PLZT Electrooptic Ceramics and Devices - ACS Symposium Series

Jul 23, 2009 - Ceramic Products, Motorola Incorporated, 3434 Vassar NE, Albuquerque, NM 87107. Industrial Applications of Rare Earth Elements. Chapter...
0 downloads 0 Views 2MB Size
16 PLZT Electrooptic Ceramics and Devices GENE H . HAERTLING

Downloaded by UNIV OF ROCHESTER on November 6, 2014 | http://pubs.acs.org Publication Date: September 3, 1981 | doi: 10.1021/bk-1981-0164.ch016

Ceramic Products, Motorola Incorporated, 3434 Vassar N E , Albuquerque, N M 87107

Approximately ten years ago, i t was first reported by Haertling and Land (1) that optical transparency was achieved in a ferroelectric ceramic material. This material was, in reality, not just one composition but consisted of a series of compositions in the lanthanum modified lead zirconate-lead titanate (PLZT) solid solution region. The multiplicity of compositions, each with different mechanical, electrical and electrooptic properties; has led to a decade of study in defining the chemical and structural nature of these materials; in understanding the phenomena underlying their optical and electrooptic properties and in evaluating the practicality of the large number of possible applications (2-12). The purpose of this paper is to review the status of the PLZT materials, dealing particularly with specific compositions, processing and fabrication; and to demonstrate the application of these materials to practical devices. To date, these devices are largely confined to applications involving shutters and modulators, but PLZT ceramics also offer a promising solid state answer to display applications of the future. S p e c i f i c examples of m i l i t a r y and i n d u s t r i a l devices c i t e d i n t h i s paper i n c l u d e (1) the A i r Force sponsored Thermal/Flash P r o t e c t i v e Device, (2) B e l l and Howell's Data Recorder, (3) a stereo-viewing system manufactured by Megatek Corporation and (4) eye s a f e t y viewing d e v i c e s (welding helmet, i n s p e c t i o n goggles) by M o t o r o l a . Materials PLZT Compositional System. The s o l i d s o l u t i o n r e g i o n which forms the b a s i s o f the PLZT m a t e r i a l s i s a s e r i e s of compositions r e s u l t i n g from the complete m i s c i b i l i t y of l e a d z i r c o n a t e and lead t i t a n a t e (commonly designated a t PZT) i n each o t h e r . Modif i c a t i o n s to the PZT system by the a d d i t i o n o f lanthanum oxide has a marked b e n e f i c i a l e f f e c t upon s e v e r a l o f the b a s i c p r o p e r t i e s o f the m a t e r i a l such as decreased c o e r c i v e f i e l d and i n creased d i e l e c t r i c constant, electromechanical c o u p l i n g c o e f 0097-6156/81/0164-0265$05.00/0 © 1981 American Chemical Society In Industrial Applications of Rare Earth Elements; Gschneidner, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

266

RARE

EARTH

ELEMENTS

f i c i e n t , mechanical compliance and o p t i c a l transparency. The l a t t e r of these p r o p e r t i e s , o p t i c a l transparency, was only d i s covered i n r e c e n t years but came about as the r e s u l t o f an i n depth study of v a r i o u s a d d i t i v e s to the PLZT system. Results from t h i s work i n d i c a t e t h a t L a ^ , as a chemical m o d i f i e r , i s unique among the o f f - v a l e n t (chemical valency of the m o d i f i e r i s d i f f e r e n t or " o f f - v a l e n t " from t h a t of the i o n i t r e p l a c e s i n the +3 +2 l a t t i c e ; e.g., La r e p l a c i n g Pb ) a d d i t i v e s i n producing t r a n s parency. The reason f o r t h i s behavior i s s t i l l not f u l l y understood; however, i t i s known t h a t lanthanum i s , to a l a r g e extent, e f f e c t i v e because o f i t s h i g h s o l u b i l i t y i n the PZT oxygen o c t a h e d r a l s t r u c t u r e , thus producing an extensive s e r i e s of s i n g l e phase s o l i d s o l u t i o n compositions. The mechanism i s b e l i e v e d t o be one o f lowering the d i s t o r t i o n o f the u n i t c e l l , thereby r e ducing the o p t i c a l a n i s o t r o p y of the c r y s t a l l i n e l a t t i c e and a t the same time promoting uniform g r a i n growth and d e n s i f i c a t i o n of a s i n g l e phase, p o r e - f r e e s t r u c t u r e . A g e n e r a l i z e d formula f o r a l l compositions i n the PLZT system i s : l - x x < y l-y>l-x°3 4 where lanthanum ions r e p l a c e lead ions i n the A s i t e o f the p e r o v s k i t e ABO3 i o n i c s t r u c t u r e shown i n F i g u r e 1. Since L a ^ (added as La203) s u b s t i t u t e s f o r Pb , electrical neutrality i s maintained by the c r e a t i o n o f l a t t i c e s i t e v a c a n c i e s . The l o c a t i o n o f these vacancies i n e i t h e r the A(+2) s i t e s or B(+4) s i t e s o f the u n i t c e l l has not y e t been completely r e s o l v e d d e s p i t e numerous s t u d i e s on the subject; however, i t i s most probable t h a t both A and B s i t e vacancies e x i s t as p o i n t e d out by H a r d t l and Hennings (13). I f both A and B s i t e vacancies are present i n the l a t t i c e , i t i s £ expected t h a t the above f o r mulation would p r o v i d e excess Pb ions which are e x p e l l e d from the l a t t i c e (as PbO vapor) d u r i n g the d e n s i f i c a t i o n process a t elevated temperatures. T h i s behavior does, indeed, occur; and i n f a c t , i t has been r e p o r t e d by Snow (14) t h a t t h i s excess PbO cont r i b u t e s to a c h i e v i n g f u l l d e n s i t y by forming a l i q u i d phase a t the g r a i n boundaries and by i n h i b i t i n g g r a i n growth during the i n i t i a l stages of d e n s i f i c a t i o n . Both o f these e f f e c t s are benef i c i a l to the attainment of t h e o r e t i c a l l y dense m a t e r i a l by e l i minating r e s i d u a l p o r o s i t y before i t becomes entrapped w i t h i n the grains. The PLZT phase diagram i s given i n F i g u r e 2. As can be seen, the o v e r a l l e f f e c t o f adding lanthanum to the PZT system i s one o f decreasing the s t a b i l i t y of the f e r r o e l e c t r i c (FE) phases (a f e r r o e l e c t r i c m a t e r i a l possesses spontaneous i n t e r n a l p o l a r i z a t i o n , P, which can be switched by an e l e c t r i c f i e l d , E, as i l l u s t r a t e d i n the P vs. E h y s t e r e s i s loops i n F i g u r e 2) i n favor of the nonf e r r o e l e c t r i c c u b i c and a n t i f e r r o e l e c t r i c (AFE) phases. At a 65/35 r a t i o of PbZr03 to PbTi03, a c o n c e n t r a t i o n o f 9.5% l a n t h a num i s s u f f i c i e n t to reduce the rhombohedral-cubic phase t r a n s i -

