(PMe,) Cr - American Chemical Society

Richard A. Jones," Jon G. Lasch, Nicholas C. Norman, Anthony L. Stuart, Thomas C. Wright, ... (2) Atwood, J. L.; Hunter, W. E.; Jones, R. A.; Wright, ...
3 downloads 0 Views 803KB Size
Organometallics 1984, 3, 114-119

114

Heterobimetallic Di-terf -butylphosphido-Bridged Complexes of Cr-Ni and Cr-Rh. Synthesis and X-ray Structures of (CO),( PMe,)Cr(p-t-Bu,P)Ni( PMe,)CI( Cr-Ni) and (CO), (PMe,) Cr ( p -t -Bu,P) Rh( PMe,) CO( Cr-Rh ) Richard A. Jones," Jon G. Lasch, Nicholas C. Norman, Anthony L. Stuart, Thomas C. Wright, and Bruce R. Whittlesey Department of Chemistty, The University of Texas at Austin, Austin, Texas 78712 Received August 9, 1983

Reaction of (CO)5CrP(t-Bu)zLi,prepared in situ from (CO)5CrP(t-Bu)2Hand n-BuLi (1:l)in THF, with (1) in 60% yield. A similar NiC1z(PMe3)zat -100 "C yields (C0)4(PMe3)Cr(p-t-BuzP)Ni(PMe3)C1(Cr-Ni) reaction with Rh(PMeJ3C1 yields (C0)4(PMe3)Cr(p-t-BuzP)Rh(PMe3)CO(Cr-Rh) (2) in 70% yield. Both 1 and 2 contain a metal-metal bond bridged by a single di-tert-butylphosphido (p-t-BuzP)unit. In both cases a PMe3 group from the Ni and Rh starting complexes becomes bound to the Cr atom in 1 and 2, respectively. In 1 the Cr-PMe3 group is trans to the phosphorus atom of p-t-Bu,P while in 2 it occupies a cis coordination site. Crystal data for 1: C18H3&1CrNiP304,MI = 555.56, monoclinic, P2,/n, a = 17.682 (2) A, b = 11.323 (2) 8, C = 13.231 (1)A, 0 = 92.582 (I)', = 2646.6 (5) A3, Dc&d = 1.394 g 4, X(Mo Ka) = 0.71069 A, p(Mo K a ) = 14.2 cm-l, final R = 0.0544, R, = 0.0681, from 2714 observed reflections (4683 measured). Crystal data for 2: C19H3&r05P3Rh,MI = 592.31 monoclinic, P2,/n, a = 8.459 (3) A, b = 18.687 (3) A, c = 17.113 (2) A, 0 = 101.42 (2)', = 2677.1 (1) Dcdcd = 1.47 g ~ m - ~ = , 4, X(Mo K a ) = 0.71069 A, ~ ( M Ka) o = 12.0 cm-l, final R = 0.041, R, = 0.052, from 2806 observed reflections (4854 measured).

u

u

Introduction

eq 1and 2). These complexes are the fist heterodinuclear

Metal-metal bonds between different transition metals

are currently of interest in organometallic chemistry. As part of a study of the steric effects of bulky phosphido (R,P-) we have investigated the synthesis of mixed-metal dinuclear complexes where the metals are bridged by one dialkylphosphido unit. The synthetic approach used involves the in situ lithiation of a coordinated secondary phosphine followed by reaction with a complex containing a halide (see Scheme I).

+ n-BuLi LyMPR2Li + LxM'X

-

-

( C O ) 5C r ( P - f - B u & )

t N i CI2(PMe3 12

THF

-100

o c

t - Bu2

/ p\

(C0)4(PMe3)Cr--NiCI( (CO)SCr(P-t-Bu2Ll) t RhCI(PMe3)3

-

(1)

t-Bu2

/p\

~

LyMPR2Li

PMe3 )

THF

( C O )4( P Me3 ) Cr -R h ( C O ) ( P Me3 )

