1 Chemistry and Physiology of Conjugates of
Downloaded via 5.188.217.40 on July 10, 2018 at 13:16:19 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
Indole-3-Acetic
Acid
ROBERT S. BANDURSKI Department of Botany and Plant Pathology, Michigan State University, East Lansing, MI 48824 Auxins are hormones t h a t promote p l a n t growth. They occur n a t u r a l l y and, i n s t r u c t u r e , g e n e r a l l y possess a planar aromatic r i n g , an u n s u b s t i t u t e d , or e l e c t r o n e g a t i v e l y s u b s t i t u t e d p o s i t i o n ortho to a side chain o f , at l e a s t , two carbons, and w i t h a c a r boxyl group on the s i d e chain 2_). Examples of auxins are i n d o l e - 3 - a c e t i c a c i d ( 3 J , p h e n y l a c e t i c a c i d ( 4 J , and 4 - c h l o r o i n d o l e - 3 - a c e t i c a c i d (_5, 6). Knowledge o f the s t r u c t u r e o f i n d o l e - 3 - a c e t i c acid--IAA--(7_) l e d to the chemical p l a n t growth r e g u l a t o r i n d u s t r y w i t h annual a g r i c u l t u r a l savings i n Michigan alone equal to the cost o f a l l U . S . financed plant hormone research. U t i l i z a t i o n of auxins date to a n t i q u i t y , as f o r example, the use of germinating seeds to promote r o o t i n g o f c u t t i n g s ( 8 ) . The d i s c o v e r y of hormones i n roots by the P o l i s h h o r t i c u l t u r a l i s t , T e o f i l C i e s i e l s k i {9) and i n shoots by the B r i t i s h n a t u r a l i s t , Charles Darwin (lOJ was made one century ago. They observed t h a t the t i p o f the root or shoot c o n t r o l l e d growth of the t i s s u e some distance from the t i p . Thus, an " i n f l u e n c e " must have d i f f u s e d from t i p to growing r e g i o n . S i x t y years l a t e r , F.W. Went developed the "Avena curvature t e s t " f o r the " i n f l u e n c e " (3)* and Bonner developed the " s t r a i g h t growth assay" (11,). These t e c h niques plus knowledge that tryptophan could be converted to auxin i n fungal c u l t u r e s (12) and t h a t "precursors" i n seeds could be converted to auxins by a l k a l i n e h y d r o l y s i s (13^, 14_, 15_, 16_) l e d to knowledge o f the s t r u c t u r e o f IAA (7_). We s t r e s s these assays because, w h i l e l e a d i n g to the d i s covery o f IAA, they imposed s t r u c t u r e - a c t i v i t y requirements prec l u d i n g study of the IAA conjugates—and p o s s i b l y the d i s c o v e r y o f other a u x i n s . For a substance to be a c t i v e i n the assays r e q u i r e d t h a t they: 1) permeate membranes i n a cut t i s s u e s u r f a c e , 2) be transported to the growing zone, and 3) promote growth i n t h a t zone. Hopefully these three requirements may someday be s t u d i e d independently. The b i o l o g i c a l e f f e c t s o f the auxins are d i v e r s e and range from r a p i d e f f e c t s , u s u a l l y growth promotion and o c c u r r i n g w i t h i n 0-8412-0518-3/79/47-lll-001$05.00/0 © 1979 American Chemical Society Mandava; Plant Growth Substances ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
2
PLANT GROWTH SUBSTANCES
minutes, to growth d i f f e r e n t i a t i o n , obvious o n l y i n days ( 1 7 ) . How IAA can e l i c i t profound changes i n the s i z e and form o f a p l a n t i s t o t a l l y unknown. At the c e l l u l a r l e v e l i t i s known t h a t the p l a n t c e l l w a l l s must be "softened" f o r growth promotion to occur ( c f . 1 8 ) . Such e f f e c t s , however, may be concomitants o f growth and not the "primary" e f f e c t s of auxin ( 1 9 J . We suggest t h a t research d i r e c t e d towards c o r r e l a t i n g and developing b i o l o g i c a l and physiochemical assays o f the a u x i n s , s t r u c t u r a l c h a r a c t e r i z a t i o n o f auxins and auxin conjugates and s t u d i e s of what permits auxins to move to d i f f e r e n t parts o f the p l a n t and, perhaps s e l e c t i v e l y i n t o d i f f e r e n t o r g a n e l l e s , w i l l be p r o d u c t i v e approaches. Thus, I s h a l l confine my remarks t o , 1) the chemistry o f IAA conjugates, 2) the q u a n t i t a t i v e assay o f IAA and i t s conjugates, 3) the "turnover" o f the i n d o l y l i c compounds of the p l a n t , 4) an i n d i c a t i o n of how knowledge of pool s i z e and turnover permitted i d e n t i f i c a t i o n o f the seed auxin p r e c u r s o r , 5) a demonstration o f the e q u i l i b r i u m between IAA and i t s conjugates, 6) a demonstration o f the p e r t u r b a b i l i t y o f the e q u i l i b r i u m and, l a s t l y , 7) a working hypothesis concerning how a hormonal homeos t a t i c system can be attuned to the environment. The
S t r u c t u r e and Concentrations o f Indoles o f Zea mays
Figure 1 summarizes the s t r u c t u r e s and c o n c e n t r a t i o n s o f the IAA conjugates o f the kernels o f corn {Zea mays), the only p l a n t to have been s t u d i e d i n d e t a i l . This work was done by my c o l leagues Drs. Labarca, N i c h o l l s , Ueda, P i s k o r n i k and Ehmann (2025). We have not detected a p p r e c i a b l e amide l i n k e d IAA i n Zea but there are three major c l a s s e s o f e s t e r s : the IAA-zm/tf-inositols, c o n s t i t u t i n g about 15%; the I A A - r a / o - i n o s i t o i g l y c o s i d e s , about 25%; and the high molecular weight IAA 31+4 g l u c a n , about 50% o f the t o t a l IAA. Free IAA, the 2 - 0 , 4-0 and 6-0 IAA glucose e s t e r s and the ( I A A ) i n o s i t o l s comprise the remainder. The v e g e t a t i v e t i s s u e of corn contains 300 yg/kg fresh weight o f e s t e r IAA and 30 yg/kg o f free IAA (26.). A major p o r t i o n o f the e s t e r s o f the shoot i s IAA-tfz?