Downloaded by UNIV OF ROCHESTER on November 6, 2014 | http://pubs.acs.org Publication Date: September 3, 1981 | doi: 10.1021/bk-1981-0164.ch016

+

P b

L a

Z r

Ti

+

t

o

e

+

In Industrial Applications of Rare Earth Elements; Gschneidner, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by UNIV OF ROCHESTER on November 6, 2014 | http://pubs.acs.org Publication Date: September 3, 1981 | doi: 10.1021/bk-1981-0164.ch016

16. HAERTLING

Electrooptic

Ceramics and Devices

267

Figure 1. Configuration of the ABO unit cell shown with sites occupied by Pb, La, Zr, Ti and O atoms as in the paraelectric cubic phase of PLZT s

Figure 2. Room temperature phase diagram of the PLZT system illustrating phases present and typical hysteresis loops associated with each phase: compositions 1, 2 and 3 are 9565, 7065 and 12040, respectively

In Industrial Applications of Rare Earth Elements; Gschneidner, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

268

RARE E A R T H

ELEMENTS

Downloaded by UNIV OF ROCHESTER on November 6, 2014 | http://pubs.acs.org Publication Date: September 3, 1981 | doi: 10.1021/bk-1981-0164.ch016

t i o n (Curie temperature) to below room temperature. Thus, a m a t e r i a l o f t h i s composition (designated as 9.5/65/35 or simply, 9565) i s n o n - f e r r o e l e c t r i c and cubic i n i t s v i r g i n c o n d i t i o n . I t i s i d e n t i f i e d as composition 1 on the phase diagram and w i l l be d i s c u s s e d l a t e r i n r e l a t i o n t o i t s o p t i c a l and e l e c t r o o p t i c properties. I t should be noted t h a t t h i s composition i s a l s o l o cated i n the c r o s s hatched p o r t i o n o f the diagram which i n d i c a t e s a r e g i o n o f metastable f e r r o e l e c t r i c phases t h a t can be e l e c t r i c a l l y induced with a s u f f i c i e n t l y high f i e l d . The phase diagram i s o n l y given to 15 atom percent La s i n c e a l l o f the compositions o f i n t e r e s t l i e w i t h i n t h i s range. A l though not shown, compositions with La c o n c e n t r a t i o n s higher than approximately 30% possess mixed phases and are o p t i c a l l y opaque. Processing and F a b r i c a t i o n . Ceramics are t r a d i t i o n a l l y prepared from powders formulated from the i n d i v i d u a l oxides; however, e a r l y attempts to produce the PLZT powders by t h i s method proved to be inadequate from the standpoint o f chemical and o p t i c a l u n i f o r m i t y . As a r e s u l t , a chemical c o - p r e c i p i t a t i o n method designed s p e c i f i c a l l y f o r the PLZT m a t e r i a l s which u t i l i z e d l i q u i d p r e c u r s o r m a t e r i a l s was developed and s u c c e s s f u l l y implemented as a p r o d u c t i o n process (15). F i g u r e 3 shows i n p i c t o r i a l form the v a r i o u s steps i n v o l v e d i n the powder p r o c e s s i n g and f a b r i c a t i o n o f the PLZT m a t e r i a l s . The high p u r i t y , l i q u i d organometallies, t e t r a b u t y l z i r c o n a t e and t e t r a b u t y l t i t a n a t e , are f i r s t i n t i m a t e l y mixed together i n a high speed blender along with the a p p r o p r i a t e amount of l e a d oxide powder and then p r e c i p i t a t e d by adding the lanthanum a c e t a t e s o l u t i o n while b l e n d i n g . As the lanthanum acetate i s introduced, the zirconium and t i t a n i u m butoxides are hydrolyzed by the water from the lanthanum a c e t a t e s o l u t i o n producing a p r e c i p i t a t e of mixed hydroxides. At the same time, lead oxide and lanthanum acetate r e a c t with the f r e s h l y hydrolyzed p r e c i p i t a t e to produce a f i n a l product c o n s i s t i n g of mixed oxides and hydroxides i n a t h i n s l u r r y form. The s l u r r y i s d r i e d , r e s u l t i n g i n the white p r e c i p i t a t e d powder shown i n F i g u r e 3. T h i s powder i s then c a l c i n e d or c h e m i c a l l y r e a c t e d a t an e l e v a t e d temperature (500°C f o r 16 hours) i n order to produce the d e s i r e d PLZT c r y s t a l l i n e phase. A f t e r c a l c i n i n g , the powder i s wet m i l l e d f o r s e v e r a l hours i n order to promote a d d i t i o n a l chemical homogeneity, d r i e d and prepressed i n t o a s l u g of proper s i z e and shape f o r hot pressing. A t y p i c a l hot p r e s s i n g setup i s given i n F i g u r e 4. Exp e r i e n c e has shown t h a t a simple u n i a x i a l , single-ended hot p r e s s i n g arrangement i s both r e l i a b l e and economical i n producing c o n s i s t e n t , o p t i c a l q u a l i t y m a t e r i a l . The prepressed s l u g i s p l a c e d i n t o a s i l i c o n c a r b i d e mold r e s t i n g on an alumina p l a t e and surrounded completely with a r e f r a c t o r y g r a i n such as magn e s i a or z i r c o n i a i n order to prevent r e a c t i o n with the mold a t high temperature. An alumina p l a t e and push rod are l o c a t e d

In Industrial Applications of Rare Earth Elements; Gschneidner, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by UNIV OF ROCHESTER on November 6, 2014 | http://pubs.acs.org Publication Date: September 3, 1981 | doi: 10.1021/bk-1981-0164.ch016

16.

HAERTLING

Figure 3.

Electrooptic

Ceramics and

Devices

Various stages in the processing of PLZT ceramics

FORCE

Figure 4.

