Geballe, T. H. Phys. Rev. 6: Condens. Matter 1088, 38(10),7152-7155. (890) Peterson, G. G.;Weinberger, 8. R.; Lynds, L.; Krasinski, H. A. J , Ma ter. Res. 1088, 3(4),605-609. (891) Mogro-Campero, A.; Turner, L. Q.; Hall, E. L.; Burrell, M. C. Appl. Phys. Lett. 1088, 52(24). 2068-2070. (892) Ohlra, S.;Iwakl, M. Mater. Sci. Eng. 1087, 90,143-148. (893) Raole, P. M.; Prabhawalkar, P. D.; Kothari, D. C.; Pawar, P. S.; Gogawale, S. V. Nucl. Instrum. Methods Phys. Res. 1087, 623(3).329-336. (894) Iwaki. M.; Yabe, K.; Suzukl, M.; Nlshimura. 0. Nucl. Instrum. Methods Phys Res. 1087, 679-20(Pt.I), 150-153. (895) Pivin, J. C.; Pons, F.; Takadoum. J.; Pollock, H. M.; Farges, G. J. Mater. Sei. 1087, 22(3),1087-1096. (896) Feugeas, J. N.; Llonch. E. C.; De Gonraiez, C. 0.; Galambos. G. J. Appl. Phys. 1988, 64(5).2648-2651. (897) Madakson, P. Mater. Sci. Eng. 1087, 90,205-212. (898) Allen, 0.C.; Holmes, N. R. J. Nud. Mater. 1088. 752(2-3),187-193. (899)Daudin. 8.; Martin, P. Nucl. Instrum. Methods fhys Res. 1088, 634

.

(2),181-187. (8100)Beglin, J. E. E.; Schrott, A. G.;Thompson. R. D.; Tu, K. N.; Segmuller. A. N w l . Instrum. Methods Phys. Res. 1087, 679-20(Pt.2), 782-786. (8101) Poplavskii, V. V. Nucl. Instrum. Methods Phys. Res. 1087, 828(4), 534-539. (8102) Waesche, M.; LlppRz, A.; Pinnow, M.; Kunze, R. Acta Polym. 1088, 39(7),403-405. (8103) Contarinl, S.;Schuitz, J. A.; Tachl. S.; Jo, Y. S.; Rabalais, J. W. Appl. Surf. Sci. 1087, 28(3),291-301. (8104)Loh, I. H.; Olker, R. W.; Sloshansl, P. Nucl. Instrum. Methods Phys. Res. 1088, 834(3),337-346. (8105) Suzuki, Y.; Kusakabe, M.; Iwakl, M.; Suruki, M. Nucl. Instrum. 120-124. Methods Phys. Res. 1088, 632(1-4), (8106) Marletta, G. Nucl. Instrum. Methods Phys. Res. 1088, 632(1-4), 204-210. (8107) Ho, S. F.; Contarinl, S.; Rabalals, J. W. J. Phys. Chem. 1087, 97(18),4779-4788. (8108) Peterson, P. J. K. Mater. Forum. 1087. 70(2), 144-153. (8109) Chase, R. E.; Cole, G. S. Scanning Mlcrosc. 1088, 2(2),703-713. (8110) Hofmann, S.J. Vac. Scl. Technol., A 1086, 4(6),2789-2796. (8111) Seah, M. P. Vacuum 1088, 36(7-9).399-407. (8112) Wei, William, J. Vac. Sci. Technol., A 1988, 6(4),2576-2581. (8113)Smith, G. C.; Seah, M. P. Surf. Interface Anal., 7988 1087, 72(112), 105-109. (8114) El Gomati, M. M. Vacuum 1088, 38(4-5),337-340. (8115) Maschhoff, 8. L.; Nebesny, K. W.; Zavadil, K. R.; Fordemwait, J. W.; Armstrong, N. R., Spectrochlm. Acta, 7988 1087. 436(4-5),535-550. (8116)Tdtutaka, H.; Nlshlmorl, K.; Matsuura, J.; Plnet, V. Surf. Sd. 1087, 186(3),339-356. (8117)Cazaux, J. J. Microsc. 1087, 745(3),257-273. (8118)Chazelas, J.; Cazaux, J.; Glllmann, 0.; Lynch, J.; Szymanskl, R. Surf. Interface Anal., 7988 1087, 72(1-12).45-48. (8119) Jablonski, A.; Lesiak, 8.;Ebel, H.; Ebel, M. F. Surf. Interface Anal., 7988 1087, 72(1-12), 87-92. (8120) Ding, 2. J.; Shlmlzu, R. Swf. Scl. 1088, 797(3),539-554. (8121)Jablonskl, A.; Krawczyk, M.; Leslak. 8. J. Etectron Spectrosc. Relet. Phenom. 1088, 46(2). 131-143. (8122) Payllng. R.; Szajman, J. J . Electron Spectrosc. Relet. Phenom. 1087, 43(1),37-51. (8123) Many, A.; Goldste,in. Y.; Welsz, S. 2.; Resto, 0. Appl. Phys. Lett. 1088, 53(3). 192-194. (8124) Zalar, A,; Hofmann. S. Vacuum 1087, 37(1-2),169-173. (8125) Zalar, A.; Hofmann, S. J. Vac. Sci. Technol.. A 1087, 5(4,Pt. 2). 1209-212. (8126) Hofmann. S.;Zalar, A. Surf. Interface Anal. 1087, 70(1), 7-12. (8127) Zalar, A. J. Vac. Sci. Technol., A 1087, 5(5), 2979-2980. (8128) Zalar, A.; Hofmann, S. S w f . Interface Anal., 7988 1087, 72(1-12), 83-86. (8129) Kobayashi, T.; Nakatani, R.; Ootomo, S.; Kumasaka, N. J . Appl. Phys. 1988. 63(8,Pt. 2A), 3203-3205. (8130) Shin, S . C.; Coflekl, M. L.; Nuttall, R. H. D. J . Appl. Phys. 1087, 61(8, Pt. 28),4326-4328. (8131)Majumdar, D.; Gau, J. S.; Spahn, R. G. Thin Solid Films 1088, 145(2), 241-247. (8132) Kawamoto, A.; Nagato, K.; Kuzuo, R.; Yorozu. T. J. Appl. Phys. 1088, 63(8,Pt. 28),3853-3856. (8133) Allenspach, R.; Maurl. D.; Taborelll, M.; Landoit, M. Phys. Rev. 8 : Condens. Matter 1087, 35(10),4801-4809. (8134) Terao, M.; Horlgome, S.; Shigematsu, K.; Mlyauchl, Y.; Nakazawa, M. J . Appl. Phys. 1087, 62(3),1029-1034. (8135) Van Veen, N. J. Anal. Chem. 1087, 59(17),2088-2091. (8136) Barnard, W. 0.; Snyman, H. C.; Auret, F. D. S . Afr. J. Phys. 1087, 70(4), 153-158. (8137)Lauderback, L. L.; Larson, S. A. Stud. Surf. Scl. Catal., 7988 1087, 38,845-56. (8138) Venkatesan, T.; Chase, E. W.; Wu, X. D.; Inam, A,; Chang, C. C.; Shokoohl, F. K. Appl. Phys. Lett. 1088, 53(3),243-245. (8139)Wu, X. D.;Mjkkamp. D.;Ogale, S. 8.; Inam, A.; Chase, E. W.; Micell, P. F.; Chang, C. C.; Tarascon, J. M.; Venkatesan. T. Appl. Phys. Lett. 1087, 51(11),861-863. (8140) Schelllngerhout, A. J. G.; Van de Leur, R. H. M.; Schalkoord, D.; Van der Marel, D.; Mooij, J. E. Z . Phys. 6: Condens. Matter 1088, 77(1), 1-5.

(8141) Yang, K. Y.; Homma, H.; Lee, R.; Bhadra, R.; Grimsdiich, M.; Bader,

S. D.; Locquet, J. P.; Bruynseraede, Y.; Schuller, Ivan, K. Appl. Phys. Lett. 1088, 53(9),808-810. (8142) Nakayama. H.; Fujita, H.; Nogami, T.; Shlrota, Y. Physica C 1088,

153-755(Pt.l), 149-150. (8143) Kroeger, D. M.; Choudhury. A,; Brynestad, J.; Wllllams, R. K.; Padgett, R. A.; Coghlan, W. A. J. Appl. Phys., 1088, 64(1),331-335. (8144)Kroeger, D. M.; Brynestad, J.; Padgett, R. A. Appl. Phys. Lett. 1988, 52(15),1268-1267. (8145) Shrivastava. S.; Jain, A.; Sethuramlah, A.; Vankar, V. D.;Chopra, K. L. Nucl. Instrum. Methods Phys. Res., Sect. 6 1087. 27(2-4).591-594. (8146) Wei. W.; Lankford, J. J. Mater. Sci. 1087, 22(7),2387-2396. (8147) Wei, W.; Lankford, J.; Kossowsky, R. Meter. Sci. Eng. 1087, 90, 307-315. (8148)Fastow, R.; Eizenberg. M.; Kallsh, R.; Richter, V.; Brener, R.; Pelsach. M. J . Vac. Scl. Technol., A , 1087, 5(5),2842-2844. (8149) Todorov, S. S.;Yu. C. F.; Fossum, E. R. Vacuum 1086, 36(11-12), 929-932. (8150) Chen, G.; Chen, G.; Yang, J.; Zou, S. Wuli Xuebao 1088, 37(3), 475-480. (8151) Oosting, P. H.; Petruzzello, J.; McGee, T. F. J. Appl. Phys. 1087. 62(10),4118-4123. (8152) Basheer, R. A.; Hamdi, A. H.; Kwor, R. Y. Nucl. Instrum. Methods Wys. Res., Sect. 6 1088, 630(4),520-527. (8153) Hori, T.; Iwasakl, H.; Tsuji, K. I€€€ Trans. Electron Devices 1088. 35(7,Pt. l), 904-910. (8154) Chao, S. S.; Tyler, J. E.; Tsu, D. V.; Lucovsky, G.; Mantlni, M. J. J. Vac. Sci. Technol., A 1087, 5(4,Pt. 2), 1283-1287. (8155) Matsui, S.,Mori, K. Appl. Phys. Lett. 1087, 57(9),648-648. (8156)Kaloyeros, A. E.;Williims. W. S.; Allocca, C. M.; Polllna, D. M.; Girolami, G. S.A&. Ceram. Mater. 1087, 2(3a),257-263. (8157) Holber, W.; Galnes. D.;Yu, C. F.; Osgood. R. M., Jr. Appl. Phys. Lett. 1088, 52(15). 1204-1206. (8158)Matsuzawa, T.; Mochiji, K. U.S. Patent 4670650 A. 2 Jun 1987,5 pp. (8159)Lu, Y. C.; Stahle, C. M.; Morimoto, J.; Bube, R. H.; Feigelson, R. S. J . Appl. Phys. 1087, 67(3),924-927. (8160)Matsui, Y.; Hayashi. H.; Yoshlda, K. J. Cryst. Growth 1087, 87(1-4), 245-248. (8181) Nlshino. S.;Suhara, H.; One, H.; Matsunami, H. J. Appl. Phys. 1087, 67(10),4889-4893. (8162) Fontalne, C.; Castagne. J.; Bedel, E.; Munoz-Yague, A. J. Appl. Wys. 1088, 64(4).2076-2078. (8163) De Fresart, E.; Wang, K. L.;Rhee. S. S. Appl. Phys. Lett. 1088). 53(1),48-50. (8164) Robertson, A. E.; Huitman, L. 0.; Hentzell, H. T. Q.; Hoernstroem, S. E.; Shaofang, 0.; Psaras. P. A. J . Vac. Sci. Technol., A 1087, 5(4,Pt. 2). 1447-1450. (8165) Hlguchi-Rusli, R. H.; Corelli, J. C.; Steckl, A. J.; Jin, H. S. J . Appl. Phys. 1988, 63(3),878-886. (8166)Cacourls, T.; Scelsl, G.; Shaw, P.; Scarmoulno. R.; Osgood, R. M.; Krchnavek, R. R. Appl. Phys. Lett. 1088. 52(22),1865-1867. (8167)Gluck, N. S.;Wolga, G. J.; Bartosch, C. E.;Ho, W.; Ylng, 2 . J. Appl. Phys. 1087, 67(3).998-1005. (8168)Murakaml, M.; Price, W. H.; Shih, Y. C.; Childs, K. D.; Furman. 8. K.; Tiwari, S. J. Appl. Phys. 1087. 62(8),3288-3294. (8169) Sands, T.; Chan, W. K.; Chang, C. C.; Chase, E. W.; Keramkias, V. G. Appl. Phys. Lett. 1988, 52(16),1338-1340. (8170) Ho, V. Q.; Poulin, D. J. Vac. Sci. Technol., A 1087. 5(4, Pt. 2), 1396-1401. (8171)Morgan, A. E.; Broadbent, E. K.; M i n o , M.; Coulman, 8.; Sadana, D. K. J. Electrochem. SOC. 1087, 134(4),925-935. (8172)Edelman, F.; Gutmanas, E. Y.; Katz, A.; Brener. R. Appl. Phys. Lett. 1088, 53(13). 1186-1188. (8173) W o w s k i , P. Mater. Sci. Eng. 1088, 700, L19-L21. (8174) Balk, S.;White, C. L. J. Am. Ceram. SOC. 1087, 70(9),882-688. (8175) Ellison, K. A.; Underhill, P. R.; Smeltzer, W. W. Surf. Sci. 1087, 782(1-2),69-84. (8176) Lejcek, P. Swf. Sci. 1088. 202(3),493-508. (8177)Hammlnger, R. Surf. Intreface Anal., 7988 1087, 72(1-2),519-526. (8178) Hu, A.; Zhang, S.; Yuan, X.; Shen, Q.; Lu, 2.; Feng, D. Phys. Status, Solidi, A 1088, 707(1),153-159. (8179)Dugger, M. T.; Chung, Y. W.; Cheng, H. S. J. Vac. Sci. Technol., A 1088, 6(3,Pt. l), 1171-1174. (8180) Wandass, J. H.; Turner, N. H. J. Vac. Sci. Technol., A 1088, 6(3. Pt. l), 1027-1031. (8181) Pamler, W. Appl. f h y s . , A 1087, A42(3), 219-226. (8182) Yu, C. F.; Schmidt, M. T.; Podlesnik, D. V.; Yang, E. S.; Osgood, R. M., Jr. J. Vac. Sci. Technol., A 1088, 6(3,Pt. l), 754-756. (8183)Sullivan, J. L.;Saied, S.0.Surf. Interface Anal.. 7988 1087, 72(112),541-547. (8184)Frankenthal, R. P.; Slcmoifi, D. J.; Van Dover, R. 8.;Nakahara, S. J. Electrochem. SOC. 1087, 734(1),235-239. C. SCANNINQ TUNNELING MICROSCOPY AND ATOMIC FORCE MICROSCOPY