/o-inositol ( c f . 27 and Nowacki, u n p u b l i s h e d ) . The seeds o f oats {Avena sativa) have been s t u d i e d by Dr. P e r c i v a l and shown to have 85% of t h e i r IAA e s t e r i f i e d to a g l u c o p r o t e i n ( 2 8 ) . The glucan i s o f the l i c h e n a n type having both 31+3 and 31+4 l i n k a g e s . R e c e n t l y , Ms. P. Hall i n our l a b o r a t o r y (personal communication) has i s o l a t e d I AA-mz/c-inositol from r i c e (Oryza sativa) thus showing the compound o r i g i n a t e d e a r l y i n cereal e v o l u t i o n . This completes our knowledge o f the chemistry o f the n a t u r a l l y o c c u r r i n g IAA conjugates. IAA-aspartate i s known to be formed f o l l o w i n g exogenous a p p l i c a t i o n o f IAA to p l a n t s o f Pisum sativum and was the f i r s t IAA conjugate to be s t r u c t u r a l l y chara c t e r i z e d ( 2 9 J . There are some data i n d i c a t i n g t h a t IAA-aspartate occurs n a t u r a l l y ( 3 0 ) . In a d d i t i o n , 1-0 g l u c o s y l IAA has been reported to be formed f o l l o w i n g a p p l i c a t i o n o f IAA to p l a n t s (31). n
Mandava; Plant Growth Substances ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
1.
BANDURSKi
3
Indole-3-Acetic Acid Conjugates
D e f i n i t i v e c h a r a c t e r i z a t i o n o f the b i o s y n t h e s i z e d 1-0 glucose e s t e r has not been published although the compound has been s y n t h e s i z e d c h e m i c a l l y (32). Q u a n t i t a t i v e data on the amounts o f free IAA, e s t e r IAA and amide l i n k e d IAA have been s u p p l i e d by Ms. A. Schulze (33). Her d a t a , shown i n Table I , permit several c o n c l u s i o n s : f i r s t , a l l plants examined c o n t a i n g r e a t e r amounts o f IAA conjugates than free IAA; secondly, the c e r e a l s c o n t a i n mainly e s t e r IAA; and, t h i r d l y , legumes c o n t a i n mainly amide l i n k e d IAA. The d i s c o v e r y by Ms. Schulze o f the u b i q u i t y o f IAA-conjugates convinced us that c o v a l e n t l y bonded hormone conjugates were of metabolic importance. E s p e c i a l l y s i g n i f i c a n t was the occur rence o f IAA conjugates i n seedlings where growth r a t e i s a func t i o n o f IAA c o n c e n t r a t i o n . We concluded t h a t , i f an e q u i l i b r i u m e x i s t s between IAA and i t s conjugates, then anything t h a t s h i f t s t h a t e q u i l i b r i u m would a f f e c t growth r a t e . To f u r t h e r study t h i s system f o r hormonal homeostasis two a d d i t i o n a l t h i n g s were r e q u i r e d , one, a more convenient and s e n s i t i v e assay f o r IAA and, two, knowledge of pool s i z e and turnover rates o f the i n d o l y l i c components o f the p l a n t . Methods o f Assay B i o - a s s a y s , i n the hands o f c a r e f u l workers ( c f . 3)> have provided almost a l l o f our knowledge of p l a n t hormonal metabolism. Such assays, however, measure a c t i v i t i e s o f e x t r a c t s and are not equatable to amounts o f a chemical e n t i t y . Thus, one must r e l y upon both chemical and b i o a s s a y s . With regard to chemical assays, i t i s our contention t h a t the planar i n d o l e s t r u c t u r e and the number o f π bonding e l e c t r o n s renders IAA so unstable t h a t r e c o v e r i e s w i l l be both low and v a r i a b l e thus making i n t e r n a l standards o b l i g a t o r y ( c f . 33, 3 4 ) . We f i r s t used C - I A A - i s o t o p e d i l u t i o n assays i n 1961 ( 3 5 j and r e f i n e d the assays i n 1974 ( 3 3 ) . The o r i g i n a l assays r e q u i r e d kilogram amounts o f t i s s u e and a week to o b t a i n a s i n g l e v a l u e . More r e c e n t l y we developed two new assay procedures which permit one assay i n a day or two o f work and r e q u i r e only 10 to 50 grams o f t i s s u e (36, 3 7 ) . Our assays are l a b o r i o u s but, i n t h i s e a r l y stage o f chemical assays o f IAA, such l a b o r may be d e s i r a b l e . One method i n v o l v e s the use of 4 , 5 , 6 , 7 t e t r a d e u t e r o - I A A , r e c e n t l y synthesized by Dr. V . Magnus ( 3 6 ) . There are two advan tages to use o f t h i s as an i n t e r n a l standard: f i r s t , the deu terium i n these p o s i t i o n s i s s t a b l e to the a l k a l i n e h y d r o l y s i s we use to assay the IAA i n the conjugates, and s e c o n d l y , the pre sence o f four deuterium i n the standard moves the ions o f the standard away from the isotope c l u s t e r normally observed i n mass spectrometry owing to the n a t u r a l l y o c c u r r i n g heavy i s o t o p e s . We add d^-IAA, plus a t r a c e o f C - I A A , to the acetone i n which we homogenize the p l a n t m a t e r i a l . Then, with or without a l k a l i n e h y d r o l y s i s , depending upon whether we wish to measure free or 14
1I+
Mandava; Plant Growth Substances ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Mandava; Plant Growth Substances ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
acid
)-myo-\inositol
5.6%
15.4
23.2%
15.2% 10.1
4.7%
0.8%
10.5%
PERCENT OF TOTAL
0.5
IN DRY SEED MG/KG
5-£-6-L-arabinopyranosyl-l-DL( i n d o l e - 3 - a c e t y l ) - m y o - \ nos i t o i
AMOUNT
17.6%
STRUCTURE
5-0-3-L-arabinopyranosyl-2-0( i n d o l e - 3 - a c e t y l ) - m y ο-Λnosi t o i
Indoleacetylinositoi-arabinosides
l-DL-(indole-3-acetyl
2-C-(indole-3-acetyl)-mz/o-inositoi
Indoleacetylinositols
Indole-3-acetic
COMPOUND
Ο Μ
•
Η
S d w
H
I
S
H
>
Mandava; Plant Growth Substances ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
compounds
toi
itoi
Figure 1.