A typical setup for hot pressing PLZT ceramics

In Industrial Applications of Rare Earth Elements; Gschneidner, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

269

Downloaded by UNIV OF ROCHESTER on November 6, 2014 | http://pubs.acs.org Publication Date: September 3, 1981 | doi: 10.1021/bk-1981-0164.ch016

270

RARE E A R T H

ELEMENTS

on top of the s l u g and a modest amount of pressure i s a p p l i e d to the s l u g f o r alignment purposes. Heat-up of the furnace i s s t a r t e d , while a t the same time a vacuum i s drawn on the s l u g v i a a water-cooled vacuum chamber surrounding the furnace. Oxygen i s b a c k - f i l l e d i n t o the chamber a t 700°C, f u l l pressure i s a p p l i e d and the furnace temperature i s r a i s e d to i t s f i n a l value. Typic a l hot p r e s s i n g c o n d i t i o n s are 1250°C f o r 18 hours a t 2000 p s i . A f t e r hot p r e s s i n g , the s l u g i s extracted from the mold, i t s surfaces are cleaned, and i t i s then p o l i s h e d f o r o p t i c a l e v a l u a t i o n . T h i s method of vacuum/oxygen hot p r e s s i n g was s u c c e s s f u l l y used by Dungan and Snow (16) f o r f a b r i c a t i n g o p t i c a l q u a l i t y PLZT slugs up to f i v e inches i n diameter. An a l t e r n a t e method of hot p r e s s i n g i n flowing oxygen r a t h e r than vacuum/oxygen i s a l s o known to produce o p t i c a l q u a l i t y m a t e r i a l , but i t i s g e n e r a l l y l i m i t e d to s l u g s i z e s l e s s than two inches i n diameter. T y p i c a l examples of hot pressed ceramics are given i n F i g u r e 5. M i c r o s t r u c t u r e . Ceramic compositions i n the PLZT system c h a r a c t e r i s t i c a l l y e x h i b i t a h i g h l y uniform m i c r o s t r u c t u r e cons i s t i n g o f randomly o r i e n t e d , equiaxed g r a i n s ( c r y s t a l l i t e s ) i n t i m a t e l y bonded together. An example of such a m i c r o s t r u c t u r e i s shown i n F i g u r e 6 f o r PLZT 9565 thermally etched a t 1100°C. The average g r a i n s i z e of a given m a t e r i a l may vary from about two microns to 15 microns depending on the temperature and time of hot p r e s s i n g , with a t y p i c a l s i z e being approximately e i g h t microns average diameter. A uniform g r a i n s i z e i s a h i g h l y des i r a b l e f e a t u r e from the standpoint of performance. Another d i s t i n c t i v e c h a r a c t e r i s t i c of the PLZT m a t e r i a l s i s t h e i r f u l l y dense, p o r e - f r e e m i c r o s t r u c t u r e which i s devoid of any second phases. T h i s i s r e f l e c t e d i n measured bulk d e n s i t i e s which r o u t i n e l y exceed 99.9% of t h e o r e t i c a l d e n s i t y . The e x i s t ence o f pores or second phases i n the volume of the g r a i n s or i n the g r a i n boundaries i s undesirable s i n c e both a c t to i n c r e a s e l i g h t s c a t t e r i n g and reduce o p t i c a l transparency. O p t i c a l P r o p e r t i e s . The a d d i t i o n o f lanthanum oxide to PZT has a r a t h e r remarkable e f f e c t on the o p t i c a l transparency, e s p e c i a l l y when the amount of lanthanum exceeds seven atom p e r cent. Thin p o l i s h e d p l a t e s c h a r a c t e r i s t i c a l l y transmit about 67% o f the i n c i d e n t l i g h t . When broadband a n t i r e f l e c t i o n c o a t ings are a p p l i e d to the major s u r f a c e s , t h i s transmission i s i n creased to greater than 98%. Surface r e f l e c t i o n l o s s e s are a f u n c t i o n o f the index of r e f r a c t i o n (n = 2.5) of the PLZT. O p t i c a l absorption i n these m a t e r i a l s i s wavelength dependent, becoming extremely high i n the v i o l e t (short wavelength) end of the spectrum near 0.37 microns. In the i n f r a r e d p o r t i o n of the spectrum, transmittance remains high out to approximately 6.5 microns and then g r a d u a l l y decreases i n a r e g u l a r manner unt i l 12 microns, where the m a t e r i a l i s f u l l absorbing. The o p t i c a l t r a n s m i s s i o n c h a r a c t e r i s t i c s of three PLZT comp-

In Industrial Applications of Rare Earth Elements; Gschneidner, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by UNIV OF ROCHESTER on November 6, 2014 | http://pubs.acs.org Publication Date: September 3, 1981 | doi: 10.1021/bk-1981-0164.ch016

HAERTLING

Figure 5.

Figure 6.

Electrooptic

Ceramics and Devices

271

Examples of the optical transparency of quadratic PLZT ceramics

A typical microstructure of PLZT, composition 9565, illustrating the fully dense structure and uniform grain size

In Industrial Applications of Rare Earth Elements; Gschneidner, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

272

RARE E A R T H

ELEMENTS

Downloaded by UNIV OF ROCHESTER on November 6, 2014 | http://pubs.acs.org Publication Date: September 3, 1981 | doi: 10.1021/bk-1981-0164.ch016

