2 Synthetic Aspects of Tertiary Diamine Organolithium Complexes W. NOVIS SMITH Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch002
Foote Mineral Co., Exton, Pa.
19341
The metalations of benzene, toluene, propene, and 1-butene with butyllithium-TMEDA complexes were studied. Factors controlling the metalation rate are discussed including temperature, structure of butyllithium isomer, amount of TMEDA, and solvent. Optimum conditions are described for the formation of TMEDA complexes of benzyl-, phenyl-, allyl-, and crotyllithium and benzyllithium · triethylenediamine (TED). Synthetic uses of these complexes demonstrate that they react in the same way as other organolithium compounds. Ring-isomer formation during metalation of toluene using n-butyllithium-TMEDA complexes is also examined. The conditions for the lithiation of TMEDA and other tertiary diamines and monoamines (including trimethylamine) are given. The reaction of lithiated TMEDA with 1-bromobutane produced N-n-pentyl-N,N',N'-trimethylenediamine in 40% yield.
TT he l i t e r a t u r e d e s c r i b i n g t e r t i a r y d i a m i n e o r g a n o l i t h i u m c o m p o u n d s has g r o w n t r e m e n d o u s l y since the i n i t i a l announcements of these versatile reagents (1, 2). M u c h of this literature has centered o n p o l y m e r i z a t i o n or p o l y m e r studies u s i n g these complexes as catalysts. T h e synthetic p o t e n t i a l of these complexes a n d t h e i r preparations h a v e b e e n discussed, b u t there has b e e n no intensive s t u d y to d e t e r m i n e the o p t i m u m c o n d i t i o n s for t h e i r p r e p a r a t i o n for synthetic a p p l i c a t i o n s (1-6). S y n t h e t i c a p p l i c a t i o n s u s u a l l y r e q u i r e a n i s o l a t i o n step or some p r o c e d u r e to ensure p u r i t y of the complex. E v e n investigations of the g e n e r a l u t i l i t y a n d c o n d i t i o n s for use of these complexes are not extensive. T h e most significant factor i n t h e i r r e a c t i v i t y f r o m a synthetic p o i n t of v i e w is the a b i l i t y of these complexes to metalate or r e p l a c e c e r t a i n a c t i v a t e d h y d r o gens i n h y d r o c a r b o n s w i t h the l i t h i u m c a t i o n (7, 8). T h e n e w a r o m a t i c ,
/
,
A
23
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
24
P O L Y A M I N E - C H E L A T E D A L K A L I M E T A L COMPOUNDS
b e n z y l i c , or a l l y l i c o r g a n o l i t h i u m t e r t i a r y d i a m i n e c o m p l e x
is t h e n r e
a c t i v e e n o u g h to react selectively w i t h a v a r i e t y of reagents: >N ~
Ν < . # L i + # ' H -> RR +
>N ~
Ν < -JÎ'Li
(1)
T h e results r e p o r t e d here describe a n i n v e s t i g a t i o n of the o p t i m u m c o n d i t i o n s of p r e p a r a t i o n of t h e t e r t i a r y d i a m i n e p h e n y l h t h i u m , b e n z y l l i t h i u m , a l l y l l i t h i u m , a n d l i t h i a t e d T M E D A complexes.
These
reagents
w e r e a l l o w e d to react w i t h some c o m m o n reagents to h e l p d e l i n e a t e the
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch002
s y n t h e t i c usefulness of the complexes. T h e a c c o m p a n y i n g papers i n this v o l u m e , the l i t e r a t u r e c i t e d i n t h e m , a n d this p a p e r discuss reasons for the e n h a n c e d r e a c t i v i t y of these c o m plexes.
M e c h a n i s t i c discussion has b e e n left to a m i n i m u m i n this p a p e r
to e m p h a s i z e p r e p a r a t i v e a n d synthetic aspects.
( A u s e f u l a n a l o g y as to
w h a t these complexes c a n d o or h o w t h e y w i l l react is to consider t h e i r b e h a v i o r to b e s i m i l a r to h y d r o c a r b o n soluble a l k y l s o d i u m c o m p o u n d s i f t h e y w e r e to exist. ) Results and
Discussion
Reactivity
of Various Tertiary Diamines
in the Preparation of Previous
Tertiary Diamine Organolithium Complexes by Metalation.
w o r k has s h o w n that the r e a c t i v i t y a n d the rate of m e t a l a t i o n for R e a c t i o n 2 of the t e r t i a r y d i a m i n e o r g a n o l i t h i u m complexes is a f u n c t i o n of the t e r t i a r y d i a m i n e i n the c o m p l e x (1,9). R RLi
^ R i
3
·
~
+ ^ R
R4 R—Η
+
Aromatic Benzylic Allylic
2
I n the specific case of the m e t a l a Aromatic Benzylic Allylic
) > —C—Li )
·
R3>. J^N R 4
) \— C — H ) ~
-»
Ri NC" ^ R
(2)
2
t i o n of b e n z e n e as s h o w n i n R e a c t i o n 3, a t e r t i a r y d i a m i n e w a s a d d e d to n - b u t y l l i t h i u m i n b e n z e n e at r o o m t e m p e r a t u r e i n a 1:1
molar ratio.
A f t e r the i n i t i a l t e m p e r a t u r e rise, the h e a t e d s o l u t i o n b e g a n
evolving
η-butane at 4 5 ° - 5 0 ° C (η-butane is v e r y soluble i n benzene, a n d u s u a l l y
„.B
u t e
»e
+
g * ?
·
(0f
U
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
(3)
2.
SMITH
25
Tertiary Diamine Organolithium Complexes
no gas e v o l u t i o n occurs unless the t e m p e r a t u r e is r a i s e d ). T h e rate of gas e v o l u t i o n was q u i t e sensitive to t h e structure of the t e r t i a r y d i a m i n e . T h e o r d e r of r e a c i v i t y o b s e r v e d tetramethylethylenediamine butanediamine >
u s i n g this p r o c e d u r e
was
Ν,Ν,Ν',Ν'-
( T M E D A ) > N,N,N^'-tetramethyl-l,3-
N^^^N'-tetramethyl-l^-propanediamine >
triethyl-
e n e d i a m i n e ( T E D or D A B C O ) a n d 2 - m e t h y l t r i e t h y l e n e d i a m i n e > N^N'-tetramethyl-l^-butanediamine. tetramethylmethylenediamine
T h e tertiary diamines,
N,N 9
Ν,Ν,Ν',Ν'-
a n d N , N ' - d i m e t h y l - l , 4 - p i p e r a z i n e , caused
l i t t l e or no gas e v o l u t i o n i n d i c a t i n g essentially no m e t a l a t i o n i n the h o u r
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch002
i n w h i c h the other t e r t i a r y d i a m i n e complexes reacted. T h e o r d e r of r e a c t i v i t y agrees w i t h p r e v i o u s s t u d i e s — T M E D A b e i n g by
f a r the most
reactive
of
the r e a d i l y a v a i l a b l e t e r t i a r y d i a m i n e s .
[ S p a r t e i n e appears to be the most a c t i v a t i n g of the t e r t i a r y d i a m i n e s investigated ( I , 1 0 ) ] . increased
R e c e n t reports b y L a n g e r a n d others i n d i c a t e t h a t
a c t i v a t i o n is e x p e c t e d f r o m the m e t h y l t e r t i a r y
polyamines
c o n t a i n i n g m o r e t h a n t w o b a s i c nitrogens, a l l separated b y t w o (II).
P r e p a r a t i v e a n d synthetic w o r k c e n t e r e d o n T M E D A
carbons
and T E D
( D A B C O ) because of t h e i r e c o n o m i c p r a c t i c a l i t y . Optimum Conditions for Preparing Phenyllithium from
Benzene.
T h e o p t i m u m p r o c e d u r e for m e t a l a t i o n of a n a r o m a t i c c o m p o u n d i n h i g h y i e l d w a s to use the a r o m a t i c c o m p o u n d itself as the solvent.
The alkyl
l i t h i u m c o m p o u n d u s e d m a i n l y i n this s t u d y was n - b u t y l l i t h i u m because it w a s c o n v e n i e n t a n d e c o n o m i c a l . T h e following general procedure
was u s e d to d e t e r m i n e t h e
com
p l e t i o n of r e a c t i o n . T h e c a l c u l a t e d a m o u n t of T M E D A was a d d e d to the s o l u t i o n of n - b u t y l l i t h i u m i n b e n z e n e o v e r one stirred solution
(under
argon)
to t w o
was k e p t at the d e s i r e d
minutes.
The
temperature;
a l i q u o t s of this r e a c t i n g solution a n d the final s o l u t i o n w e r e t h e n t a k e n , a l l o w e d to react w i t h t r i m e t h y l s i l y l c h l o r i d e , a n d a n a l y z e d b y G L C . T h e s e results m a y i n d i c a t e the m e c h a n i s m of the m e t a l a t i o n r e a c t i o n i n a d d i t i o n to d e t e r m i n i n g o p t i m u m
metalation conditions
for
benzene.
T h e results are l i s t e d i n T a b l e I. A n u m b e r of conclusions c a n be d r a w n . T h e effect of excess t e r t i a r y d i a m i n e a b o v e a 1-mole e q u i v a l e n t is not as significant for r a p i d m e t a l a t i o n as is the i n i t i a l a m o u n t of T M E D A .
Practical metalation could only
be o b t a i n e d w i t h a 1:1 m o l a r ratio at 4 0 ° C a n d a 2:1 r a t i o at 6 0 ° C ; the 4:1 r a t i o r e q u i r e d reflux.
S i d e reactions a p p e a r e d to cause a p r o b l e m
o n l y w i t h the 4:1
r a t i o at the h i g h e r temperatures.
Benzene
solvent a c c e l e r a t e d
the r e a c t i o n s i x f o l d over hexane
with 10%
excess as the solvent.
as
the mole
S o m e of this acceleration m a y be solvent effect.