(indole-3-acetyl)-glucan
LOW M . W . COMPOUNDS — TOTAL 3 1 4 c e l l u l o s i c glucan with 7 t o 50 g l u c o s e u n i t s p e r IAA
2
CHOH
0.05
47.6%
52.5% 35.0
0.3%
0.2
31.2
.1%
5.4
The structure and concentration of indolylic compounds in kernels of Zea mays
6-0-(indole-3-acetyl)-D-glucopyranose
4-0-(indole-3-acetyl)-0-glucopyranose
2-0-(indole-3-acetyl)-D-glucopyranose
Tri-Ο-(i ndole-3-acetyl)-myo-inosi
Di-0-(i ndole-3-acetyl)-myo-\nos
Trace
5 - o - a - L - g a l a c t o p y r a n o s y l -2-0(indole-3-acetyl )-ra/oinositoi
n
Ci
sCιιO
§•
>
6
PLANT GROWTH SUBSTANCES
TABLE I Concentrations o f Free and Bound IAA i n Various P l a n t Tissues Species
IAA content
Tissue Free IAA
1
E s t e r IAA
2
Peptidyl IAA 3
yg/kg CEREALS Avena
sativa
Avena sativa Hordeum vulgare
vegetative 16 tissue 440 seed seed 40 (milled) 1703 seed 366 seed 123 seed vegetative 24 tissue 500 to seed 1000
5 7620
69 n.d.
329 2739 3198 511
-
328 71600 to 78500
60
5
Ovyza sativa Panicum miliaceum Triticum aestivum Zea mays Zea mays
-
LEGUMES Glycine max Phaseolus vulgaris Pisum sativum Pisum
sativum
seed seed vegetative tissue seed
4 20
50 30
5
5 5
35 93
5 n.d..
0 40 30 trace
905 127 no trace
524 136 43 202
OTHERS liquid endosperm Fagopyrum esculentum seed seed Helianthus annus Lycopersicum esculentum f r u i t Saccharomyces cevevisea packed cells Cocas
nucifera
5
290
5
n.d.
-
25
-
*No a l k a l i n e h y d r o l y s i s . I A A a f t e r h y d r o l y s i s with 1 Ν a l k a l i minus the free IAA. I A A a f t e r h y d r o l y s i s with 7 Ν a l k a l i minus the free and e s t e r IAA. ^Seedlings and f r u i t s are fresh weight, seeds are a i r dry and yeast c e l l s c o n t a i n 30% dry m a t t e r . A v i s u a l estimate o f IAA on a TLC p l a t e as c o l o r i m e t r y was pre cluded by contaminants. 2
3
5
Reprinted by permission o f P l a n t Physiology ( 3 3 ) .
Mandava; Plant Growth Substances ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
1.
