6 Photovoltaic Solar Cells SIGURD WAGNER
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
Bell Laboratories, Holmdel, N. J. 07733 Solar cells convert incident light to electrical power. They are semiconductor diodes with two key functions: separa tion of electrical charge in energy, and in space. Absorption of light quanta by the semiconductor separates electron -hole pairs by the band gap energy; the output voltage is proportional to this energy. The electric field associated with the semiconductor junction separates electrons and holes in space, leading to an external current. The voltage -current product, or output power, thus depends on light absorption, charge transport, and type of junction. In this paper we consider cell characteristics, power conversion efficiencies, alternative cell structures, and approaches to the development of inexpensive cells.
T j h o t o v o l t a i c solar cells c o n v e r t i n c i d e n t l i g h t t o e l e c t r i c i t y . S o l a r p o w e r , the p r o d u c t of p h o t o n flux a n d p h o t o n energy, is t u r n e d i n t o e l e c t r i c a l p o w e r , t h e p r o d u c t of e l e c t r i c a l c u r r e n t a n d o u t p u t voltage. cells a r e c o n c e p t u a l l y s i m p l e a n d r u g g e d devices.
Solar
Therefore, widespread
use of p h o t o v o l t a i c converters is v e r y a t t r a c t i v e . H o w e v e r , solar elec t r i c i t y is a b o u t o n e h u n d r e d times m o r e power.
expensive t h a n c o n v e n t i o n a l
T o a l a r g e extent, i t w i l l b e t h e task o f chemists t o find i m p r o v e d
m a t e r i a l s a n d processes t o m a k e p h o t o v o l t a i c p o w e r cost c o m p e t i t i v e . Semiconductor
Diodes
S e m i c o n d u c t o r s c o m b i n e t w o c h a r a c t e r i s t i c properties w h i c h m a k e t h e m s u i t a b l e f o r p h o t o v o l t a i c cells (1, 2, 3).
First, numerous
semicon
ductors e x h i b i t t h e p r o p e r a b s o r p t i o n characteristics f o r solar r a d i a t i o n . S e c o n d , a space c h a r g e c a n b e i n t r o d u c e d i n a s m a l l r e g i o n of a s e m i c o n d u c t o r , w h i l e most of i t r e m a i n s n e u t r a l a n d c o n d u c t i n g .
T h i s is t h e
space charge of a j u n c t i o n . A s i m p l e w a y to p i c t u r e t h e c o n s t r u c t i o n o f a pn j u n c t i o n is s h o w n i n F i g u r e l a . W e start w i t h t w o pieces of t h e 109
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
110
SOLID S T A T E
CHEMISTRY
s e m i c o n d u c t o r (e.g., s i l i c o n ) , one of w h i c h is η-type, t h e other, p - t y p e . I n η-Si, t y p i c a l l y 1 0
17
cm"
3
( 2 p p m a ) , d o n o r i m p u r i t i e s w i t h five v a l e n c e
electrons (e.g., p h o s p h o r u s ) h a v e b e e n i n t r o d u c e d to m a k e t h e h i g h l y resistive p u r e S i a n e l e c t r i c c o n d u c t o r w i t h t h e c u r r e n t b e i n g c a r r i e d b y free electrons. T h e p i e c e of η-Si is n e u t r a l , h o w e v e r , b e c a u s e t h e free electrons are e x a c t l y c o m p e n s a t e d b y t h e donor impurities.
fixed
(nonmobile)
ionized
I n p - S i , d o p e d w i t h acceptor impurities like boron,
c u r r e n t is c a r r i e d b y free holes. H o w e v e r , there is s t i l l a finite d e n s i t y of Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
electrons i n p - S i , a n d of holes i n η-Si. T h i s d e n s i t y is d e t e r m i n e d b y t h e c o n c e n t r a t i o n of t h e r e s p e c t i v e m a j o r i t y carrier, η o r p , t h r o u g h t h e e q u i l i b r i u m constant exp (-E /kT)
jm — N N C
where N and N c
V
—
g
n?
are t h e effective densities of states i n the c o n d u c t i o n a n d
y
valence bands, E
is t h e b a n d g a p , a n d k is B o l t z m a n n s constant. I n S i ,
g
pn at 3 0 0 ° K is 2.1 Χ 1 0
2 0
c m " . H e r e rti is t h e c a r r i e r c o n c e n t r a t i o n f o r 6
u n d o p e d (intrinsic) S i . Imagine j o i n i n g the η a n d the ρ halves. W h e n t h e y m a k e contact, electrons diffuse f r o m η i n t o ρ a n d holes f r o m ρ i n t o η because of t h e i r r e s p e c t i v e c o n c e n t r a t i o n d r o p across t h e i n t e r f a c e . O n c e m a j o r i t y carriers h a v e d i f f u s e d i n t o t h e o t h e r s i d e a n d thus h a v e b e c o m e m i n o r i t y carriers, t h e y r e c o m b i n e w i t h t h e l o c a l m a j o r i t y c a r r i e r
(a) η
e
+
"» ©
Ρ
h* Θ
"
n
If !& 3©i
SPACE CHARGE
DISTANCE Figure 1.
Schematic construction
of a p n homodiode
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
6.
WAGNER
Photovoltaic
Solar
111
Cells
to p r e v e n t t h e p r o d u c t p n f r o m e x c e e d i n g t h e e q u i l i b r i u m v a l u e .
The
excess c h a r g e is t a k e n u p b y the fixed i o n i z e d i m p u r i t i e s w h i c h
now
become uncompensated.
N e t c h a r g e is t h e r e b y i n t r o d u c e d to the o r i g i
n a l l y n e u t r a l ρ a n d η h a l v e s . T h i s charge, t h e space c h a r g e d e n o t e d i n
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
F i g u r e l a , i n t r o d u c e s a field a c c o r d i n g to dE
p_
dx
€e 0
w h e r e χ is the o n e - d i m e n s i o n a l c o o r d i n a t e for distance, Ε the e l e c t r i c field,
ρ the c h a r g e d e n s i t y , c t h e r e l a t i v e d i e l e c t r i c constant, a n d c
0
the
p e r m i t t i v i t y of free space. T h e field increases u n t i l i t prevents net d i f f u s i o n r e s u l t i n g f r o m t h e difference i n c a r r i e r c o n c e n t r a t i o n .
I n other words, the electrochemical
p o t e n t i a l of a g i v e n c a r r i e r , e l e c t r o n o r h o l e , is n o w u n i f o r m t h r o u g h o u t the p-n
diode.
T h i s e l e c t r o c h e m i c a l e q u i l i b r i u m c o n d i t i o n is u s u a l l y
expressed w i t h t h e F e r m i l e v e l , F i n F i g u r e l b . T h e F e r m i l e v e l denotes the e l e c t r o c h e m i c a l p o t e n t i a l of electrons.
I t is h i g h ( c l o s e t o t h e c o n
d u c t i o n b a n d C ) i n η-Si a n d l o w (close to v a l e n c e b a n d V ) i n p - S i . T h e reference l e v e l is u s u a l l y the center of t h e b a n d g a p E
u
w i t h t h e v a l u e of
the F e r m i l e v e l g i v e n b y
E
n
= E +kT\n
—
{
E q u a l i z a t i o n of the F e r m i l e v e l i n t h e t w o h a l v e s of a d i o d e r e q u i r e s t h e i n t r o d u c t i o n o f a n e l e c t r i c a l p o t e n t i a l difference as s h o w n o n the
right
i n F i g u r e l b . T h i s p o t e n t i a l difference, t h e d i f f u s i o n v o l t a g e V , is g i v e n D
b y the i n i t i a l difference b e t w e e n the F e r m i levels i n t h e η a n d ρ regions, E
n
—
E: p
q
7Lp
( n „ a n d rip d e n o t e e l e c t r o n c o n c e n t r a t i o n o n the η-side a n d o n the p - s i d e , r e s p e c t i v e l y , a n d q is the m a g n i t u d e of the e l e c t r o n i c charge. ) T h e m o s t o u t s t a n d i n g c h a r a c t e r i s t i c of a d i o d e is t h a t i t passes c u r r e n t easily i n o n e d i r e c t i o n b u t n o t i n t h e other w h e n a n e x t e r n a l v o l t a g e is a p p l i e d . I n the f o r w a r d , or "easy" d i r e c t i o n , electrons flow f r o m η to p , a n d holes f r o m ρ to n . I n t h e reverse, or " d i f f i c u l t " d i r e c t i o n , electrons
flow
from
ρ to n , a n d holes f r o m η t o p. T h i s effect results f r o m the a v a i l a b i l i t y of a l a r g e d e n s i t y of electrons f o r t r a n s p o r t i n t o p - S i , a n d of holes i n t o n - S i ( f o r w a r d ) , a n d of the n o n a v a i l a b i l i t y of electrons f o r c u r r e n t t r a n s p o r t f r o m ρ i n t o n , a n d of holes f r o m η i n t o ρ ( r e v e r s e ) .