(Cl) Binnig, Gerd; Rohrer, Heinrich Scanning Tunneling Microscopy-from Birth to Adolescence; Prix Nobel, Volume Date 1986. 1987;pp 91-111. (C2)Binning, G.; Rohrer. H.; Gerber, Ch.; Weibel, E. Phys. Rev. Lett. 1082, 49,57-81. (C3) Binnig, G.;Rohrer, H. Surf. Sci. 1083. 126-244. (C4) Blnnig, G.;Rohrer, H.; Gerber, Ch.; Welbel, E. Phys. Rev. Lett. 1083, 50, 120-123. (C5) Binnig, G.; Quate, D. F.; Gerber, Ch. Phys. Rev. Lett. 1088, 56. 930-933. (C6) Hansma, Paul K.; Tersoff, Jerry J. Appl. f h y s . 1087, 6 1 , Rl-R23. (C7) Bmntg. Gerd Rohrer, Heinrich Rev. Mod. W y s . 1087, 59, 815-825. ANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

263R

SURFACE CHARACTERIZATION

(C8) Park, Sang II "Scanning tunneling microscopy for surface science", Dissertion, 1987, Stanford Unlversity, Stanford, CA, 113 pp. (C9) Cutler, P. H.; Feuchtwant, T. E.: Kuk, Y. Meter. Forum 1987, 70, 84-93. (C10) Smith, Douglas Philip Edward "New applications of scanning tunneling microscopy", Dissertation, 1987, Stanford University, Stanford, CA. 98 pp. (C11) Biegelsen, D. K. Proc. SPIE-Int. SOC. Opt. Eng. 1988, 946, 211-218. ('212) Neddermeyer, H.;Tosch, S. Ultramicroscopy 1988,25, 135-147. ('213) Salvan, F.; Humbert, A,; Dumas, P.; Thibaudau, F. Ann. Phys. 1988, 73, 133-151. (C14) Demuth, J. E.; Hamers, R . J.; Tromp, R. M. Matr. Res. SOC.Symp. Proc. 1987, 7 7 , 1-11. (C15) Sonnenfeld, Richard "Tunneling microscopy of surfaces immersed in aqueous solutions", Dissertation, 1987, University of California, Santa Barbara, CA, 125 pp. (C16) Schneir. J.; Sonnenfeld, R.; Drake, B.; Hansma, P. K. Proc. Natl. Acad. Sci. 1987. 8 4 , 4671-4674. ((217) Sattler, Klaus Lect. Notes Phys. 1987,269, 119-126. (C18) Park, Sang 11; Quate, C. F. Rev. Sci. Instrum. 1987. 58, 20 10-20 17. (C19) Chiang, S.; Wilson, R . J.; Gerber, C.; Hallmark, V. M. J. Vac. Sci. Techno/., A 1988,6. 386-389. (C20) Snyder, C. W.; De Lozanne, A. L. Rev. Sci. Intsrum. 1988, 5 9 , 541-544. (C21) Besenbacher, F.; Laegsgaard, E.; Mortensen, K.; Nielsen, U.; Stensgaard, I.Rev. Sci. rechol. 1988,5 9 , 1035-1038. (C22) Lyding, J. W.; Skala, S.; Hubacek, J. S.; Brockenbrough, R.; Gammie, G. Rev. Sci. Instrumen. 1988,5 9 , 1897-1901. Binnig, G.; Rohrer, H.; Salemink, H. Surf. Sci. 1987, 787, (C23) Marti, 0.; 230-234. (C24) Kirtley, J. R.; Feenstra, R. M.; Fein, A. P.; Raider, S. I.; Gallagher, W. J.; Sandstrom, R.; Dinger, T.; Shafer, M. W.; Koch, R.; et al. J. Vac. Sci. rechnol., A 1988,6,259-262. (C25) Guckenberger, R.; Koessiinger, C.; Baumeister, W. J. Vac. Sci. Technol, A 1988,6, 383-385. ('226) Itaya, Kingo; Tomita, Eisuke Surf. Sci. 1988,207,L507-L512. (C27) Morka, Seizo; Otsuka, Ichiro; Okada, Takao; Yokoyama, Hlraku; Ewasaki, Takatoshi; Mikoshiba, Nobuo Jpn. J. Appl. Fhys., Part 2 1987,26, L1853-Ll855. (C28) Lln, Charles W.; Fan, Fu Ren F.; Bard, Alien J. J. Nechochem. SOC. 1987, 734, 1038-1039. (C29) Pohl, D. W.; Moller, R. Rev. Scl. Instrum. 1988,5 9 , 840-842. (C30) Bapst, U. H. Surf. Sci. 1987, 787, 157-164. ('231) Becker, Jordan Surf. Sci. 1987, 787.200-209. ('232) Aguilar, M.; Garcia, A.; Pascual, P. J.; Presa, J.; Santisteban, A. Surf. Sci. 1987, 787, 191-199. ((233) Rosenthaler, L.; Hidber, H. R.; Tonin, A.; Eng, L.; Staufer, U.; Wiesendanger, R.; Guentherodt, H. J. J. Vac. Sci. Technol., A 1988, 6, 393-397. (C34) Park, Sang 11; Quate, C. F. J. Appl. Fhys. 1987,6 2 , 312-314. (C35) Stoll, E.; Marti, 0. Surf. Sci. 1987, 787,222-229. (C36) Gewirth, Andrew A.; Bard, Allen J. J. Fhys. Chem. 1988, 92, 5563-5566. ('237) Hoffman, W. P.; Eiings, V. B.; Gurley, J. A. Carbon 1988, 26. 754-757. (C38) Morita, S.; Otsuka, I.; Mikoshiba, N. Fhys. Scr. 1988, 38, 277-281. (C39) Elings, V.; Wudl, F. J. Vac. Scl. Techno/. 1988,A6, 412-414. (C40) Coleman, R. V.; Drake, B.; Giambattista. B.; Johnson, A,; Hansma, P. K.; McNalry, W. W.; Slough, 0. Phys. Scr. 1988. 38,235-243. (C41) Wu, Xian Llang; Lieber, Charles M. J. Am. Chem. Soc.1988, 770, 5200-5201. (C42) Mizes, H. A.; Harrison, W. A. J. Vac. Sci. Techno/. 1988, A6, 300-304. (c43) Ganz, Eric; Sattler, Klaus: Clarke, John J. Vac. Sci. Techno/. 1988, A6, 419-423. ((244) Faro, A. M.; Bartolome, A.; Vazquez. L.; Garcia, N.; Reifenberger, R.; Choi, E.; Ancres, R. P. Appl. Fhys. Lett. 1987,5 7 , 1594-1596. (C45) Warmack, R. J.; Ferrell, T. L.; Becker, R. S. Phys. Scr. 1988, 3 8 , 159-161. (C46) Ganz, Eric; Sattler, Klaus; Clarke, John Fhys. Rev. Lett. 1988,60, 1856-1859. (C47) Jakievic, R. C.; Elie, L. Fhys. Rev. Lett. 1988. 60, 120-123. (C48) Chdsey, Christopher E. D.; Loiacono, Dominlc N.; Sleator, Tycho; Nakahara, Sho Surf. Scl. 1988, 200, 45-66. (C49) Kuk, Y.; Silverman, P. J.; Buck, T. M. Meter. Res. SOC. Symp. R o c . 1987,9 4 , 163-166. (C50) Ritter, E.; Behm, R. J.; Poetschke, G.; Wintterlin, J. Surf. Sci. 1987, 7 8 7 , 403-411. (C51) Jaklevic, R. C.;Elie, L.; Shen, Weidian; Chen, J. T. J. Vac. Sci. Technol. 198& A6, 448-453. ('252) Hallmark, V. M.; Chiang, S.; Rabolt, J. F.; Swalen, J. D.; Wilson, R. J. Phys. Rev. Lett. 1987. 5 9 , 2879-2882. (C53) Kuk, Y.; Silverman, P. J.; Nguyen, H. 0. J. Vac. Sci. Techno/. 1988, A6, 524-528. (C54) Wiesendanger. R.; Ringger, M.; Rosenthaler, L.; Hiiber, H. R.; Oelhafen, P.; Guentherodt, H. J. 2.Fhys. Chem. 1988, 757, 139-143. (C55) Vazquez, L.; Paganini, R.; Baro, A. M.; Garcia, N.; Turner, R. J.; Walmsley, D. G. J. Fhys. C.: SolM State Fhys. 1987,2 0 , L975-L978. 0 6 ) Gomez, J.; Vazquez, L.; Baro, A. M.; Alonso, C.; Gonzalez. E.; Gonzaiez-Velasco, J.; Arvia, A. J. J. €/echoanal. Chem. Interfacial Ekctrochem , 1988,240 77-87. (C57) Fan, Fu Ren F; Bard, Allen J. Anal. Chem. 1988,60, 751-758. (C58)VaZquez, L.; Gomez Rodriguez, J. M.; Gomez Herrero, J.; Baro, A. M.; Garcia, N.;Canullo, J. C.; Arvia, A. J. Surf. Sci. 1987. 787, 98-106. I