BANDURSKi
7
Indole-3-Acetic Acid Conjugates
t o t a l IAA, we r e - i s o l a t e the IAA by p a r t i t i o n i n g , DEAE-sephadex, and high pressure l i q u i d chromatography. The r e s u l t a n t mixture of d^-IAA and the p l a n t d e r i v e d IAA i s methylated and then the i n d o l e n i t r o g e n i s a c y l a t e d w i t h h e p t a f l u o r o b u t y r i c anhydride. The methylheptafluorobutyryl IAA d e r i v a t i v e i s used f o r gas chromatography-selected i o n mass spectrometry (gc-sim-ms). As shown i n Figure 2 , we monitor four masses, 385 and 389, the molecular i o n f o r methylheptafluorobutyryl IAA (and i t s d a n a l o g ) , and 326 and 330, the base peaks f o r IAA and the d s t a n dard. The agreement between the r a t i o s o f d - I A A to IAA at the molecular i o n and at base peak g i v e assurance o f the v a l i ' i t y o f the assay. Is t h i s f i n a l l y an absolute assay, g i v i n g data such t h a t e r r o r i s impossible? We t h i n k i t i s c l o s e i n t h a t f o r an e r r o r to occur a compound would have t o c o f r a c t i o n a t e w i t h IAA on a DEAE and HPLC column and coemerge from the gc column and then y i e l d the same percentages o f ions at mt and at base peak as IAA. S t i l l , we do o c c a s i o n a l l y observe anomalous r e s u l t s and can only warn other workers t h a t d e a l i n g w i t h nanogram amounts o f i n d o l e s is d i f f i c u l t . A second method o f assay o f IAA has been developed by Mr. J . Cohen and i n v o l v e s a "double i n t e r n a l standard" u s u a l l y C - I A A and C - i n d o l e - 3 - b u t y r i c a c i d ( 3 7 ) . I w i l l not discuss t h i s method o f assay except to i n d i c a t e t h a t i t i s p o s s i b l e to develop assays not i n v o l v i n g mass spectrometry but w i t h comparable s e n s i t i v i t y and good s e l e c t i v i t y . k
4
4
U
11+
M e t a b o l i c "Turnover" o f P l a n t
Indoles
Ms. Pat H a l l and D r s . J . Nowacki and E . E p s t e i n have provided our knowledge o f the amounts and r a t e o f metabolic turnover of the i n d o l y l i c components o f the kernels o f Zea mays ( c f . 27, 28; Nowacki, unpublished; E p s t e i n , unpublished). This knowledge ïïâs enabled u s , 1) to i d e n t i f y the "seed auxin p r e c u r s o r " - - t h a t i s the compound which i s transported from the seed to the growing shoot ( 3 9 ) , and 2) has provided a p o r t i o n o f the proof t h a t IAAra/o-inositol and IAA are i n r e v e r s i b l e e q u i l i b r i u m i n the shoot tissue. Proving t h a t IAA and IAA e s t e r s are i n r e v e r s i b l e e q u i l i b r i u m i n the t i s s u e i s e s s e n t i a l i f we wish to p o s t u l a t e hormonal homeostasis. These experiments r e q u i r e d l a b e l e d IAA and tryptophan, which are a v a i l a b l e commercially, and C - l a b e l e d I A A - z m / o - i n o s i t o l . This compound was synthesized by D r . Nowacki by r e a c t i n g C-IAAimidazole w i t h m ^ - i n o s i t o l ( 4 0 ) . A p p l i c a t i o n o f these l a b e l e d compounds to corn k e r n e l s , followed immediately by homogenization of the t i s s u e i n acetone permitted us to determine the amounts o f each constiuent i n the kernel by the isotope d i l u t i o n method o f R i t t e n b e r g and Foster ( 4 1 0 · An extension o f t h i s method, whereby the kernels are incubated f o r v a r y i n g periods o f time a f t e r a p p l i c a t i o n o f the i s o t o p i c a l l y l a b e l e d compound permits determination o f the "turnover" o f the p o o l . Such data are shown i n 1I+
1 4
Mandava; Plant Growth Substances ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
8
PLANT GROWTH SUBSTANCES
HYDROLYZED CORN
A-3717 389.2 27.7 % d
A
A-97II
^—
J I\
385.2 Av. 2 8 . 1
% d
4
4
A* 9 0 2 4
/Λ 330.2 Λ
|1
28.4%
/ ;\
1 7
4
Α · 31826
/!V
326.2 -
d
β
-— 9
TIME (MIN.)
Figure 2. Selected ion chromât ο gram of a mixture of the methyl esters of tetrafluorobutyryl IAA and d IAA. The IAA was from an extract of corn seedlings and the d -IAA added during homogenization. Retention time is in minutes and the masses monitored are 326.2 and 385.2 for IAA and 330.2 and 309.2 for d -IAA. The percent d -IAA has been computed by the area of the peaks at 330.2/326.2 + 330.2 (base peak) and 389.2/385.2 + 389.2 (molecular ion). r
h
k
h
Mandava; Plant Growth Substances ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
1.
BANDURSKi
9
Indole-3-Acetic Acid Conjugates
Table I I . They showed t h a t tryptophan, IAA and I A A - T m / s - i n o s i t o l are t u r n i n g o v e r - - t h a t i s made and then d e s t r o y e d , or used, at rates such t h a t t^ was 5, 3.2 and 12 h r s , r e s p e c t i v e l y . Such data permitted several important conclusions concerning the metabolism o f these compounds, f o r example, t h a t i t i s the IAA e s t e r s , and not tryptophan, which serve as a source o f IAA f o r the germinating seed and secondly t h a t the I A A - i n o s i t o i s are t u r n i n g over at such a r a p i d r a t e t h a t they must be i n e q u i l i brium w i t h the I A A - r a / 2 - i n o s i t o l g l y c o s i d e pool perhaps a c t i n g as g l y c o s y l a t i o n reagents ( E p s t e i n , u n p u b l i s h e d ) . TABLE II Concentration and M e t a b o l i c Turnover of Some I n d o l y l i c Compounds i n Zea Kernels
Compound
Incubation Time hrs
dpm/yg
0
31,000
4
8,900
8
5,400
0
15,200
8
5,000
0
935
8
590
IAA
Tryptophan
IAA-mz/o-inositol
The "Seed Auxin
Recovered Sp. A c t .