T h e use of s e c - b u t y l l i t h i u m i n c r e a s e d the m e t a l a t i o n rate eight times. A s expected, the m e t a l a t i o n rate i n c r e a s e d w i t h temperature.
The
rate w a s r e l a t i v e l y r a p i d over the i n i t i a l 6 0 % a n d t h e n s l o w e d d r a m a t i -
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
26
POLYAMINE-CHELATED ALKALI M E T A L
Table I.
Run
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch002
1
Study of the Metalation Rate of Benzene by Butyllithium and T M E D A
Molar Ratio BuLi: TMEDA
T, °c
1:1
22
e
2
2:1"
22
3
1:2"
22
4
1:1°
40
5
2:1 3
2
2
3
(CH ) N(CH ) N(CH )CH Li + 3
2
2
2
3
2
C H 4
(7)
1 0
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch002
I Since t h e n , f u r t h e r w o r k b y L a n g e r a n d his c o - w o r k e r s has s h o w n t h a t this is a g e n e r a l r e a c t i o n w i t h the h i g h e r h o m o l o g s of T M E D A
(5,
8).
P r e p a r a t i o n of these l i t h i a t e d t e r t i a r y d i a m i n e s a n d a n u m b e r of s y n t h e t i c reactions are g i v e n i n those references.
A s f u r t h e r b a c k g r o u n d to the
possible reactions that m a y o c c u r w i t h other t e r t i a r y amines a n d d i a m i n e s , the w o r k of L e p l e y a n d co-workers w i t h n - b u t y l l i t h i u m a n d a r o m a t i c tertiary amines s h o u l d also b e e x a m i n e d
(29-33).
O n e p r o b l e m i n w o r k i n g w i t h the l i t h i a t e d t e r t i a r y d i a m i n e s is that they w i l l u n d e r g o f u r t h e r d e c o m p o s i t i o n w h e n o v e r h e a t e d or o n s t a n d i n g . F o r example lithiated T M E D A yields lithium dimethylamide, d i m e t h y l v i n y l a m i n e , a n d l i t h i u m a c e t y l i d e ( J , 2, 5, 34).
Lithiated T M E D A
(I)
i n hexane decomposes at a rate of 0 . 5 2 % of the i n i t i a l l y c o n t a i n e d m a t e r i a l p e r d a y at 3 5 ° C . T h e r e f o r e solutions of the l i t h i a t e d t e r t i a r y d i a m i n e s a n d amines s h o u l d b e stored at 1 0 ° C or l o w e r for l o n g p e r i o d s of storage. T h e p r e p a r a t i o n of m o n o l i t h i a t e d N ^ N ^ A ^ - t e t r a m e t h y l e t h y l e n e d i amine (I)
was s t u d i e d u n d e r several sets of c o n d i t i o n s to o p t i m i z e its
preparation.
T h e l i t h i a t i o n of other t e r t i a r y m o n o a m i n e s
and diamines
w a s also e x a m i n e d . T M E D A was a d d e d i n 1:1 m o l e ratios to h y d r o c a r b o n solutions of the a l k y l l i t h i u m c o m p o u n d .
T h e solutions w e r e k e p t at a g i v e n t e m p e r a -
t u r e u n t i l gas e v o l u t i o n ceased.
T h e d a r k , o r a n g e - b r o w n solutions w e r e
a n a l y z e d u s i n g the G i l m a n p r o c e d u r e
w h e n complete
r e a c t i o n of
the
and C r o t y l l i t h i u m - T M E D A Product
Product mp or bp, °C
1, l - d i p h e n y l - 3 - b u t e n - l - o l 1-ally Icy clohexanol 2 , 3 - d i m e t h y l - 4 - p e n t e n - 2 - o l , a n d trans2-methyl-4-hexen-2-ol
a
%
125 (0.6 m m ) 64 (7.5 m m ) 6 5 - 7 1 (120 m m )
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Yield 91 52 11
42
P O L Y A M I N E - C H E L A T E D A L K A L I M E T A L COMPOUNDS
s t a r t i n g a l k y l l i t h i u m was o b s e r v e d bound
(17).
l i t h i u m gave r e p r o d u c i b l e ,
T h i s analysis for the
consistent
results for
carbon-
the l i t h i a t e d
tertiary diamines. However
inconsistencies
w e r e f o u n d i n this p r o c e d u r e
tions of l i t h i a t e d t e r t i a r y m o n o a m i n e s
w i t h solu
so that o n l y t o t a l base titrations
w e r e u s e d for t h e i r analysis. I n most cases a s m a l l a m o u n t of the d e c o m p o s i t i o n p r o d u c t was
filtered
f r o m the p r o d u c t solution.
h y d r o l y s i s p r o d u c e d d i m e t h y l a m i n e a n d acetylene
T h e solid on Product solu
(34).
tions u p to 30 w t % i n hexane w e r e r e a d i l y p r o d u c e d w i t h o u t s o l u b i l i t y
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch002
problems. served.
N o l i t h i a t i o n of T M E D A o n the m e t h y l e n e carbons w a s
T h i s was
determined
by
p r e p a r a t i o n of
the
ob
dimethylsulfate
d e r i v a t i v e of the l i t h i a t e d T M E D A a n d e x a m i n i n g for Ν,Ν,Ν',Ν'-tetramethyl-l,2-propanediamine
i n the
presence
of
the
product,
2V-ethyl-
N,N^N'-Wmethyl-l,2-ethanediamine. A l t h o u g h n - b u t y l l i t h i u m l i t h i a t e d the T M E D A efficiently at a c o n v e n i e n t rate, s e c - b u t y l l i t h i u m w o r k e d e v e n m o r e smoothly. terf-butyllithium caused
by
Surprisingly
was q u i t e p o o r , a l t h o u g h some of the p r o b l e m
t h e l o w - b o i l i n g solvent, pentane.
l i t h i u m i n r e f l u x i n g pentane
F o r instance
took 14 hours to c o m p l e t e l y
was
terf-butylreact
with
TMEDA. A s u m m a r y of the l i t h i a t i o n of t e r t i a r y amines a n d d i a m i n e s is g i v e n i n T a b l e X . T h e a c t u a l t o t a l base m i n u s the base s t e m m i n g f r o m c a r b o n b o u n d l i t h i u m present d i v i d e d b y the a m o u n t of c a r b o n - b o u n d present w a s u s e d to o b t a i n the r a t i o of t e r t i a r y n i t r o g e n to l i t h i u m r e p o r t e d i n the table.
Agreement between
lithium
carbon-bound
R u n s 1 t h r o u g h 11
w a s s u r p r i s i n g l y g o o d . Y i e l d s for the same runs w e r e also q u i t e g o o d — 90 to 1 0 0 % — w i t h b o t h n - or s e o b u t y l l i t h i u m . s e c - B u t y l l i t h i u m w a s p r e f e r r e d because of the m i l d e r conditions i n v o l v e d . T h e c o n d i t i o n s b e c o m e e s p e c i a l l y i m p o r t a n t w h e n l i t h i a t i o n of p o t e n t i a l l y m o r e sensitive more unreactive)
t e r t i a r y amines
or d i a m i n e s is a t t e m p t e d ;
(yet
Runs
9
t h r o u g h 15 s h o w some i n t e r e s t i n g b u t u n e x p l o i t e d m e t a l a t i o n results. T h e l i t h i a t i o n rate for the reactions i n T a b l e X w a s o b s e r v e d
by
gas
e v o l u t i o n , a n d the solutions w e r e a n a l y z e d w h e n the gas e v o l u t i o n ceased. R e a c t i o n o c c u r r e d i n o n l y a f e w hours w i t h s e c - b u t y l l i t h i u m a n d t r i m e t h y l a m i n e , b u t the y i e l d s s e e m e d to be l o w e r t h a n those o b t a i n e d with T M E D A . (CH ) N + 3
3
s e c - C H L i -> ( C H ) N C H L i + n - C H II 4
9
3
2
2
4
1 0
(8)
T h i s m a y be because I I has less t h e r m a l s t a b i l i t y t h a n does the l i t h i ated T M E D A
(I).
T h e l i t h i a t i o n of t r i m e t h y l a m i n e has also b e e n r e
p o r t e d u n d e r s l i g h t l y different c o n d i t i o n s b y Peterson ( 3 5 ) .
A n a l y s i s of
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
2.
Tertiary Diamine Organolithium Complexes
SMITH
43
these t e r t i a r y m o n o a m i n e s i n R u n s 14 to 19 w e r e inconsistent u s i n g the G i l m a n d o u b l e t i t r a t i o n w i t h b e n z y l c h l o r i d e , a n d o n l y total-base t i t r a t i o n w a s u s e d for assay of the s o l u t i o n . It w a s a s s u m e d t h a t a l l d e c o m p o s i t i o n products,
including L i H and lithium dimethylamide, were
T h e l i t h i a t i o n of the t e r t i a r y m o n o a m i n e s
was p e r f o r m e d
insoluble.
i n a l l cases
w i t h a m o l e r a t i o of a l k y l l i t h i u m to t e r t i a r y m o n o a m i n e of 1:2 to k e e p the R L i : t e r t i a r y n i t r o g e n r a t i o the same as t h a t u s e d w i t h the t e r t i a r y d i a m i n e s . I n those cases n o t e d i n T a b l e X , the t o t a l base i n s o l u t i o n w a s m e a s u r e d a n d d i v i d e d b y three to estimate y i e l d .
(Analysis for
the
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch002
u n r e a c t e d s t a r t i n g a l k y l l i t h i u m was not affected i n these solutions. ) In
R u n s 10 a n d 12 the p r e c i p i t a t e w a s v e r y h e a v y a n d the t o t a l
s o l u b l e base was q u i t e l o w .