T h e o r e t i c a l treat-
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
112
SOLID S T A T E
CHEMISTRY
m e n t of the m o s t s i m p l e case shows t h a t the reverse c u r r e n t is a constant 7
0
i n d e p e n d e n t of a p p l i e d v o l t a g e a n d t h a t t h e f o r w a r d c u r r e n t I i n
creases a p p r o x i m a t e l y e x p o n e n t i a l l y w i t h a p p l i e d v o l t a g e V ,
w h e r e A is a p a r a m e t e r w h i c h d e p e n d s o n the d e t a i l e d m e c h a n i s m of Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
current
flow.
W h e n j u n c t i o n s are m a d e b e t w e e n n - a n d p - t y p e regions of s e m i c o n d u c t o r as i n the p r e c e d i n g e x a m p l e o f n S i / p S i , p n
one
homodiodes
are f o r m e d ( F i g u r e 2 ) . T h e s e m i c o n d u c t o r space c h a r g e associated w i t h d i o d e s c a n b e i n t r o d u c e d i n t w o o t h e r w a y s w h i c h p r o v e of i n c r e a s i n g importance
in
solar
cell
research
[pGaAs/nAJAs (4), p l n P / n C d S
and
development.
(5), p C u S / n C d S (6), 2
Heterodiodes etc.]
are p r e
p a r e d f r o m t w o different s e m i c o n d u c t o r s of o p p o s i t e c o n d u c t i v i t y t y p e . I n Schottky barrier diodes, w h i c h are p r o d u c e d b y depositing a m e t a l film o n a s e m i c o n d u c t o r [ p S i / C r ( 7 ) , n G a A s / P t ( 8 ) ] , t h e space c h a r g e is b u i l t u p o n l y i n the s e m i c o n d u c t o r .
Heterodiodes w i t h one h i g h l y
HOMODIODE
HETERODIODE
SCHOTTKY
DIODE
BARRIER
Cr
Journal of Crystal Growth
Figure
2. Band diagrams of a homodiode, a heterodiode, and a Schottky barrier diode (63)
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
6.
WAGNER
Photovoltaic
Solar
113
Cells
c o n d u c t i n g ( " d e g e n e r a t e " ) p a r t n e r c a n also b e v i e w e d as S c h o t t k y b a r r i e r diodes. T h i s s u b g r o u p i n c l u d e s diodes m a d e of a s e m i c o n d u c t o r a n d a c o n d u c t i n g t r a n s p a r e n t glass ( p S i / n I n 0 ) 2
3
( 9 , J O ) . P r o m i s i n g results
h a v e b e e n o b t a i n e d r e c e n t l y w i t h m e t a l o x i d e - s e m i c o n 3 u c t o r cells.
These
are m o d i f i e d S c h o t t k y c a r r i e r diodes w h i c h c o n t a i n a v e r y t h i n ( 1 0 - 3 0 Â ) oxide layer between (Au)
the s e m i c o n d u c t o r
(nGaAs)
a n d the m e t a l
film
( J J ) . T h i n o x i d e layers h a v e also b e e n d e t e c t e d i n specimens
of
s i l i c o n - b a s e d cells that h a d o r i g i n a l l y b e e n c o n c e i v e d as S c h o t t k y b a r r i e r Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
diodes
(7).
Diodes Operating
as Solar Cells
W h e n a solar c e l l is i l l u m i n a t e d , a reverse c u r r e n t J , w h i c h is l a r g e L
c o m p a r e d w i t h J , is generated. 0
F i g u r e 3 a shows h o w l i g h t q u a n t a a r r i v
i n g at the cell's surface p e n e t r a t e the d i o d e , are a b s o r b e d , a n d generate e l e c t r o n hole p a i r i n either the η or the ρ r e g i o n . T h e s e a d d i t i o n a l charge carriers increase t h e pn p r o d u c t a b o v e t h e e q u i l i b r i u m v a l u e of n ^ . T h e c a r r i e r p o p u l a t i o n tends t o r e t u r n to e q u i l i b r i u m , a n d c a n d o this i n t w o w a y s . T h e m i n o r i t y c a r r i e r c a n lose its energy a n d disappear by immediately recombining w i t h a majority car rier,
i.e., b y r e v e r s i n g the process of its g e n e r a t i o n , or the m i n o r i t y
c a r r i e r c a n diffuse to the j u n c t i o n a n d d r i f t i n the field of t h e p-n
junction
to the side w h e r e i t is the m a j o r i t y c a r r i e r . T h i s is d e s i r a b l e for a solar c e l l b e c a u s e excess negative a n d p o s i t i v e c h a r g e is not a n n i h i l a t e d b y r e c o m b i n a t i o n w i t h i n the d i o d e b u t o n l y after flowing t h r o u g h a n exter n a l c i r c u i t w h e r e i t c a n d o w o r k . T h e t w o extreme m o d e s of o p e r a t i n g a c e l l are s h o w n i n F i g u r e s 3 b a n d 3c.
U n d e r short-circuit conditions
( F i g u r e 3 b ) the e x t e r n a l c i r c u i t does not offer a n y resistance to c u r r e n t flow.
A l l the p h o t o c u r r e n t t h e n flows t h r o u g h the e x t e r n a l c i r c u i t . TTiis
short-circuit current J
s c
is t h e m a x i m u m c u r r e n t one c a n o b t a i n f r o m a
solar c e l l . U n d e r o p e n - c i r c u i t c o n d i t i o n s w i t h infinite e x t e r n a l resistance ( F i g u r e 3c)
the reverse p h o t o c u r r e n t
flows
i n i t i a l l y , b u t the carriers
c a n n o t r e c o m b i n e t h r o u g h the e x t e r n a l c i r c u i t . T h e y a c c u m u l a t e i n t h e i r respective halves of the d i o d e , electrons i n t h e η p o r t i o n a n d holes i n the ρ p o r t i o n , a n d p a r t i a l l y compensate its space charge.
T h i s effect is
i d e n t i c a l to t h a t of t h e e x t e r n a l a p p l i c a t i o n of a f o r w a r d b i a s , i.e., a f o r w a r d c u r r e n t begins to flow. S t e a d y state is r e a c h e d w h e n the reverse p h o t o c u r r e n t is c o m p e n s a t e d b y t h a t f o r w a r d c u r r e n t . T h e c o r r e s p o n d i n g steady-state f o r w a r d v o l t a g e is c a l l e d t h e o p e n - c i r c u i t v o l t a g e , VOc, a n d is t h e m a x i m u m v o l t a g e a t t a i n a b l e . N o t e that no p o w e r short-circuit ( J , V = 8 C
(J χ V ) 0)
is d r a w n f r o m the c e l l i n either t h e
or t h e o p e n - c i r c u i t
(V^, 1 =
0)
condition.
P o w e r is d e l i v e r e d o n l y w h e n t h e e x t e r n a l l o a d resistor Rex is (Figure 3d).
T h e voltage V
o p
finite
is s m a l l e r t h a n V * . b e c a u s e most of t h e
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
114
SOLID STATE
CHEMISTRY
Journal of Crystal Growth
Figure 3. Band diagram of a homodiode solar cell: (a) showing creation f electron-hole pairs by absorption of light quanta; (b) short circuit conition; (c) open circuit condition; ana (a) under finite external load (63)
3
I
_
1
I CuInSe /CdS
40
ci" ι
ι 2
I$c
Ε ο
E) g
i n F i g u r e 6a. O b v i o u s l y , f o r m a x i m u m o u t p u t c u r r e n t
one w i l l use s e m i c o n d u c t o r s w i t h s m a l l b a n d gaps. H o w e v e r , the o u t p u t p o w e r depends o n t h e p r o d u c t of c u r r e n t 7 turn V
0 P
op
a n d voltage V
is p r o p o r t i o n a l to the b a n d gap energy.
o p
.
and in
B e c a u s e of t h e e n s u i n g
trade-off b e t w e e n c u r r e n t a n d v o l t a g e , the o u t p u t p o w e r has a m a x i m u m v a l u e w h i c h lies b e t w e e n 1.0 a n d 1.5 e V , as i n d i c a t e d b y the F X E
g
curve
i n F i g u r e 6b. I n a m o r e d e t a i l e d c o n s i d e r a t i o n w h i c h i n c l u d e s the m e c h a n i s m of c u r r e n t flow i n the d i o d e , the t y p i c a l m a x i m u m efficiency curves m a r k e d η are o b t a i n e d . T h e p o w e r efficiency η is d e f i n e d as t h e r a t i o of e x t r a c t e d e l e c t r i c a l p o w e r to i n c i d e n t solar p o w e r F . i n
N o t e t h a t the
efficiency drops w i t h i n c r e a s i n g t e m p e r a t u r e , a n d d r a s t i c a l l y so f o r s e m i c o n d u c t o r s w i t h l o w b a n d gaps (18).