k hrs
- 1
hrs
0.22
3.2
0.14
5.0
0.06
12.0
Precursor"
Of great importance, f o r these s t u d i e s , was knowledge o f both pool s i z e and t u r n o v e r . T h i s knowledge permitted c a l c u l a t i o n of the s p e c i f i c a c t i v i t y o f the a p p l i e d i s o t o p i c a l l y l a b e l e d compound at any d e s i r e d t i m e . Thus, r a d i o a c t i v i t y , from a l a b e l e d compound a p p l i e d to the endosperm and appearing i n the shoot could be t r a n s l a t e d i n amounts o f compound moved from seed to shoot. For these experiments, minute amounts o f l a b e l e d IAA, t r y p t o phan, or I A A - r a / o - i n o s i t o l were a p p l i e d to an i n c i s i o n i n the semil i q u i d endosperm o f 4 day germinated Zea s e e d l i n g s . A f t e r 8 hrs o f i n c u b a t i o n , the shoots were harvested and the IAA, tryptophan or IAA-777z/0-inositol i s o l a t e d using r i g o r o u s p u r i f i c a t i o n t e c h niques. Now, knowing the s p e c i f i c a c t i v i t y o f the a p p l i e d compound at the m i d - p o i n t of the experiment we could c a l c u l a t e the
Mandava; Plant Growth Substances ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
10
PLANT GROWTH
SUBSTANCES
average r a t e of t r a n s p o r t o f t h a t compound from endosperm to shoot. A summary o f a p o r t i o n o f these data ( c f . 27/, Nowacki, unpublished; E p s t e i n , unpublished) i s shown i n Table I I I . As can be seen IAA-Tm/s-inositol moves from endosperm to shoot at a r a t e of 6 p m o l s - s h o o f ^ h r . We had p r e v i o u s l y estimated t h a t about 9 p m o l S ' S h o o t - ^ h r " of IAA compound must be moving from endosperm to shoot to s u s t a i n i n d o l e concentrations i n the shoot (38) and G i l l e s p i e and Thimann (42)measured 5 p m o l s - s h o o t ^ - h r - of IAA d i f f u s i n g down from e x c i s e d Zea t i p s . On the assumption t h a t what goes down must come up, at l e a s t 5 p m o l s - s h o o f ^ h r " must be going up. By c o n t r a s t free IAA moves from endosperm to shoot at a r a t e of 0.015 p m o l - s h o o t " ^ h r - and tryptophan i n the endosperm appears as IAA i n the shoot at l e s s than 0.2 p m o l - s h o o t " · h r * . This l a s t f i g u r e i s high and c o u l d , i n f a c t , be zero s i n c e non-enzymatic conversion o f tryptophan to IAA occurs so r e a d i l y . Thus these data e s t a b l i s h t h a t IAA-mz/s-inositol i s the "seed auxin precursor" f o r Zea mays ( c f . 27_ and Nowacki, unpublished). - 1
1
1
1
1
1
1
TABLE I I I Rate o f Transport o f I n d o l y l i c Components From Endosperm to Shoot Compound a p p l i e d to endosperm
Compound i s o l a t e d from shoot
Rate pmols.shoot-^hr0.015
3
H-IAA
IAA + e s t e r IAA
3
H-tryptophan
IAA + e s t e r IAA
0.15
IAA + e s t e r IAA
6.2
lif
C-IAA-ra/0-inositol
1
The E q u i l i b r i u m Between IAA and IAA-myo-inosito! in vivo Dr. Hamilton e a r l i e r observed t h a t ether e x t r a c t i o n of t i s s u e induced a u t o l y s i s , l i b e r a t i n g a c t i v e esterases and g l y c o s i dases, and thus l e a d i n g to more free IAA than e x t r a c t i o n of t i s s u e by p o l a r , and t h u s , enzyme-denaturing s o l v e n t s ( 3 5 ) . Thus, we knew then t h a t there were enzymes i n the t i s s u e capabTe o f h y d r o l y z i n g IAA e s t e r s . Much l a t e r , Kopcewicz demonstrated the presence o f an enzyme system which could s y n t h e s i z e Ihh-myoi n o s i t o l from IAA, ATP, M g and CoASH (43). More r e c e n t l y , Mr. Lech Michalczuk (unpublished) has shown t h a t IAA-CoA w i l l a c y l a t e i n o s i t o l only i n the presence of other n u c l e o t i d e s . Thus, the r e a c t i o n i s complex, but there i s no doubt t h a t enzymes to make and hydrolyze the IAA e s t e r s are present i n c o r n . Now, are the enzymes a c t i v e in vivo! The data of Ms. Schulze and H a l l and Nowacki, E p s t e i n and Cohen (27_, 38; Nowacki, unpubl i s h e d ; E p s t e i n , unpublished) demonstrate t h a t they a r e . We + +
Mandava; Plant Growth Substances ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
1.