I n those t w o instances the p r o d u c t
was
a p p a r e n t l y i n s o l u b l e or the l i t h i a t e d t e r t i a r y a m i n e structure too u n s t a b l e and decomposition resulted. E a c h l i t h i a t e d t e r t i a r y a m i n e or d i a m i n e w i l l h a v e o p t i m u m c o n d i tions for p r e p a r a t i o n to ensure c o m p l e t e r e a c t i o n w i t h m i n i m u m d e c o m p o s i t i o n . T h e s e o p t i m u m conditions m a y b e d e t e r m i n e d b y o b s e r v i n g the rate of gas e v o l u t i o n as a f u n c t i o n of t e r t i a r y a m i n e or d i a m i n e r a t i o a n d t e m p e r a t u r e together w i t h analysis of the final s o l u t i o n o r slurry. O n l y a f e w reactions w e r e t r i e d w i t h the l i t h i a t e d t e r t i a r y amines a n d d i a m i n e s ; these are r e p o r t e d i n T a b l e X I . T h e y i e l d s f o r the c o u p l i n g of o r g a n i c h a l i d e s w i t h l i t h i a t e d T M E D A optimized reaction.
Changes
w h e t h e r some o b v i o u s
in a few
improvements
w e r e reasonable for a n o n -
conditions
were made
could be made.
y i e l d s r a n g e d f r o m 30 to almost 5 0 % .
to
see
I n general
the
A l k y l bromides
gave the best
y i e l d s i n this c o u p l i n g r e a c t i o n . T h e r e a c t i o n of l i t h i a t e d T M E D A w i t h a reactive ketone a n d a n a l d e h y d e a g a i n gave l o w y i e l d s .
(I) Less-
r e a c t i v e reagent molecules s h o u l d give h i g h e r y i e l d s . T h e l i t h i a t e d t r i methylamine
(II)
produced
a g o o d y i e l d of the a m i n e a l c o h o l
with
benzaldehyde, although l o w yields were obtained i n coupling w i t h
1-
i o d o p r o p a n e a n d 1-bromooctane. A n o t h e r possible p r o b l e m is i n the w o r k - u p of these since the p r o d u c t s are v e r y soluble i n w a t e r a n d organics.
compounds O n l y further
s t u d y c a n d e t e r m i n e w h e t h e r the p r o d u c t s f r o m the reactions of lithiated tertiary amine and diamine compounds
w i l l give
these
high-enough
p r o d u c t y i e l d s to p e r m i t these n o v e l o r g a n o l i t h i u m c o m p o u n d s to b e c o m e d e p e n d a b l e reagents for the chemist. Experimental A l l reagents w e r e r e a g e n t - g r a d e c h e m i c a l s . H y d r o c a r b o n solvents w e r e d r i e d over s o d i u m w i r e . T M E D A w a s d r i e d over s o d i u m w i r e a n d t h e n d i s t i l l e d u n d e r r e d u c e d pressure. T E D w a s t r i e d u n d e r v a c u u m to the p o i n t of s u b l i m a t i o n . L i q u i d t e r t i a r y amines a n d d i a m i n e s w e r e
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
44
P O L Y A M I N E - C H E L A T E D A L K A L I M E T A L COMPOUNDS
Table X .
Time hr
RLi"
55 49
1.0 1.0
sec-BuLi sec-BuLi
3
47 55
1.25 1.0
sec-BuLi sec-BuLi
5 6
60 64
2.5 3.5
n-BuLi n-BuLi
36 45
14.0 0.75
iV,iV,iVW-Teramethyl1,3-butanediamine N,iV'-Dimethyl-l,4piperazine Triethylenediamine ( T E D )
55
0.75
feri-BuLi cyclopentyl Li sec-BuLi
65
1.0
sec-BuLi
65
1.0
sec-BuLi
63
1.5
sec-BuLi
13
iV,iV,iV',iV',-Tetramethylmethylenediamine iV-Methylpyrrolidine"
55
0.5
sec-BuLi
14
iV-Methylpiperidine"
55
1.5
sec-BuLi
15
Triethylamine"
65
1.0
sec-BuLi
16 17 18 19
Trimethylamine"
80* 70* 60* 60*
5.25 5.5 3.0 6.5
n-BuLi n-BuLi sec-BuLi sec-BuLi
Run 1 2"
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch002
Preparation of Lithiated
τ 8 9 10 11 12
Amine TMEDA
d
T°C
Hexane is solvent unless otherwise stated. Analysis done using total base and Gilman benzyl chloride coupling . Analysis of gas from hydrolysis of yellow ppt. snowed dimethylamine and acetyene present. Solvent is cyclohexane. R L i :tertiary diamine ratio is 1:2. a
b
(17)
c
d
e
a l l d i s t i l l e d before use a n d p r o t e c t e d f r o m air. A l l l i t h i u m c o m p o u n d s w e r e f r o m F o o t e M i n e r a l C o . E l e m e n t a l analyses w e r e p e r f o r m e d b y M i c r o - A n a l y s i s , Inc., of W i l m i n g t o n , D e l . A l l reactions w e r e r u n u n d e r a r g o n , a n d air-sensitive m a t e r i a l s w e r e also h a n d l e d u n d e r a r g o n . G L C analyses w e r e p e r f o r m e d o n a V a r i a n - A e r o g r a p h 9 0 P 3 C h r o m a t o g r a p h w i t h a t h e r m a l c o n d u c t i v i t y detector. T h e c o l u m n u s e d f o r t r i m e t h y l s i l y l d e r i v a t i v e s w a s 5-ft, S E - 3 0 / C h r o m a s o r b W .
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
2.
SMITH
Tertiary Diamine Organolithium Complexes
45
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch002
Tertiary Amines and Diamines
Wt % Product Cone, in Sol.
Product Sol. Anal, t e r t N/RLi
% Yield
Comments
19.0 18.5
2.06 2.06
94 95
17.9
2.19
94
24.0 27.3
2.26 1.95
90 100
22.0 30.0
1.86 1.96
96 100
S l i g h t p p t . , no R L i left b y G L C Heated slightly beyond point w h e n gas e v o l u t i o n ceased. 2 % R L i left 5 % R L i left after 60 m i n at 55°C ; considerable p p t 5 % R L i left Heated slightly beyond point w h e n gas e v o l u t i o n ceased T r a c e R L i left, l o t of p p t 3 % R L i left, no p p t . , o n l y haze
21.4
1.86
95
12.3
2.20
68
7.6
/
0
h
b
3.1 (theory 3.0)
57
14.3
90*
14.4
98*
8.9
67*
6.6
60*
C
No
R L i left, some p p t . also formed N o R L i left, h e a v y p p t . ; d o u b l e t i t r a t i o n showed n o p r o d u c t N o R L i left, h e a v y p p t . ; a n a l y sis o n s l u r r y . N o R L i left, h e a v y p p t . ; d o u b l e t i t r a t i o n showed no p r o d u c t N o R L i left; heavy p p t
O n l y trace R L i left, m o d . p p t . ; d o u b l e t i t r a t i o n showed l o w yield. T r a c e R L i left, m o d . p p t . ; l o w low yield b y titration N o R L i left 5 % R L i left N o R L i left 8 % R L i left
Solvent is pentane. RLi:tertiary amine ratio is 1:2. Pressure reactor used.
Gilman double titration does not give good results with this amine; yield based on total base in solution. 1
«-Butyllithium in Benzene (or Toluene). A 12-liter flask e q u i p p e d w i t h stirrer, p r e s s u r e - e q u a l i z i n g d r o p p i n g f u n n e l , reflux condenser, a n d t h e r m o m e t e r was flushed t h o r o u g h l y w i t h a r g o n . ( N i t r o g e n m u s t not b e u s e d because it w i l l react w i t h l i t h i u m m e t a l p o w d e r . ) T h e flask w a s c h a r g e d w i t h 573 grams of 1 % N a - L i p o w d e r a n d 6,650 m l of benzene. T h e r e a c t i o n was first i n i t i a t e d w i t h 100 m l of 1-chlorobutane w h i l e stirr i n g . T h e t e m p e r a t u r e was m a i n t a i n e d at 3 5 ° - 3 7 ° C a n d the r e m a i n d e r
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
46
P O L Y A M I N E - C H E L A T E D A L K A L I M E T A L COMPOUNDS
Table X I .
Run
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch002
1
Lithiated Compound* TMEDA
Reagent 1-iodobutane
Reactions of Lithiated
Addition T, °C
Total Time, min
- 5
30
0 10 68 0 -10
30 75 90 30 30
2 3 4 5 6
1-chlorobutane 1-bromobutane 2-bromobutane
7
iodobenzene
10
75
8
1-bromooctane
20
30
-20 -10 - 5
30 30 30
5
50
1-bromobutane
9 10 11
bromocyclohexane
12
cyclopentanone
13
valeraldehyde
-10
30
1-iodopropane 1-bromooctane valeraldehyde benzaldehyde
-10 -20 -10 -10
30 30 30 60
14 15 16 17
Trimethylamine
° Reagent added as a molar equiv. based on the lithiated T M E D A or trimethylamine present; solvent was hexane in all cases.
of t h e 3,310 grams of 1-chlorobutane was a d d e d over 3.5-hrs. T h e s l u r r y was s t i r r e d 2 h r m o r e before filtration. T h e y e l l o w filtrate a n a l y z e d to b e 2 6 . 9 9 % n - b u t y l l i t h i u m . T h e G i l m a n c o r r e c t i o n was 0 . 2 8 % ( 1 7 ) . T h e y i e l d was 8 3 % w i t h n o w a s h o n the filter cake. ( A c t u a l y i e l d e s t i m a t e d to b e a b o u t 9 0 % . ) Lithiation of Benzene by Λ - B u t y l l i t h i u m - T M E D A . A 5 0 0 - m l flask e q u i p p e d w i t h stirrer, reflux condenser, a n d t h e r m o m e t e r w a s p u r g e d w i t h a r g o n a n d t h e n c h a r g e d w i t h t h e r e q u i r e d a m o u n t of 2 4 . 4 % n - b u t y l l i t h i u m i n b e n z e n e (120 to 200 m l ) . T h e s t i r r e d s o l u t i o n w a s h e a t e d to t h e d e s i r e d t e m p e r a t u r e a n d the h e a t r e m o v e d . P u r i f i e d T M E D A w a s t h e n a d d e d i n the p r o p e r m o l a r r a t i o ( 30 to 50 m l ) u s i n g a large s y r i n g e over 0.5 to 1.0 m i n w h i l e c o o l i n g w i t h a h e p t a n e - d r y i c e b a t h to m a i n t a i n p r o p e r t e m p e r a t u r e . ( D o not use r a p i d a d d i t i o n f o r p r e p a r a t i o n s l a r g e r
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
2.