264R

ANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

(C59) Perdriei, C. L.; Custidiano, E.; Arvia, A. J. J. Electroanal. Chem. Interfacial Electrochem. 1988,246, 165-180. (C60) Walz, B.; Wiesendanger, R.; Rosenthaler, L.; Guentherodt, H. J.; Dueggelin, M.; Guggenheim, R. Meter. Scl. Eng. 1988. 9 9 , 501-505. (C61) Schloegl, R.; Wlesendanger, R.; Baiker, A. J. Catal. 1987, 708, 452-466. ('262) Kuk, Y.; Silverman, P. J.; Buck, T. M. Phys. Rev. B: Condens. Matter 1987, 3 6 , 3104-3107. (C63) Wiesendanger. R.; Ringger, M.; Rosenthaler, L.; Hidber. H. R.: Oelhafen, P.; Ruding, H.; Guentherodt. H. J. Surf. Sci. 1987, 787,46-54. (C64) Kirtley, J. R.; Washburn, S.; Brady, M. J. Fhys. Rev. Lett. 1988,60, 1546-1549. (C65) Leibsle, F. M.; Samsaver, A.; Chiang, T. C. Fhys. Rev. 8: Condens. Matter 1988,38,5780-5783. (C66) Dumas, P.; Humbert, A.; Mathleu, G.; Mathiez. P.; Moultet, C.; Rolland, R.; Salvan, F.; Thibaudau, F.; Tosch, S. Fhys. Scr. 1988, 38, 244-245. ('267) Nogami, J.; Park, Sang 11; Quate, C. F. Surf. Scl. 1988,203, L631L636. (C68) Nogami, J.; Park, Sang 11; Quate, C. F. J. Vac. Sci. Technol. 1988, B6, 1479-1482. (C69) Hamers, R. J. J. Vac. Scl. Techno/. 1988,8 6 , 1462-1467. (C70) Hamers, R. J.; Demuth, J. E. J. Vac. Sci. Technol. 1988, A6, 5 12-5 16. (C71) Tosch, S.; Neddermeyer, H. Phys. Rev. Lett. 1988, 6 1 , 349-352. (C72) Demuth, J. E.; Von Lenen, E. J.; Tromp, R. M.; Hamers, R. J. J. Vac. Sci. Technol. 1988,B6, 18-25. (C73) Wilson, R. J.; Chiang, S. Fhys. Rev. Lett. 1987, 5 9 , 2329-2332. ((274) Koehier, U. K.; Demuth. J. E.; Hamers, R. J. Fhys. Rev. Lett. 1988, 60, 2499-2502. (C75) Becker, Russell S.; Swartzentruber, Brian S.; Vickers, James S.; Hybertsen, Mark S.; Louie, Steven G Fhys. Rev. Lett. 1988,60, 116-119. (C76) Wilson, R. J.; Chiang, S. Phys. Rev. Lett. 1987, 58, 2575-2578. (C77) Hamers. R. J.; Demuth, J. E. Fhys. Rev. Lett. l98& 60. 2527-2530. (C78) Wolkow, R.; Avouris, P. Phys. Rev. Lett. 1988,60, 1049-1052. ('279) Hamers, R. J.; Avouris, P.; Bozso, F. Fhys. Rev. Lett. 1987, 5 9 , 207 1-2074. (C80) Kazmerski, Lawrence L. Mater. Res. SOC. Symp. R o c . 1988, 706, 199-21 1. (C81) Hosaka, Sumio; Hosoki, Shigeyuki; Takata, Keijl; Horiuchi, Katsutada; Natsuaki, Nobuyoshi Appl. Phys. Lett. 1988. 5 3 , 487-489. (C82) Wiesendanger, R.; Rosenthaler, L.; Hldber, H. R.; Guentherodt, H. J.; MckInnon, A. W.; Spear, W. E. J. Appl. Phys. 1988, 63, 4515-4517. (C83) Bell. L. D.; Kaiser, W. J.; Hecht, M. H.; Grunthaner, F. J. Appl. phys. Lett. 1988,52, 278-280. (C84) Kaiser, W. J.; Bell, L. D. Fhys. Rev. Lett. 1988, 60, 1406-1409. (C85)Osaka, Fukunobu; Tanaka. Ichiro; Kato, Takashl; Katayama, Yoshifumi Jpn. J. Appl. Phys., P a r t 2 1988,27, L1193-L1195. (C86) Feenstra, R. M.; Martensson, P. P h p . Rev. Lett. 1988,67, 447-450. ('287) Feenstra, R. M.; Stroscio, Joseph A. J. Vac. Scl. Techno/.1987,B5, 923-929. (C88) Van de Walle, G. F. A.; van Kempen, H.; Wyder, P.; Davidsson, P. Appl. Fhys. Lett. 1987. 50, 22-24. (C89) Muralt, P.; Meier, H.; Pohl, D. W.; Salemink, H. W. M. Appl. Fhys. Lett.1987,50, 1352-1354. (C90) Feenstra, R. M.; Stroscio, Joseph A.; Tersoff, J.; Fein, A. P. Fhys. Rev. Lett. 1987,5 8 , 1192-1195. (C91) Stroscio, Joseph A.; Feenstra, R. M.; Newns, D. M.; Fein, A. P. J. Vac. Sci. Technol. 1988, AB, 499-507. (C92) Sonnenfeld, Richard; Schneir, J.; Drake, B.; Hansma, P. K.; Aspnes, D. E. Appl. Fhys. Lett. 1987. 50, 1742-1744. (C93) Sard, Dror; Henson, Tammy D.; Armstrong. Neal R.; Bell, L. Stephen Appl. Fhys. Lett. 1988*5 2 , 2252-2254. ('34) Sarid, Dror; Henson, Tammy; Bell, L. Stephen; Sandroff, Claude J. Vac. Scl. Technol. 1988. A8, 424-427. ('295) Vieira, Sebastian; Ramos, Miguel. A.; Buendia, Andres; Baro, Arturo M. Physlca C 1988, 753-755, 1004-1005. (C96) Van de Leemput, L. E. C.; Van Bentrum. P. J. M.; Gerritsen. J. W.; Van Kempen, H.: Schreurs, L. W. M. Fhysica C 1988. 753-155, 996-997. (C97) Gallagher, M. C.; Adler, J. G.; Jung, J.; Franck, J. P. Phys. Rev. B: Condens. Metter 1988,3 7 , 7846-7849. (C98) Wan, J. C.; Goldman, A. M.; Maps, J. Fhysica C 1988. 753-755, 1377-1378. (C99) Okoniewski, A. M.; Klemberg-Sapieha, J. E.; Yelon, A. Appl. Phys. Lett.1988, 53, 151-152. 6 1 0 0 ) Grepstad, J. K.; Niedermann. P.; Triscone. J. M.; Antognazza, L.; Karkut, M. G.; Fischer, 0. Fhysica C 1988, 753-155, 1453-1454. (ClOl) Jenny, H.; Bretscher, H.; Frey, T.; Anselmetti, D.; Heinzelmann, H.; Weisendanger, R.; Leemann, G.; Wab, B.; Saecklnger, D.; Guentherodt, H. J. Meter. Res. Soc.Symp. Froc. 1988,9 9 , 71-76. (C102) Kirtley, J. R.; Feenstra, R. M.; Fein, A. P.; Raider, S. 1.; GaUagher. W. J.; Sandstrom, R.; Dinger, T.; Shafer, M. W.; Koch, R.; et al. J. Vac Sci. Technol. 1988,A6, 259-262. (C103) Zheng, N. J.; Knipping, U.; Tsong, S. T.; Petuskey, W. T.; Barry, J. C. J . VaC. sci. T8ChnOl. 1988,A6, 457-460. (C104) Laiho. R.; Heikkilae, L.; Snellman, H. J. A@. Phys. 1988. 63, 225-227. (C105) Bando, Hiroshi; Morita, Naotake; Tokumoto, Hiroshi; Mbutani. Wataru; Endo, Kazuhiro; Wakiyama, Shigeru; Watanabe, Kazutoshi; Kajimura, Koji; Ono, MasatoShi J. Electron Microsc. 1987,36,270-273. (C106) Ng, K. W.; Pan, S.; De Lozanne, A. L.; Panson, A. J.; Talvacchio. J. Jpn. J. Appl. Fhys., Part 7 1987,26,993-994. (C107) Pan, S.; Ng, K. W.; De Lozanne, A. L.; Tarascon, J. M.; oleene. L. H. Phys . Rev. B: Condens. Matter 1987,35,7220-7223.

.

SURFACE CHARACTERIZATION (ClO8) Tang, S. L.; Kasowski, R. V.; Subrammanian, M. A.; Hsu, W. Y. Physica C 1988, 156, 177-183. (C109) Kirk, M. D.; Eom, C. B.; Oh, 6.; Spielman, S. R.; Beasiey, M. R.; Kapituinik, A.; Geballe, T. H.; Quate, C. F. Appl. Phys. Lett. 1988, 5 2 , 2071-2073. (C110) Le DUC. H. G.; Kaiser, W. J.; Stern, J. A. Appl. M y s . Lett. 1987, 50, 1921- 1923. (C111) Kirtley, J. R.; Raider, S. I.; Feenstra, R. M.; Fein, A. P. Appl. Phys. Lett. 1987, 5 0 , 1607-1609. (C112) Bonnell, Dawn A.; Clarke, David R. J. Am. Ceram. SOC. 1988, 7 7 , 629-637. (C113) Zheng, N. J.; Knlpping, U.; Tsong, I.S. T.; Petuskey, W. T.; Kong, H. S.; Davis, R. F. J. Vac. Sci. Techno/. 1988, A 6 , 696-698. (C114) Nishikawa, Osamu; Tomitori, Masahlko J. Vac. Sci. Techno/. 1988, A6. 454-456. (C115) Oteni, H.; Wilson, R. J.; Chiang, S.; Mate, C. M. Phys. Rev. Lett. 1988, 60, 2398-2401. (C116) Marchon, 6.; Ogletree, D. F.; Salmeron, M.; Kiekhaus, W. J. Vac. SCl. Techno/. 1888, A 6 , 531-533. (C117) Marchon, 6.; Bernhardt, P.; Busseli, M. E.; Somorjai, G. A,; Salmeron, M.; Siekhaus, W. Phys. Rev. Lett. 1988, 6 0 , 1166-1169. (C118) Lyding, J. W.; Hubacek, J. S.; Gammie, G.; Skala, S.; Brockenbrough, R.; Shapley, J. R.; Keyes, M. P. J. Vac. Sci. Techno/. 1988, A6, 363-367. (C119) Kuk, Y.; Sllverman, P. J.; Nguyen, H. Q Phys. Rev. Left. 1987, 5 9 , 1452-1455. (C120) Gimzewski, J. K.; Stoll, E.; Schiittler, R. R. Surf. Sci. 1987, 787, 267-277. (‘321) Amrein, M.; Stasiak, A.; Gross, H.; Stoli, E.; Travagiini, G. Science 1988, 240, 514-516. (C122) Lindsay, S. M.; Barris, B. J. Vac. Sci. Techno/. 1988, A6, 544-547. (C123) Wu, Xian Liang Lieber, Charles, M. J . Phys. Chem. 1988, 9 2 , 5556-5557. (C124) Stemmer, A.; Reichelt, R.; Engel, A.; Rosenbusch, J. P.; Ringger, M.; Hidber, H. R.; Guentherodt, H. J. Surf. Sci. 1987, 787, 394-402. (C125) Dahn, D. C.; Watanabe, M. 0.; Blackford, B. L.; Jericho, M. H.; Beverldge, T. J. J. Vac. Sci. Techno/. 1988. A 6 , 548-552. (C126) Zasadzinski, Joseph A. N.; Schneir, Jason; Guriey, John; Elings, Virail: Hansma. Paul K. Science 1988. 239. 1013-1015. ( C i i 7 ) SmRh, Douglas P. E.; Kirk, Michaei D.; Quate, Calvin F. J. Chem. Phvs. 1987. 86. 6034-8038. (C128) Hu, C. 2.;’Feng, L.; Andrade, J. D. Carbon 1988, 2 6 , 543-545. (C129) Albrecht, T. R.; Dovek, M. M.; Lang, C. A.; Grutter, P.; Quate, C. F.; Kuan, S. W. J.; Frank, C. W.; Pease, R. F. W. J. Appl. Phys. 1988, 6 4 , 1178- 1184. (C130) Sleator, Tycho; Tycko, Robert Phys. Rev. Lett. 1988, 6 0 , 1418-1 421. (C131) Horber, J. K. H.; Lang, C. A.; Hansch, T. W.; Heckl, W. M.; Mohwald, H. Chem. Phys. Lett. 1988, 745, 151-158. (C132) Smith, D. P. E.; Bryant, A.; Quate, C. F.; Rabe, J. P.; Gerber, C.; Swaien, J. D. Proc. Nett. Aced. Sci. 1987, 8 4 , 989-972. (C133) Fuchs, H.; Schrepp, W.; Rohrer, H. Surf. Sci. 1987, 187, 391-393. (C134) Lang, C. A.; Hoerber, J. K. H.; Haensch, T. W.; Heckl, W. M.; Moehwald, H. J. Vac. Sci. Technol. 1988, A6, 368-370. (C135) Coombs, H. H.; Pethica. J. 6.; Welland, M. E. Thin SoNd Films 1988, 759, 293-299. (C136) Braun. H. G.; Fuchs, H.; Schrepp, W. Thin Solid Films 1988, 759, 301-314. (‘2137) Schneir, J.; Marti, 0.; Remmers, G.; Glaser, D.; Sonnenfeid, R.; Drake. B.; Hansma, P. K.; Elings, V. J. Vac. Sci. Technol. 1988, A 6 , 283-286. (C138) Drake, B.; Sonnefeld. R.; Schneir, J.; Hansma, P. K. Surf. Sci. 1987, 787, 92-97. (C139) Schneir, J.; Hansma, P. K. Langmuk 1987, 3 , 1025-1027. (C140) Itaya, Kingo; Tomita, Eisuke Surf. Sci. 1988, 207, L507-L512. (C141) Itaya, Kingo; Higaki. Katsutoshi; Sugawara, Shizuo Chem. Lett. 1988, 3 , 421-424. (C142) Lev, Ovadh; Fan, Fu Ren; Bard, Allen J. J. Electrochem. Soc. 1988, 735, 783-784. (C143) Lustenberger, P.; Rohrer, H.; Chrlstoph, R.; Siegenthaler, H. J. Nectroanal. Chem. Interfacia1 Electrochem. 1988, 243, 225-235. (C144) Morita, Seizo; Otsuka, Ichiro; Okada, Takao; Yokoyama, Hlraku; Iwasaki. Takatoshi; Mikoshiba, Nobuo Jpn. J. Appl. Phys., Par? 2 1987, 2 6 , L1853-L1855. (‘2145) Lln, Charles W.; Fan, Fu Ren; Bard, Alien J. J. Nectrochem. SOC. 1987, 134, 1038-1039. (C146) Schneir, J.; Hansma, P. K.; Elings, V.; Guriey, John; Wickramasinghe. K.; Sonnenfeld, R. Proc. SPIE-Int. SOC. Opt. Eng. 1988, 897, 16-19. (C147) Albrecht, T. R.; Dovek, M. M.; Lang, C. A.; Grutter, P.; Quate, C. F.; Kuan, S. W. J.; Frank, C. W.; Pease, R. F. W. J. Appl. Phys. 1988, 6 4 , 1178- 1184. (C148) Silver, R. M.; Ehrichs, E. E.; De Lozanne, A. L. Appl. Phys. Lett. 1987, 5 7 , 247-249. (C149) Staufer, U.; Wiesendanger, R.; Eng, L.; Rosenthaler, L.; Hidber, H. R.; Guntherodt, H. J.; Garcia, N. J. Vac. Sci. Technol. 1988, A6, 537-539. (C150) Craston, Derek H.; Lin, Charles W.; Bard, Alien J. J. Nectrochem. SOC. 1988, 735, 785-786. (C151) McCord. M. A.; Pease, R. F. W. J. Vac. Sci. Techno/. 1988, 6 6 , 293-296. (C152) Schneir, J.; Sonnefeld, R.; Marti, 0.; Hansma, P. K.; Demuth, J. E.; Hamers. R. J. J. Appf. Phys. 1988, 6 3 , 717-721. (C153) McCord, M. A.; Pease, R. F. W. J. Vac. Sci. Techno/. 1987, 6 5 , 430-433.