o s i t i o n s are given i n F i g u r e 7. These compositions (see F i g u r e 2) were s e l e c t e d because they represent m a t e r i a l s of d i s t i n c t l y d i f f e r e n t e l e c t r o o p t i c behavior. Composition 9565 i s s u b s t a n t i a l l y more transparent than e i t h e r of compositions 7065 or 12040. This i s most n o t i c e a b l e i n the blue end of the spectrum where absorpt i o n and l i g h t s c a t t e r i n g predominate. Both compositions 7065 and 12040 are f e r r o e l e c t r i c and hence possess domain w a l l s which produce index of r e f r a c t i o n d i s c o n t i n u i t i e s and l i g h t s c a t t e r i n g from w i t h i n the m a t e r i a l . The t e t r a g o n a l phase composition 12040 i s more transparent than the rhombohedral 7065 composition. A l l samples were measured i n the v i r g i n s t a t e . Electrooptic Properties, The e l e c t r o o p t i c p r o p e r t i e s of the PLZT m a t e r i a l s are i n t i m a t e l y r e l a t e d to t h e i r f e r r o e l e c t r i c properties. Consequently, v a r y i n g the f e r r o e l e c t r i c p o l a r i z a t i o n with an e l e c t r i c f i e l d such as i n a h y s t e r e s i s loop, produces a change i n the o p t i c a l p r o p e r t i e s of the ceramic. In a d d i t i o n , the magnitude of the observed e l e c t r o o p t i c e f f e c t i s dependent on both the strength and d i r e c t i o n of the e l e c t r i c f i e l d . PLZT ceramics d i s p l a y o p t i c a l l y u n i a x i a l p r o p e r t i e s on a microscopic s c a l e , and a l s o on a macroscopic s c a l e when p o l a r i z e d with an e l e c t r i c f i e l d . In u n i a x i a l c r y s t a l s there i s one unique symmetry a x i s , the o p t i c a x i s ( c o - l i n e a r with the f e r r o e l e c t r i c p o l a r i z a t i o n v e c t o r i n ceramic PLZT), which possesses d i f f e r e n t o p t i c a l p r o p e r t i e s than the other two orthogonal axes. That i s , l i g h t t r a v e l i n g i n a d i r e c t i o n along the o p t i c a x i s and v i b r a t i n g i n a d i r e c t i o n p e r p e n d i c u l a r to i t encounters a d i f f e r e n t index of r e f r a c t i o n (r^) than l i g h t t r a v e l i n g i n a d i r e c t i o n 90° to the o p t i c a x i s and v i b r a t i n g p a r a l l e l to i t ( n ) . The absolute d i f ference between the two i n d i c e s i s defined as the b i r e f r i n g e n c e ; i . e . , n - n = An. In ceramic m a t e r i a l s where a s t a t i s t i c a l array of randomly o r i e n t e d c r y s t a l l i t e s e x i s t , the macroscopic or e f f e c t i v e b i r e f r i n g e n c e i s designated by Ah. On a macroscopic s c a l e , "AH i s equal to zero before e l e c t r i c a l p o l i n g and has some f i n i t e value a f t e r p o l i n g , depending on the composition and the degree of p o l a r i z a t i o n . The An value i s a meaningful q u a n t i t y i n t h a t i t i s r e l a t e d to the o p t i c a l phase r e t a r d a t i o n i n the material. L i n e a r l y p o l a r i z e d l i g h t , on entering the e l e c t r i c a l l y energ i z e d ceramic, i s r e s o l v e d i n t o two p e r p e n d i c u l a r components whose v i b r a t i o n d i r e c t i o n s are defined by the c r y s t a l l o g r a p h i c axes o f the c r y s t a l l i t e s a c t i n g as one o p t i c a l e n t i t y . Because of the d i f f e r e n t r e f r a c t i v e i n d i c e s , n and nQ, the propagation v e l o c i t y of the two components w i l l be d i f f e r e n t w i t h i n the m a t e r i a l and w i l l r e s u l t i n a phase s h i f t c a l l e d r e t a r d a t i o n . The t o t a l r e t a r d a t i o n r i s a f u n c t i o n of both An and the o p t i c a l path length t (generally, t i s the p l a t e thickness) according to the r e l a t i o n ship of T = STTE". When s u f f i c i e n t v o l t a g e i s a p p l i e d to the c e r amic, a halfwave r e t a r d a t i o n i s achieved f o r one component r e l a t i v e to the other. The net r e s u l t i s one of r o t a t i n g the v i b r a e

e

Q

e

In Industrial Applications of Rare Earth Elements; Gschneidner, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by UNIV OF ROCHESTER on November 6, 2014 | http://pubs.acs.org Publication Date: September 3, 1981 | doi: 10.1021/bk-1981-0164.ch016

16.

HAERTLING

Electrooptic

Ceramics

and

Devices

273

t i o n d i r e c t i o n of the l i n e a r l y p o l a r i z e d l i g h t by 90°, thus allowi n g i t to be transmitted by the second (crossed) p o l a r i z e r i n the ON c o n d i t i o n . Switching o f the e l e c t r o o p t i c ceramic from a s t a t e o f zero r e t a r d a t i o n to halfwave r e t a r d a t i o n w i l l create an ON/OFF l i g h t shutter. S e l e c t i v e c o l o r f i l t e r i n g of white l i g h t may be achieved by extending the r e t a r d a t i o n beyond h a l f wavelength. Three common types of e l e c t r o o p t i c e f f e c t s are i l l u s t r a t e d i n F i g u r e 8; i . e . , q u a d r a t i c and l i n e a r b i r e f r i n g e n c e and memory s c a t t e r i n g . A l s o i n c l u d e d i n the f i g u r e i s a t y p i c a l setup r e q u i r e d f o r generating each e f f e c t along with the observed behavi o r shown i n terms of l i g h t i n t e n s i t y output (I) as a f u n c t i o n of e l e c t r i c f i e l d (E). The f i r s t and most widely a p p l i e d o f a l l of the e l e c t r o o p t i c responses i s the quadratic (Kerr) e f f e c t . I t i s generally d i s played by those m a t e r i a l s which are e s s e n t i a l l y cubic phase (comp o s i t i o n 1) but are l o c a t e d c l o s e to the f e r r o e l e c t r i c rhombohed r a l or t e t r a g o n a l phases. The d e s i g n a t i o n f o r t h i s e f f e c t i s d e r i v e d from the quadratic dependence o f An on e l e c t r i c f i e l d ; i . e . , An = k E . These m a t e r i a l s , by v i r t u e o f t h e i r n a t u r a l cubic symmetry, do not possess permanent p o l a r i z a t i o n and are not o p t i c a l l y b i r e f r i n g e n t i n t h e i r quiescent s t a t e . As such, they c o n t r i b u t e no o p t i c a l r e t a r d a t i o n to an incoming p o l a r i z e d l i g h t beam; however, when an e l e c t r i c f i e l d i s a p p l i e d t o the m a t e r i a l , an e l e c t r i c p o l a r i z a t i o n (and consequently, b i r e f r i n g e n c e ) i s i n duced i n the m a t e r i a l and r e t a r d a t i o n i s observed between crossed p o l a r i z e r s ( c a l l e d an ON s t a t e ) . On removing the e l e c t r i c f i e l d , the m a t e r i a l r e l a x e s again to i t s cubic s t a t e and i s i n the OFF c o n d i t i o n . Relaxation times to the OFF c o n d i t i o n vary w i t h comp o s i t i o n but g e n e r a l l y range from one to 100 microseconds. Turn ON times are o f the same magnitude and ON-OFF r a t i o s as h i g h as 5000 to one have been measured. A p p l i c a t i o n s f o r the q u a d r a t i c e f f e c t i n c l u d e s h u t t e r s , o p t i c a l gates, d i s p l a y s , s p e c t r a l f i l t e r s , l i g h t modulators and v a r i a b l e d e n s i t y windows. A second type of behavior e x i s t i n g i n the PLZT's i s the l i n ear (Pockels) e f f e c t which i s g e n e r a l l y found i n high c o e r c i v e f i e l d , t e t r a g o n a l m a t e r i a l s (composition 3). This e f f e c t i s so named because o f the l i n e a r r e l a t i o n s h i p between An and e l e c t r i c field. The t r u l y l i n e a r , n o n h y s t e r e t i c character of t h i s e f f e c t has been found to be i n t r i n s i c to the m a t e r i a l and not due to domain r e o r i e n t a t i o n processes which occur i n the q u a d r a t i c and memory m a t e r i a l s . The l i n e a r m a t e r i a l s possess permanent remanent p o l a r i z a t i o n ; however, i n t h i s case the m a t e r i a l i s switched to i t s s a t u r a t i o n remanence, and i t remains i n t h a t s t a t e . O p t i c a l information i s e x t r a c t e d from the ceramic by the a c t i o n of an e l e c t r i c f i e l d which causes l i n e a r changes i n the b i r e f r i n g e n c e , but i n no case i s there p o l a r i z a t i o n r e v e r s a l i n the m a t e r i a l . The experimental setup f o r observing t h i s e f f e c t , as seen i n F i g u r e 8, i s i d e n t i c a l to t h a t f o r the q u a d r a t i c response, except t h a t the PLZT p l a t e i s prepoled t o s a t u r a t i o n remanence before u s i n g . A p p l i c a t i o n s i n c l u d e modulators and s p e c t r a l f i l t e r s ; however, no devices have y e t emerged u t i l i z i n g t h i s e f f e c t . 2