Applications i n v o l v i n g h i g h oper
a t i n g t e m p e r a t u r e s , e.g., w i t h solar concentrators, w i l l f a v o r r e l a t i v e l y l a r g e b a n d - g a p m a t e r i a l s . A n a l t e r n a t i v e a p p r o a c h t o w a r d e s t i m a t i n g the
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
6.
WAGNER
Photovoltaic
Solar
119
Cells
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
WAVELENGTH
1
(^m)
2
3 ENERGY
4
(eV)
Figure 6. (a) Fraction of solar photons (AM2) with energy higher than the band gap E , F(hv > E ), as a function of energy. The band gap (dashed line) illustrates the contribution of output voltage to the current-voltage product, (b) The product F Χ Ε showing a maximum between 1.0 and 1.5 eV. Typical theoretical solar efficiencies η at 25° and 100 C from a detailed calculation. g
g
σ
e
o p t i m u m b a n d g a p considers t h e t h e r m o d y n a m i c e q u i l i b r i u m b e t w e e n t h e s u n a n d t h e solar c e l l ; the r e s u l t is a n u l t i m a t e ( i d e a l ) η
=
E
g
χ
F(hv
> E J / P i n , of 4 4 % at E
g
=
1.1 e V ( 1 9 ) .
efficiency,
A n u m b e r of
r e p o r t e d s e m i c o n d u c t o r s w i t h b a n d gaps i n t h e v i c i n i t y o f t h e o p t i m u m r a n g e are l i s t e d i n T a b l e I I .
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
120
SOLID STATE
Table II.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
Si AlAs GaP GaAs InP CdS CdSe CdTe CuInSe
Properties of Semiconductors Used in Solar Cells
Band Gap at S00K (eV) Direct or Indirect
Material
Cu S
1.2, i
Cu Se Cu Te ln 0
1.2, d ( ? ) U,d(?) 2.62, i
2
2
2
2
3
Direct
Structure and Parameters
1.11,i 2.16, i 2.25, i 1.43, d 1.34, d 2.42, d 1.7, d 1.44, d 1.01, d
2
CHEMISTRY
Use (Absorber/ Window)
Lattice (Ά)
A W W A A W A A A
d i a m o n d , a = 5.431 z i n c blende, ο = 5.661 z i n c blende, a = 5.451 z i n c blende, α = 5.654 z i n c blende, a = 5.869 w u r t z i t e , ο = 4.137, c = 6.716 w u r t z i t e , α = 4.29, c = 7.03 z i n c blende, a= 6.488 c h a l c o p y r i t e , a = 5.78, c = 11.60 orthorhombic (chalcocite),a = 11.86, b = 27.32, c = 13.49 fee ( f l u o r i t e ) , a = 5.75 h e x a g o n a l , a = 12.5, b = 21.7 b . c . c , a = 10.11
and Indirect Band
A A A W
Gap
A p a r t f r o m t h e e n e r g y of the f o r b i d d e n gap, the n a t u r e of t h e a b s o r p t i o n process, d i r e c t o r i n d i r e c t , is a n i m p o r t a n t c o n s i d e r a t i o n i n the s e l e c t i o n of a s e m i c o n d u c t o r
(Figure 7).
I n indirect gap materials the
l o w e s t c o n d u c t i o n b a n d m i n i m u m lies at a m o m e n t u m different f r o m t h e v a l e n c e b a n d m a x i m u m . O n l y a p h o t o n hv is r e q u i r e d f o r e x c i t a t i o n of a n e l e c t r o n f r o m the v a l e n c e to the c o n d u c t i o n b a n d i n the d i r e c t - g a p case. W i t h a n i n d i r e c t g a p t h e t r a n s i t i o n takes p l a c e o n l y w h e n assisted b y a p h o n o n hp, the q u a n t u m of l a t t i c e v i b r a t i o n . A l t h o u g h the t y p i c a l e n e r g y of a p h o n o n is s m a l l ( ~ 0 . 0 5 m e V ) ,
its m o m e n t u m ,
l a r g e i n c o m p a r i s o n w i t h that of a p h o t o n , ~
is
~h/a,
h/λ ( w h e r e a is the c r y s t a l
l a t t i c e p a r a m e t e r , λ the w a v e l e n g t h of t h e a b s o r b e d l i g h t ) . T h e a b s o r p t i o n of the p h o t o n c a n b e a c c o m p a n i e d b y e i t h e r a b s o r p t i o n (as d e p i c t e d i n F i g u r e 7 ) o r e m i s s i o n of p h o n o n s .
I n e i t h e r case, t h e n e e d f o r p h o n o n
assistance g r e a t l y reduces the t r a n s i t i o n p r o b a b i l i t y a n d therefore
the
a b s o r p t i o n coefficient a f o r the i n c i d e n t l i g h t . A t t e n u a t i n g t h e l i g h t to 1/e of its i n i t i a l i n t e n s i t y r e q u i r e s a p a t h l e n g t h ( t h e a b s o r p t i o n l e n g t h 1/a)
w h i c h is greater f o r i n d i r e c t g a p t h a n f o r d i r e c t g a p m a t e r i a l s .
T h i s difference is i l l u s t r a t e d i n F i g u r e 8 w i t h t h e a b s o r p t i o n curves f o r a t y p i c a l d i r e c t ( I n P ) (20, 21) a n d a t y p i c a l i n d i r e c t ( S i ) (22,23) conductor.
In InP ( E
g
=
1.34 e V , A = g
hc/E
g
t h a n 1 μπι f o r a n y p h o t o n e n e r g y a b o v e E . g
1.12 μπι)
1/a is 1 0 0 μ α ι at λ =
=
semi
0.93 /xm) 1/a is s m a l l e r
I n S i (E = g
1.11 e V , k
g
=
1 /xm w h i l e i t approaches 1 /xm, t h e v a l u e
t y p i c a l f o r d i r e c t gaps, o n l y at a w a v e l e n g t h of 0.5 /xm.
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
WAGNER
Photovoltaic
Sofor Cells CB
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
DIRECT GAP
INDIRECT GAP
Figure 7. Absorption of a photon in (a) a direct gap semiconductor and (b) an indirect gap semiconductor with phonon assistance PHOTON ENERGY (eV)
0.5
1.0 WAVELENGTH (μπι)
Figure 8. Absorption coefficient (a) and absorption length (1/a) for a typical direct-gap semiconductor, InP, and a typical indirect gap semiconductor, Si (63)
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
122
SOLID STATE
CHEMISTRY
Photocurrent I n solar cells m a d e of d i r e c t - g a p s e m i c o n d u c t o r s
the p-n
junction
c a n b e p o s i t i o n e d s u c h t h a t a l l t h e i n c i d e n t l i g h t is a b s o r b e d vicinity.
A s a result, photogenerated
i n its
m i n o r i t y carriers n e e d n o t t r a v e l
f a r t h e r t h a n a f e w m i c r o m e t e r s to cross the j u n c t i o n space charge. I n a n i n d i r e c t - g a p m a t e r i a l l i k e S i the a b s o r p t i o n takes p l a c e w i t h i n a s l a b ~ 100 i o n t h i c k .
M i n o r i t y carriers m u s t t r a v e l o v e r lengths of u p
to
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
100 /xm t o r e a c h t h e j u n c t i o n . I t is v e r y expensive t o p r o d u c e s i l i c o n of a q u a l i t y p e r m i t t i n g m i n o r i t y carriers t o diffuse o v e r this distance i n s t e a d of r e c o m b i n i n g w i t h a m a j o r i t y c a r r i e r . S o l a r g r a d e s i l i c o n m u s t b e
of
h i g h p u r i t y a n d c r y s t a l l i n e p e r f e c t i o n . M a n y i m p u r i t i e s , other t h a n those i n t e n d e d as d o p a n t s , a n d i m p e r f e c t i o n s r e d u c e t h e m i n o r i t y c a r r i e r l i f e time τ , the t i m e the d e n s i t y of p h o t o e x c i t e d c a r r i e r d e c a y s to 1/e of its i n i t i a l v a l u e . D u r i n g its l i f e the m i n o r i t y c a r r i e r diffuses, u n d e r its o w n c o n c e n t r a t i o n g r a d i e n t , t o w a r d t h e j u n c t i o n . I f its l i f e t i m e is t o o short, its d i f f u s i o n l e n g t h w i l l b e too short. I t w i l l not r e a c h the j u n c t i o n a n d w i l l therefore n o t flow t h r o u g h the e x t e r n a l c i r c u i t . S e v e r a l r e c o m b i n a t i o n processes p a r t i c i p a t e i n l i m i t i n g the l i f e t i m e of a c a r r i e r :
P r e s e n t l y i t suffices t o c o n s i d e r o n l y t w o of these. b i n a t i o n is t h e reverse of the e x c i t a t i o n process.
Band-to-band recom
I f i t is t h e o n l y r e c o m
bination m e c h a n i s m operating, the highest lifetime achievable for a g i v e n m a t e r i a l is o b t a i n e d .