BANDURSKi
Indole-3-Acetic Acid Conjugates
11
showed i n 1972 t h a t there i s 93% e s t e r i f i e d IAA and 7% free IAA i n the shoots o f Zea s e e d l i n g s (26). The d e s i r e d experiment then was to apply l a b e l e d Ihh-myo-inositol o r l a b e l e d IAA to the endosperm of Zea k e r n e l s and determine whether we approach the same value--93% e s t e r , 7% f r e e - - s t a r t i n g e i t h e r from e s t e r o r free l a b e l e d IAA. H y d r o l y s i s or s y n t h e s i s o f e s t e r i n the endosperm becomes unimportant s i n c e the pools are so l a r g e t h a t we would not see a p p r e c i a b l e r a d i o a c t i v i t y i n the shoot i f h y d r o l y s i s or e s t e r i f i c a t i o n occurred i n the endosperm. Thus, we can determine whether e q u i l i b r i u m i s a t t a i n e d a f t e r the l a b e l e d compound enters the shoot. Mr. Nowacki a p p l i e d l a b e l e d I A A - r a ^ - i n o s i t o l to the endosperm and found 94% e s t e r and 6% free IAA i n the shoot (unp u b l i s h e d ) . Ms. H a l l a p p l i e d l a b e l e d IAA to the endosperm and found 70% e s t e r and 30% free IAA i n the shoot ( 3 8 ) . These values approximate those found f o r n a t u r a l in vivo c o n c e n t r a t i o n s by Ms. S c h u l z e . The conversion o f free IAA to e s t e r , as s t u d i e d by Ms. H a l l , are low but these were e a r l y experiments done before we were aware o f the ease o f h y d r o l y s i s o f the e s t e r s . The r e s u l t s demonstrate t h a t one approaches the same e q u i l i b r i u m amounts o f e s t e r and free IAA s t a r t i n g from e i t h e r compound. We use the word e q u i l i b r i u m to denote t h a t e s t e r IAA can be hydrolyzed to free IAA and free IAA can be converted t o e s t e r IAA. We do not imply t h a t t h i s i s a r e v e r s i b l e r e a c t i o n c a t a l y z e d by a s i n g l e enzyme ( 4 3 ) . This c o n s t i t u t e s the f i r s t demonstration i n b i o l o g y of an in vivo e q u i l i b r i u m between a hormone and i t s c o v a l e n t l y l i n k e d conjugates. Is the E q u i l i b r i u m Between IAA and i t s Conjugates P e r t u r a b l e by an Environmental Input An attempt to answer the question o f whether the environment c o n t r o l s p l a n t growth by p e r t u r b i n g the e q u i l i b r i u m between free and c o v a l e n t l y conjugated hormone i s the major e f f o r t o f our l a b o r a t o r y . To date only one environmental input has been t e s t e d and t h a t i s p h o t o i n h i b i t i o n o f growth. I t has been known f o r many years t h a t a b r i e f f l a s h o f l i g h t w i l l i n h i b i t the e x t e n s i o n growth o f an e t i o l a t e d s e e d l i n g p l a n t ( c f . 4 £ ) . The question then becomes, when p h o t o i n h i b i t i o n o f growth o c c u r s , w i l l there be a concomitant decrease of free IAA and a commensurate i n c r e a s e i n e s t e r IAA? The r e s u l t s o f t h i s experiment are shown i n Table IV. A 20 second l i g h t f l a s h r e s u l t e d i n a 43% i n h i b i t i o n o f growth as measured 90 minutes a f t e r the l i g h t f l a s h . The free IAA decreased by 35% and e s t e r IAA increased by a commensurate amount (45). Thus, our working hypothesis t h a t growth i s c o n t r o l l e d by the r e l a t i v e amounts o f free and conjugated hormone and t h a t i t i s t h i s r a t i o which r e f l e c t s the environment i s , i n t h i s case, confirmed.
Mandava; Plant Growth Substances ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
12
PLANT GROWTH
SUBSTANCES
TABLE IV Photo-Induced Change i n Growth and i n Free and Free Plus E s t e r IAA Dark
Light
Δ
%
-1.1
-34
mm/90 mi η Growth
3.6
2.6 yg/kg
Free IAA
23
13
-10
-42
Free plus e s t e r IAA
68
77
+9
+11
An Hypothesis Concerning Hormonal Homeostasis The "take home l e s s o n " I wish to leave with you i s t h a t the hormones, IAA, the g i b b e r e l l i n s , c y t o k i n i n s , and a b s c i s i c a c i d , a l l occur i n free and conjugated form ( 4 £ , 47, 48, 49) and t h a t anything t h a t a f f e c t s the r e l a t i v e amounts of free and conjugated hormone w i l l c o n t r o l growth. A s i m i l a r h y p o t h e s i s , concerning mainly the g i b b e r e l l i n s has been made ( 5 0 ) . In the s p e c i a l case of IAA we have demonstrated t h a t IAA i s i n e q u i l i b r i u m w i t h i t s conjugates and t h a t t h i s e q u i l i b r i u m can be s h i f t e d by l i g h t . Thus, from these l i m i t e d d a t a , we propose, as a working hypothe s i s , t h a t the environment a f f e c t s the r a t e of p l a n t growth by causing changes i n the r e l a t i v e amounts o f free and conjugated hormone. This concept i s i l l u s t r a t e d d i a g r a m a t i c a l l y i n Figure 3. We envisage, Figure 3, t h a t environmental s t i m u l i , as f o r example l i g h t , heat, g r a v i t y , water s t r e s s , e t c . , impact upon one or more sensory apparatuses. In the case of l i g h t t h i s would be a pigment, whereas other s t i m u l i would impact upon the p l a n t counterpart of a " s o l i o n " ( 5 1 ) . A " s o l i o n " senses changes i n heat, sound, p r e s s u r e , g r a v i t y , e t c . , using a r e v e r s i b l e redox system and a minute a p p l i e d p o t e n t i a l . Since p l a n t c e l l s have a s u i t a b l e b i o - e l e c t r i c p o t e n t i a l (52) and redox systems i n t h e i r cytoplasm, they can be, i n a very r e a l sense, " s o l i o n s " . The sensor then t r a n s f e r s i t s s i g n a l , perhaps a hydride ion from a f l a v i n , to one o f the transducer enzymes. Chemically t h i s could mean using the hydride i o n to reduce a d i s u l f i d e bond i n an en zyme t h a t synthesizes or hydrolyzes hormone conjugates--thus changing the a c t i v i t y o f the enzyme. I f the h y d r o l y z i n g t r a n s ducer i s a c t i v a t e d then more a c t i v e hormone r e s u l t s . I f the s y n t h e s i z i n g transducer i s a c t i v a t e d then there i s l e s s free hormone and l e s s hormone e f f e c t o c c u r s . We do not know what hor mones do to c o n t r o l growth nor how many processes must occur f o r
Mandava; Plant Growth Substances ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
BANDURSKi
lndole-3-Acetic Acid Conjugates
ENVIRONMENTAL
SENSOR
STIMULUS
TRANSDUCER HORMONE
CONJUGATE
HYDROLASE FREE HORMONE + X
[HORMONE-X] HORMONE
CONJUGATE
SYNTHETASE
I GROWTH SYSTEM
Figure 3.