SMITH
47
Tertiary Diamine Organolithium Complexes
T M E D A and Trimethylamine RLi Used for Lithiation of tert-Amine
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch002
sec-BuLi
n-BuLi sec-BuLi
Product
%
N-n-pentyl-N,N',N'-trïmethyl1,2-ethanediamine
iV-(2-methylbutyl)-iV,iV ,iV'. trimethyl-1,2-ethanediamine A^benzyl-A^A^N'-trimethyl1,2-ethanediamine iV-n-nonyl-iVjiV'jiV'-trimethyl1,2-ethanediamine ,
n-BuLi
sec-BuLi
n-BuLi
sec-BuLi n-BuLi
b
i V - ( c y c l o h e x y l m e t h y l ) -Ν,Ν', i V ' - t r i m e t h y l - l ,2-ethane diamine N- (hy d r o x y c y c l o p e n t y l m e t h y 1) i V ^ ' ^ ' - t r i m e t h y l - l ,2-ethane diamine iV-(2-hydroxyhexyl)-iV,iV^'trimethyl-1,2-ethanediamine iV,iV,iV-n-butyldimethylamine iV^jiV-n-nonyltrimethylamine condensation p r o d u c t iV,iV,iV-(l-hydroxyl-l-phenylethyl) dimethylamine
°C, bp
Yield
b
40
182
49 33 18 44 33
182 61 (4.5 m m )
30
69 (0.3 m m )
40
85 (0.5 m m )
37 30 18
69 (0.5 m m )
28
81 (1.5 m m )
39
84 (0.7 m m )
32 12
92 52 (2.9 m m )
49
72 (0.25 m m )
52 (2.9 m m )
See experimental for literature references and physical constants when available.
t h a n 250 m l — i t is too v i g o r o u s . ) T h e e v o l u t i o n of gas w a s o b s e r v e d as it passed o u t of t h e system t h r o u g h a n o i l b u b b l e r . P e r i o d i c a l l y a 2 - m l s a m p l e of t h e s o l u t i o n w a s w i t h d r a w n a n d i n j e c t e d i n t o a s e r u m b o t t l e c o n t a i n i n g 2 m l of t r i m e t h y s i l y l c h l o r i d e a n d 10 m l of d i e t h y l ether. T h i s d e r i v a t i v e s o l u t i o n w a s h y d r o l y z e d , w a s h e d , a n d d r i e d over a n h y d r o u s s o d i u m sulfate. T h e ether l a y e r w a s a n a l y z e d b y G L C , a n d t h e amounts of n - b u t y l t r i m e t h y l s i l a n e a n d p h e n y l t r i m e t h y l s i l a n e w e r e d e t e r m i n e d . % Unreacted n-butyllithium Mw
T M S butyl
MW
T M S PHE
„, y
(Area) (Area)
T M S
butyi
T M S phenyl
A m e r l c a n
+
(Area)
TMS
butyl
chemical
Society Library 1155 16th St. N. W.
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Washington, 0. C.Washington, 20036 DC, 1974. Advances in Chemistry; American Chemical Society:
48
P O L Y A M I N E - C H E L A T E D A L K A L I M E T A L COMPOUNDS
W h e n a l l of the gas h a d e v o l v e d , the h e a t w a s r e m o v e d , the s o l u t i o n w e i g h e d , a n d a s a m p l e a l l o w e d to react w i t h t r i m e t h y l s i l y l c h l o r i d e a n d analyzed by G L C . °7 Y i e l d — 0
(Area) T M S b u t y i (moles B u L i ) (130) (area)
benzene
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch002
[ ( I n i t i a l w t benzene present) — (moles B u L i ) 7 8 ] Recommended Preparation of P h e n y l l i t h i u m - T M E D A in Benzene. A 5-liter flask fitted w i t h a t h e r m o m e t e r , stirrer, reflux condenser, a n d p r e s s u r e - e q u a l i z i n g d r o p p i n g f u n n e l was flushed w i t h a r g o n a n d c h a r g e d w i t h 878 grams (13.65 m o l e s ) of n - b u t y l l i t h i u m ( 2 7 . 1 % ) i n b e n z e n e a n d 2,560 m l of benzene. ( I t is not necessary to use n - b u t y l l i t h i u m at this c o n c e n t r a t i o n because the 1:1 c o m p l e x is not s o l u b l e i n b e n z e n e b e y o n d a b o u t 1 9 % p h e n y l l i t h i u m at r o o m t e m p e r a t u r e . T h e extra b e n z e n e n e e d not be a d d e d w h e n a n in situ r e a c t i o n is p l a n n e d . ) T h e s l o w a d d i t i o n of 1,960-ml (13.0 m o l e s ) of T M E D A w a s b e g u n . T h e t e m p e r a t u r e w a s a l l o w e d to rise to 5 0 ° C w i t h a b o u t o n e - t h i r d of the T M E D A a d d e d . T h e gas e v o l u t i o n w a s v i g o r o u s at this p o i n t , a n d the rest of the T M E D A was a d d e d o v e r 1.5 hrs as b u t a n e e v o l u t i o n g r a d u a l l y s l o w e d . (Good c o o l i n g i n the condenser was necessary to p r e v e n t the c a r r y o v e r of b e n z e n e w i t h the b u t a n e . ) T h e s o l u t i o n was t h e n heated c a u t i o u s l y to 7 9 ° C t h e n c o o l e d q u i c k l y u n d e r a r g o n . Y i e l d w a s 1 0 0 % — 6 , 1 0 0 grams of an 18.89% p h e n y l l i t h i u m solution. P h e n y l l i t h i u m : T M E D A mole ratio w a s 1.04 b y G i l m a n d o u b l e t i t r a t i o n ( 1 7 ) . Thermal Stability of O r g a n o l i t h i u m - T M E D A Complexes. A b o u t 400 m l of the o r g a n o l i t h i u m - T M E D A c o m p l e x was p l a c e d i n a bottle a n d t h e n a n a l y z e d u s i n g the G i l m a n d o u b l e t i t r a t i o n (17). T h e bottle was p l a c e d i n a c i r c u l a t i n g constant-temperature o i l b a t h at the d e s i r e d t e m p e r a t u r e ( u s u a l l y 35° C ) a n d left for 30 days. T h e s o l u t i o n w a s reanalyzed. % D e c o m p o s i t i o n of a c t i v e m a t e r i a l / d a y _
( N e t contained)
initiai
( N e t contained)
— ( N e t contained)
fj
n a
i
initial
(30 days) Preparation of ( Benzyllithium >2--TMED A in Toluene. A 12-liter flask e q u i p p e d w i t h p r e s s u r e - e q u a l i z i n g d r o p p i n g f u n n e l , stirrer, reflux condenser, a n d t h e r m o m e t e r was p u r g e d w i t h a r g o n a n d c h a r g e d w i t h 7,096 grams o f 2 2 . 8 % n - b u t y l l i t h i u m i n toluene. T h e system w a s sealed f r o m the a i r b y a n o i l b u b b l e r u n d e r s l i g h t p o s i t i v e a r g o n pressure. A b o u t 3 0 % of 1,470 grams of T M E D A ( 1 % excess) was a d d e d over 40 m i n to b r i n g the r e a c t i o n to 56 ° C w i t h v i g o r o u s gas e v o l u t i o n . T h e c o m p l e t e a d d i t i o n took 95 m i n . T h e flask w a s h e a t e d to 70 ° C a n d t h e n c o o l e d to r o o m t e m p e r a t u r e . T h e clear, d e e p red-orange s o l u t i o n w e i g h e d 7,100 g r a m s ; i t was a n a l y z e d as 36.0 w t % b e n z y l l i t h i u m b y G i l m a n d o u b l e titration w i t h 1 0 1 % yield. Analysis b y G L C using trimethylsilyl chloride d e r i v a t i v e a n d m e s i t y l e n e as a n i n t e r n a l s t a n d a r d gave 3 5 . 5 % c o n c e n t r a t i o n a n d a y i e l d of 1 0 0 % .
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
2.