(C154) Binnig, G. K. Phys. Scr. 1887, T79A, 53-54. (C155) Meyer. Gerhard; Amer, Nabii M. Appl. Phys. Lett. 1988, 5 3 , 1045-1047. (C156) Mate, C. Matthew; McClelland, Gary M.; Erlandsson, Ragnar; Chiang, Shirley Phys. Rev. Lett. 1987, 5 9 , 1942-1945. (C157) Albrecht, Thomas R.; Quate, Calvin F. J. Vac. Sci. Techno/. 1988, A 6 , 271-274. ( C W Yang, R.; Miibr, R.; Bryant, P. J. J. Appl. Phys. 1988, 6 3 , 570-572. (C159) Bryant, P. J.; Miller, R. G.; Yang, R. Appl. Phys. Lett. 1988, 5 2 , 2233-2235. (C160) Erlandsson, R.; McClelhnd, G. M.; Mate, C. M.; Chiang, S. J. Vac. Sci. Techno/. 1988, A6, 266-70. (C161) Gruetter, P.; Meyer, E.; Heinzelmann, J.; Rosenthaler, L.; Hdber, H. R.; Guentherodt, H. J. J. Vac. Sci. Technol. 1988, A6, 279-282. (C162) Heinzelmann, H.; Meyer, E.; Gruetter, P.; Hidber, H. R.; Rosenthaler. L.; Guentherodt, H. J. J . Vac. Sci. Techno/. 1988, A6, 275-278. (C163) Marti, 0.; Drake, 6.; Gould, S.; Hansma, P. K. J. Vac. Sci. Techno/. 1988, A6, 287-290. (C164) Heinzelmann. H.; Gruetter, P.; Meyer, E.; Hidber, H.; Rosenthaler, L.; Ringger, M.; Guentherodt. H. J. Surf. Sci. 1987, 789-790, 29-35. (C165) Martin, Y.; Wickramasinghe, H. K. Appl. Pbys. Lett. 1987, 5 0 , 1455- 1457. (C166) Martin, Y.; Williams, C. C.; Wlckramasinghe, H. K. J. Appl. Phys. 1987, 67, 4723-4729. (C167) Mate, C. Mathew; Eriandsson, Ragnar; McClelland, Gary M.; Chiang, Shirley J. Vac. Sci. Techno/. 1988, A 6 , 575-576. (C168) Martin, 0.; Drake, 6.; GouM, S.; Hansma, P. K. J. Vac. Sci. Techno/. 1988, A 6 , 2089-2092. (C169) Kirk, M. D.; Albrecht, T. R.; Quate. C. F. Rev. Sci. Instrum. 1988, 59. ~ .833-835. ~~. , ... (C170) Marti, 0.; Gouid, S.; Hansma, P. K. Rev. Sci. Instrum. 1988, 5 9 , 836-839. (C171) Bryant, P. J.; Yang, R.; Miller, R. Mater. Res. SOC. Symp. Proc. 1988, 7 7 7 , 465-469. (C172) Marti, 0.;Drake, 6.; Gould, S.; Hansma, P. K. J. Vac. Sci. Techno/. 1988, A 6 , 287-290. (C173) Albrecht, Thomas R.; Quate, Calvin F. J. Vac. Sci. Techno/. 1988, A6, 271-274. ((2174) Marti, 0.; Ribi, H. 0.; Drake, 6.; Albrecht, T. R.; Quate, C. F.; Hansma. P. K. Science 1988, 239, 50-52. ((2175) Martin, Y.; Abraham, D. W.; Wlckramasinghe, H. K. Appl. Pbys. Lett. 1988, 5 2 , 1103-1105. (‘2176) Gouid, Scot; Marti, 0.; Drake, Barney; Hellemans, Louis; Bracker, Charles E.; Hansma, Paul K.; Keder, Nancy L.; Eddy, Michaei M.; Stucky, Galen D. Nature 1988, 332, 332-334. (‘2177) Gruetter, P.; Meyer, E.; Heinzelmann, H.; Rosenthaler, L.; Hidber, H. R.; Guentherodt, H. J. J. Vac. Sci. Techno/. 1988. A 6 , 279-282. (C178) Marti, 0.; Drake, 6.; Hansma, P. K. Appl. Phys. Lett. 1987. 5 7 , 484-486. D. OPTICAL SPECTROSCOPY

(Dl) Holtz, M.; Zailen, R.; Brafman, 0.; Matterson, S. Phys. Rev. 6 1988, 3 7 , 4609-4617. (D2) Burns, Gerald; Dacol, F. H.; Wie, C. R.; Burstein, E.; Cardona, M. So/id State Commun. 1987, 62, 449-454. (D3) Gargouri, M.; Prevot, 6.; Schwab, C. J. Appl. Phys. 1987, 6 2 , 3902-39 11. (D4) Wagner, J.; Fritzsche, C. R. J. Appl. Phys. 1988. 6 4 , 808-814. (D5) We, C. R.; Xie, K.; Kim, H. M.; Che, J. F.; Burns, G.; Dacol, F. H.; Pettii, G. D.; Woodall, J. M. Proc. SPIE-Int. SOC. Opt. Eng. 1988, 946, 155-162. (D6) Bowman. R. C., Jr.; Jamieson. D. N.; Adams, P. M. Proc. SPIE-Int. Soc. Opt. Eng. 1988, 946, 65-75. (D7) H o b , M.; Zallen, R.; Brafman, 0. Phys. Rev. 8 1988, 3 7 , 2737-2740, and Holtz, M.; Zaiien, R.; Brafman, 0. Phys. Rev. 6 1988. 3 8 , 6097-6106. ... . .. (DE) Sapriei, J.; Rao. E. V. K.; Brillouet, F.; Chavingnon, J.; Ossart, P.; Gao, Y.; Krauz, P. Superlattices Microstruct. 1988, 4 , 115-120. (D9) Hang, 2 . ; Shen, H.; Poiiak, Fred H. J. Appl. Phys. 1988, 6 4 , 3233-3242. (D10) Olego, D. J.; Baumgart, H.; Celler, G. K. Appl. Phys. Lett. 1988, 5 2 , 483-485. (D11) Kerger, M. 6.; Kwor, R.; Zeiler, M.; Hemment, P. L. F.; Reeson, K. J. Mater. Res. SOC.Symp. Proc. l987, 7 4 , 603-608. (D12) Srikanth, K.; Chu, M.; Ashok, S.; Nguyen, N.; Vedam, K. Mater. Res. SOC.Symp. Proc. 1988, 107, 483-486. (D13) Kshirsagar, S. T.; Rajarshi, S. V.; Dusane, R. 0.; Vaidya, Jayashri; Bhide, V. G. Appl. Phys. Lett. 1987, 57,2019-2021. (D14) Prokes, S. M.; Giembocki, 0. J.; Donovan, E. P.; Stahlbush, R.; Carlos, W. E.; Dietrich. H.; Christou. A. Proc. SPIE-Int. SOC. Oot. €no. 1988. 946, 204-210. (D15) Singh, A.; Lessard, R. A.; Knystautas, E. J. Mater. Sci. Eng. 1987, -90- , 173-176 . . - . . -. (D16) Sato, S.; Iwaki, M. Nucl. Instrum. Methods Phys. Res. 1088, 8 3 2 , 145-149. (D17) Yoshida, K.; Okuno, K.; Katagiri, G.; Ishitani. A,; Takahashi, K.; Iwaki, M. Mater. Res. SOC. Symp. Proc. 1988, 700, 207-212. (D18) Fauchet, P. M.; Campbell, I.H. R o c . SPIE-Int. SOC. Opt. Eng. 1988, 985. 210-217. (D19) Fauchet, P. M.; Campbell, I.H. Proc. SfIE-Int. SOC. Opt. Eng. 1987, 794, 167-169. (D20) Exarhos, G. J.; Friedrich, D. M. Microbeam Anal. 1987, 2 2 , 147-149. (D21) Lu, H. E.; Boyd, J. T.; Jackson, H. E.; Janning, J. L. J. Appl. Phys. 1986, 60, 4273-4276. (D22) Colvard, C. Proc. SPIE-Znt. SOC. Opt. Eng. 1987, 794, 209-214. (D23) Sapriel, J. froc. SPIE-Int. SOC. Opt. Eng. 1988, 946, 136-145.

.

ANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

-

265R

SURFACE CHARACTERIZATION (D24) Levi, D.; Zhang, S.; Klein, M. V.; Klem, J.; Morkoc, H. fhys. Rev. 6 1987,3 6 , 8032-8037. (D25) Kirillov, D.; Pao, Yi Ching Mater. Res. SOC.Symp. R o c . 1988, 702, 169- 173. (D26) Hark, S. K.; Weinstein. B. A.; Burnham, R. D. J. Appl. fhys. 1987. 62, 1112-1114. (D27) Maciei, A. C.; Campelo Cruz, L. C.; Ryan, J. F. J. fhys. C 1987,20, 304 1-3046. (D28) Wicks, G. W.; Bradshaw, J. T.; Radulescu, D. C. Appl. fhys. Lett. 1988,52, 570-572. (D29) Bajema, K.; Merlin, R . fhys. Rev. 6 1987,36, 4555-4557. (D30) Schwartz, G. P.; Gualtieri, G. J.; Sunder, W. A,; Farrow, L. A. Superlattices Microstruct. 1987,3 , 523-533. (D31) Schwartz, G. P.; Gualtieri, G. J.; Sunder, W. A,; Farrow, L. A. fhys. Rev. 6 1987,3 6 , 4868-4877. (D32) Santos, P. V.; Sood,A. K.; Cardona, M.; Ploog, K.; Ohmori, Y.; Okamoto, H. fhys. Rev. 6 1988,3 7 , 6381-6392. (D33) Scott. E. G.; Davey, S. T.; Halliwell, M. A. G.; Davies, G. J. J. Vac. Sci. Technol., 6 1988,6, 603-806. (D34) Bour. D. P.; Sheaiy, J. R.; McKernan, S. J. Appl. Phys. 1988,6 3 , 1241- 1243. (035) Suh, E. K.; Bartholomew, D. U.; Ramdas, A. K.; Rodriguez, S.; Venugopalan, s.; Kolodziejskl, L. A,; Gunshor. R. L. phvs. Rev. 6 1987. 3 6 , 4316-4331. (036) Arora, A. K.; Ramdas, A. K.; Mellach, M. R.; Otsuka, N. fhys. Rev. 6 1987,3 6 , 1021-1024. (037) Gammon, D.; Shi, L.; Merlin, R.; Ambrazevicius. G.; Pioog, K.; Morkoc, H. Superlattices Microstruct. 1988,4 , 405-407. (D38) Gammon, D.; Merlin, R.; Morkoc, H. f h y s . Rev. 6 1987, 35, 2552-2555 - .- - -. . (D39) Bland, J. A. C.; Hayes, W.; Skolnich, M. S.;Mowbray, D. J.; Bass, S. J. Superlattlces Microstruct. 1987,3 , 89-87. (D40) Meynadier, M. H.; Finkman, E.; Sturge, M. D.; Woriock, J. M.; Tamergo, M. C. Phys. Rev. 6 1987,3 5 , 2517-2520. (D41) Nakayama, M.; Ishida, M.; Sano, N. fhys. Rev. B 1988, 3 8 , 6348-635 1. (D42) Mercy, J. M.; Chang, Y. H.; Reeder, A. A.; Brozak, G.; McCombe, B. D. Superlattices Mkrostruct. 1988,4, 213-220. (043) Kane, M. J.; Emeny, M. T.; Apsley, N.; Whitehouse, C. R.; Lee, D. Semicond. Sci. Technol. I98Er3, 722-725. (D44) Anderson, J. Y.; Westergren, U. J. Cryst. Growth 1988. 93, 307-311. (D45) Kottbus, J. P.; Hansen, W.; Pohlmann, H.; Wassermeier, M.; Ploog, K. Surf. Sci. 1988, 196, 600-610. (D46) Erman, M.; Alibert, C.; Theeten, J. 8.; Frijlink, P. J. Appl. fhys. 1988, 6 3 , 465-474. (D47) Chang, S.J.; Kallei, M. A.; Wang, K. L.; Bowman, R . C., Jr.; Chow, Peter J. Appl. fhys. 1988,6 4 , 3634-3636. (D48) Krenn, H.; Buxbaum, F. Mikrochlm, Acta 1987, 7 , 419-422. (D49) Santos, P. V.; Ley, L.; Mebert, J.; Kolbinger. 0. fhys. Rev. B 1987, 36 4858-4867. (D50) Santos, P. V.; Ley, L. fhys. Rev. 6 1987,3 6 , 3325-3335. (D51) Williams, G. V. M.; Bittar, A.; Trodahl, H. J. J. Appl. fhys. 1988,64, 5 148-515 1. (052) Trodahl, H. J.; Forbes, M.; Nelson, D. G. A,; Bitter, A. J. Appl. fhys. 1987. 62. 1274-1277. (D53) Conde, J. P.; Shen, D. S.;Campbell, I.H.; Fauchet, P. M.; Wagner, S. Mater. Res. SOC. Symp . R o c . 1987, 77. 629-634. (D54) Roxlo, C. B.; Abeies, B.; Persans, P. D. J. Vac. Sci. Technol. 6 1988. 4 , 1430-1434. (D55) Huang, Y.; Yu, P. Y.; Charasse, M. N.; Lo, Y.; Wang, S. Appl. fhys. Lett. 1987,57,192-194. (D56) Burnes, G.; Wle. C. R.; Dacol, F. H.; Pettit, G. D.; Woodall, J. M. Mater. Res. Soc. Symp . R o c . 1988, 702,553-557. (D57) Nomura, T.; Maeda, Y. Miyao, M.; Haglno, M.; Ishikawa. K. Jpn. J. Appl. fhys. 1987,26, 908-911. (D58) Emura, S.;Gonda, S.;Matsui. Y.; Hayashi, H. fhys. Rev. 6 1988,3 8 , 3280-3286. (059) Matsumoto, T.; Kato, T.; Hosoki, M.; Ishida. T. Jpn. J. Appl. fhys. 1987,26, L576-L578. (D60) Kataoka, Y . ; Ueba, H.; Tatsuyama, C. J. Appl. fhys. 1988, 6 3 , 749-759. (D61) Hirayama. H.; Tatsumi, T.; Aizaki, N. Appl. fhys. Lett. 1988, 52, 1335- 1337. (D62) Cheong, Y. M.; Marcus, H. L.; Adar, F. J. Mater. Res. 1987, 2, 902-909. (D63) Tsang, J. C.; Iyer, S.S.; Delage, S. L. Appl. fhys. Lett. 1987,57, 1732-1734. (D64) Huenermann, M.; Pletschen, W.; Resch, U.; Rettweiler, U.; Richter, W.; Geurts, J.; Lautenschlager, P. Surf. Sci. 1987, 189-190. 322-330. (D65) Aspnes. D. E.; Harblson. J. P.; Studna. A. A.; Florez, L. T.; Kelly, M. K. J. Vac. Sci. Technol.. 61988,6, 1127-1131. (D66) Bour. D. P.; Shealy, J. R. I€€€ J. Quantum Electron 1988, 24, 1856-1863. (D67) Drevillon. B.; Bertran, E.; Alnot, P.; Olivier, J.; Razeghi. M. J. Appl. fhys. 1986,60, 3512-3518. (D68) Zahn, D. R. T.; Mackey, K. J.; Williams, R. H.; Muender, H.; Geurts. J.; Richter, W. Appl. fhys. Lett. 1987. 50, 742-744. Green, J. E.; Abels, L. L.; Yao, Qi; Raccah, P. M. J. Cryst. (D69) Shah, S. I.; Growth 1987,8 3 , 3-10. (070) Shealy, J. R.; Wicks, G. W. Appl. Phys. Lett. 1987,50, 1173-1175. (07 1) Chaudhari, P.; Collins, R . T.; Freitas, P.; Gambino, R. J.; Kirtley. J. R.; Koch, R . H.;Laibowitr. R. B.; LeGoues, F. K.; McGuire, T. R.; et al. fhys. Rev. 6 1987,36, 8903-8906. (D72) Kumar, S.;Dasgupta, S.;Jackson, H. E.; Boyd, J. T. Appl. Phys. Lett. 1987,50, 323-325. I

266R

ANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

(D73) Nemanich, R. J.; Doland, C. M.; Ponce, F. A. J. Vac. Sci. Technol.. 8 1987,5, 1039-1043. (D74) Koudelka, L.; Justig, N.; Lanin, J. S.Solid State Commun. 1987,6 3 , 163-166. (D75) Abstreiter, G. NATO A S I Ser. 6 1987, 152, 269-278. (D76) Essern. N.; Resch, U.; Rettweiler, U.; Richter, W.; Zahan, D. R. T.; Williams. R. H. Vacuum 1988,3 8 , 229-232. (D77) Esser, N.; Muender, H.; Huenermann, M.; Pletschen, W.; Richter, W.; Zahn, D. R. T. J. Vac. Sci. Technol. 6 1987,5, 1044-1047. (D78) Oiego, D. J. J . Vac. Sci. Technol. 6 1988. 6, 1193-1197. (D79) Shen, H.; Parayanthai, P.; Pollak, F. H.; Sacks, R . N.; Hickman, G. Solid State Commun . 1987,63, 357-359. (D80) Bland, J. A. C. Superlattikes Microstruct. 1988,4 , 485-487. (D81) Yusas, T.; Ishii, M. fhys. Rev. 6 1987,3 5 , 3962-3970. (D82) Fukasawa, R.; Katayama, S.;Hasegawa. A,; Ohta. K. J. fhys. SOC. Jpn. 1988,5 7 , 3632-3640. (083) Suemoto, T.; Fasol, G.; Pioog, K. fhys. Rev. 6 1988,3 7 , 6397-6405. 0 3 4 ) Young, J. F.; Wan, K.; Spring Thorpe, A. J.; Mandevilie, P. fhys . Rev. 6 1987,3 6 , 1316-1410. (D85) Young. J. F.; Kam, W. fhys. Rev. 6 1987,35,2544-2547. (D86) Scott, J. F.; Pouiigny, B.; Katiyar, R. S. froc. SfIE-Int. SOC. Opt. Eng. 1987,822, 44-46. (D87) Koiler, K. B.; Schmidt, W. A.; Butler, J. E. J. Appl. fhys. 1988, 6 4 , 4704-4710. (D88) Olsen, J. E.; Shimura, F. Appl. fhys. Lett. 1988,53, 1934-1936. (Dag) Lucovsky, G.; Mantini, M. J.; Srivastava, J. K.; Irene, E. A. J. Vac. Sci. Technol. 6 1987,5,530-537. (D90) Boyd, I.W.; Wilson, J. I.B. Appl. fhys. Lett. 1987,50, 320-322. (D91) Devine, R. A. B. J. Vac. Sci. Technol. A 1988,6, 3154-3156. (D92) Boyd, I.W.; Wilson, J. I.8. J. Appl. fhys. 1987,62, 3195-3200. (093) FRch, J. T.; Lucovsky, G. Mater. Res. SOC. Symp. f r o c . 1987, 92, 89-94. (D94) Oriowski, T. E.; Mantell, D. A. J. Appl. fhys. 1988,6 4 , 4410-4414. (095) Slaoui, A.; Fogarassy, E.; White, C. W.; Siffert, P. Appl. fhys. L e t t 1988,5 3 , 1832-f834. (D96) Nonaka, H.; Arai. K.; Fujino, Y.; Ichimura, S.J. Appl. fhys. 1988, 84 , 4168-4174 -(D97) Minowa, Y.; [to. H. J. Vac. Sci. Techno/. 6 1988,6, 473-476. (D98) Fitch, J. T.; Lucovsky, G. Mater. Res. SOC.Symp. R o c . 1988, 705, 15 1- 156. (D99) Vaya, P. R.; Majhi, J.; Sadhana, M. Indian J. Pure Appl. fhys. 1988, 2 6 , 294-296. (D100) Baker, SteDhen D.; Milne, W. I.; Taylor. S. Mater. Res. SOC.Symp. . . f r o c . 1988, 705, 109-114. (D101) Robinson, B.; Nguyen, T. N.; Copei. M. A I f Conf. R o c . 1988, 767, 112-123. (0102) Kim, S.S.;Tsu, D. V.; Lucovsky, G. Mater. Res. SOC. Symp. Roc. 1988, 105, 121-126. (D103) Tsang, J. C. Appl. fhys. Lett. 1988,49, 1796-1798. (D104) Roos, A.: Bergkvist, M.; Ribbing, C. G. Appl. Opt. 1988, 27, 4314-4317. (D105) Pan, P. J. Appl. Phys. 1987,67, 284-293. (D106) Koba, R.; Tressler, R. E. J. Ekctrochem. Soc. 1988, 735,144-150. (D107) Glachant, A.; Baiand, 8.; Ronda, A,; Bureau, J. C.; Plossu, C. Surf. Sci. 1988,205, 287-310. (D108) Speakman, S. P.; Read, P. M.: Kiermasz, A. Vacuum 1988. 3 8 , 183-1 88. (D109) Murakami, K.; Takeuchi, T.; Ishikawa, K.; Yamamoto. T. Appl. Surf. Sci. 1987,33-34, 742-749. (D110) Donovan, E. P.; Brighton, D. R.; Hubler, G. K.; Van Vechten, D. Nucl. Instrum. Methods fhys. Res. 1987,619-20, 983-988. (D111) Sun, S.W.; Tobin, P. J.; Reed, E. J. Nectrochem. SOC. 1987, 734, 1799- 1802. (D112) Cros, Y.; Rostaina, J. C. Svmr,. . . 12 Eur. Mater. Res. SOC. Meet 1986.77-82. (D113) Tsu, D. V.; Lucovsky, G. J. Non-Cryst. Solids 1987. 9 7 - 9 8 , 839-842. (D114) Nakamura, M.; Ono, T.; Konishi, N.; Miyata, K.; Kamezwa. N. J. Appl. fhys. 1987,62, 3740-3746. (D115) Masson, D.; Sacher, E.; Yelon, A. fhys. Rev. 6 1987, 3 5 , 1260- 1266. (D116) Jousse, D.; Bustarret, E.; Deneuville, A,; Stoquert, J. P. fhys. Rev. 6 1988.3 4 , 7031-7044. (D117) Girginoudi, D.; Georgoulas, N.; Thanailakis, A,; Zdetsis, A. D.; Kiriakidis, G.; Christou, A. Mater. Res. SOC. Symp. R o c . 1988, 718, 703-708. (D118) Chambouieyron, I.; Marques, F. C. Mater. Res. SOC. Symp. R o c . 1988, 178, 685-690. (D119) Pereira, J. M. T.; Banerjee, P. K.; Mltra, S.S. J. Non-Cryst. Solids 1987,94,283-293. (D120) Ruebel, H.; Schroeder, B.; Fuhs, W.; Krauskopf, J.; Rupp, T.; Bethge, K. fhys. Status Solidi6 1987, 139, 131-143. (D121) Ray, S.;Das, D.; Barua, A. K. Sol. Energy Mater. 1987, 75,45-57. (D122) Asano, A.; Ichimura, T.; Ohsawa, M.; Sakai, H.; Uchida, Y. J. NonCryst. Solids 1987,97-98, 971-974. (0123) Ramsteiner. M.: Waaner. J.: Wild. C.: Koidl. P. Solid State Commun. ' 1988,6 7 , 15-18. (D124) Ramsteiner, M.; Wagner, J.; Wild, C.; Koidl, P. J. Appl. fhys. 1987, 62 729-731 (D125) Han, H. X.; Feldman, B. J. Solid State Commun. 1988,8 5 , 921-923. (D126) Godet, C.; Marchon. B.; Schmidt, M. P. Thh Solid Fllms 1987, 755. 227-242. (D127) Bielie-Daspet, D.; Mansour-Bahloul, F.; Martinez, A.; Pieraggl, B.; David. M. J.; De Mauduit, B. Thln Solid Fllms 1987, 750,69-82. (D128) Ray, S.; De, S. C.; Barua. A. K. Thin Solid films 1988, 156, 277-285. '