Diagram of a system for control of plant growth by varying the relative amounts of free and conjugated hormone
Mandava; Plant Growth Substances ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
14
PLANT GROWTH
SUBSTANCES
growth to r e s u l t so we show a dotted arrow l e a d i n g to growth. My personal f e e l i n g i s t h a t what the hormone does cannot be d i s covered u n t i l in vitro hormone-responsive systems are a v a i l a b l e (19). Here we encounter the Heisenberg u n c e r t a i n t y p r i n c i p l e as a p p l i e d to b i o l o g y . Conclusion I wish to c l o s e now upon an o p t i m i s t i c but cautious note. U l t r a - m i c r o s c a l e chemical assays o f l a b i l e p l a n t hormones w i l l never be easy and r o u t i n e . Nonetheless, use o f i n t e r n a l standards and the detectors now a v a i l a b l e f o r gc and h p l c , or the s e n s i t i v e and s e l e c t i v e mass spectrometer, permits assays of the hormones i n 1 to 10 gm amounts o f t i s s u e thus p e r m i t t i n g p h y s i o l o g i c a l experiments. We must someday return to b i o - a s s a y s , using a d e f i n i t i v e chemical assay and a p h y s i o l o g i c a l l y s e n s i t i v e b i o assay s i m u l t a n e o u s l y . This i s true because the t i s s u e s c o n t a i n both hormones and high amounts o f , u s u a l l y i n h i b i t o r y , phenylpropanes, as w i l l be discussed l a t e r i n t h i s symposium. A l s o , as Professor J . van Overbeek has i n d i c a t e d (personal communication), we w i l l not understand the physiology o f the organism u n t i l we simultaneously know what happens to a l l the hormones and t h e i r conjugates during complex developmental phenomenon. D i f f i c u l t as t h i s sounds, i t w i l l be p o s s i b l e , provided we confine ourselves to a few p l a n t s and s e r i o u s l y t r y to understand the hormonal system. L a s t l y , I b e l i e v e our working hypothesis o f hormones and t h e i r conjugates as homeostatic hormone systems w i l l lead to new and answerable q u e s t i o n s . I emphasize, however, our data apply to one hormone, and to one environmental input and only to seedl i n g Zea p l a n t s . W i l l there be a g e n e r a l i t y to our working hypothesis t h a t the environment c o n t r o l s the r a t i o of free to conjugated growth hormone and thus c o n t r o l s growth? We f e e l t h a t the answer to t h i s question has great i m p l i c a t i o n s f o r the cont r o l o f food and f i b e r production by a p p l i e d growth r e g u l a t o r s . I t h i n k we should work hard to answer t h i s q u e s t i o n . Abstract Most of the indole-3-acetic acid (IAA) in plants occurs as ester or amide-linked conjugates. This preponderance and apparent ubiquity led to a study of the functions of the conjugates. Evidence for four physiological roles has been found: 1) Conjugation i s reversible and provides the plant with a way to regulate its IAA l e v e l s , and thus i t s growth rate, in accordance with the environment; 2) one of the conjugates (IAA-myo-inositol) i s the chemical form in which IAA is transported from the seed of corn to the shoot, suggesting that conjugation provides the plant with information concerning where the hormone-precursor should be del i v e r e d ; 3) IAA conjugates serve as a source of IAA for the seed
Mandava; Plant Growth Substances ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
1.
BANDURSKi
Indole-3-Acetic Acid Conjugates
15
and seedling; and 4) conjugation of IAA protects it against peroxidative attack. To our knowledge, this i s the first case in biology where hormone levels are controlled by the formation and hydrolysis of a covalent bond. Acknowledgements The support o f the M e t a b o l i c B i o l o g y S e c t i o n o f the National Science Foundation PCM 76-12356 i s acknowledged. Without sust a i n e d support t h i s work could not have been accomplished. This i s j o u r n a l a r t i c l e 8963 from the Michigan A g r i c u l t u r a l Experiment Station. I am indebted to my colleagues D r s . Cohen, E p s t e i n , and Nowacki and to Mr. M i c h a l c z u k , Ms. S c h u l z e , and Ms. Hall f o r permission to use t h e i r unpublished d a t a ; to Ms. Joanne Di Lucca Schlub f o r valuable help i n manuscript p r e p a r a t i o n ; and to Dr. R. Chapman and a grant to Professor C. C. Sweeley (NIH-RR00480) f o r the use o f the MSU-NIH mass s p e c t r a l f a c i l i t y .
Literature Cited 1.
Wain, R . L . ; Fawcett, C.H. In F . C . Steward, Ed. "Plant Physiology VA"; Academic Press: New York, 1966, pp. 231-296.
2.
Katekar, G.F. Phytochem., 1979, 18, 223.
3.
Went, F.W.; Thimann, K.V. "Phytohormones"; Macmillan: New York, 1937.
4.
Haagen-Smit, A.J.; Went, F.W. Konikl. Ned. Akad. Wetenschap., Proc., 1935, 38, 852.
5.
Gandar, J.C.; Nitsch, J . P . In J . P . Nitsch, Ed. "Regulateurs Naturels de l a Croissance Végétale"; Centre Nat. de l a Rec. S c i . Quai-Anatole: Paris, 1964, pp. 169-178.
6.
Marumo, S.; Hattori, H . ; Abe, H . ; Manakata, K. Nature, 1968, 219, 959.