I n direct materials band-to-band
recombination
a n d also r e c o m b i n a t i o n t h r o u g h e l e c t r o n i c levels associated w i t h c r y s t a l line imperfections
or i m p u r i t i e s h a v e h i g h p r o b a b i l i t y a n d l e a d to
r e l a t i v e l y short l i f e t i m e of
~ 10 ns.
a
I n indirect materials i t requires
assistance b y p h o n o n s a n d thus p e r m i t s l o n g c a r r i e r l i f e , ~ 10 /xs.
These
t y p i c a l l i f e t i m e s are o r d e r - o f - m a g n i t u d e v a l u e s b e c a u s e t h e y d e p e n d
on
t h e d e n s i t y of m a j o r i t y carriers ( w i t h o n e of w h o m t h e m i n o r i t y c a r r i e r is to r e c o m b i n e ) .
T h e carrier diffusion length
is p r o p o r t i o n a l t o t h e s q u a r e r o o t of the c a r r i e r l i f e t i m e a n d is therefore t y p i c a l l y one t o t w o orders of m a g n i t u d e s l a r g e r f o r i n d i r e c t t h a n f o r d i r e c t m a t e r i a l . ( L is also l a r g e r f o r electrons t h a n f o r holes since i n m o s t s e m i c o n d u c t o r s t h e e l e c t r o n m o b i l i t y is 1 0 - 1 0 0 times greater t h a n t h a t of h o l e s . ) O n one h a n d , t h e l o n g e r i n d i r e c t d i f f u s i o n l e n g t h appears to
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
6.
WAGNER
compensate
Photovoltaic
Sohr
123
Cells
for the equally longer indirect absorption length.
O n the
o t h e r h a n d , t h e d i f f u s i o n l e n g t h i n i n d i r e c t g a p m a t e r i a l s is m o r e suscep t i b l e to i m p u r i t i e s a n d defects w h i c h i n t r o d u c e e l e c t r o n i c levels n e a r the center of the b a n d g a p a n d p r o m o t e r e c o m b i n a t i o n b y alternate e m i s s i o n of holes a n d electrons.
T h e a p p r o p r i a t e l i f e t i m e T is i n v e r s e l y p r o p o r t
t i o n a l to t h e c o n c e n t r a t i o n of these defects i V . t
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
T t
~"
1_ N Va t
t
( H e r e ν is the t h e r m a l v e l o c i t y of c h a r g e c a r r i e r s , a n d σ t h e r e c o m b i n a 4
t i o n cross s e c t i o n of t h e p a r t i c i p a t i n g defect. )
H i g h defect density a n d
associated e l e c t r i c fields m a k e g r a i n b o u n d a r i e s effective sinks f o r m i n o r i t y carriers. F o r efficient c u r r e n t c o l l e c t i o n i n d i r e c t g a p m a t e r i a l s m u s t c o n t a i n s i n g l e crystals l a r g e r t h a n ~ 100 t o n . G r a i n s i n d i r e c t g a p m a t e r i a l s need not be larger than a f e w micrometers.
F o r this r e a s o n p o l y c r y s t a l -
l i n e cells i n t h i n film f o r m are a n a t t r a c t i v e a l t e r n a t i v e w h e n p r e p a r e d f r o m direct gap materials. F r e e surfaces are t o a n e v e n greater extent t h a n g r a i n b o u n d a r i e s sites of h i g h d e f e c t d e n s i t y i V . B e c a u s e of the l a r g e v a l u e s of iV t e n c o u n Bt
8
t e r e d , the l i f e t i m e f o r a m i n o r i t y c a r r i e r r e a c h i n g t h e surface, τ
β ί
=
l / i V u a , is so short that t h e surface c a n b e a s i n k f o r m i n o r i t y c a r r i e r s e t
e t
a l m o s t as effective as a p - n j u n c t i o n . T h e effect of free surfaces c a n b e r e d u c e d i n several ways.
T h e surface c a n b e p a s s i v a t e d , i.e., p r o v i d e d
w i t h a c o a t i n g w h i c h reduces N t h i n film of S i 0
2
8 t
. S i l i c o n cells c a n b e c o v e r e d w i t h a
g r o w n b y t h e r m a l o x i d a t i o n . T h e p-n
junction can be
m o v e d close to t h e surface so t h a t f e w photons are a b s o r b e d b e t w e e n the s u r f a c e a n d t h e j u n c t i o n , a n d o n l y a s m a l l f r a c t i o n of carriers is susceptible to surface r e c o m b i n a t i o n .
photogenerated
I n c r e a s i n g resistance of
t h e t h i n l a y e r b e t w e e n the p - n j u n c t i o n a n d t h e s u r f a c e imposes a p r a c t i c a l l i m i t to this m e t h o d of r e d u c i n g the f r a c t i o n of p h o t o c u r r e n t lost b y surface r e c o m b i n a t i o n .
M e t a l contacts to t h e f r o n t of the solar c e l l are
s p a c e d to a l l o w i l l u m i n a t i o n of t h e s e m i c o n d u c t o r .
T o r e a c h these c o n
tacts c u r r e n t i n t h e t o p l a y e r flows p a r a l l e l to t h e p-n p-n
junction.
When
junctions are s h a l l o w e r t h a n ~ 1 t o n , resistance loss i n the t o p l a y e r
leads to a r e d u c e d fill factor a n d m a y o u t w e i g h the g a i n i n p h o t o c u r r e n t . A n a d d i t i o n a l d r a w b a c k of this a p p r o a c h lies i n the difficult t e c h n o l o g y of p r e p a r i n g v e r y s h a l l o w junctions w i t h r e p r o d u c i b l y h i g h solar effi ciency.
I r r e p r o d u c i b i l i t y has p l a g u e d h o m o d i o d e cells m a d e of i n d i r e c t
g a p ( S i ) a n d d i r e c t g a p [ G a A s (24),
InP (25)]
m a t e r i a l s . I n S i this
p r o b l e m has b e e n l a r g e l y o v e r c o m e b y efficient use of t h e l a r g e f r a c t i o n of t h e p h o t o c u r r e n t g e n e r a t e d b e l o w the p-n
j u n c t i o n of this i n d i r e c t g a p
m a t e r i a l , a n d b y i n t r o d u c t i o n of e l e c t r i c a l fields i n the b u l k regions
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
(26).
124
SOLID S T A T E
Heterodiodes
and Schottky
Barrier
I n direct-gap semiconductors w i t h heterodiodes
Diodes
h i g h efficiencies
a n d S c h o t t k y b a r r i e r diodes.
gap semiconductor
CHEMISTRY
i n a heterodiode
have been
reached
Ideally the large-band-
s h o u l d n o t a b s o r b solar l i g h t .
s h o u l d act solely as a w i n d o w t h r o u g h w h i c h l i g h t penetrates to a b s o r b e d b y the s m a l l - g a p s e m i c o n d u c t o r .
I n t r u e heterodiodes t h e space
c h a r g e lies at the i n t e r f a c e b e t w e e n t h e t w o s e m i c o n d u c t o r s of Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
conductivity type. nCdS
(27),
It be
opposite
E x a m p l e s are p G a A s / n A l A s , p l n P / n C d S , p C d T e /
p C u S / n C d S , p C u I n S e / n C d S (28), 2
2
a b s o r b i n g s m a l l - g a p s e m i c o n d u c t o r is w r i t t e n
(by
first).
convention,
the
A heteroface
cell
contains a h o m o d i o d e w i t h a s h a l l o w j u n c t i o n that is p a s s i v a t e d w i t h a large-gap semiconductor.
T h e p r o m i n e n t e x a m p l e f o r this t y p e is t h e
n G a A s / p G a A s / p A U G a i - û A s (13, 29, 30)
c e l l w h i c h has r e a c h e d efficien
cies as h i g h as 2 1 % . M a n y combinations between able for heterodiode
semiconductors
are p o t e n t i a l l y a v a i l
cells. H i g h solar efficiency c a n b e e x p e c t e d f o r a
s m a l l e r n u m b e r of t r u e heterodiodes ments t h e i r c o m p o n e n t s
b e c a u s e of t h e n u m e r o u s r e q u i r e
h a v e to m e e t (31, 32).
T h e small-gap material
m u s t b e i n the o p t i m u m r a n g e f o r h i g h efficiency, 1.0-1.5 e V . It m u s t b e c o m b i n e d w i t h a l a r g e - g a p m a t e r i a l of o p p o s i t e c o n d u c t i v i t y t y p e . (E
g
= 2.42 e V ) is u s e d as a " w i n d o w " i n several heterodiodes.
CdS
Because
of s e l f - c o m p e n s a t i o n of a c c e p t o r i m p u r i t i e s , i t c a n b e m a d e o n l y n - t y p e a n d thus u s u a l l y r e q u i r e s p - t y p e partners. A n o t h e r i m p o r t a n t c o n d i t i o n is t h a t of m a t c h i n g l a t t i c e structures a n d i n t e r a t o m i c distances.