I

SURFACE CHARACTERIZATION (D129) Olego, D. J.; Baumgart, H. J. Appl. fhys. 1988, 6 3 , 2669-2673. (D130) Nemanich, R. J.; (uass,J. T.; Lucovsky, G.; Shroder, R. E. J. Vac. Sci. Technol. A 1988, 6 . 1783-1787. (D131) Plano, L. S.;Adar, F. R o c . S f I E - l n t . SOC. Opt. Eng. 1987, 822, 52-56. (D132) Okano, K.; Naruki, H.; Akiba, Y.; Kurosu, T.; Iida, M.; Hirose. Y. Jpn. J . Appl. fhys. 1988. 2 7 , L173-L175. (D133) Kobashl, K.; Nishimura, K.; Kawate, Y.; Horicuchi, T. fhys. Rev. 6 1088, 38, 4067-4084. (D134) Sawabe, A.; Yasuda, H.; Inuzuka, T.; Suzukl, K. Appi. Surf. Sci. 1987, 33-34, 539-545. (D135) Peters, M.; Plnneo. J. M.; Plano, L. S.;Ravl. K. V.; Versteeg, V.; Yokota, S. R o c . SfIE-lnt. SOC. Opt. Eng. 1988. 877, 79-84. (D136) Meyer, D. E.; Ianno, N. J.; Wollam, J. A.; Swartzlander, A. B.; Nelson, A. J. J . Mater. Res. 1988. 3 , 1397-1403. (D137) Glass, J. T.; Williams, B. E.; Davls. R. F. Roc. SfIE-lnt. SOC.Opt. Eng. 1988, 877, 56-63. (D138) Ashida, K.; Kanamorl, K.; Watanabe, K. J. Vac. Sci. Technol. A . 1988, 6 , 2232-2237. (D139) Sato, T.; Furuno, S.;Iguchi, S.; Hanabusa, M. Appl. fhys. A 1988, A45. . 355-360. ... - .. . (D140) Chayahara, A.; Yokoyama, H.; Imura, T.; Osaka, Y.; Fujisawa, M. Appi. Surf. Sci. 1987, 3 3 - 3 4 , 561-566. (D141) Feng, 2. C.; Mascarenhas, A. J.; Choyke, W. J.; Powell, J. A. J. Appl. fhys. 1988, 6 4 , 3176-3186. (D142) Ohana, I.; Liu. Y. C.; Dresselhaus, M. S.;Dresselhaus, G.; Strauss, A. J.; Zeiger, H. J.; Picone. P. J.; Jenssen, H. P.; Gabbe. D. R. Mater. Res. SOC. Symp. Roc. 1988, 9 9 , 439-442. (D143) Felle, R.; Leiderer, P.; Kowalewski, J.; Assmus, W.; Schubert, J.; Poppe, U. Z. f h p . 6 1988, 7 3 , 155-160. (D144) Chrzanowskl, J.; Irwin, J. C.; Parsons, R. R.; Mulhern, P. J. Can. J. fhJS. 1988, 66, 695-699. (D145) Noh, T. W.; Sulewskl, P. E.; Kaplan, S.G.; Sievers. A. J.; Lathrop, D. K.; Buhrman, R. A. Mater. Res. SOC. Symp. Roc. 1988, 9 9 , 435-438. (D146) Collins. R. T.; Schlesinger, 2 . ; Koch, R. H.; Laibowltz, R. B.; Plaskett, T. S.;Freitas, P.; Gallagher, W. J.; Sandstrom, R. L.; Dinger, T. R. fhys. Rev. Left. 1987, 5 9 , 704-707. (D147) Kubo, M.; Sasal, Y.; Ogura, M.; Kohiki, S. J. Appl. f h y s . 1988, 184- 167. (D148) Bose, D. N.; Holtz, M. Mater. Left. 1987, 5 , 291-295. (D149) Selcl, S.;Ciccaccl, F.; Chiarotti, 0.; Chlaradia, P.; Crlcenti, A. J. Vac. Sci. Technol. A 1987, 5 , 327-332. (D150) Roughani, B.; Jbara, J. J.; Boyd, J. T.; Mantei. T. D.; Jackson, H. E. R E . SfI€-lflt. SOC. Opt. Eflg. 1988, 946, 146-149. (D151) Watt. M.; Sotomayor-Torress, C. M.; Cheung. R.; Wllkinson, C. D. W.; Arnot, H. E. 0.; Beaumont, S. P. J . Mod. Opt. 1988, 3 5 , 365-370. (D152) Farrow, L. A.; Sandroff. C. J. Roc. SHE-lnt. Soc.Opt. Eng. 1987, 822, 22-24. (D153) Knolle, W. R.; Huttemann, R. D. J. Electrochem. SOC. 1988, 135, 2574-2578. (D154) Joseph, D. M.; Hicks, R. F.; Sadwick, L. P.; Wang, K. L. Surf. Sci. 1088, 204, L721-L724. (D155) Burrows, V. A.; Chabal, Y. J.; Higashi, G. S.;Raghavachari, K.; Chrlstman, S . B. Appl. fhys. Left. 1988, 53. 998-1000. (D156) Chabal, Y. J. A I f Conf. ROC.1987, 172, 471-476. (D157) Takahagl, T.; Nagal, I.; Ishltanl, A.; Kuroda, H.; Nagasawa, Y. J. ~ p p im . y s . 1088, 64,3516-3521. (0158) Johnson, N. M.; Ponce, F. A.; Street, R. A,; Nemanich, R. J. fhys. Rev. 8 1987, 3 5 , 4166-4169. (D159) Wadayama, T.; Suetaka. W.; Sekiguchi, A. Jpn. J . Appl. fhys. 1988, 2 7 , 501-505. (Dl60) Keim, E. 0.; Van Silfhout, A.; Wolterbeek, L. J. Vac. Sci. Technol. A 1988, 6 , 57-62. (D161) Olsen, J. E.; Rozgonyi, G. A,; Shlmura, F. Roc.-€lecfrochem. SOC. 1988, 88-90, 197-203. (D162) Sanchez, E.; Shaw, P. S.;O'Nelll, J. A.; Osgood, R. M., Jr. Chem. fhys. Left. 1988, 147, 153-160. (D163) Parry, D. B.; Harris, J. M. Appl. Spectrosc. 1088, 42, 997-1004. (D164) Tseitlln, G. M.; Noskov, A. 0.; Gerasimenko, N. N.; Stenin, S. I.Thin SolM Fiims 1988, 161, 343-350. (D165) Damyanov, D.; Vellkova, M.; Ivanov, I.; Vlaev, L. J . Non-Cryst. Solids 1988, 105, 107-1 13. (D166) Richardson, H. H.; Ewing, G. E. J . fhys. Chem. 1987, 9 1 , 5833-5835. - - - - - - - -. (D167) Heidberg, J.; Hoge, D. Surf. Sci. 1987. 189-190, 448-452. (D168) Chabal, Y. J. Surf. Sci. Rep. 1088, 8 , 211-357. (D169) Sheppard, N. Annu. Rev. fhys. Chem. 1988, 3 9 , 589-644. (D170) Tobin, R . G.; Phelps, R. B.; Richards, P. L. Surf. Sci. 1987, 183, 427-437. (D171) Tobin, R. G.; Richards, P. L. Surf. Sci. 1987, 179, 387-403. (D172) Hayden, 8. E.; Robinson. A. W.; Tucker, P. M. Surf. Sci. 1987, 192, 163-171. (D173) Hayden, B. E.; Robinson, A. W.; Tucker, P. M. J . Electron Specfrosc. Relet. fhenom. 1987, 4 4 , 297-304. (D174) Leibsle, F. M.; Sorbeiio, R. S.;Greenler, R. G. Surf. Sci. 1987, 179, 101-118. (D175) Tueshaus, M.; Schweizer, E.; Hollins, P.; Bradshaw, A. M. J. Electron Spectrmc. Relat. fhenom. 1987, 4 4 , 305-316. (D176) Ehlers, D. H.; Esser, A. P.; Spltzer, A.; Lueth, H. Surf. Sci. 1987, 19 1 , 466-478. (D177) Kofke, T. J. Gricus; Oorte, R. J.; Farneth, W. E. Mater. Res. SOC. Symp. R o c . 1988, 7 1 1 431-434. (D178) Paul. J.; Cameron, S. D.; Dwyer, D. J.; Hoffmann. F. M. Surf. Sc;. 1988, 177, 121-138. (D179) Hoge, D.; Tueshaus, M.; Schwelzer, E.; Bradshaw, A. M. Chem. fhys. Left. l988? 151, 230-235.

.

~

(D160) Malik, I.J.; Brubaker, M. E.; Trenary, M. J. Electron Spectrosc. Relet. fhenom. 1987, 4 5 , 57-63. (D181) Chesters, M. A.; McCash, E. M. Surf. Sci. 1987, 187, L639-L641. (D182) Malik, I.J.; Agrawal, V. K.; Trenary, M. J . Chem. fhys. 1988, 8 9 , 3661-3869. (D183) Beden, B.; Juanto, S.;Leger, J. M.; Lamy, C. J . Electroanal. Chem. Intefacial Nectroanai 1987, 238, 323-331. (D184) Liang, S . ; Trenary, M. J . Chem. fhys. 1988, 8 9 , 3323-3330. (D185) Lambert, D. K. J. Chem. fhys. 1988, 89, 3847-3860. (D186) Hayden, B. E.; Klauser, R.; Bradshaw, A. M. Surf. Sci. 1987, 183, L279-L284. (D187) Benziger, J.; Schoofs, G.; Myers, A. Langmuir 1988, 4, 268-276. (D188) Judd, R. W.; Allen, H. J.; Hollins. P.; Pritchard, J. Spectrochim. Acta 1987. 43A. 1607-1611. (D189) Erley.'W-Surf.-Sci. 1988, 205, L771-L776. (D190) Brubaker, M. E.; Malik, I.J.; Trenary, M. J. Vac. Sci. Technoi. A 1987. 5 , 427-430. (D191) Brubaker, M. E.; Trenary, M. J. Chem. f h y s . 1988. 8 5 , 6100-6109. (Dl92) Schoofs, G. R.; Benziger, J. 8. J. fhys. Chem. 1088, 9 2 , 741-750. (D193) Schoofs, G. R.; Benziger, J. B. Surf. Sci. 1987, 192, 373-382. (D194) Scharpf, E. W.; Benzlger, J. B. J. fhys. Chem. 1987, 9 1 , 5531-5534. (D195) Myers, A. K.; Benzlger, J. B. Langmuir 1987, 3 , 414-423. (DlSS) Harradine, D.; Champion, A. Chem. Phys. Lett. 1987, 135, 501-505. (D197) Raval, R.; Parker, S. F.; Pembie, M. E.; Hoiiins, P.; Prltchard, J.; Chesters, M. A. Surf. Sci. 1988, 203, 353-377. (D196) Erley, W. J. Electron Spectrosc. Relat. fhenom. 1987, 4 4 , 65-78. (D199) Persson, B. N. J.; Hoffmann, F. M. J . Chem. fhys. 1988, 88, 3349-3352. (D200) Hoffmann, F. M.; Paul, J. J . Chem. fhys. 1987, 8 6 , 2990-2996. (D201) Hoffmann, F. M.; Rocker, Gerd; Tochlhara, Hiroshi; Martin, Richard M.; Metiu, Horia Surf. Sci. 1988, 205, 397-407. (0202) Erley, W. J. fhys. Chem. 1987, 9 1 , 6092-6094. (D203) Chesters, M. A.; McCash, E. M. Spectrochim. Acta 1987, 43A, 1625-1630. (D204) Chesters, M. A., J. Mol. Struct. 1988. 173, 405-418. (D205) Reutt, J. E.; Chabai, Y. J.; Christman, S . B. fhys. Rev. 8 1988, 38, 31 12-3132. (D206) Harris, A. L.; Chidsey, C. E. D.; Levinos, N. J.; Loiacono, D. N. Chem. fhys. Left. 1987, 14, 350-356. (D207) Zlmba, C. G.; Hallmark, V. M.; Rabol, J. F.; Swalen, J. D. Thin SolM Films 1988, 160. 311-316. (D208) Giergiel, J.; Reed, C. E.; Hemminger, J. C.; Ushioda, S. J . fhys. Chem. 1988, 9 2 , 5357-5365. (D209) Nemanich, R. J. R o c . SfIE-lnt. SOC. Opt. Eng. 1987, 794, 173-176. (D210) Gaskill, D. K.; Bottka, N.; Slllmon, R. S. J. Vac. Sci. Technol. 6 1088, 6, 1497-1501. (D211) Behn, U.; Roepplscher, H. fhys. Status Solidi 8 1987, 141, 325-332 - - - .- -. (D212) Bhattacharya, R. N.; Shen, H.; Parayanthal, P.; Pollak, Fred H.; Coutts, T.; Aharoni, H. R o c . SfIE-lnt. SOC. Opt. Eng. 1987, 794, 8187. (D213) Erman, M.; Alibert, C.; Cavallles, J. A,; Frijlink, P.; Bouche, C. J . fhys. COllOq. 1987. C5, C5-139lC5-142. (D214) Bottka, N.; Gaskill, D. K.; Slllmon, R. S.;Henry, R.; Glosser, R. J. Electron. Mater. 1988, 17, 161-170. (D215) Zhou, T. X.; Stoddart, H.; Vardeny. 2.; Tauc, J.; Abeles, B. Mater. Res. Soc.Symp. froc. 1987, 7 7 , 671-675. (D216) Ranganathan, R.; Gal, M.; Taylor, P. C. fhys. Rev. 8 1988. 3 7 , 10216-10220. E. DESORPTION TECHNIQUES (El) Madey, T. E. Vacuum 1987, 3 7 , 31. (E2) Ageev, V. N.; Burmistrova, 0. P.; Yakshinskii, B. V. Surf. Sci. 1988, 794, 101. (E3) Craig, J. H., Jr. Appi. Surf. Sci. 1987, 2 9 , 143. (E4) Sambe, H.; Ramaker, D. E.; Parenteau, L.; Sanche, L.; Phys. Rev. Left. 1987, 5 9 , 236. (E5) Shinn, Neal D.; Maddey, Theodore E. Surf. Sci. 1087, 180, 615. (E6) Lanzillotto, Ann Marie; Dresser, Miles J.; Alvey, Mark D.; Yates, John T., Jr. Surf. Sci. 1987, 191, 15. (E7) Dresser, Miles J.; Lanzillotto, Ann Marie; Alvey, Mark D.; Yates, John T., Jr. Surf. Sci. 1987, 191, 1. (E6) Smith, D. J.; McCartney, M. R.; Bursill, L. A. Ulhamicroscopy 1987, 2 3 , 299. (E9) Ekwelundu, E. C.; Ignatiev, A. fhys. Rev. 6: Condens. Mafter 1988, 3 8 , 3671. (E10) Ekwelundu, E. C.; Ignatlev, A. J. Vac. Sci. Technol. A 1988, 6 , 51. ( E l l ) Matsunami, Noriaki; Hasebe, Yuji; Itoh, Noriaki Surf. Sci. 1987, 192, 27. (E12) Avouris, P.; Bozso, F.; Rossl, A. R. Mater. Res. SOC. Symp. froc. 1987, 7 5 , 591. (E13) Bozack, M. J.; Dresser, M. J.; Choyke, W. J.; Taylor, P.; Yates, J. T. NTIS Report TR-11, No. ADA175884/6IGAR, from Oov. Rep. Announce. Index 1987, 8 7 , abstr. no. 713, 717. (E14) Bozack, M. J.; Dresser, M. J.; Choyke, W. J.; Taylor, P. A,; Yates, J. T., Jr. Surf. Sci. 1987, 184, L332. (E15) Johnson, A. L.; Wolczak, M. M.; Madey, T. E. Langmuk 1988, 4, 277. (E16) Loubriei, G. M.; Green, T. A.; Tok, N. H.; Haglund, R. F., Jr. J . Vac. Sci. Technoi. 8 1987, 5 . 1514. lE17) Yasue, Tsuneo; Ichimaya, Ohtani, Shunsuke Surf. Sci. . Ayahlko; . 1987, 186, 191. (E18) Gortel, 2. W.; Kruezer, H. J.; Feuiner, P.; Menzel, D. fhys. Rev. 8 1987, 3 5 , 8951. ANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