In Industrial Applications of Rare Earth Elements; Gschneidner, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

RARE E A R T H

ELEMENTS

Downloaded by UNIV OF ROCHESTER on November 6, 2014 | http://pubs.acs.org Publication Date: September 3, 1981 | doi: 10.1021/bk-1981-0164.ch016

274

Figure 8. Operational configurations and typical light output responses of (A) quadratic (B) linear, and (C) memory PLZT materials; the heavy accented portions of the response curves indicate the usable range.

In Industrial Applications of Rare Earth Elements; Gschneidner, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by UNIV OF ROCHESTER on November 6, 2014 | http://pubs.acs.org Publication Date: September 3, 1981 | doi: 10.1021/bk-1981-0164.ch016

16.

HAERTLING

Electrooptic

Ceramics and

Devices

275

A t h i r d type o f e l e c t r o o p t i c behavior which i s employed a l most e x c l u s i v e l y f o r d i s p l a y s i s t h a t of e l e c t r i c a l l y c o n t r o l l e d l i g h t s c a t t e r i n g i n a memory m a t e r i a l . T h i s e f f e c t , as observed i n the Cerampic (ceramic p i c t u r e ) device, was f i r s t reported i n 1972 by Smith and Land (17). The experimental arrangement i n v o l v e d i n observing t h i s e f f e c t i s given i n F i g u r e 8. No p o l a r i z e r s are employed s i n c e i t i s predominantly due to l i g h t s c a t t e r i n g from domains (areas o f l i k e p o l a r i z a t i o n ) w i t h i n the material. The o r i e n t a t i o n o f these domains are e l e c t r i c a l l y a l t e r able; and because l i g h t i s p r e f e r e n t i a l l y s c a t t e r e d along the p o l a r d i r e c t i o n o f the domains, the l i g h t transmitted by the PLZT p l a t e i s a l s o e l e c t r i c a l l y c o n t r o l l a b l e . In a d d i t i o n , l o c a l areas can be p o l a r i z e d to d i f f e r e n t l e v e l s l e a d i n g to an a b i l i t y f o r s t o r i n g images with a gray s c a l e c a p a b i l i t y and a r e s o l u t i o n o f a t l e a s t 30 l i n e p a i r s per m i l l i m e t e r . Once a given l o c a l area i s switched to a s p e c i f i c p o l a r i z a t i o n s t a t e , i t i s permanently locked i n u n t i l i t i s e l e c t r i c a l l y switched to a new s t a t e or the m a t e r i a l i s heated above i t s Curie p o i n t (thermally depoled) which erases a l l o f the p o l a r i z a t i o n s t a t e s . The means by which l o c a l areas are switched independently of each other i s provided by the photoconductor l a y e r sandwiched between one of the transparent ITO (indium-tin oxide) e l e c t r o d e s and the PLZT. When l i g h t impinges on the photoconductor l a y e r , i t reduces i t s r e s i s t i v i t y by s e v e r a l orders o f magnitude, e l e c t r o n s from the voltage source are t r a n s f e r r e d from the ITO e l e c t r o d e to the PLZT and the l o c a l p o l a r i z a t i o n i s switched to a new s t a t e . Erasure o f the t o t a l image i s performed by f l o o d i n g the p l a t e with l i g h t while the voltage i s a p p l i e d i n the p o s i t i v e s a t u r a t i o n d i r e c t i o n . The maximum cont r a s t r a t i o may be as h i g h as 100 to 1. In a d d i t i o n to the above three e f f e c t s , there are two others; i . e . , memory b i r e f r i n g e n c e and d e p o l a r i z a t i o n s c a t t e r i n g , which e x i s t i n the PLZT m a t e r i a l s and have been proposed f o r device a p p l i c a t i o n s . These are described i n reference 5. Applications Modes o f Operation. F i g u r e 8 a l s o i l l u s t r a t e s the two b a s i c modes o f o p e r a t i o n used i n e l e c t r b o p t i c devices; i . e . , the t r a n s verse and l o n g i t u d i n a l modes. In the transverse mode, the e l e c t r i c f i e l d i s a p p l i e d i n a d i r e c t i o n normal to the l i g h t propagat i o n d i r e c t i o n while i n the l o n g i t u d i n a l mode, the f i e l d i s ap p l i e d along the l i g h t propagation d i r e c t i o n . In general, the transverse mode of operation i s most e f f e c t i v e f o r v a r i a b l e b i r e f r i n g e n c e devices, and the l o n g i t u d i n a l mode i s b e t t e r s u i t e d f o r variable l i g h t scattering devices. A l s o , c o l o r e f f e c t s can be produced with v a r i a b l e b i r e f r i n g e n c e whereas they cannot with s c a t t e r i n g . V a r i a b l e b i r e f r i n g e n t devices always r e q u i r e the use o f p o l a r i z e d l i g h t ; however, s c a t t e r i n g devices may or may not necessitate polarized l i g h t . I t should be recognized t h a t i n

In Industrial Applications of Rare Earth Elements; Gschneidner, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by UNIV OF ROCHESTER on November 6, 2014 | http://pubs.acs.org Publication Date: September 3, 1981 | doi: 10.1021/bk-1981-0164.ch016