7.
Haagen-Smit, A.J.; Leech, W.D.; Bergen, W.R. Amer. J. Bot., 1942, 29, 500.
8.
Weaver, R . J . "Plant Growth Substances in Agriculture"; Freeman: San Francisco, 1972, p. 120.
9.
C i e s i e l s k i , T. B e i t r . Bio. Pflanzen, 1872, 1, 1.
10.
Darwin, C . ; Darwin, F. "The Power of Movement in Plants"; D. Appleton: London, 1880.
11.
Bonner, J. J. Gen. P h y s i o l . , 1933, 17, 63.
Mandava; Plant Growth Substances ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
16
PLANT GROWTH
SUBSTANCES
12.
Thimann, K.V. Ann. Rev. Biochem., 1935, 4, 545.
13.
Avery, G.S.; Creighton, H.B.; Shalucha, B. Amer. J . Bot., 1940, 27, 289.
14.
Avery, G.S.; Berger, J.; Shalucha, B. Amer. J . Bot., 1941, 28, 596.
15.
Haagen-Smit, A . J . ; Leech, W.D.; Bergren, W.R. Science, 1941, 93, 624.
16.
van Overbeek, J . Amer. J . Bot., 1941, 27, 1.
17.
Evans, M.L. Ann. Rev. Plant Physiol., 1974, 25, 195.
18.
Cleland, R. Ann. Rev. Plant Physiol., 1971, 22, 197.
19.
Bandurski, R.S.; Piskornik, Z. In F. Loewus, Ed. "Biogenesis of Plant Cell Wall Polysaccharides"; Academic Press: New York, 1973, pp. 297-314
20.
Labarca, C.; Nicholls, P.B.; Bandurski, R.S. Biochem. Biophys. Res. Commun., 1966, 20, 641.
21.
Ueda, M.; Bandurski, R.S. Phytochemistry, 1974, 13, 243.
22.
Piskornik, Z . ; Bandurski, R.S. Plant Physiol., 1972, 50, 176.
23.
Ueda, M.; Bandurski, R.S. Plant Physiol., 1969, 44, 1175.
24.
Ehmann, A. Carbohy. Res., 1974, 34, 99.
25.
Ehmann, Α.; Bandurski, R.S. Carbohy. Res., 1974, 36, 1.
26.
Bandurski, R.S.; Schulze, A. Plant Physiol., 1974, 54, 257.
27.
Bandurski, R.S. In W.W. Wells and F. Eisenberg, Eds. "Cyclitols and Phosphoinositides"; Academic Press: New York, 1978, pp. 35-54.
28.
Percival, F . ; Bandurski, R.S. Plant Physiol., 1970, 58, 60.
29.
Andreae, W.A.; Good, N.E. Plant Physiol., 1955, 30, 380.
30.
Tillberg, E. Physiol. Plant, 1974, 31, 271.
31.
Zenk, M.H. Nature, 1961, 191, 493.
32.
Keglevic, D. Carbohy. Res., 1971, 20, 293.
Mandava; Plant Growth Substances ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
1.
BANDURSKI
Indole-3-Acetic Acid Conjugates
17
33.
Bandurski, R.S.; Schulze, A. Plant Physiol., 1977, 60, 211.
34.
Little, C.H.H.; Heald, J . K . ; Browning, G. Planta, 1978, 139, 133.
35.
Hamilton, R.H.; Bandurski, R.S.; Grigsby, B.H. Plant Physiol., 1961, 36, 354.
36.
Magnus, V.; Bandurski, R.S. Plant Physiol., 1978, 61(S), 63.
37. 38.
Cohen, J.D.; Schulze, Α.; Bandurski, R.S. Plant Physiol., 1978, 61(S), 63. Hall, P.L.; Bandurski, R.S. Plant Physiol., 1978, 61, 425.
39.
Skoog, F. J . Gen. Physiol., 1937, 20, 311.
40.
Nowacki, J.; Cohen, J.D.; Bandurski, R.S. J . Labelled Comp., 1978, 15, 325.
41.
Rittenberg, D.; Foster, G.L. J. Biol. Chem., 1940, 133, 737.
42.
Gillespie, B.; Thimann, K.V. Plant Physiol., 1963, 38, 214.
43.
Kopcewicz, J.; Ehmann, Α.; Bandurski, R.S. Plant Physiol., 1974, 54, 346.
44.
Elliott, W.M.; Shen-Miller, J . Photochem. and Photobiol., 1976, 23, 195.
45.
Bandurski, R.S.; Schulze, Α.; Cohen, J.D. Biochem. Biophys. Res. Commun. 1977, 79, 1219.
46.
Yogota, T.; Hiraga, K.; Hisakazu, Y. Phytochem., 1975, 14, 1569.
47.
Milborrow, B.V. Ann. Rev. Plant Physiol., 1974, 25, 259.
48. 49.
Peterson, J . B . ; Miller, C.O. Plant Physiol., 1977, 59, 1026. Morris, R.O. Plant Physiol., 1977, 59, 1029.
50.
Sembdner, G. In K. Schreiber, H.R. Schütte, and G. Sembdner, Eds. "Biochemistry and Chemistry of Plant Growth Regulators"; Inst. of Plant Biochem.: Halle, GDR, 1974, pp. 283-302.
51.
Hurd, R.M.; Lane, R.N. J . Electrochem. Soc., 1957, 104, 727.
52.
Lund, E.J. "Bioelectric Fields and Growth"; The University of Texas Press: Austin, 1947. RECEIVED June 19, 1979. Mandava; Plant Growth Substances ACS Symposium Series; American Chemical Society: Washington, DC, 1979.