267R

SURFACE CHARACTERIZATION (E19) Cllnton, William L.; Pal, Sipra Phys. Rev. 6 1987, 3 5 , 2991. (E20) Lopez Sancho, J. M.; Rubio, J.; Lopez Sancho, M. P.; Refolio, M. C. J. Vac. Sci. Technol. A 1988, 4 , 2533. (E21) Sherman, M. G. "Surface analysis using laser desorption-FTMS and ion cyclotron resonance cell characterization." Ph.D. dissertation, University of California-Irvine, Irvine, CA. 1986. (E22) Land, Donald P.; Tai, Tsong Lin; Lindquist, John M.; Hemminger, John C.; Mclver, Robert T., Jr. Anal. Chem. 1987, 5 9 , 2924. (E23) Zacharias, H. Appl. Phys. A 1988, A47. 37. (E24) Bao. C. L.; Tsong, T. T. Surf. Sci. 1988, 201, 371. (E25) Nuwaysir, Lydia M.; Wilkins. Charles L. Anal. Chem. 1988, 60, 279. (E26) Spengler, B.; Karas, M.; Bahr, Y.; Hillenkamp. F. J. Phys. Chem. 1987, 9 1 , 6502. (E271 Karas, M.; Bachmann, D.; Bahr, U.; Hiilenkamp, F. Int. J. Mass Spectrom. Ion Processes 1987, 78, 53. (E281 Balasanmugam. Kesagapillai; Viswanadham. Somayajula Kasi; Hercules, David M.; Cotter, Robert J.; Helier, David; Benninghoven, A.; Sichtermann, W.; Anders, V.; Keough, T. et al. Appl. Spectrosc. 1987, 41, 821. (E29) Hahn, Jong Hoon; Zenobi, Renato; Zare. Richard N. J. Am. Chem. SOC. 1967, 109, 2842. (E30) Huang, L. Q.; Conzemius, R. J.; Junk, G. A,; Houk, R. S.Anal. Chem. 1968, 60, 1490. (E31) Cresswell, Stephanie A,; Steehler, Jack K. Appi. Spectrosc. 1987, 41, 1329. (E32) Huang, Shi Duo; Kolaitis, Leonidas; Lubman, David M. Appi. Spectrosc. 1987. 4 1 , 1371. (E33) Zaera. Francisco; Hail, R. B. J. Phys. Chem. 1987, 9 1 , 4318. (E34) Bartram, M. E.; Windham, R. G.; Koel, 8. E. Surf. Sci. 1987, 184, 57. Yates, J. T., Jr. J. Phys. Chem. 1988. (E39 Hagans, P. L.: Chorkendorff, I.; 92, 471. (E36) Yates, J. T.. Jr.; Russell, J. N., Jr.; Gates, S. M. Springer Ser. Surf. Sci. 1988, 5. 237. (E37) Keller, Steven W.; Leary, Kevin J.; Stacy, Angelica M.; Michaels, James N. Mater. Lett. 1987, 5 , 357. (E38) Campbell, Charles T.; Rodriguez. J. A.; Henn, F. C.; Campbell, J. M.: Dalton. P. J.; Seimanides, S. G. J. Chem. Phys. 1988, 88.6585. (E39) Kurz, Edward A.; Hudson, John B Surf. Sci. 1988, 195, 31. (E40) Hoffmann, F. M.; Rocker, Gerd: Tochihara, Hiroshi; Martin, Richard M.; Metiu, Horia Surf. Sci. 1988, 205, 397. (E41) Corallo. Cheryl F.; Hoflund, Gar 8. J. Vac. Sci. Technoi. A 1987, 5, 713. (E42) Tan, H. S.;Morawski, A.; Jones, W. E. Surf. Sci. 1988, 195, L193. (E43) He, Jian Wei; Norton, P. R. J. Chem. Phys. 1988. 8 9 , 1170. (E441 Fujita, D.; Homma, T. J. Vac. Sci. Technol. A 1988, 6, 230. (E45) Buchmann, Lutz Martin; Illenberger, Eugen Ber. Bunsen-Ges. Phys. Chem. 1987, 9 1 , 654. (E46) Rye, R. R.; Keiber, J. A. Appi. Surf. Sci. 1988, 2 9 , 397. (E47) Kapustin, G. I.; Brueva, T. R.; Klyachko, A. L.; Beran, S.;Wichterlova, B. Appl. Catal. 1988, 42, 239. (E48) Chen, Li-Feng F.; Rees, Lovat V. C. J. Chem. SOC., Faraday Trans. 1 1988, 8 4 , 3633. (E49) Kojima, M.: Rautenbach. M. W.; O'Connor, C. T. J. Catai. 1988, 112, 495. (E50) Forni, Luclo; Magni, Enrico J. Catal. 1988, 112, 437. (E511 Forni. Lucio; Magni, Enrico; Ortoleva, Emanuele; Monaci, Roberto; Solinas, Vincenzo J. Catal. 1988, 112, 444. (E52) Tejuca, Luis G.; Bell, Alexis T.; Fierro; Jose Luis G.; Tasco, Juan M. D. J. Chem. Soc., Faraday Trans. 11987, 8 3 , 3149. (E53) Gonzalez Tejuca, L. Thermochim. Acta 19888 126, 205. (E54) Kojima, M.: Fletcher, J. C. Q.; OConnor, C. T. Appi. Catai. 1986, 2 8 , 169. (E55) Basu, Pam; Yates, John T., Jr. Surf. Sci. 1986, 177, 291. (E56) Bowker, M.; Petts, R. W.; Waugh, K. C. J. Catal. 1988, 9 9 , 53. (E57) Riva, Alfredo; Trifiro, Ferrucclo; Vaccari, Angeio; Mlnchev, L.; Busca, Guido J. Chem. SOC., Faraday Trans. 1 1988, 8 4 , 1423. (E58) Roberts, D. L.; Griffin, G. L. J. Catal. 1988, 110, 117. Gorte, R. J. J. Catal. 1988, 110, 191. (E59) Altamn, E. I.; (E60) Altman, E. I.; Gorte, R. J. J. Cafal. 1988, 173, 185. (E61) Beck, Donald D.; Carr, Constance J. J. Catai. 1988, 110, 285. (E62) Leary, Kevin J.; Michaels, James N.; Stacy, Angelica M. Langmuir 1988, 4 , 1251. (E63) Moon, Sang Jin; Ihm, Son Ki Appi. Catai. 1988, 42, 307. (E64) Jin, T.; Okuhara, T.; Mains, Gilbert J.; White, J. M. J . Phys. Chem. 1987, 9 1 , 3310. (E65) Lee, P. I.: Huang, Y. J.; Heydweiler. J. C.; Schwarz, J. A. Chem. Eng. Commun. 1988, 6 3 , 205. (E66) Huang, Y. J.; Xue, J.; Schwarz, J. A. J. Catal. 1988, 109, 396. (E67) Leary, K. J.; Michaels, J. N.; Stacy, A. M. AIChE J. 1988, 34, 263. (E68) Bertucco. Alberto; Bennett. Carroll 0. Appi. Cafal. 1987, 35, 329. (E69) Jozwiak, W. K. React. Kinet. Catai. Lett. 1987, 33, 155. (E70) Paryczak, T.; Lesniewska, E. React. Kinet. Catal. Lett. 1987, 3 3 , 203. (E71) Vong. Mariana S. W.; Sermon, Paul A. J. Chem. SOC., Faraday Trans. I 1987, 8 3 , 1369. (E72) Lalauze, R.; Guiliemin, I.; Pijoiat, C. J. Therm. Anal. 1988, 3 1 , 1109. (E73) Fukuda. S.; Kobayashi, T.; Hino, T.; Yamashina, T.; Mizuuchi, T.; Motojima. 0.; Ilyoshi, A.; Uo, K.; Amemiya, S.J . Nuci. Mater. 1987, 145-147, 513. (E74) Dianis, W. P. Appi. Catai. 1987, 30, 99. (E75) Miller, J. B.; Siddiqi, H. R.; Gates. S.M.; Russell, J. N., Jr.; Yates, J. T., Jr.; Tully, J. C.; Cardillo, M. J. J. Chem. Phys. 1987, 8 7 , 6752. (E76) Niemantsverdriet, J. W.; Markert, K.; Wandelt, K. Appi. Surf. Sci. 1988, 31. 211. (E77) Niemantsverdriet, J. W.; Wandelt, K. J . Vac. Sci. Technoi. A 1988, 6. 757.