SMITH
Tertiary Diamine Organolithium Complexes
Ring-isomer Content in B e n z y l l i t h i u m - T M E D A Complexes. O n l y solutions of b e n z y l l i t h i u m - T M E D A complexes w i t h little or n o b u t y l l i t h i u m w e r e a n a l y z e d . A 2 - m l a l i q u o t of the solution i n a s y r i n g e w a s injected i n t o a s m a l l bottle c o n t a i n i n g 10 m l of ether a n d 3 m l of d i m e t h y l sulfate u n d e r argon. T h e r e a c t i o n was vigorous. A f t e r 20 m i n the s o l u t i o n was washed w i t h water, dried over anhydrous N a S 0 , and analyzed b y G L C u s i n g a 10-ft, 1 0 % T r i t o n - S 3 0 5 / C h r o m a s o r b W at 9 0 ° C . ( O n l y p a r t i a l r e s o l u t i o n of m e t a a n d p a r a isomers w a s o b t a i n e d , a l t h o u g h i t c o u l d have b e e n o b s e r v e d w h e t h e r a r e l a t i v e l y s m a l l a m o u n t of p a r a isomer was present.) T h e percent of r i n g isomer w a s c a l c u l a t e d f r o m the t o t a l a m o u n t of r i n g i s o m e r p l u s the ethylbenzene present. Preparation of B e n z y l l i t h i u m - T E D Solid Complex. A 5 0 0 - m l flask e q u i p p e d w i t h a stirrer, t h e r m o m e t e r , a n d reflux condenser after p u r g i n g w i t h a r g o n was c h a r g e d w i t h 184 grams 1 5 . 2 % n - b u t y l l i t h i u m i n hexane, a n d 47.9 grams T E D ( 2 % d e f i c i e n c y ) was a d d e d . T h e s o l u t i o n w a s t h e n h e a t e d after a d d i n g 48.2 grams of toluene ( 1 2 % excess). T h e s o l u t i o n w a s refluxed 3.25 hrs. I t w a s t h e n c o o l e d to 10 ° C , s t i r r e d for 1 h r , a n d filtered u n d e r argon. T h e y e l l o w crystals w e r e d r i e d for 6 hrs (1 m m ) at r o o m t e m p e r a t u r e . T h e y i e l d was 8 9 % or 80.6 grams of s o l i d c o m p l e x . Preparation of A l l y l l i t h i u m - T M E D A Solid Complex. A 1-liter flask e q u i p p e d w i t h a gas inlet t u b e , stirrer, a n d t h e r m o m e t e r w a s p u r g e d w i t h n i t r o g e n a n d c h a r g e d w i t h 437 grams of 1 0 . 0 % s e c - b u t y l l i t h i u m i n hexane. T h e s o l u t i o n was c o o l e d to — 5 ° C , a n d 77.7 grams of T M E D A w e r e a d d e d w i t h c o o l i n g to m a i n t a i n — 5 ° C . A b o u t 43.0 grams ( 5 0 % excess) of p r o p e n e w e r e d i s s o l v e d i n the s o l u t i o n i n 30 m i n . T h e s o l u t i o n w a s t h e n a d d e d to a 1-liter h e a v y - w a l l pressure bottle, sealed, a n d h e a t e d to 4 5 ° C w i t h m e c h a n i c a l s h a k i n g ( a P a r r low-pressure r e a c t o r ) . T h e s o l u t i o n was t h e n c o o l e d to 10 ° C a n d filtered. T h e y e l l o w - o r a n g e p r e c i p i t a t e was r i n s e d w i t h pentane a n d b l o w n d r y w i t h argon. T h e y i e l d w a s 90 grams of the s o l i d c o m p l e x d e s i r e d o r 8 0 % . (Pressure is o p t i o n a l i n final warm-up. ) 2
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch002
49
4
Preparation of C r o t y l l i t h i u m - T M E D A . A 5 0 0 - m l flask e q u i p p e d w i t h a stirrer, t h e r m o m e t e r , condenser, a n d gas-inlet t u b e w a s p u r g e d w i t h a r g o n a n d c h a r g e d w i t h 191 grams of 1 2 . 2 % s e c - b u t y l l i t h i u m i n cyclohexane. T h e s o l u t i o n was c o o l e d to — 5 ° C , a n d 41.4 grams ( 2 % d e f i c i e n c y ) of T M E D A was a d d e d w h i l e c o o l i n g to m a i n t a i n — 5 ° C . T o this s o l u t i o n 30.6 grams ( 5 0 % excess) of 1-butene was a d d e d at 0 ° C i n 20 m i n . T h e s o l u t i o n was a l l o w e d to w a r m to 25 ° C o v e r 30 m i n , h e a t e d to 40 ° C q u i c k l y , a n d t h e n c o o l e d to r o o m temperature. T h e d a r k , r e d orange s o l u t i o n t i t r a t e d as 3 . 3 9 N base or 1.13M w i t h a v o l u m e of 297 m l , c o r r e s p o n d i n g to a y i e l d of 9 2 % . G L C analysis of the t r i m e t h y l s i l y l d e r i v a t i v e of this s o l u t i o n gave the c o m p o s i t i o n of the s o l u t i o n as 29.5 ± 1 % l - l i t h i o - 2 - b u t e n e ( t e r m i n a l ) a n d 70.5 ± 1 % 2-lithio-3-butene ( i n t e r n a l ) at 5 5 ° C . A n a l y s i s of the s o l u t i o n at 2 0 ° C gave 2 9 . 0 % t e r m i n a l . Preparation of Lithiated Ν,Ν,Ν',Ν'-Tetramethylethylenediamine. A 5 0 0 - m l flask e q u i p p e d as a b o v e was c h a r g e d w i t h 157 grams of 1 1 . 4 % s e c - b u t y l l i t h i u m i n cyclohexane. T h e solution was c o o l e d to 0 ° C a n d 32.5 grams of T M E D A was a d d e d w h i l e s t i r r i n g w i t h f u r t h e r c o o l i n g to I m a i n t a i n 0 ° C . T h e s o l u t i o n was h e a t e d to 4 9 ° C for 1 h r ( w h e n gas e v o l u t i o n c o m p l e t e l y s t o p p e d ) , t h e n c o o l e d to r o o m t e m p e r a t u r e . T h e d a r k , b r o w n - r e d s o l u t i o n was almost clear a n d w e i g h e d 175 grams. G L C
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
50
POL Y A M I N E - C H E L A T E D A L K A L I M E T A L COMPOUNDS
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch002
analysis of the t r i m e t h y l s i l y l d e r i v a t i v e s h o w e d n o s e c - b u t y l l i t h i u m r e m a i n i n g . A n a l y s i s of the s o l u t i o n b y G i l m a n d o u b l e t i t r a t i o n gave a net p r o d u c t c o n c e n t r a t i o n of 1 8 . 5 % w i t h the m o l e r a t i o of t o t a l b a s e to c a r b o n - b o u n d l i t h i u m of 2.06. T h e y i e l d b a s e d o n this t i t r a t i o n w a s 9 5 % . Preparation of Lithiated Trimethylamine. A f t e r p u r g i n g a 5 0 0 - m l h e a v y - w a l l bottle w i t h a r g o n , i t w a s c h a r g e d w i t h 175 grams (0.325 m o l e ) of 1 1 . 9 % s e c - b u t y l l i t h i u m i n cyclohexane. T h i s s o l u t i o n w a s c o o l e d u n d e r a r g o n to — 1 0 ° C , a n d 38.4 grams (0.65 m o l e ) of t r i m e t h y l a m i n e was d i s s o l v e d i n the s o l u t i o n w i t h c o o l i n g to m a i n t a i n — 1 0 ° C . The b o t t l e w a s sealed off, p l a c e d i n a P a r r l a b o r a t o r y pressure reactor, a n d h e a t e d to 60 ° C for 3 hrs w i t h s h a k i n g . T h e clear, d a r k , b r o w n - y e l l o w s o l u t i o n was c o o l e d to a m b i e n t t e m p e r a t u r e a n d a n a l y z e d . T h e s o l u t i o n w e i g h e d 190 grams, a n d c o n t a i n e d no s e c - b u t y l l i t h i u m b y G L C analysis of the t r i m e t h y l s i l y l c h l o r i d e d e r i v a t i v e . T o t a l base analysis of t h e filtered s o l u t i o n w a s 1 9 . 2 % i n d i c a t i n g a p r o d u c t concentration of at least 6 . 6 % for a 6 0 % y i e l d . Preparation of Other Lithiated Tertiary Amines and Diamines. T h e p r o c e d u r e f o l l o w e d for these c o m p o u n d s was the same as that u s e d for the l i t h i a t e d T M E D A d e s c r i b e d above. Synthetic Reactions of Organolithium-Tertiary Diamine Complexs. When (benzyllithium) -TMEDA, phenyllithium-TMEDA, crotyllithiumT M E D A a n d l i t h i a t e d T M E D A or t r i m e t h y l a m i n e solutions w e r e used, f r o m 0.4 to 0.5 m o l e of the o r g a n o l i t h i u m c o m p l e x i n the h y d r o c a r b o n solvent was a d d e d to a 5 0 0 - m l flask u n d e r a r g o n a n d c o o l e d to the a p p r o p r i a t e t e m p e r a t u r e . I n the cases of b e n z y l h t h i u m - T E D a n d a l l y l l i t h i u m T M E D A the s o l i d complexes w e r e a d d e d as a solvent. A m o l a r e q u i v a l e n t of the p a r t i c u l a r reactant was a d d e d via a p r e s s u r e - e q u a l i z i n g d r o p p i n g f u n n e l over a g i v e n i n t e r v a l w i t h s t i r r i n g at a constant t e m p e r a t u r e . ( A b o u t 1 0 % excess of the o r g a n o l i t h i u m c o m p o u n d w a s u s e d . ) A t a selected t i m e the s o l u t i o n was h y d r o l y z e d w i t h excess w a t e r . T h e o r g a n i c l a y e r was separated f r o m the aqueous l a y e r , w a s h e d t w o or three times w i t h 1 0 % aqueous a m m o n i u m c h l o r i d e , a n d d r i e d over a n h y d r o u s N a S 0 . T h e solvent w a s r e m o v e d b y d i s t i l l a t i o n at r e d u c e d pressures. T h e c r u d e p r o d u c t w a s p u r i f i e d b y r e c r y s t a l l i z a t i o n or d i s t i l l a t i o n . I n a l l cases the i n f r a r e d spectra w e r e c o m p a r e d w i t h k n o w n s or w e r e e x a m i n e d to ascertain t h e i r agreement w i t h the assigned structures. T h e p h y s i c a l constants w e r e also c o m p a r e d w i t h l i t e r a t u r e values w h e n possible. A n a l y s e s w e r e m a d e i n cases w h e r e d o u b t existed c o n c e r n i n g the structure because s t a r t i n g materials h a v i n g s i m i l a r structures m a y h a v e b e e n c o n t a m i n a n t s ; the results w e r e i n agreement. 2
2
4
P H E N Y L L I T H I U M - T M E D A I N B E N Z E N E . Benzophenone. A d d e d b e n z o p h e n o n e d i s s o l v e d i n b e n z e n e at 5 ° C over 1 h r ; let w a r m 1 h r ; h y d r o l y z e d , u s e d extra b e n z e n e d u r i n g w o r k - u p ; r e c r y s t a l l i z e d f r o m 1:1 methanol-ethanol; m p 161°C (lit. m p 162.5°C); 9 5 % , triphenylcarbinol (36). Cyclohexanone. A d d e d cyclohexanone d i s s o l v e d i n T H F at 0 ° C i n 1 h r ; let w a r m 1 h r ; h y d r o l y z e d ; r e c r y s t a l l i z e d f r o m h e p t a n e ; m p 6 0 ° C (lit. m p 61 ° C ) ; 5 9 % , 1 - p h e n y l c y c l o h e x a n o l (37). ( B E N Z Y L L I T H I U M ) 2 - T M E D A I N T O L U E N E . Trimethylsilyl chloride. A d d e d t r i m e t h y l s i l y l c h l o r i d e d i s s o l v e d i n ether at — 5 ° C over 1 h r ; let
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
2.