276

RARE E A R T H

ELEMENTS

order t o produce p o l a r i z e d l i g h t from an incandescent white l i g h t source there i s a s u b s t a n t i a l l o s s i n l i g h t i n t e n s i t y . In the case o f an i d e a l , l i n e a r p o l a r i z e r , t h i s l o s s amounts t o 50% o f the i n c i d e n t l i g h t ; but t h i s l o s s i n c r e a s e s t o approximately 70% with the use o f p l a s t i c sheet p o l a r i z e r s such as P o l a r o i d ' s HN32 material. In t r a n s v e r s e mode devices such as s h u t t e r s o r v a r i a b l e dens i t y f i l t e r s , the e l e c t r i c f i e l d i s g e n e r a l l y a p p l i e d by means o f s u i t a b l e e l e c t r o d e p a t t e r n on one o r both major s u r f a c e s o f a p o l i s h e d p l a t e o f m a t e r i a l . Since viewing i s accomplished through the gap between the p o s i t i v e and negative e l e c t r o d e s , i t f o l l o w s t h a t the a c t i v a t i n g v o l t a g e can be reduced, f o r a given o v e r a l l viewing area, by reducing the gap width and i n c r e a s i n g the t o t a l number o f gaps. T h i s r e s u l t s i n a number o f narrow, i n t e r d i g i t a l e l e c t r o d e s on a given p l a t e . By p l a c i n g the d e v i c e out o f the f o c a l plane o f the o p t i c a l system,the f i n e e l e c t r o d e s ( ~ 0.04mm wide) a r e v i r t u a l l y i n v i s i b l e , and image q u a l i t y through the dev i c e i s e x c e l l e n t . In c o n t r a s t to the l o n g i t u d i n a l mode, the t r a n s v e r s e mode produces l a r g e r e l e c t r o o p t i c e f f e c t s ; and i n the a c t i v a t e d or ON s t a t e , the m a t e r i a l i s o p t i c a l l y c l e a r with essent i a l l y no s c a t t e r i n g . Devices u t i l i z i n g t h i s mode may o r may not e x h i b i t memory, depending on the composition. In the l o n g i t u d i n a l mode, v o l t a g e i s a p p l i e d through the t h i c k n e s s o f the p l a t e n e c e s s i t a t i n g the use o f t r a n s p a r e n t e l e c trodes such as t i n oxide o r ITO. Since t h i s mode g e n e r a l l y a l i g n s the macroscopic o p t i c a x i s o f the m a t e r i a l p a r a l l e l t o the d i r e c t i o n o f viewing, o p t i c a l b i r e f r i n g e n t e f f e c t s are minimal. In t h i s mode, the s t r e n g t h o f the e l e c t r i c a l s w i t c h i n g f i e l d i s dependent on the t h i c k n e s s o f the p l a t e and the s p e c i f i c composition s e l e c t e d , but i s independent o f the area. Thermal/Flash P r o t e c t i v e Device, In 1975 Sandia L a b o r a t o r i e s of Albuquerque, New Mexico, began the design and development o f PLZT goggles f o r the U.S. A i r Force t o p r o v i d e p r o t e c t i o n f o r a i r c r a f t personnel from f l a s h b l i n d n e s s caused by a n u c l e a r e x p l o s i o n (18). A t t h a t time, the technology f o r producing such a d e v i c e was i n i t s i n f a n c y and many o f the techniques r e q u i r e d f o r i t s development and manufacture were non-existent. In the next three years, s e v e r a l new t e c h n o l o g i e s such as PLZT p o l i s h i n g and e l e c t r o d i n g , high performance p o l a r i z e r s , l e n s bonding and the f a b r i c a t i o n o f s p e c i a l i z e d e l e c t r o n i c s were a l l developed and p u t i n t o p r a c t i c e . The f i n a l product, o f f i c i a l l y designated as the EEU-2/P F l a s h b l i n d n e s s F l y e r s Goggles, i s shown i n F i g u r e 9. I t possesses s e v e r a l advantages over i t s predecessor, a l i q u i d photochromic system, among which are i n c l u d e d (1) s m a l l e r s i z e , (2) l e s s weight, (3) s o l i d s t a t e , (4) f a s t e r response and (5) higher p o r t a bility. I t has been i n p r o d u c t i o n f o r the l a s t two years and i s the f i r s t PLZT d e v i c e to reach t h i s stage. The f l a s h b l i n d n e s s goggle i s b a s i c a l l y a transverse-mode shut t e r o f the c o n f i g u r a t i o n shown i n F i g u r e 3(A). The s h u t t e r i s

In Industrial Applications of Rare Earth Elements; Gschneidner, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Electrooptic

Ceramics

and

277

Devices

Downloaded by UNIV OF ROCHESTER on November 6, 2014 | http://pubs.acs.org Publication Date: September 3, 1981 | doi: 10.1021/bk-1981-0164.ch016

HAERTLING

Sandia Laboratories

Figure 9.

PLZT Thermal/Flash Protective Goggle developed by Sandia Laboratories for the U.S. Air Force

In Industrial Applications of Rare Earth Elements; Gschneidner, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

278

RARE E A R T H

ELEMENTS

Downloaded by UNIV OF ROCHESTER on November 6, 2014 | http://pubs.acs.org Publication Date: September 3, 1981 | doi: 10.1021/bk-1981-0164.ch016