For
instance, G a A s a n d A l A s b o t h h a v e z i n c b l e n d e structures w i t h a differ ence i n l a t t i c e parameters of o n l y 0 . 1 2 %
at r o o m t e m p e r a t u r e .
(Ill)
p l a n e s of z i n c b l e n d e t y p e I n P a n d ( 0 0 0 1 ) of w u r t z i t e C d S m a t c h t o within 0.32%.
Unsaturated ("dangling")
bonds resulting from lattice
m i s m a t c h l e a d to a h i g h d e n s i t y of e l e c t r o n i c states of energies t h e b a n d gap.
within
T h e s e states, w h e n l o c a t e d i n the j u n c t i o n space c h a r g e ,
c a n act as r e c o m b i n a t i o n centers r a i s i n g I
0
and reducing V
o c
. T h e y can
also t r a p c h a r g e p e r m a n e n t l y , i n t r o d u c e a sheet of charge i n t h e i n t e r f a c e a n d t h e r e b y f o r m electrostatic barriers to t h e passage of
photocurrent.
A r e q u i r e m e n t m o r e precise t h a n t h a t f o r different c o n d u c t i v i t y t y p e is that the partners e x h i b i t a l a r g e difference
i n w o r k f u n c t i o n φι,
the
e n e r g y r e q u i r e d to m o v e a n e l e c t r o n f r o m t h e F e r m i t o t h e v a c u u m l e v e l . T h e d i f f u s i o n voltage V
D
of a h e t e r o d i o d e c o n s i s t i n g of materials A a n d Β
is =
I ΦΑ — ΦΒ|
a n d determines t h e m a x i m u m a t t a i n a b l e V lates to the e l e c t r o n affinity χ
ΐ9
o c
. Another requirement re
i.e., the p o t e n t i a l difference b e t w e e n the
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
6.
WAGNER
Photovoltaic
Solar
Cells
125
c o n d u c t i o n b a n d a n d the v a c u u m l e v e l , χ! of t h e partners has t o b e s u c h t h a t n o " s p i k e " o r " w e l l " is p r o d u c e d , at the interface, i n t h a t b a n d edge w h e r e t h e p h o t o - g e n e r a t e d m i n o r i t y carriers flow. I t m a y a p p e a r t h a t these c o n d i t i o n s , s o m e of w h i c h c a n b e r e l a x e d i n specific devices, are so n u m e r o u s a n d s t r i n g e n t as to b e p r o h i b i t i v e . H o w e v e r , heterodiodes h a v e b e e n t h e m a i n v e h i c l e s f o r the i n c o r p o r a t i o n of d i r e c t g a p s e m i c o n d u c t o r s i n solar cells, b o t h for h i g h efficiency ( e.g., G a A s / A U G a x . ^ A s ) a n d f o r t h i n - f i l m cells (e.g., C u S / C d S ) . T h e r e f o r e , Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
2
r e s e a r c h i n this field is i n t e n s i v e . I n a b r o a d sense, S c h o t t k y b a r r i e r s are also heterodiodes
since
a
space charge is e s t a b l i s h e d at the i n t e r f a c e b e t w e e n t w o m a t e r i a l s . T h e space c h a r g e resides e x c l u s i v e l y i n t h e s e m i c o n d u c t o r since t h e m e t a l w i t h its h i g h c o n c e n t r a t i o n of free electrons c a n n o t s u p p o r t a n e l e c t r i c field.
I n i d e a l S c h o t t k y b a r r i e r diodes t h e b a n d b e n d i n g is e q u a l to the
difference b e t w e e n the w o r k f u n c t i o n s φ of the s e m i c o n d u c t o r a n d t h e Ι
m e t a l . T y p i c a l m e t a l / s e m i c o n d u c t o r c o m b i n a t i o n s are A u (11) ( h i g h φ ) o n n - G a A s ( l o w φ) a n d A l (33) φ).
or C r (7)
or P t
(8)
( l o w φ) o n p - S i ( h i g h
B e c a u s e of e l e c t r o n i c states i n the b a n d g a p at the m e t a l / s e m i c o n -
d u c t o r i n t e r f a c e , the b u i l t - i n v o l t a g e is n e a r l y i n d e p e n d e n t of φπιβίβΐ f o r b a r r i e r s or s e m i c o n d u c t o r s w i t h E £ 2 e V . T h e s e e l e c t r o n i c states " p i n " g
the b a n d edges at the interface b y r e l e a s i n g or p i c k i n g u p charge. p i n n i n g reduces V
D
The
f r o m the i d e a l v a l u e w h i c h i n t u r n results i n l o w V
o c
.
N e v e r t h e l e s s , h i g h efficiencies h a v e b e e n o b t a i n e d w i t h v e r y t h i n
(50-
100 A ) m e t a l layers w h i c h a r e v i r t u a l l y t r a n s p a r e n t to solar l i g h t .
Such
S c h o t t k y b a r r i e r cells generate h i g h p h o t o c u r r e n t s because of efficient use o f the short w a v e l e n g t h p o r t i o n to w h i c h h o m o d i o d e s are c o m p a r a t i v e l y i n s e n s i t i v e b e c a u s e of surface r e c o m b i n a t i o n losses
(heterodiodes
are
i n s e n s i t i v e to short w a v e l e n g t h l i g h t because of a b s o r p t i o n i n the w i n d o w material). M e t a l - i n s u l a t o r - s e m i c o n d u c t o r ( M I S ) diodes represent a n a p p r o a c h t o w a r d i m p r o v e m e n t of V
o c
o v e r S c h o t t k y b a r r i e r cells (11,
The
34).
i n s u l a t o r f r e q u e n t l y is a n a t i v e o x i d e f o r m e d o n the s u r f a c e of s e m i c o n d u c t o r wafers ( S i , G a A s ) d u r i n g storage.
W h e n true Schottky barriers
are f o r m e d , this o x i d e l a y e r is c l e a n e d off b e f o r e the m e t a l film is d e p o s i t e d . F o r the f a b r i c a t i o n of M I S d i o d e s , i t is left o n t h e s e m i - c o n d u c tor. M I S cells e x h i b i t l a r g e r V increased V
o c
o c
t h a n s i m p l e S c h o t t k y b a r r i e r cells.
is t e n t a t i v e l y a s c r i b e d to e i t h e r a r e d u c t i o n i n I
Q
The
b y the
i n s u l a t o r or to a n a d d i t i o n a l voltage d r o p across the i n s u l a t o r o r i g i n a t i n g at c h a r g e t r a p p e d i n e l e c t r o n i c states t h a t reside at the i n s u l a t o r - s e m i c o n d u c t o r interface. T h e i n s u l a t o r c a n also r e d u c e t h e p h o t o c u r r e n t J . L
T h i c k n e s s a n d e l e c t r o n i c p r o p e r t i e s of the t h i n i n s u l a t o r films are c r i t i c a l f o r o p t i m u m tradeoff b e t w e e n i n c r e a s e d
and reduced Z . L
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
126
SOLID S T A T E C H E M I S T R Y
Table III.
Solar Cells* m ciency (%)
Single/ Polycryst.
Cell
Air Mass
Refer ence
0 0
85 S7 38 39
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
Silicon: pSi/nSi nSi/pSi nSi/pSi nSi/pSi nSi/pSi pSi/nSi pSi/nCdS pSi/nIn 0 pSi/Cr pSi/Al 2
Gallium
S S ribbon Ρ Ρ amorphous S S S s
3
6 15 10 1 6 2 5 6 8 8
40 ω 41 9,10 7 S3
arsenide:
s
pGaAs/nGaAs pGaAs/iiAlAs p n G a A s / p A l j j G a i . »As nGaAs/pGaP pGaAs/nGaP nGaAs/Au(MIS) nGaAs/Pt Indium
s s s s s Ρ
11 19 21 8 7 15 5
s s Ρ
7 15 5
s Ρ
12 6
61 27
4 ~2 7 5 1 4 8 6 2 12 4
46 36 47 8 48 49 50 50 62 51 52
Π
4
13 42 43 11 8
phosphide:
plnP/nlnP plnP/nCdS plnP/nCdS Cadmium
2 2
25 U 45
telluride:
pCdTe/wCdS pCdTe/nCdS Semiconductors
containing
pCu S/nSi pCu S/nCdS pCu S/nCdS pCui.gSe/nGaAs pCui Se/nInP pCu Se/nCdSe pCu Te/nCdTe pCu Te/nCdTe pCuInSu/nCdS pCuInSe /nCdS pCuInSe /nCdS 2
2
2
8
2
2 2
2 2
transition
metals: S S Ρ Ρ Ρ Ρ s Ρ Ρ s Ρ
0 — — — — — —
1 —
"The layer on top of the cell is listed first for homodiodes; in heterodiodes the principal absorbing semiconductor is written first. Published efficiencies are rounded off to integers.