Scheme I LyMPRzH

k3,

+ n-BuHt

LyM(p-PR2)M'Lx

+ LiX

Ly, Lx = ancilliary ligands; X = halide The use of coordinated lithiated phosphines as useful intermediates in organometallic chemistry has been known for some time.4 More recently, for example, Geoffroy and co-workers .have used this method to synthesize some interesting mixed-metal complexes of W-Ir,5 Fe-Rh: and Fe-Ir.' With use of this general route we have synthesized two complexes that contain Cr-Ni (1) and Cr-Rh (2) bonds (see (1) Jones, R. A.; Stuart, A. L.; Atwood, J. L.; Hunter, W. E.; Rogers, R. D. Organometallics 1982, I , 1721. (2) Atwood, J. L.; Hunter, W. E.; Jones, R. A.; Wright, T. C. Inorg. Chem. 1982,22, 993. (3) Jones, R. A.; Wright, T. C.; Atwood, J. L.; Hunter, W. E. Organometallrcs 1982, 2, 470. (4) See for example: Stelzer, 0.;Unger, E.; Wray, V. Chem. Eer. 1977, 110, 3430. Huttner, G.;Muller, H. D.; Frank, A.; Lorenz, H. Angew. Chem., Int. Ed. Engl. 1975, 14,572. Treichel, P. M.; Douglas, W. M.; Dean, W. K. Znorg. Chem. 1972, 11, 1615. (5) Breen, M. J.; Geoffroy, G. L.; Rheingold, A. L.; Fultz, W. C. J . Am. Chem. Soc. 1983, 105,1069. (6) Breen, M. J.; Geoffroy, G.L. Organometallics 1982, 1, 1437. (7) Breen, M. J.; Duttera, M. R.; Geoffroy, G.L.; Novotnak, G. C.; Roberts, D. A.; Shulman, P. M.; Steinmetz, G. R. Organometallics 1982, I , 1008.

(2 )

compounds to contain the bulky bridging di-tert-butylphosphido (p-t-BuzP-) unit.* Several features of the complexes are noteworthy. The formation of both complexes is accompanied by the transfer of a PMe, group from the Ni or R h starting material to the Cr atom of the product. In the solid state both 1 and 2 exist as single isomers. Although the Cr atom has virtually the same (M ligands in 1 and 2 (i.e., M-Cr(CO),(PMe3)(p-t-Bu2P) = Ni, Rh)), the PMe3 ligands occupy different coordination sites, being trans and cis with respect to the p-t-Bu,P group. The reasons for this difference in the solid state are not immediately obvious. It seems likely that different isomers are quite close in energy since in solution 31PNMR data indicate that both complexes exist in solution as mixtures of isomers. We report here the synthesis, characterization, and X-ray crystal structures of 1 and 2.

Results and Discussion

(C0)4(PMe3)Cr(cr-t-BuzP)NiC1(PMe3)(Cr-Ni) (1). The interaction of 1 or 2 equiv of (CO)5CrP(t-Bu)zLi (prepared in situ) with 1 equiv of NiC12(PMe3)zin T H F (8) For other complexes containing r-t-Bu2P see: Schumann, H.; Neumann, H. 2. Naturforsch., E: Anorg. Chem., Org. Chem. 1981,36B, 708 ([M(C0)4(p-t-Bu2P)]2 (M = Mn, Re)). Schumann, H.; Heisler, M. Chem. Ber. 1979, 112, 541 (Rh2(C0)2)C1(P-t-Bu3)2(lr-t-Bu*P)).

0276-733318412303-0114$01.50/0 0 1984 American Chemical Society

Organometallics, Vol. 3, No. 1, 1984 115

t-Bup-Bridged Complexes of Cr-Ni and Cr-Rh Table I. Crystal Data and Summary of Intensity Data Collection and Structure Refinement for 1 and 2 1

2

~~

formula mol wt space group cell constants a, A

b, A c, '4

P , deg cell vol, A3 molecules/ unit cell D(calcd), g cm-3 p(calcd), cm-' radiation, A max crystal dimens, mm scan width, deg std reflctns decay of stds reflctns measd 28 range, deg reflctns obsd no. of parameters varied datalparameter ratio R Rw

C,,H,,ClCrNiO,P, 555.56 P2, In

C,,H,,CrO,P,Rh 592.31 P2, /n

17.682 (2) 11.323 (2) 13.231 (1) 92.582 (1) 2646.6 (5) 4

8.459 (3) 18.867 (3) 17.113 (3) 101.42 (2) 2677.1 (1) 4

1.394

1.47

14.2 12.0 Mo K a , 0.710 69 Mo Ka, 0.710 69 0.25 X 0.25 X 0.10 0.13 X 0.30 X 0.10

+ 0 3 5 tan e 460,553 < 2% 4683 2.0 < 2e < 50.0 2714 (I > 2u(I)) 397

4859 2.0 < 2e < 50.0 2806 (I > 30(I)) 262

6.84

10.70

0.054 0.068

0.041 0.052

0.8

+ 0.35 tan e 195, 346

0.8