operated i n the f u l l y open or energized s t a t e u n t i l a l i g h t hazard i s detected by means of sensors mounted behind the viewing l e n s . When t h i s occurs, the PLZT e n e r g i z i n g voltage i s r a p i d l y discharged causing the goggles to r e v e r t to the c l o s e d s t a t e . When the t h r e a t i s removed, the PLZT i s re-energized and the open s t a t e i s r e s t o r e d . The open and c l o s e d s t a t e s of the device have t y p i c a l l y 20% and 0.006% transmission r e s p e c t i v e l y . Closure time i s l e s s than 150 microseconds. Data Recorder. The second PLZT device to reach the product i o n s t a t e (1979) i s a data d i s p l a y recorder manufactured by B e l l and Howell of Pasadena, C a l i f o r n i a . T h i s device i s shown i n F i g ure 10. The CEC HR-2000 Datagraph works on a p r i n c i p l e not p r e v i o u s l y used i n analog data r e c o r d i n g ; i . e . , a d i g i t a l l y cont r o l l e d e l e c t r o o p t i c s h u t t e r using p o l a r i z e d l i g h t and a PLZT c e r amic p l a t e as the e l e c t r o o p t i c m a t e r i a l (19). By s e l e c t i v e l y passing or b l o c k i n g l i g h t through a l i n e a r array o f hundreds o f t i n y l i g h t gates or s h u t t e r s , each of which i s c o n t r o l l e d by d r i ver e l e c t r o n i c s , the input data s i g n a l s are a c c u r a t e l y reproduced. L i g h t which passes through the l i g h t gates impinges upon d i r e c t p r i n t r e c o r d i n g paper to r e c o r d data waveforms w i t h high f i d e l i t y and accuracy. The o p e r a t i o n a l setup o f t h i s transverse-mode dev i c e i s the same as t h a t d e s c r i b e d i n F i g u r e 8(A). At the h e a r t o f the r e c o r d e r i s the a r r a y o f l i g h t gates composed of a number of PLZT p l a t e s c o n t a i n i n g vacuum deposited e l e c trodes spaced 0.0125 inches apart, thus p r o v i d i n g h i g h r e s o l u t i o n . By using t h i s type o f f i x e d , d i g i t a l l y c o n t r o l l e d s o l i d s t a t e array, the data recorder has e l i m i n a t e d such problems as l i n e a r i t y , beam d e f l e c t i o n , t a n g e n t i a l e r r o r , overshoot and i n e r t i a which l i m i t present galvanometer and CRT r e c o r d i n g d e v i c e s . The instrument has a frequency response from dc to 5 kHz s i n e wave or 10 kHz square wave and a r e c o r d i n g speed of 0.01 to 129 inches of paper per second. Stereo-Viewing Device. T h i s d e v i c e , now being s o l d under the name o f Megavision, has r e c e n t l y been developed by Megatek Corpora t i o n o f San Diego, C a l i f o r n i a . I t makes p o s s i b l e t r u e s t e r e o s c o p i c three-dimensional viewing of images on both v e c t o r r e f r e s h and r a s t e r scan computer graphic d i s p l a y s . The device i s shown i n F i g u r e 11. I t c o n s i s t s of a p a i r of l i g h t w e i g h t (1.5 oz.) viewing g l a s s e s , each l e n s of which i s s e p a r a t e l y e l e c t r o n i c a l l y cont r o l l e d through a small c a b l e to a belt-mounted backup u n i t . Each l e n s i s e s s e n t i a l l y an independently c o n t r o l l e d transverse-mode s h u t t e r of the type d e s c r i b e d i n F i g u r e 8(A). The s h u t t e r s are synchronized to an a l t e r n a t i n g p a i r of d i s p l a y e d images so t h a t only the l e f t eye sees the l e f t - e y e view and the r i g h t eye the r i g h t - e y e view. The views are a l t e r n a t e d a t a r a t e more than 30 Hz f o r each l e n s , a l l o w i n g the observer to p e r c e i v e a s i n g l e , s t e r e o s c o p i c image wrth a l i f e - l i k e sensation of o b j e c t depth. Some a p p l i c a t i o n s of t h i s device are f l i g h t simulators and t r a i n -

In Industrial Applications of Rare Earth Elements; Gschneidner, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by UNIV OF ROCHESTER on November 6, 2014 | http://pubs.acs.org Publication Date: September 3, 1981 | doi: 10.1021/bk-1981-0164.ch016

HAERTLING

Figure 10.

Electrooptic

Ceramics and

279

Devices

Datagraph display recorder developed by Bell and Howell

Megatek Corporation

Figure 11.

Stereo-viewing system developed by Megatek Corporation

In Industrial Applications of Rare Earth Elements; Gschneidner, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

280

RARE E A R T H

Downloaded by UNIV OF ROCHESTER on November 6, 2014 | http://pubs.acs.org Publication Date: September 3, 1981 | doi: 10.1021/bk-1981-0164.ch016

ers, a i r t r a f f i c c o n t r o l , medical imaging, s c i e n t i f i c radar and sonar d i s p l a y s and contour mapping.

ELEMENTS

modeling,

Eye Safety Devices. Personnel eye s a f e t y devices such as the e l e c t r o n i c welding helmet, i n s p e c t i o n goggles and s a f e t y flip-down g l a s s e s mounted on a hard hat are some devices t h a t are i n the l a t t e r stages o f development a t the Ceramic Products department of Motorola, Inc. i n Albuquerque, New Mexico. A l l o f these d e v i c e s operate i n a manner very s i m i l a r to t h a t o f the f l a s h b l i n d n e s s goggles developed by Sandia L a b o r a t o r i e s . They are transverse-mode s h u t t e r d e v i c e s assembled i n a c o n f i g u r a t i o n as d e s c r i b e d i n F i g ure 8(A). An example o f the e l e c t r o n i c welding helmet i s shown i n F i g u r e 12. The l i g h t sensors and power supply are mounted e x t e r n a l l y to the PLZT s h u t t e r s which a c t as the v a r i a b l e d e n s i t y f i l t e r p l a t e . When an arc i s s t r u c k or some other s i m i l a r l y i n t e n s e l i g h t source i s a c t i v a t e d , the sensors d e t e c t t h i s change i n l i g h t l e v e l and remove the v o l t a g e from the s h u t t e r s , causing them to i n s t a n taneously darken to a shade p r e v i o u s l y s e t by the o p e r a t o r . When the a r c i s i n t e r r u p t e d , the s h u t t e r s q u i c k l y and a u t o m a t i c a l l y r e a c t i v a t e to t h e i r f u l l ON c o n d i t i o n . Since t h i s automatic a c t i o n e l i m i n a t e s the n e c e s s i t y o f r a i s i n g and lowering the helmet, the mask can be worn i n the down p o s i t i o n a t a l l times, thus i n c r e a s ing p r o d u c t i v i t y and p r e v e n t i n g a c c i d e n t a l eye burns from neighb o r i n g welding o p e r a t i o n s . A wide range o f f i l t e r p l a t e s from shade 4 (5.2% transmittance) to shade 14 (0.0004%) are a v a i l a b l e . Image Storage Devices. Research and development a c t i v i t i e s are c o n t i n u i n g a t Sandia L a b o r a t o r i e s i n Albuquerque, New Mexico, on image storage devices u t i l i z i n g PLZT ceramics. The Cerampic d e v i c e has r e c e i v e d extensive study f o r the p a s t s e v e r a l years and shows promise f o r image storage a p p l i c a t i o n s o f the f u t u r e . I t i s a l o n g i t u d i n a l s c a t t e r i n g mode d e v i c e as d e s c r i b e d i n F i g ure 8(C). E a r l y designs u t i l i z e d a photoconductor l a y e r which provided the s p a t i a l v a r i a t i o n s o f s w i t c h i n g v o l t a g e when exposed to s p a t i a l v a r i a t i o n s o f l i g h t i n t e n s i t y ( u s u a l l y through a cont a c t negative) needed to produce the image i n the ceramic. This photoconductor was subsequently e l i m i n a t e d by exposing the image with near UV l i g h t c o n t a i n i n g band gap (3.35 eV) or higher energy photons which produce a space charge f i e l d , thus a i d i n g the domain switching process. S i g n i f i c a n t improvements i n the s e n s i t i v i t y o f the exposure and r e c o r d i n g process were r e p o r t e d by Land and Peercy (20) through the use o f i o n i m p l a n t a t i o n (hydrogen and helium) i n the s u r f a c e o f the PLZT. Reductions i n exposure energy by as much as 10,000 times have more r e c e n t l y been achieved through the c o - i m p l a n t a t i o n o f argon and neon. Present exposure energy values o f about 10 /xJ/cm compare f a v o r a b l y with 100 /xJ/cm r e q u i r e d f o r f i n e - g r a i n e d holographic f i l m . An example o f t y p i c a l image q u a l i t y i s shown i n F i g u r e 13. The image i n the ceramic (A) was obtained by c o n t a c t exposure o f a negative produced from the o r i g i n a l photograph (B). 2