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
6.
WAGNER
Photovoltaic
Solar
127
Cells
T a b l e I I I presents a list of p u b l i s h e d p h o t o v o l t a i c solar cells w i t h d a t a a b o u t c r y s t a l l i n i t y , efficiency, a n d t e s t i n g c o n d i t i o n s .
Cells w i t h
m a x i m u m r e p o r t e d efficiencies are s h o w n i n a d d i t i o n t o the first r e p o r t e d silicon (35) and C u S / C d S (36)
cells.
2
Reduction
of Cost of Solar Cells
T h e o n l y solar cells t h a t are c o m m e r c i a l l y a v a i l a b l e are s i l i c o n h o m o -
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
diodes. T h e i r c a p i t a l cost p e r u n i t p o w e r d e l i v e r e d is a p p r o x i m a t e l y 100 t i m e s t h a t of c o n v e n t i o n a l p o w e r sources.
O n e reason f o r its h i g h cost
is the s m a l l v o l u m e of p r o d u c t i o n w h i c h does n o t p e r m i t e c o n o m y of scale. T h e p r i n c i p a l f a c t o r i n the h i g h p r i c e , h o w e v e r , is the n e e d f o r w a f e r s of h i g h l y p u r e a n d h i g h l y perfect m a t e r i a l . M e t a l l u r g i c a l - g r a d e S i is p r e p a r e d b y r e d u c t i o n of S i 0 t i o n i t is c o n v e r t e d t o S i H C l
3
2
w i t h C i n a r c furnaces. F o r p u r i f i c a
w h i c h is d i s t i l l e d .
Pure polycrystalline
s i l i c o n is t h e n o b t a i n e d b y p y r o l y s i s . S i n g l e crystals are p u l l e d b y the C z o c h r a l s k i m e t h o d f r o m t h e m e l t . T h e s i n g l e - c r y s t a l b o u l e s are c u t i n t o slices w h i c h are p o l i s h e d to r e m o v e m e c h a n i c a l d a m a g e .
T h e actual cell
f a b r i c a t i o n i n v o l v e s c o n t r o l l e d i n - d i f f u s i o n of a d o p a n t to f o r m a p - n j u n c t i o n , a p p l i c a t i o n of b a c k contact a n d f r o n t contact g r i d , a n d e v a p o r a t i o n of a n antireflection c o a t i n g . It is o b v i o u s t h a t t h e p r e s e n t - d a y m a n u f a c t u r e of S i c e l l p r o d u c e s s m a l l a c t i v e areas w h i l e b e i n g l a b o r - i n t e n s i v e . S e v e r a l strategies are b e i n g p u r s u e d t o r e d u c e c e l l costs.
T h e most
o b v i o u s is to raise t h e o u t p u t p e r c e l l a r e a b y i n c r e a s i n g c e l l efficiency, a n d b y u s i n g i n e x p e n s i v e collectors, o r concentrators, t o a c h i e v e h i g h e r p o w e r d e n s i t y . F i g u r e 9 presents a s c h e m a t i c of p o w e r c o n v e r s i o n losses occurring i n a typical Si cell (53). b y raising V
o c
T h e efficiency c a n s t i l l b e i m p r o v e d
( r e d u c i n g the v o l t a g e l o s s ) , b y m o r e efficient c o l l e c t i o n of
p h o t o - g e n e r a t e d carriers ( r e d u c i n g r e c o m b i n a t i o n l o s s ) , b y u s i n g b e t t e r m a t c h e d antireflection coatings, a n d b y r e d u c i n g series resistance.
At
best, one m i g h t d o u b l e t h e efficiency p e r u n i t a r e a , p r o b a b l y w i t h a s i m u l t a n e o u s increase i n m a n u f a c t u r i n g cost. I n e x p e n s i v e
concentrators
c o m b i n e d w i t h s m a l l a c t i v e c e l l area, i.e., large c o n c e n t r a t i o n ratios, are p r e s e n t l y u n d e r c o n s i d e r a t i o n for S i ( 5 4 )
and G a A s (55)
cells. S i n g l e -
c r y s t a l G a A s cells w h e n p r o d u c e d i n d i v i d u a l l y are e x p e c t e d to b e
con
s i d e r a b l y m o r e expensive t h a n S i cells b e c a u s e of t h e h i g h cost of G a A s w a f e r s ( a b o u t 10 times that of S i w a f e r s ) , a n d p a r t i c u l a r l y b e c a u s e m o s t G a A s - b a s e d cells are p r o d u c e d b y the v e r y expensive l i q u i d - p h a s e - e p i taxy method.
H o w e v e r , G a A s heterodiodes
have reached the highest
efficiency yet o b t a i n e d , a n d , c o m p a r e d w i t h S i , the efficiency of G a A s b a s e d c e l l is less affected
b y o p e r a t i o n at e l e v a t e d t e m p e r a t u r e , a n
i m p o r t a n t a d v a n t a g e for c o n c e n t r a t o r a p p l i c a t i o n s . T h e other a p p r o a c h t o w a r d less expensive solar energy is to r e d u c e t h e cost p e r c e l l area w h i l e r e t a i n i n g u s e f u l efficiency.
The two main
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
128
SOLID STATE
CHEMISTRY
IUU NOT ABSORBED (hv « Eg)
g 76 ABSORBED, BUT EXCESS ENERGY (hv -Eg) CONVERTED TO HEAT
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
ë £
44 38
BASIC FILL FACTOR (DIODE EQUATION]
LU Ο OC LU
°-
VOLTAGE LOSS (V /E ) oc
19 13 11 0 >
g
RECOMBINATION LOSS REFLECTION, SERIES RESISTANCE, FILL FACTOR OUTPUT POWER
Figure 9. Illustration of the principal contributions to power loss during photovoltaic conversion in a typical silicon cell ( 53 ) avenues are t h e d e v e l o p m e n t o f m e t h o d s f o r i n e x p e n s i v e g r o w t h o f s i n g l e crystals a n d t h e f a b r i c a t i o n o f p o l y c r y s t a l l i n e t h i n - f i l m cells. Silicon
ribbons
the edge-defined
2.5 c m w i d e a n d ~ 0.02 c m t h i c k c a n b e g r o w n b y
film-fed
t e c h n i q u e at rates o f ~ 2 c m / m i n ( 3 8 ) .
These
r i b b o n s e x h i b i t v e r y h i g h c r y s t a l l i n i t y ; solar cells u p t o 1 0 % efficient have been produced.
T h e t e c h n i q u e is b a s e d o n t h e c o n t r o l l e d s o l i d i f i c a
t i o n o f a r i b b o n o f m o l t e n s i l i c o n p u l l e d , w i t h a seed c r y s t a l , f r o m a slot l i k e c a p i l l a r y w h i c h is i m m e r s e d i n a s i l i c o n m e l t . T h i s process, w h i c h is a m e n a b l e t o a u t o m a t i o n , avoids t h e u s u a l s l i c i n g a n d p o l i s h i n g step. A s i m i l a r b u t less d e v e l o p e d t e c h n o l o g y is t h e d e n d r i t i c w e b g r o w t h f r o m s i l i c o n melts ( 5 6 ) . H e r e a ribbon is p u l l e d , w i t h o u t a d i e , b y t w o b o u n d i n g d e n d r i t e s w h o s e g r o w t h is started w i t h a seed. T h i n - f i l m p o l y c r y s t a l l i n e cells represent another a p p r o a c h t o cost r e d u c t i o n . P r o d u c t i o n o f t h e C u S / C d S cells, t h e best k n o w n
example
2
f o r s u c h cells ( 6 ) , t y p i c a l l y i n v o l v e s p r e p a r a t i o n o f a c o n d u c t i n g s u b strate, e.g., Z n - p l a t e d C u sheet, e v a p o r a t i o n o f a 2 0 - 4 0 / x m t h i c k C d S film,
a b r i e f e t c h o f t h e C d S f o l l o w e d b y a 10-sec d i p i n C u C l
2
solution
w h i c h forms a C u S l a y e r w i t h a f e w t h o u s a n d A thickness, a 2 - m i n a c t i v a 2
tion anneal i n a i r at 250°C;
finally,
c o n t a c t g r i d a n d a n t i - r e f l e c t i o n coat
i n g are p r o d u c e d , a n d a t r a n s p a r e n t c o v e r is a p p l i e d w i t h e p o x y r e s i n . This thin-film cell should b e amenable to highly automated production. A n o t h e r a d v a n t a g e is t h e e c o n o m i c a l u s e o f s e m i c o n d u c t o r s w h i c h m a y c o n t a i n c o m p a r a t i v e l y r a r e elements ( C d , G a , I n ) a n d w h i c h e v e n w h e n a b u n d a n t ( S i ) are expensive w h e n p u r i f i e d f o r solar use. H i g h e s t r e p o r t e d efficiencies f o r the C u S / C d S c e l l a r e ~ 7 % . 2
H i g h e r values a r e
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
6.