Tertiary Diamine Organolithium Complexes
SMITH
51
w a r m 0.5 h r ; h y d r o l y z e d ; d i s t i l l e d p r o d u c t ; b p 5 9 ° - 6 2 ° C ( 5 m m ) 1 8 4 ° - 5 ° C ) ; 8 1 % , benzyltrimethylsilane
(lit. bp
(38).
1- Bromobutane. A d d i t i o n at — 2 0 ° C over 1 h r ; let w a r m 0.5 h r ; hydrolyzed; distilled product; bp 6 1 ° - 6 4 ° (0.5 m m ) (lit. b p 8 1 ° C ( 2 0 2 m m ) ) ; 8 4 % , n-amylbenzene (36). Benzonitrile. A d d e d b e n z o n i t r i l e at — 5 ° C over 1 h r ; let w a r m 1.5 hrs; u s e d 2 0 % H C 1 for h y d r o l y s i s ; r e c r y s t a l l i z e d f r o m e t h a n o l ; m p 5 3 ° 5 4 ° C ( l i t . m p 6 0 ° C ) ; 1 6 % c r u d e , b e n z y l p h e n y l ketone (36). Ethyl acetate. A d d e d 0.5-mole e q u i v a l e n t s e t h y l acetate at 0 ° C over 1 h r ; let w a r m 0.5 h r ; h y d r o l y z e d ; d i s t i l l e d ; b p 1 2 2 ° - 1 2 5 ° C ( 0 . 4 m m )
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch002
[ht. b p 1 2 2 ° C ( 0 . 4 m m ) ] ;
4 3 % , dibenzylethanol
(39).
Ethyl benzoate. A d d e d 0.5-mole e q u i v a l e n t s of e t h y l b e n z o a t e at 5 ° C over 1 h r ; let w a r m 0.5 h r ; h y d r o l y z e d , r e c r y s t a l l i z e d f r o m h e p t a n e ; mp
55°-79°C
(crude)
(lit.
mp
86°C);
22%,
l,2,3-triphenyl-2-propanol
(40). Cychpentanone. A d d e d c y c l o p e n t a n o n e at — 4 0 ° C o v e r 6 m i n ; let w a r m to 0 ° C ; h y d r o l y z e d ; d i s t i l l e d , r e c r y s t a l l i z e d f r o m h e p t a n e ; m p 55°C
(lit. m p
59°C);
35%,
1-benzylcyclopentanol
(37).
Cyclohexanone. A d d e d c y c l o h e x a n o n e at — 5 ° C over 1 h r ; let w a r m for 1 h r ; h y d r o l y z e d ; recrystallized from heptane; m p 5 5 ° C (lit. m p 61°C); 59%,
1-benzylcyclohexanol
2- Butanone.
(37).
A d d e d 2 - b u t a n o n e at — 1 5 ° C over 1 h r ; let w a r m for
0.5 h r ; h y d r o l y z e d ; d i s t i l l e d ; b p 9 2 ° - 9 4 ° C ( 0 . 5 m m )
[lit. b p
110°-112°C
( 4 m m ) ] ; 5 3 % , 2 - b e n z y l - 2 - b u t a n o l (41). Diisopropyl ketone. A d d e d d i i s o p r o p y l ketone at — 5 ° C o v e r 1 h r ; let w a r m 0.5 h r ; h y d r o l y z e d ; d i s t i l l e d ; b p 9 6 ° C ( 0 . 1 m m ) [ l i t . b p 9 9 ° C ( 1 m m ) ] ; 8 2 % , 3 - b e n z y l - 2 , 4 - d i m e t h y l - 3 - p e n t a n o l (42). Benzaldehyde. A d d e d b e n z a l d e h y d e at — 3 5 ° C over 2 0 m i n ; h y d r o l y z e d ; distilled; b p 6 2 ° C (0.5 m m ) [lit. b p 8 1 ° C ( 1 0 m m ) ] ; 8 0 % n-amylbenzene (36). Benzophenone. A d d e d b e n z o p h e n o n e d i s s o l v e d i n toluene at — 1 5 ° C over 18 m i n ; let w a r m o v e r 5 0 m i n ; h y d r o l y z e d ; r e c r y s t a l l i z e d f r o m ethanol; mp
86°C
(lit. m p
89°C);
92%,
1,1,2-triphenylethanol
(36).
B E N Z Y L L I T H I U M - T E D . 1-Bromobutane. A d d e d 1 - b r o m o b u t a n e to c o m p l e x d i s s o l v e d i n ether at reflux over 1 h r ; r e f l u x e d o v e r n i g h t ; h y d r o lyzed; distilled; bp 6 2 ° C (0.5 m m ) (lit. bp 8 1 ° C ) ; 8 0 % , n-amylbenzene (36). Bromobenzene. A d d e d m o l e e q u i v a l e n t s b r o m o b e n z e n e to c o m p l e x d i s s o l v e d i n d i e t h y l ether at reflux over 6 5 m i n ; s t a n d o v e r n i g h t ; h y d r o l y z e d ; r e c r y s t a l l i z e d f r o m m e t h a n o l ; m p 5 0 ° C ( l i t . m p 5 6 ° C ) ; 3 2 % , 2b e n z y l b i p h e n y l (44). lodobenzene. S a m e p r o c e d u r e as for b r o m o b e n z e n e ; m p 4 9 ° C ( l i t . mp 5 6 ° C ) ; 2 0 % , 2-benzylbiphenyl
(43).
Benzonitrile. A d d e d b e n z o n i t r i l e to c o m p l e x d i s s o l v e d i n T H F at — 1 0 ° C over 1 h r , s t i r r e d at — 1 0 ° C for 0.5 h r ; l e t w a r m for 1 h r ; h y d r o l y z e d n o r m a l l y , b u t a d d e d 2 0 % H C 1 to c r u d e s o l i d p r o d u c t i n i s o l a t i o n to c o m p l e t e h y d r o l y s i s of i m i n e ; r e c r y s t a l l i z a t i o n f r o m e t h a n o l ; m p 5 3 ° C ( h t . m p 6 0 ° C ) ; 5 9 % , b e n z y l p h e n y l ketone (36). Ethyl acetate. A d d e d 0.5-mole e q u i v a l e n t e t h y l acetate to the c o m p l e x d i s s o l v e d i n d i e t h y l ether at 3 5 ° C over 4 5 m i n ; let w a r m o v e r n i g h t ; h y d r o l y z e d ; o i l r e s i d u e isolated after r e m o v a l of v o l a t i l e s ; i n f r a r e d i n d i -
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch002
52
POL Y A M I N E - C H E L A T E D A L K A L I M E T A L COMPOUNDS
c a t e d that the t e r t i a r y a l c o h o l w a s present b u t i m p u r e ; 2 5 % c r u d e ; 1,1dibenzylethanol (39). Ethyl benzoate. A d d e d 0.5-mole e q u i v a l e n t e t h y l benzoate to c o m p l e x d i s s o l v e d i n T H F at 0 ° C over 0.5 h r ; let w a r m over 1.5 h r ; h y d r o l y z e d ; r e c r y s t a l l i z e d f r o m e t h a n o l ; m p 8 3 ° C ( l i t . m p 8 6 ° C ) ; 6 6 % , 1,2,3t r i p h e n y l - 2 - p r o p a n o l (39). Methyl vinyl ketone. A d d e d m e t h y l v i n y l ketone to c o m p l e x d i s s o l v e d i n T H F at — 1 0 ° C over 50 m i n ; let w a r m over 1 h r ; h y d r o l y z e d ; d i s t i l l e d ; p o t t e m p e r a t u r e m a i n t a i n e d b e l o w 7 5 ° C , yet a p p a r e n t d e c o m p o s i t i o n or r e a r r a n g e m e n t o c c u r r e d ; pot residue h a d a b p > 78 ° C (0.2 m m ) ; i n f r a r e d i n d i c a t e d c o n s i d e r a b l e h y d r o x y l a n d c a r b o n y l groups present i n p o t residue. Crotonaldehyde. A d d e d c r o t o n a l d e h y d e to c o m p l e x d i s s o l v e d i n d i e t h y l ether at 0 ° C over 20 m i n ; let w a r m over 1 h r ; h y d r o l y z e d ; n o p r o d u c t , o n l y p o l y m e r isolated. 