268R

ANALYTICAL CHEMISTRY, VOL. 61, NO. 12, JUNE 15, 1989

(E78) Polta, J. A.; Schmitz, P. J.; Thiel. P. A. Langmuir 1987, 3 , 1178. (E79) Wittkopf, H. Vacuum 1987, 3 7 , 819. (E80) Criado, J. M.; Malet, Pilar: Munuera, G. Langmuir 1987, 3 , 973. F. X-RAY TECHNIQUES

(FI) Chopra, D. R.; Chourasia, A. R. Scannlng Micros. 1988, 2, 677. (F2) Eckertova, L. Surf. Sci. 1988, 200, 490. (F3) Park, R . L.; Houston, J. E.; Schreiner, D. G. Rev. Sci. Instrum. 1970, 41, 1810. (F4) Chopra, D. R.; Babb, H.; Bhalla, R. Phys. Rev. B 1978, 14, 5231. (F5) Grolemund, D. L.; Chopra. D. F. I€€€ Transactions Nucl. 1983, NS-30, 934. (F6) Eckertova, L.; Pavluch, J. Czech. J. Phys. 6 1984, 34, 622. (F7) Pavluch, J.; Eckertova, L. Czech. J. Phys. 6 1985, 3 5 , 630. (F8) Chourasia, A. R.; Chopra, D. R. Surf. Sci. 1988, 206, 484. (F9) Eckertova, L.; Jenicek, T.; Pavluch, J. Surf. Sci. 1988, 200, 514. (F10) Chopra, D. R. J. Less Common Metals 1987, 127, 373. (F11) Hinkers, H.; Stiller, R.; Merz, H.; Drewes, W.; Purwlns, H. G. Phys. Scr. 1987. 36, 166. (F12) Chopra, D. R.; Chourasia, A. R. I n Characterization of Semiconductor Surfaces: McGuire, G., Ed.; Noyes: New Jersey, 1989. (F13) Guo, T.; den Boer, M. L. Phys. Rev. 6 1988, 38, 3711. (F14) Chang, P. H.; Liu, H. Y.; Keenan, J. A.; Anthony, J. M.; Bohlman, J. G. J. Appl. Phys. 1987, 62, 2485. (F15) Hsieh, Y. F.; Chen, J. L.; Marshall, E. D.; Lau, S. S.Appi. Phys. Lett. 1987, 51, 1588. (F16) Ogale, S. 6.; Patil. P. P.; Phase, D. M.: Bhandarkar, Y. V.; Kulkarni, S. K.; Kulkarni, Smita; Ghaisas, S. V.; Kanetkar, S.M.; Bhlde, V. G. Guha, Spratik Phys. Rev. B 1987, 3 6 , 8237. (F17) Sayers, D. E.; Stern, E. A.; Lytle, F. W. Phys. Rev. Lett. 1971, 2 7 , 1204. (F18) For example, Koninsberg, D. C.; Prims, R. X-ray Absorptlon: Rlnciples, Applications, Techniques of EXAFS, SEXAFS, and XANES, Wiley: New York, 1988. Fay, M. J.; Hoffmann, D. P.; Hercules, D. M. Anal. Chem. 1988, 60, 1225A. (F19) Maeda, H. J. Phys. SOC. Jpn. 1987, 56, 2777. (F20) Kunquan, L.; Jun, W. Solid State Commun. 1987, 6 3 , 797. (F21) Buffat, B.; Tuilier, M. H. Solid State Commun. 1987, 6 4 , 401. (F22) Sakashita, H.; Kamon. K.; Terauchi, H.; Kamijo, N.; Maeda, H.; Toyota, N.; Fukase, T. J. Phys. SOC. Jpn. 1987, 5 6 , 4183. (F23) Joensen, P.; Crozier, E. D.; Alberding, N.; Frindt, R. F. J. Phys. C (Solid State) 1987, 20, 4043. (F24) Satow, Y.; Asakura, K.; Kuroda, H. J. Phys. C (SolidState) 1987, 20, 5027. (F25) Durbin, S. M.; Berman, L. E.; Batterman. B. W.; Brodsky, M. 6.; Hamaker, H. c. Phys. Rev. 6 1988, 3 7 , 6672. (F26) Yang, B. X.; Kirz, J. Phys. Rev. 6 1987, 36, 1381. (F27) Comelli, G.; Stohr, J.; Jark, W.; Pate, B. B. Phys. Rev. 6 1988, 3 7 , 4383. ... (F28) Bridges, F.; Boyce, J. B.; Dimino, G. M.; Giessen, B. C. Phys. Rev. 6 1987. 3 6 . 8973. (F29) OrtOn,'B. R.; Malra, G. K.; Steel, A. T. J. Phys. F. Met. Phys. 1987, 17, L45. (F30) Scarrow, R. C.; Maroney, M. J.; Palmer, S. M.; Que, L.; Roe, A. L.; Salowe, S. P.; Stubbe, J. J. Am. Chem. SOC. 1987, 709, 7857. (F31) Feiters. M. C.; Navarantnam, S.;Hakim, M. A.; Allen, J. C.; Spek, A. L.; Vledink, G. A.; Vliegenthart, J. F. G. J. Am. Chem. SOC. 1988, 110, 7746. (F32) Mochida, K.; Fujii, A.; Tsuchiya, N. Organometallcs 1987, 6, 1811. (F33) Bunker, B. A. J. Vac. Sci. Technoi. A 1987, 5, 3003. (F34) Inui, M.; Yao, M.; Endo, H. J. Phys. SOC.Jpn. 1988, 5 7 , 553. (F35) Ichimura, M.; Sasaki, A. Jpn. J. Appi. fhys. Par! 11987, 26, 1296. (F36) Oyanagi, H.; Sakamoto, T.; Sakamoto. K.; Matsushita, T.; Yao. T.; Ishiguro, T. J. Phys. SOC.Jpn. 1988. 5 7 , 2086. (F37) Lottici, P. P.; Antonioli, G.; Razzetti, C. J. Phys. Chem. Solids 1988, 4 9 , 1057. (F38) Lottici, P. P.; Antonioli, G.; Razzetti, C. Phys. Stat. Solidi ( b ) 1988, 145. . . - , 401. . .. . (F39) Wakagi, M.; Ohno, T.; Chigasaki, M.; Nomura, M. J. Phys. SOC.Jpn. 1987. 56. 2413. (F40) Mobllio. S.;Fllipponi, A. J. Non-Crystalline Solids 1987, 97 & 98,365. (F41) Wakagi, M.: Chigasaki, M.; Nomura, M. J. Phys. SOC.Jpn. 1987, 56. 1765. (F42) Greegor, R. B.; Lytle, F. W.; Kortright, J.; Fischer-Coibrie, A. J. NonCrystalllne Solids 1987, 8 9 , 3 11. (F43) Sette, F.: Abeles, 6.; Yang, L.; McDoweii, A,; Norman, D.; Richardson, C. H. J. Non-Crystailhe Solids 1987, 9 7 & 98, 895. (F44) Sette, F.; Abeles, B.; Yang, L.; MacDowell, A. A,; Richardson, C. H.; Norman, D.Phys. Rev. B 1988, 3 7 , 2749. (F45) Yamashita, H.; Mizutani, H.; Tanaka, T.; Funabiki, T.; Yoshida, S. J. Non-Crystalline Solids 1987, 95 & 96, 419. (F46) Ma, F.: Shen, 2.; Ye, L.: Zhang, M.; Lu, K.; Zhao, Y. J. Non-Crystalline Solids 1988, 9 9 , 387. (F47) Oyanagi, H.; Ihara, H.; Matsubara, T.; Matsushita, T.; Hirabayashi, M.; Tokumoto, M.; Murata, K.; Terada, N.; Senzaki, K.; Yao, T.; Iwasaki, H.; Kimura, Y. Jpn. J. Appl. Phys. 1987, 2 6 , L1233. (F48) Oyanagi. H.; Ihara, H.; Matsushita, T.; Tokumoto, M.; Hirabayashi, M.; Terada, N.; Senzaki, K.; Kimura, Y.; Yao, T. Jpn. J. Appl. Phys. 1987, 26, L638. (F49) Bianconi, A.; Castellano, A. C.; Santis, M.; Politis, C.; Marcelli, A,; Mobilio, S.;Savoia, A. Z. Phys. 6 ,Condensed Matter 1987, 67. 307. (F50) Tranquada. J. M.; Heald, S. M.; Moodenbaugh, A. R. Phys. Rev. 6 1987, 3 6 , 8401. (F51) Maeda, H.; Bamba, N.; Koizumi, A,; Yoshikawa, Y.; Ishii, T.; Maruyama, H.: Hida, M.; Kuroda, Y.; Yamazaki. H.; Morimoto, T. J. Phys. SOC. Jpn. 1987, 56, 3413.

Anal. Chem. 1989, 61,269R-304R (F52) Gurman. S.J.; Diakun, G.; Dobson, S.;Abell, S.; Greaves, G. N.; Jordan. R. J. Phys. C , Solidstate 1988, 2 7 , L475. (F53) Zhang, K.; Bunker, G. B.; Zhang, G.; Zhao, 2 . X.; Chen, L. Q.; Huang, Y. 2.Phys. Rev. B 1988, 3 7 , 3375. (F54) Sacchl, M.; Corni, F.; Antoninl, G. M.; Calandra, C.; Matacotta, F. C. 2. Phys. B, CondensedMetter 1988, 7 2 , 335. (F55) Maeda, H.; Koizumi, A.; Bamba, N.; Muromachi, E. T.; Izuml, F.; Onoda, M.; Kuroda, Y.; Maruyama, H.; Yoshikawa. Y.; Ishii, T.; Hda, M.; Yamazaki, H. Jpn. J. Appl. Phys. 1988, 2 7 , L807. (F56) Kajiyama, H.; Usami, K.; Suzukl, Y.; Seklyama, H.; Takagi, K.; Hayakawa. K.; Hirai, Y.; Hirano, T.; Waki, T. Jpn. J . Appl. Phys. 1988, 2 7 , L145. (F57) Bart, J. C.; Vlaic, G. Adv. Catal. 1987, 3 5 , 1. (F58) Bruce, G. C.; Stobart, S. R. Inorg. Chem. 1988, 2 7 , 3879. (F59) Asakura, K.; Iwasawa, Y. J. Chem. SOC.Faraday Trans. 1988, 8 4 , 2445. (F60) Berry, F. J.; Murray, A.; Steel, A. T. J . Chem. SOC.Faraday Trans. 1988, 84, 2783. (F61) Lambie, G. M.; King, D. A. Philos. Trans. Roy. SOC.London A 1988, 3 1 8 , 203.

(F62) Norman, D. J. Phys. C , Sdid State 1988, 19, 3273. (F63) Holmes, D. J.; Batchelor, D. R.; King, D. A. Surf. Sci. 1988, 199, 476. (F64) Kendelewicz, T.; Soukissian, P.; List, R. S.; Wolcik, J. C.; Pianetta, P.; Lindau, I.; Spicer, W. E. Phys. Rev. B 1988, 3 7 , 7115. (F65) White, J. H.; Albarelli, M. J.; Abruna, H. D.; Blum, L.; Melroy, 0. R.; Samant, M. G.; Borges, G. L.; Gordon, J. G. J. Phys. Chem. 1988, 9 2 , 4432. (F66) Lamble, G. M.; Brooks, R. S.; Campuzano, J. C.; King, D. A,; Norman, D. Phys. Rev. B 1987, 3 6 , 1796. (F67) Crapper, M. D.; Woodruff, D. P. J . Vac. Sci. Technol. A 1987, 5 , 914. (F68) Comelii, G.; Stohr, J. Surf. Sci. 1988, 200, 35. (F69) Arvanitis, D.; Wenzel, L.; Baberschke, K. Phys. Rev. Left. 1987, 5 9 , 2435. (F70) Lambie, G. M.; Brooks, R. S.; King, D. A.; Norman, 0. Phys. Rev. Lett. 1988, 6 1 , 1112. (F71) Incoccia, L.; Baierna, A.; Cramm, S.;Kunz, C.; Senf, F.; Storjohann, I . Surf. Sci. 1987, 789/ 190, 453. (F72) Crapper, M. D.; Riley, C. E.;Woodruff, D. P. Surf. Sci. 1987, 184, 121.

Water Analysis Patrick MacCarthy* and Ronald W. Klusman Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado 80401

James A. Rice Department of Chemistry, South Dakota State University, Brookings, South Dakota 57007

INTRODUCTION This is the twenty-third biennial review dealing with the inorganic and organic analytical chemistry of water. The format of this review is essentially the same, but with some minor additions, as that of the previous review in this series which was published in Analytical Chemistry in 1987 ( I ) . The references used in preparing this review were compiled by a computer-search of Chemical Abstracts covering the period from the previous review (October 1986) through Vol. 109 (24), Dec 12, 1988; these references represent a selection of the approximately 4300 citations examined for this period.

I N O R G A N I C ANALYSIS Alkali and Alkallne-Earth Metals

Barium. Sun ( A l ) determined Ba in waters by utilizing a Ta-lined graphite furnace and atomic absorption spectrophotometry. Sensitivity was improved by 20-fold over the standard graphite tube. A technique for the preparation and operation of the Ta-lined tubes is described. Dehairs et al. (A2)describe a method for the routine determination of Ba in seawater by graphite furnace atomic absorption spectrophotometry. Barium is separated from major cations by collection on a cation-exchange resin. The Ba is removed from the resin with HNOBwith recoveries >99%. Beryllium. Tao and Xue (A3) present a catalytic polarographic method for the determination of Be in natural waters. The Be is determined in a substrate solution composed of ",OH, NH4C1, EDTA, and a test reagent. The detection limit is 0.002 pg/mL and the concentration-peak current linearity range is 0-0.04 pg mL. Ueda and Kitadani (A4) coprecipitated Be with H f ( 0 )4 from a sample in the 100-400 mL range. The Be is solubilized in NaOH, which eliminates A1 interference, and subsequently determined with graphite furnace atomic absorption spectrophotometry. The method has been used in the range of 0.4-8 ng/mL Be. Tao et al. (A5) describe a unique method combining gas chromatography and inductively cou led plasma emission spectrometry. Beryllium is extractel from a water sample with acetylacetone into CHC1, and concentrated by evaporation.

fI

0003-2700/89/036 1-269R$06.50/0

The Be acetylacetonate is separated in a gas chromatograph and injected into the He plasma emission spectrometer. The detection limit is 10 pg in a 30-mL water sample and the standard deviation was 4.1 % a t 10 ng of Be. Kostadinov et al. ( A 6 ) determined radiogenic 'Be by adsorption of the Be complex with Eriochrome Cyanine R on activated charcoal. The method permits measurement of as little as 0.01-0.05 Bq L with an average error of