WAGNER
Photovoltaic
Solar
129
Cells
p r e d i c t e d f o r m o d i f i e d cells w h i c h c o n f o r m better to c e r t a i n r e q u i r e ments f o r i d e a l heterodiodes,
viz., lattice m a t c h a n d proper
electron
affinities; the a l l o y i n g of C d S w i t h Z n S has b e e n a step i n this d i r e c t i o n T h e C u S / C d S c e l l has b e e n p l a g u e d b y r a p i d d e g r a d a t i o n w h i l e
(47).
2
i n o p e r a t i o n . I t has b e e n p r o p o s e d to r e d u c e f a i l u r e c a u s e d b y r e a c t i o n of C u S w i t h a m b i e n t 0 2
a n d H 0 b y c a r e f u l e n c a p s u l a t i o n , a n d to a v o i d
2
2
e l e c t r o c h e m i c a l d e c o m p o s i t i o n of C u S u n d e r the cell's o w n
photovoltage
2
b y m a k i n g this s e m i c o n d u c t o r s t r i c t l y s t o i c h i o m e t r i c .
(57) Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
It is nevertheless d e s i r a b l e to d e v e l o p alternatives. I n t e r e s t i n g results have been
obtained w i t h polycrystalline Si homodiodes prepared
c h e m i c a l v a p o r d e p o s i t i o n (40).
by
T h e s m a l l c r y s t a l l i t e size, a n d to some
extent the c o m p a r a t i v e l y h i g h i m p u r i t y content, conflict w i t h t h e neces sity f o r l a r g e m i n o r i t y c a r r i e r d i f f u s i o n l e n g t h a n d h a v e l i m i t e d the effi c i e n c y to date to a b o u t
6%.
T h e C u I n S e / C d S (51) 2
a n d I n P / C d S (44)
heterodiodes
prepared
i n s i n g l e c r y s t a l f o r m i n or l a b o r a t o r y are a t t r a c t i v e c a n d i d a t e s f o r t h i n film
cells. A l t h o u g h the first t h i n - f i l m C u I n S e / C d S cells w i t h η — 2
4%
h a v e a l r e a d y b e e n p r o d u c e d ( 5 2 ) , w e h a v e f o c u s e d o u r a t t e n t i o n o n the I n P / C d S c e l l because of the greater e x p e r i e n c e a c c u m u l a t e d w i t h I n P . S i n g l e - c r y s t a l I n P / C d S cells are v e r y stable to d e g r a d a t i o n i n the atmos p h e r e . W e h a v e p r o d u c e d t h i n - f i l m I n P / C d S cells o n c a r b o n substrates. T h e efficiency of c u r r e n t p o l y c r y s t a l l i n e samples is 5 % . on V
o c
and J
expected
s c
However, based
of these e a r l y cells, efficiencies of at least 7 - 8 %
can be
(45).
F u t u r e efforts to p r o d u c e i n e x p e n s i v e solar cells w i l l go b e y o n d exist i n g m a t e r i a l s a n d processes.
F o r instance, a large n u m b e r of
semicon
d u c t o r s exist w h o s e b a n d g a p a n d c o n d u c t i v i t y h a v e n o t b e e n sufficiently c h a r a c t e r i z e d to p e r m i t a d e c i s i o n e v e n a b o u t t h e i r p o t e n t i a l usefulness i n solar cells ( 5 8 ) .
M a n y of these s e m i c o n d u c t o r s are c o m p o s e d of i n e x
p e n s i v e r a w m a t e r i a l s . P u r i f i c a t i o n to s o l a r - g r a d e s e m i c o n d u c t o r s , r e n t l y a n expensive methods.
step, w i l l h a v e to b e
c a r r i e d out b y
A n e x a m p l e is a u n i t c o m b i n i n g r e d u c t i o n of S i 0
2
cur
continuous to S i , r e a c
t i o n to S i F , d i s t i l l a t i o n of S i F , a n d d i s p r o p o r t i o n a t i o n to p u r e p o l y 2
2
c r y s t a l l i n e S i a n d to S i F
4
(59).
Conclusion W h i l e m u c h progress has b e e n m a d e i n a n a l y z i n g a n d i m p r o v i n g the p e r f o r m a n c e of solar cells, i t is not y e t possible to p r e d i c t m a t e r i a l s a n d processes for i n e x p e n s i v e converters.
T h e present s i t u a t i o n calls f o r
a n increase i n the n u m b e r of a v a i l a b l e options a n d f o r the of
new
production
techniques,
both
with
development
a substantial input
chemists.
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
from
130
SOLID STATE
CHEMISTRY
Nomenclature
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
A
diode factor
a, b, c
l a t t i c e p a r a m e t e r s ( c m or A )
D
n p
d i f f u s i o n coefficient of electrons i n p - t y p e m a t e r i a l ( c m s" )
D
p n
d i f f u s i o n coefficient of holes i n η-type m a t e r i a l ( c m s ' )
E
q
b a n d - g a p energy ( e V )
1
2
2
Ei
F e r m i level i n an intrinsic semiconductor ( e V )
E
n
F e r m i l e v e l i n a n η-type s e m i c o n d u c t o r ( e V )
E
p
1
F e r m i level i n a p-type semiconductor ( e V )
FF
f i l l factor, o r c u r v e f a c t o r
h
P l a n c k ' s constant ( 6.62 Χ 1 0 "
I
electrical current density ( A c m " )
Z
photocurrent density ( A c m " )
34
Js) 2
2
L
i p 0
/
operating current density ( A c m " ) 2
short c i r c u i t c u r r e n t d e n s i t y ( A c m " ) 2
8 C
ίο
reverse s a t u r a t i o n c u r r e n t d e n s i t y ( A c m " )
k
B o l t z m a n n ' s constant ( 1.380 Χ 1 0 "
2
23
J K" ) 1
L
diffusion length ( c m )
iV
c o n c e n t r a t i o n of i o n i z e d acceptors ( c m " )
N
A
0
3
effective d e n s i t y of states i n c o n d u c t i o n b a n d ( c m " ) 3
Ν
c o n c e n t r a t i o n of i o n i z e d donors ( c m " )
Ny
effective d e n s i t y of states i n v a l e n c e b a n d ( c m " )
iV t 8
d e n s i t y of surface r e c o m b i n a t i o n centers ( c m " )
iV
t
d e n s i t y of b u l k r e c o m b i n a t i o n centers ( c m " )
3
Ώ
3
2
3
η
c o n c e n t r a t i o n of electrons ( c m " )
Πι
carrier concentration i n an intrinsic semiconductor ( c m " )
tin
c o n c e n t r a t i o n of electrons i n η-type m a t e r i a l ( c m " )
P
3
i n
8
3
i n c i d e n t solar p o w e r flux ( W c m " ) 2
ρ
c o n c e n t r a t i o n of holes ( c m " )
PP
c o n c e n t r a t i o n of holes i n p - t y p e m a t e r i a l ( c m " )
q
e l e c t r o n i c c h a r g e ( 1.60 χ 1 0 "
Rex
e x t e r n a l l o a d resistance ( Ω )
R
3
3
8
i n t e r n a l series resistance ( Ω )
Re!,
i n t e r n a l s h u n t resistance ( Ω )
Τ V
19
C )
temperature ( Κ ) D
diffusion voltage ( V )
Voc
open-circuit voltage ( V )
V
o p e r a t i n g voltage ( V )
o p
ν
t h e r m a l v e l o c i t y of charge carriers ( c m s * ) 1
χ
distance ( c m )
α
o p t i c a l a b s o r p t i o n coefficient ( c m " )
Ε
e l e c t r i c field ( V c m " )
1
1
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
6.