2-Butanone. A d d e d 2-butanone to c o m p l e x d i s s o l v e d i n d i e t h y l ether at 0 ° C over 40 m i n ; let w a r m over 1 h r ; h y d r o l y z e d ; d i s t i l l e d ; b p 6 7 ° C (0.3 m m ) [ l i t . b p 1 1 0 ° - 1 1 2 ° C (14 m m ) ] ; 6 5 % , 2 - b e n z y l - 2 - b u t a n o l (41). Cyclopentanone. A d d e d c y c l o p e n t a n o n e to c o m p l e x d i s s o l v e d i n T H F at — 1 0 ° C over 1 h r ; let w a r m over 1 h r ; h y d r o l y z e d ; r e c r y s t a l l i z e d from heptane; m p 5 6 ° C (lit. m p 5 9 ° C ) ; 1-benzylcyclopentanol (37). Cyclohexanone. A d d e d cyclohexanone to c o m p l e x d i s s o l v e d i n d i e t h y l ether at —10 ° C over 1 h r ; let w a r m o v e r n i g h t ; h y d r o l y z e d ; r e crystallized from heptane; m p 5 5 ° C (lit. m p 6 1 ° C ) ; 4 5 % , 1-benzylc y c l o h e x a n o l (37). Diisopropyl ketone. A d d e d d i i s o p r o p y l ketone to c o m p l e x d i s s o l v e d i n d i e t h y l ether at — 1 0 ° C i n 5 m i n ; let w a r m to 1 0 ° C over 18 m i n ; h y d r o l y z e d ; d i s t i l l e d ; b p 1 1 0 ° C ( 1 m m ) [lit. b p 9 9 ° C ( 1 m m ) ] ; 6 0 % , 3 - b e n z y l - 2 , 4 - d i m e t h y l - 3 - p e n t a n o l (42). Benzaldehyde. A d d e d b e n z a l d e h y d e to c o m p l e x d i s s o l v e d i n T H F at 0 ° C over 1 h r ; let w a r m over 2 h r s ; h y d r o l y z e d ; r e c r y s t a l l i z e d f r o m ethanol; m p 6 5 ° C (lit. m p 6 7 ° C ) ; 8 1 % , 1,2-diphenylethanol (36). Benzophenone. A d d e d b e n z o p h e n o n e d i s s o l v e d i n d i e t h y l ether to c o m p l e x d i s s o l v e d i n d i e t h y l ether at — 1 0 ° C over 0.5 h r ; s t i r r e d 0.5 h r m o r e at — 1 0 ° C , t h e n let w a r m o v e r n i g h t ; h y d r o l y z e d ; r e c r y s t a l l i z e d f r o m m e t h a n o l ; m p 8 7 ° C ( l i t . m p 8 9 ° C ) ; 9 9 % , 1,1,2-triphenylethanol (36). Indanone. A d d e d i n d a n o n e d i s s o l v e d i n T H F to c o m p l e x d i s s o l v e d i n T H F at — 1 0 ° C for 45 m i n ; let w a r m over 1.5 h r s ; h y d r o l y z e d ; d i s t i l l e d a n d r e c r y s t a l l i z e d f r o m e t h a n o l ; m p 141 ° C ( l i t . m p 1 5 5 ° C ) ; 2 0 % , 1b e n z y l - l - i n d a n o l (44). Fluorenone. A d d e d fluorenone d i s s o l v e d i n d i e t h y l ether to c o m p l e x d i s s o l v e d i n d i e t h y l ether at 35 ° C over 25 m i n ; h y d r o l y z e d ; r e c r y s t a l l i z e d from cyclohexane; m p 1 3 3 ° - 1 3 6 ° C (lit. m p 1 4 3 ° C ) ; 8 3 % , 9-benzyl-9fluorenol (45). Lithium benzoate. A d d e d l i t h i u m benzoate to c o m p l e x d i s s o l v e d i n T H F at 35 ° C , h e a t e d to reflux for 25 m i n , c o o l e d , s t i r r e d 1 h r b e f o r e hydrolysis; hydrolyzed; recrystallized from ethanol; m p 56°C (lit m p 6 0 ° C ) ; 4 4 % , b e n z y l p h e n y l ketone (36). A L L Y L L I T H I U M - T M E D A . Benzophenone. A d d e d b e n z o p h e n o n e d i s s o l v e d i n d i e t h y l ether to s l u r r y of the c o m p l e x i n d i e t h y l ether at 20 ° C
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
2.
Tertiary Diamine Organolithium Complexes
SMITH
53
over 0.5 h r ; s t i r r e d 1 h r ; h y d r o l y z e d ; d i s t i l l e d b p 1 2 8 ° C ( 0 . 6 m m ) bp
135°C
mm)];
(0.5
l,l-diphenyl-3-buten-l-ol
91%,
[lit.
(46).
Cyclohexanone. A d d e d c y c l o h e x a n o n e to s l u r r y of the c o m p l e x i n d i e t h y l ether at 2 0 ° C o v e r 2 0 m i n ; s t i r r e d 2 0 m i n ; h y d r o l y z e d ; d i s t i l l e d ; b p 6 4 ° - 6 8 ° C ( 8 m m [lit. b p 8 1 ° C ( 1 5 m m ) ] ; 5 2 % , 1-allylcyclohexanol(47).
C R O T Y L L I T H I U M - T M E D A I N H E X A N E . A d d e d acetone to c o m p l e x i n s o l u t i o n at — 2 0 ° C o v e r 0.5 h r ; let w a r m o v e r 4 0 m i n ; h y d r o l y z e d ; d i s tilled; bp
65°-71°C
(120
mm)
[lit.
bp
133°-135°C
(760
mm);
142°C.
(760 m m ) ] ; 1 1 % , 2,3-dimethyl-4-penten-2-ol a n d fmns-2-methyl-4-hexen2-ol; i n f r a r e d i n d i c a t e d no cis olefin b o n d s (48).
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch002
LITHIATED NJN^N^N'-TCTRAMETHYLETHYLENEDIAMINE (I)
IN H E X A N E .
T h e s e reactions w e r e a c i d i f i e d after h y d r o l y s i s a n d the o r g a n i c l a y e r d i s c a r d e d . T h e aqueous l a y e r w a s m a d e b a s i c w i t h N a O H s o l u t i o n a n d e x t r a c t e d w i t h ether. T h e ether l a y e r w a s d i s t i l l e d after d r y i n g o v e r anhydrous N a S 0 . 1- Bromobutane. A d d e d o n e - m o l e e q u i v a l e n t T M E D A to 1 2 % secb u t y l l i t h i u m i n hexane a n d h e a t e d at 5 5 ° C for 1 h r , c o o l e d to 0 ° C a n d a d d e d 0.95-mole e q u i v a l e n t of 1 - b r o m o b u t a n e over 0.5 h r ; l e t w a r m to 2
20°C;
4
hydrolyzed; distilled; bp
182°C
(760
mm)
[lit.
bp
183°C
(760
m m ) ] ; 4 9 % , N - n - p e n t y l - N ^ ^ N ' - t r i m e t h y l e t h y l - l ^ - e t h a n e d i a m i n e (49). A n a l y t i c a l l y calculates for C H 9 N : C , 6 9 . 7 5 ; H , 13.95; N , 16.29. F o u n d : 1 0
4
2
C , 6 9 . 7 5 ; H , 1 3 . 8 9 ; N , 16.49.
2- Bromobutane. A d d e d 1 - m o l e e q u i v a l e n t T M E D A to 1 1 . 4 % secb u t y l l i t h i u m i n hexane at 0 ° C , h e a t e d to 5 0 ° C f o r 1 h r a n d t h e n c o o l e d to 0 ° C ; a d d e d 1-mole e q u i v a l e n t 2 - b r o m o b u t a n e over 2 0 m i n ; let w a r m o v e r 0.5 h r ; w o r k e d u p ; h y d r o l y z e d ; d i s t i l l e d ; b p 5 2 ° C ( 2 . 9 m m ) ; 3 3 % , N- ( 2 - m e t h y l b u t y l ) - N ^ N ^ N ' - t r i m e t h y l - l ^ - e t h a n e d i a m i n e . Iodobenzene. A d d e d 1-mole e q u i v a l e n t T M E D A to 1 2 % s e c - b u t y l l i t h i u m i n hexane at 0 ° C , h e a t e d at 5 5 ° C for 1.5 h r s ; c o o l e d to 0 ° C a n d a d d e d 1 - m o l e e q u i v a l e n t i o d o b e n z e n e over 1 5 m i n ; s t i r r e d 1 h r at 2 0 ° C ; h y d r o l y z e d ; d i s t i l l e d , b p 6 9 ° C ( 0 . 3 m m ) [fit. b p 1 1 6 ° - 1 1 9 ° C ( 1 0 m m ) ] ; 30%, N - b e n z y l - ^ N ^ N ' - t r i m e t h y l - l ^ - e t h a n e d i a m i n e (49). Analytically c a l c u l a t e d for H,
C
1 2
H
2 0
No:
C , 7 5 . 0 0 ; H , 1 0 . 4 2 ; N , 14.58.
F o u n d : C , 75.01;
10.32; N , 14.41.