In Industrial Applications of Rare Earth Elements; Gschneidner, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

2

Downloaded by UNIV OF ROCHESTER on November 6, 2014 | http://pubs.acs.org Publication Date: September 3, 1981 | doi: 10.1021/bk-1981-0164.ch016

HAERTLING

Electrooptic

Ceramics and

281

Devices

Motorola Incorporated

Figure 12.

Electronic welding helmet developed by Motorola Incorporated

Sandia Laboratories

Figure 13. Example of image storage quality in memory PLZT 7065: (left) stored image and (right) original positive; ceramic device under development at Sandia Laboratories

In Industrial Applications of Rare Earth Elements; Gschneidner, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

282

RARE E A R T H

ELEMENTS

Downloaded by UNIV OF ROCHESTER on November 6, 2014 | http://pubs.acs.org Publication Date: September 3, 1981 | doi: 10.1021/bk-1981-0164.ch016

Summary The development o f o p t i c a l transparency i n f e r r o e l e c t r i c PLZT (lanthanum modified l e a d z i r c o n a t e t i t a n a t e ) ceramics a decade ago has s t i m u l a t e d a c o n s i d e r a b l e amount o f i n t e r e s t i n the nature o f these m a t e r i a l s / t h e i r e l e c t r o o p t i c behavior and t h e i r a p p l i c a t i o n to e l e c t r o o p t i c d e v i c e s . Although some measure o f o p t i c a l t r a n s parency has now been achieved i n other s i m i l a r f e r r o e l e c t r i c mat e r i a l s , r a r e - e a r t h lanthanum oxide i s unique i n i t s a b i l i t y t o produce the h i g h e s t q u a l i t y m a t e r i a l ; and thus, i t remains the standard o f the i n d u s t r y . The ceramics a r e c h a r a c t e r i z e d by good e l e c t r i c a l and o p t i c a l p r o p e r t i e s , uniform g r a i n s i z e and micros t r u c t u r e , h i g h e l e c t r o o p t i c c o e f f i c i e n t s and e x c e l l e n t moisture r e s i s t a n c e . T h e i r unusual combination o f p r o p e r t i e s have made them u s e f u l m a t e r i a l s f o r such s p e c i f i c a p p l i c a t i o n s as nuclear f l a s h b l i n d n e s s goggles, a data d i s p l a y r e c o r d e r , a stereoviewing system, an e l e c t r o n i c welding helmet and an image storage d i s p l a y device. An estimate o f the annual amount o f lanthanum oxide p r e s e n t l y being used i n a l l PLZT a p p l i c a t i o n s i s approximately 300Kg. T h i s f i g u r e i s c o n s e r v a t i v e l y p r o j e c t e d t o i n c r e a s e twenty-fold i n the next f i v e years as p r o d u c t i o n volumes i n c r e a s e and new a p p l i c a t i o n s f o r these m a t e r i a l s are r e a l i z e d .

Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.

Haertling, G.H.; Land, C.E. J. Am. Ceram. Soc., 1971, 54, 1-11. Okazaki, K.; Nagata, K. J. Am. Ceram. Soc., 1973, 56, 82-86. Meitzler, A.H.; O'Bryan, H.M. Jr. Proc. IEEE, 1973, 61, 959-966. Keve, E.T.; Annis, A.D. Ferroelectrics, 1973, 5, 77-89 Land, C.E.; Thacher, P.D.; Haertling, G.H., "Applied Solid State Science"; Academic Press, New York, 1974; p. 137-233. Micheron, F.; Rouchon, J.M.; Vergnolle, M. Appl. Phys. Lett., 1974, 24, 605-607. Drake, M.D. Applied Optics, 1974, 13, 347-352. Maldonado, J.R.; Fraser, D.B.; Meitzler, A.H., "Advances in Image Pickup and Displays"; Academic Press, New York, 1975, p. 65-168. Cutchen, J.T.; Harris, J.; Laguna, G. Applied Optics, 1975, 14, 1866-1873. Roese, J.; Khalafalla, A. Ferroelectrics, 1976, 10, 47-51. Land, C.E. Optical Engineering, 1978, 17, 317-326. Samek, N.; Raymond, W. Proc. of the 25th Intl. Instr. Symp., 1979, 16, 485-500. Hardtl, K.H.; Hennings, D. J. Am. Ceram. Soc., 1972, 55, 230231. Snow, G.S. J. Am. Ceram. Soc., 1973, 56, 91-96. Haertling, G.H.; Land, C.E. Ferroelectrics, 1972, 3, 269-280. Dungan, R.; Snow, G. Bull. Am. Ceram. Soc., 1977, 56, 781-782. Smith, W.D.; Land, C.E. Appl. Phys. Lett., 1972, 20, 169-171.

In Industrial Applications of Rare Earth Elements; Gschneidner, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

16.

HAERTLING

Electrooptic

Ceramics and Devices

283

18. Cutchen, J.T. Ferroelectrics, 1980, 27, 173-178. 19. Howes, P.A. Proc. of the 25th Intl. Instr. Symp., 1979, 16, 199-210. 20. Land, C.; Peercy, P. Appl. Phys. Lett., 1980, 37, 39-41. December 19, 1980.

Downloaded by UNIV OF ROCHESTER on November 6, 2014 | http://pubs.acs.org Publication Date: September 3, 1981 | doi: 10.1021/bk-1981-0164.ch016

RECEIVED

In Industrial Applications of Rare Earth Elements; Gschneidner, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.