W A G N E R
Sohr
131
Cells
c
r e l a t i v e d i e l e c t r i c constant
€o
p e r m i t t i v i t y of free space ( 8.86 Χ 1 0 "
λ
wavelength ( c m )
ν
f r e q u e n c y ( s" )
ρ
density of charge ( C c m ' )
σ
14
f cm
- 1
)
1
3
c a p t u r e cross s e c t i o n of a surface defect ( c m ) 2
β ί
a
c a p t u r e cross s e c t i o n of a b u l k defect ( c m )
τ
l i f e t i m e of a c h a r g e c a r r i e r ( s )
τι
l i f e t i m e d e t e r m i n e d b y r e c o m b i n a t i o n of t y p e i ( s )
2
t
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
Photovoltaic
τ
l i f e t i m e o f electrons i n p - t y p e m a t e r i a l ( s )
η ρ
τρη r
l i f e t i m e of holes i n η-type m a t e r i a l ( s ) l i f e t i m e d e t e r m i n e d b y surface r e c o m b i n a t i o n ( s )
e t
φι
w o r k function of semiconductor i ( e V )
χι
e l e c t r o n affinity o f s e m i c o n d u c t o r i ( e V )
Literature
Cited
1. Sze, S. M., "Physics of Semiconductor Devices," Wiley-Interscience, New York, 1969. 2. Pankove, J. I., Optical Processes in Semiconductors," Prentice-Hall, Englewood Cliffs, N. J., 1971. 3. Hovel, H. J., "Solar Cells," Academic, New York, 1975. 4. Johnston, W. D., Callahan, W. M., Appl. Phys. Lett. (1976) 28, 150. 5. Wagner, S., Shay, J. L., Bachmann, K. J., Buehler, E., Appl. Phys. Lett. (1975) 26, 229. 6. Rothwarf, A., Böer, K. W., Prog. Solid State Chem. (1975) 10, 71. 7. Anderson, W. Α., Delahoy, A. E., Milano, R. Α., J. Appl. Phys. (1974) 45, 3913; and unpublished results. 8. Vohl, P., Perkins, D. M., Ellis, S. G., Addiss, R. R., Hui, W., Noel, G., IEEE Trans. Electron Devices (1967) ED-14, 26. 9. Matsunami, H., Oo, K., Ito, H., Tanaka, T., Jpn. J. Appl. Phys. (1975) 14, 915. 10. Lai, S. W., Franz, S. L., Kent, G., Anderson, R. L., Clifton, J. K., Masi, J. V., See ?roc. IEEE Conf. Rec. Photovoltaic Specialists Conference, 11, Scottsdale, Arizona, May 6-8, 1975, IEEE, New York, 1975, p 398. 11. Stirn, R. J., Yeh, Y. C. M., Appl. Phys. Lett. (1975) 27, 95. 12. D'Aiello, R. V., Robinson, P. H., Kressel, H., Tech. Dig. Intern. Electron Devices Mtg., Washington, D. C., December 1-3, 1975. IEEE, New York, 1975, p. 335. 13. James, L. W., Moon, R. L., IEEE Conf. Rec. Photovoltaic Specialists, 11, Scottsdale, Arizona, May 6-8, 1975, IEEE, New York, 1975, p. 402. 14. Moon, P., J. Franklin Inst. (1940 ) 230, 583. 15. Gates, D. M., Science (1966) 151, 523. 16. Prince, M. B., J. Appl. Phys. (1955) 26, 534. 17. Loferski, J. J., J. Appl. Phys. (1956) 27, 777. 18. Halsted, R. E., J. Appl. Phys. (1957) 28, 1131. 19. Shockley, W., Queisser, H. J., J. Appl. Phys. (1961) 32, 510. 20. Turner, W. J., Reese, W. E., Pettit, G. D., Phys. Rev. (1964) 136A, 1467. 21. Emlin, R. V., Zverev, L. P., Rut, Ο. E., Sov. Phys. Semicond. (1974) 8, 796. 22. Dash, W. C., Newman, R., Phys. Rev. (1955) 99, 1151. 23. Philipp, H . R., Taft, Ε. Α., Phys. Rev. Lett. (1962) 8, 13.
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
132
SOLID STATE CHEMISTRY
24. Gobat, A. R., Lamorte, M . F., McIver, G. W., IRE Trans.Mil.Electron. (1962) 6, 20. 25. Galavanov, V. V., Nasledov, D. M., Sov. Phys. Solid State (1967) 8, 2723. 26. Ellis, B., Moss, S. T., Solid-State Electron. (1970) 13, 1. 27. Bonnet, D., Rabenhorst, H., IEEE Conf. Rec. Photovoltaic Specialists, 9, Silver Spring, Maryland, 1972, IEEE, New York, 1972, p. 129. 28. Wagner, S., Shay, J. L., Migliorato, P., Kasper, H . M., Appl. Phys. Lett. (1974) 25, 434. 29. Alfërov, Zh. I., Andreev, V. M., Kagan, M. B., Protasov, I.I., Trofim, V. G., Sov. Phys. Semicond. (1971) 4, 2047. 30. Hovel, H. J., Woodall, J. M., J. Electrochem. Soc. (1973) 120, 1246. 31. Milnes, A. G., Feucht, D. L., "Heterojunctions and Metal-Semiconductor Junctions," Academic, New York, 1972. 32. Sharma, B. L., Purohit, R. K., "Semiconductor Heterojunctions," Pergamon, New York, 1974. 33. Charlson, E. J., Lien, J. C., J. Appl. Phys. (1975) 46, 3982. 34. Fonash, S. J., J. Appl. Phys. (1975) 45, 1286. 35. Chapin, D. M., Fuller, C. S., Pearson, G. L., J. Appl. Phys. (1954) 25, 676. 36. Reynolds, D. C., Leies, G., Antes, L. L., Marburger, R. E., Phys. Rev. (1954) 96, 533. 37. Arndt, R. Α., Allison, J. F. Haynos, J. G., Meulenberg, Α., IEEE Conf. Rec. Photovoltaic Specialists, 11, Scottsdale, Arizona, May 6-8, 1975, IEEE, New York, 1975, 40. 38. Ravi, Κ. V., Serreze, Η. B., Bates, Η. E., Morrison, A. D., Jewett, D. J., Ho, J. C. T., IEEE Conf. Rec. Photovoltaic Specialists, 11, Scottsdale, Arizona, May 6-8, 1975, IEEE, New York, 1975, p. 280. 39. Heaps, J. D., Tufte, Ο. N., Nussbaum, Α., IRE Trans. Electron Devices (1961) ED-8, 560. 40. Chu, T. L., J. Vac. Sci. Technol. (1975) 12, 912; and unpublished results. 41. Okimura, H., Kawakami, M., Sahai, Y., Jpn. J. Appl. Phys. (1967) 6, 908. 42. Alfërov, Zh. I., Zimogorova, N . S., Trukan, M . K., Tuchkevich, V. M., Sov. Phys. Solid State (1965) 7, 990. 43. Purohit, R. K., Phys. Status Solidi (1967) 24, K57. 44. Shay, J. L., Wagner, S., Bachmann, K. J., Buehler, E., J. Appl. Phys. (1976) 47, 614; and unpublished results. 45. Bachmann, K. J., Buehler, E., Shay, J. L., Wagner, S., Appl. Phys. Lett. (1976) 29, 121; and unpublished results. 46. Drozdov, V. Α., Mel'nikov, M. M., Sov. Phys. Semicond. (1973) 7, 801. 47. Palz, W., Besson, J., Nguyen Duy, T., Vedel, J., IEEE Conf. Rec. Photo voltaic Specialists, 10, Palo Alto, California, November 13-15, 1973, IEEE, New York, 1974, p. 69. 48. Fischer, H., Ph.D. Thesis, Technische Universität Braunschweig, Germany, 1970. 49. Komashchenko, V. N., Fedorus, G. Α., Ukr. Fiz. Zh. (1968) 13, 688. 50. Cusano, D. Α., Solid State Electron. (1963) 6, 217. 51. Shay, J. L., Wagner, S., Kasper, Η. M., Appl. Phys. Lett. (1975) 27, 89. 52. Kazmerski, L. L., White, F. R., Morgan, G. K., Appl. Phys. Lett. (1976) 29, 268. 53. Wolf, M., IEEE Conf. Rec. Photovoltaic Specialists, 10, Palo Alto, Cali fornia, November 13-15, 1973, IEEE, New York, 1974, p. 5. 54. Dean, R. H., Napoli, L. S., Liu, S. G., RCA Rev. (1975) 36, 324. 55. James, L. W., Tech. Dig. Intern. Electron. Device Mtg., Wash., D. C., December 1-3, 1975, IEEE, New York, 1975, p. 87. 56. Seidensticker, R. G., Scudder, L., Brandhorst, H . W., Jr., IEEE Conf. Rec. Photovoltaic Specialists, 11, Scottsdale, Arizona, May 6-8, 1975, IEEE, New York, 1975, p. 299.
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch006
6. WAGNER Photovoltaic Solar Cells
133
57. Besson, J., Nguyen Duy, T., Gauthier, Α., Palz, W., Martin, C., Vedel, J., IEEE Conf. Rec. Photovoltaic Specialists, 11, Scottsdale, Arizona, May 6-8, 1975, IEEE, New York, 1975, p. 468. 58. Strehlow, W. H., Cook, E. L., J. Phys. Chem. Ref. Data (1973) 2, 163. 59. Wolf, M . , IEEE Conf. Rec. Photovoltaic Specialists, 11, Scottsdale, Ari zona, May 6-8, 1975, IEEE, New York, 1975, p. 306. 60. Carlson, D. E., Wronski, C. R., Appl. Phys. Lett. (1976) 28, 671. 61. Yamaguchi, K., Matsumoto, H., Nakayama, N., Ikegami, S., Jpn. J. Appl. Phys. (1976) 15, 1575. 62. Kazmerski, L. L., White, F. R., Ayyagari, M . S., Juang, Y. J., Patterson, R. R., J. Vac. Sci. Technol., to be published. 63. Wagner, S., J. Cryst. Growth (1975) 31, 113. RECEIVED July 27, 1976.
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.