1-Bromooctane. A d d e d 1-mole e q u i v a l e n t T M E D A to 1 3 % secb u t y l l i t h i u m i n hexane at 0 ° C , h e a t e d at 5 0 ° C for 1.25 h r s , c o o l e d to 2 0 ° C ; a d d e d 1-mole e q u i v a l e n t 1 - b r o m o o c t a n e over 0.5 h r , s t i r r e d 0.5 h r m o r e ; h y d r o l y z e d ; d i s t i l l e d ; b p 8 5 ° C ( 0 . 5 m m ) [ht. b y 1 3 5 ° - 1 3 9 ° C ( 1 1 m m ) ] ; 4 0 % , N-n-nonyl-N,N',JV'-trimethyl-l,2-ethanediamine ( 5 0 ) . Bromocyclohexane. A d d e d 1-mole e q u i v a l e n t T M E D A to 1 5 . 5 % n - b u t y l l i t h i u m i n hexane at 0 ° C , h e a t e d to reflux 3.75 hrs a n d c o o l e d to 0 ° C ; a d d e d 1 - m o l e e q u i v a l e n t b r o m o c y c l o h e x a n e over 2 0 m i n at 0 ° C ; w a r m e d s l o w l y over 0.5 h r ; h y d r o l y z e d ; d i s t i l l e d ; b p 6 9 ° C ( 0 . 5 m m ) ; 1 8 % , N- ( c y c l o h e x y l m e t h y l ) - N j N ' j N ' - t r i m e t h y l - l ^ - e t h a n e d i a m i n e . Cyclopentanone. A d d e d 1 - m o l e e q u i v a l e n t T M E D A to 1 1 . 9 % secb u t y l l i t h i u m at 0 ° C , h e a t e d to 5 0 ° C for 1.25 hrs, c o o l e d to 0 ° C a n d a d d e d 1-mole e q u i v a l e n t c y c l o p e n t a n o n e o v e r 2 0 m i n ; s t i r r e d 2 0 m i n at 2 0 ° C ; h y d r o l y z e d ; d i s t i l l e d ; b p 8 1 ° C ( 1 . 5 m m ) ; 2 8 % , N-( 1 - h y d r o x y c y c l o p e n tylmethyl ) -IV^^N'-trimethyl-l^-ethanediamine.
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
54
POLYAMINE-CHELATED ALKALI M E T A L
COMPOUNDS
Valeraldehyde. A d d e d 1-mole e q u i v a l e n t T M E D A t o 1 5 . 5 % n - b u t y l l i t h i u m i n hexane a t 0 ° C , h e a t e d a t reflux 3.75 h r s , c o o l e d to —10 ° C , a n d a d d e d 1-mole e q u i v a l e n t v a l e r a l d e h y d e o v e r 20 m i n ; l e t w a r m over 0.5 h r ; h y d r o l y z e d ; d i s t i l l e d ; b p 8 4 ° C (0.7 m m ) ; 3 9 % , N-(2-hydroxylhexyl ) -N^^N'-trimethyl-l^-ethanediamine.
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch002
LITHIATED TRIMETHYLAMINE
( II ) IN H E X A N E .
L i t h i a t i o n of t r i m e t h
y l a m i n e was d o n e i n a pressure reactor d u r i n g the h e a t i n g step f o r a c t u a l lithiation of the tertiary amine. l-lodopropane. A d d e d 2 mole equivalents trimethylamine to 15.1% n - b u t y l l i t h i u m i n hexane a t 0 ° C ; s o l u t i o n h e a t e d a t 7 0 ° C f o r 5 hrs a n d c o o l e d t o — 1 0 ° C ; 0.85-mole e q u i v a l e n t 1 - i o d o p r o p a n e a d d e d over 20 m i n ; w a r m e d o v e r 0.5 h r ; h y d r o l y z e d ; d i s t i l l e d ; b p 9 2 ° C (760 m m ) [ l i t . b p 9 5 ° C (760 m m ) ] ; 3 2 % , N , N , N - n - b u t y l d i m e t h y l a m i n e ( 5 1 ) . 1-Bromooctane. A d d e d 2 - m o l e e q u i v a l e n t s t r i m e t h y l a m i n e t o 1 3 . 2 % s e c - b u t y l l i t h i u m i n hexane, h e a t e d to 60 ° C f o r 3 hrs, c o o l e d to —10 ° C , a n d a d d e d 1-mole e q u i v a l e n t 1 - b r o m o o c t a n e o v e r 20 m i n ; l e t w a r m t o 2 0 ° C ; h y d r o l y z e d ; d i s t i l l e d ; b p 5 2 ° C (2.9 m m ) [lit. b p 2 0 9 ° C (741 m m ) ] ; 3 3 % , Ν , Ν , Ν - d i m e t h y l n o n y l a m i n e (52). Benzaldehyde. A d d e d 2 m o l e equivalents t r i m e t h y l a m i n e to 1 1 . 9 % s e c - b u t y l l i t h i u m i n c y c l o h e x a n e a t —10 ° C , h e a t e d to 50 ° C f o r 6 hrs, c o o l e d to — 1 0 ° C ; a d d e d 0.85-mole e q u i v a l e n t b e n z a l d e h y d e o v e r 0.5 h r ; let w a r m over 0.5 h r ; h y d r o l y z e d ; d i s t i l l e d ; b p 7 2 ° C (0.25 m m ) [ l i t . b p 1 7 0 ° C (760 m m ) ] ; 4 9 % , ( l - h y d r o x y - l - p h e n y l e t h y l ) d i m e t h y l a m i n e (53). Acknowledgment I t h a n k E . D . K u e h n a n d Κ. B . L y n s k e y w h o assisted i n the l a b o r a tory work.
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.
Eberhardt, G. G., Butte, Jr., W. Α., J. Org. Chem. (1964) 29, 2928. Langer, Jr., A. W., Trans. Ν.Y. Acad. Sci. (1965) 27, 741. Screttas, C. G., Eastham, J. F., J. Amer. Chem. Soc. (1965) 87, 3276. Rausch, M. D., Ciappenelli, D. J., J. Organometal. Chem. (1967) 10, 127. Langer, Jr., A. W., U.S. Patent 3,536,679 (1970). Crawford, R. J., Erman, W. F., Broaddus, C. D., J. Amer. Chem. Soc. (1972) 94, 4298. Agami, C., Bull. Soc. Chem. Fr. (1971) 1619. Mallan, J. M., Bebb, R. L., Chem. Rev. (1969) 69, 693. Langer, Jr., A. W., Polym. Prepr., Am. Chem. Soc., ACS Div. Polym. Chem. (1966) 137. Eberhardt, G. G., Davis, W. R., J. Polym. Sci., Part A (1965) 3, 3753. Stucky, G. D., Amer. Chem. Soc., Div. Polym. Chem., Preprint, 13 (2), 644 (New York, Aug. 1972). Eberhardt, G. B., Butte, Jr., W. Α., U.S. Patent 3,321,479 (1967). Gilman, H., Pacevitz, Η. Α., Baine, O., J. Amer. Chem. Soc. (1940) 62, 1514. Gilman, H., Schwebke, G. L., J. Org. Chem. (1962) 27, 4259. Seyferth, D., Weiner, Μ. Α., J. Org. Chem. (1959) 24, 4797. Chalk, A. J., Hoogeboom, Τ. J., J. Organometal. Chem. (1968) 11, 615. ASTM Standard Method No. E-233 (n-Butyllithium Analysis). Broaddus, C. D., J. Org. Chem. (1970) 35, 10.
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
2. SMITH Tertiary Diamine Organolithium Complexes
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch002
19. 20. 21. 22. 23. 24. 25. 26. 27.
55
West, R., Jones, P. C.J. Amer. Chem. Soc. (1968) 90, 2656. Gau, G., Bull. Soc. Chim. Fr. (1972) 1942. Buhler, J. D., J. Org. Chem. (1973) 38, 904. Magruder, W. J., Dissert. Abstr. (1966) 27, 759B. Eisch, J. J., Jacobs, A. M., J. Org. Chem. (1963) 28, 2145. Seyferth, D., Weiner, W. Α., J. Org. Chem. (1959) 26, 4797. Lampher, E. J., J. Amer. Chem. Soc. (1957) 79, 5578. Seyferth, D., Juta, T. J., J. Organometal Chem. (1967) 8, P13. Johnson, C. S., Weiner, Μ. Α., Waugh, J. S., Seyferth, D., J. Amer. Chem. Soc. (1961) 83, 1306. 28. Langer, Jr., A. W., U.S. Patent 3,541,149 (1970). 29. Lepley, A. R., et al.,J.Org. Chem. (1966) 31, 2047. 30. Ibid, 2051. 31. Ibid, 2055. 32. Ibid,-2061. 33. Ibid, 2064. 34. Smith, W. N., unpublished data. 35. Peterson, D. L., J. Amer. Chem. Soc. (1971) 93, 4027. 36. "Handbook of Chemistry and Physics," 53rd ed., The Chemical Rubber Co., Cleveland, O. 1972. 37. Stach, D., Winter, W., Arzneimettel-Forsch. (1962) 12, 194; Chem. Abstr. (1962), 57, 16453. 38. Brook, A. G., et al., J. Amer. Chem. Soc. (1960) 82, 5102. 39. Gamboa, J. M., Ossorio, R. P., Rapun, R., An. Real Soc. Espan. Fis. Quim. (1961) 57B, 607C; Chem. Abstr. (1962), 57, 700. 40. Rampart, P., Amagat, P., Ann. Chim. (1927) 8, 263. 41. Warnick, P., Saunders, Jr., W. H., J. Amer. Chem. Soc. (1962) 84, 4095. 42. Frank, C. E., Foster, W. E., Ind. Eng. Chem. (1954) 46, 1019. 43. Chel'tsova, Μ. Α., et al., Izv. Akad.HaukSSSR, Ser. Khim. (1965) 1, 124; Chem. Abstr. (1965) 62, 11707. 44. Nizamuddin, S., Ghosal, M., Chudhury, D. N., J. Indian Chem. Soc. (1965) 43, 569. 45. Cadogan, J. I. C., Hey, D. H., Sandersen, W. Α., P. Chem. Soc. (1960) 3203. 46. Vozza, J. F., J. Org. Chem. (1959) 24, 720. 47. Huet, J., Bull. Soc. Chim. Fr. (1964) 2677. 48. Kochi, J., J. Org. Chem. (1963) 28, 1969. 49. Grail, G. F., et al.,J.Amer. Chem. Soc. (1952) 74, 1313. 50. Shepherd, R. Α., Wilkinson, R. G., J. Med. Pharm. Chem. (1962) 5, 823. 51. Braun, H. C., Berneis, H. L., J. Amer. Chem. Soc. (1953) 75, 10. 52. King, H., Work, T. S., J. Chem. Soc. (1942) 401. 53. Klosa, J:. J. Prakt, Chem. (1963) 21, 1. RECEIVED March 12, 1973.
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.