6 Polymer Equilibria
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch006
A. BONDI Shell Development Co., Houston, Tex. 77001
The purpose of the present paper i s to provide a g e n e r a l i z e d view of those phase e q u i l i b r i u m c h a r a c t e r i s t i c s of polymers o r polymer dominated systems which a r e unique to the "polymer w o r l d " . This uniqueness may flow from the h i g h molecular weight of t e c h n i c a l l y important polymers o r from the a s s o c i a t e d high v i s c o s i t y o r from the g l a s s y c o n d i t i o n s which c h a r a c t e r i z e the u s e f u l s o l i d s t a t e o f many members of that c l a s s . Another purpose o f t h i s paper i s to assess the t e c h n i c a l and the economic s i g n i f i c a n c e of ignorance i n t h i s area o f r e s e a r c h , because the purpose o f t h i s conference i s served more by e x h i b i t i n g what we do not know than by the proud d i s p l a y o f a seemingly impregnable, coherent body o f v a l i d a t e d t h e o r e t i c a l understanding. The scope of t h i s p r e s e n t a t i o n i s a sweeping survey w i t h a few in-depth excursions i n t o v a l l e y s of s i g n i f i c a n t ignorance. General P r i n c i p l e s The dominant problem of phase e q u i l i b r i a i n v o l v i n g a polymer phase i s the measurement problem: When has (or can) e q u i l i b r i u m be c a l l e d " e s t a b l i s h e d " . The usual means f o r r a p i d e q u i l i b r a t i o n , f o r c e d c o n v e c t i o n , i s not only d i f f i c u l t t o implement, i t may even be i m p o s s i b l e to do, when the r e q u i r e d energy i n p u t would a c t u a l l y break chemical bonds along the polymer molecule's backbone chain. Another problem i s that o f data c o r r e l a t i o n , o r o f data genera l i z a t i o n by means of w e l l founded theory. A t the rough approximat i o n l e v e l we a r e (thanks t o the work by F l o r y , Huggins, P r i g o g i n e , P r a u s n i t z , and o t h e r s ) i n good shape, and h e r e t o f o r e that has been q u i t e adequate. But we s h a l l see that recent s t u d i e s o f concent r a t e d systems e x h i b i t v a p o r / l i q u i d e q u i l i b r i a which are not even described q u a l i t a t i v e l y by e x i s t i n g theory, assuming that the measurements are r e l i a b l e . In t h i s d i s c u s s i o n we s h a l l take f o r granted that the reader i s f a m i l i a r w i t h the body of theory, according to which polymers 118
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch006
6.
BONDI
Polymer Equilibria
119
are c h a r a c t e r i z e d by t h e i r molecular weight, t h e i r molecular weight d i s t r i b u t i o n , t h e i r cohesive energy d e n s i t y (or other measure of p a i r p o t e n t i a l between unbonded neighbors) and the f l e x i b i l i t y of c h a i n s , measured e m p i r i c a l l y or c h a r a c t e r i z e d by barr i e r s to i n t e r n a l r o t a t i o n and energies of r o t a t i o n a l i s o m e r i z a t i o n of main c h a i n bonds or bond groupings, the c r o s s l i n k d e n s i t y , i f any, and e l e c t r o s t a t i c charge d e n s i t y , e s p e c i a l l y i n the case of p o l y e l e c t r o l y t e s . The l a t t e r w i l l not be d e a l t w i t h i n t h i s survey. S i n g l e Component, Two Phase Systems S o l i d / S o l i d E q u i l i b r i a i n C r y s t a l l i n e Polymers Polymorphism i s f a r l e s s common among c r y s t a l l i n e polymers than among c r y s t a l s composed of s m a l l molecules. The reason f o r t h i s p a u c i t y i s , of course, the c o n s t r a i n t imposed by t h e i r onedimensional i n f i n i t y upon r o t a t i o n a l d i s o r d e r , the primary cause of polymorphism among organic s o l i d s . The few known cases have been assembled on Table 1. The s i t u a t i o n i s q u i t e d i f f e r e n t , i f we admit a s s o c i a t i o n polymers as l e g i t i m a t e polymers. An outstanding example i s the c l a s s of the a l k a l i and e a r t h a l k a l i metals soaps of long chain f a t t y a c i d s . T h e i r polymorphic behavior i s w e l l e s t a b l i s h e d ( 1 ) , and i s a s c r i b e d to the i n c r e a s i n g m o b i l i t y of the alkane groups w i t h i n c r e a s i n g temperature. T y p i c a l examples are shown on Table 2. Polymeric c r y s t a l l i n e long c h a i n e s t e r s of v i n y l compounds are, of course, the C-C backbone chain e q u i v a l e n t of those association-polymers . S o l i d / L i q u i d E q u i l i b r i a . Few polymer e q u i l i b r i a have been s t u d i e d as thoroughly as those a t the m e l t i n g p o i n t of c r y s t a l l i n e polymers. In l a r g e measure t h i s i n t e r e s t may be caused by the d e s i r e to understand the p e c u l i a r c h a i n f o l d i n g p r o p e n s i t y of many c r y s t a l l i n e polymers. The c u r r e n t l y accepted theory (2) a s s o c i a t e s chain f o l d i n g w i t h an entropy phenomenon, such that chain f o l d i n g should disappear w i t h i n c r e a s i n g temperature; and, indeed, i f one r a i s e s the m e l t i n g temperature high enough by conducting the s o l i d i f i c a t i o n from the melt at high enough h y d r o s t a t i c pressure, chain f o l d i n g can be avoided, and completely s t r a i g h t chain c r y s t a l s are formed without chain f o l d s ( 3 ) . Thus the l i q u i d / s o l i d , pressure/ temperature phase diagram of polymeric c r y s t a l l i n e s o l i d s , i l l u s t r a t e d on F i g u r e 1, i s not q u i t e comparable w i t h those of s i m p l e r compounds, because the two ends of each curve represent m a t e r i a l s i n two q u i t e d i f f e r e n t c r y s t a l morphologies. As t h i s change i s gradual, and r e l a t e d to the molecular weight d i s t r i b u t i o n , the T vs. pressure curves on F i g u r e 1 are without d i s c o n t i n u i t y . A unique aspect of h i g h polymer s o l i d / l i q u i d e q u i l i b r i a i s the o r i e n t a t i o n - i n d u c e d c r y s t a l l i z a t i o n a t temperatures above T (4). The b e s t known i n s t a n c e s of c r y s t a l l i z a t i o n of T > T under m
m
m
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
120
PHASE
EQUILIBRIA A N D FLUID PROPERTIES IN C H E M I C A L INDUSTRY
TABLE 1 EXAMPLES OF POLYMORPHISM AMONG CRYSTALLINE POLYMERS
Crystal Morphology
poly-l-butene
rho ter ortho
o t , c m 135/6 122/4 106
poly-l-pentene
mono port
130 80
poly-4-methylpentene-l
tet 2 2
235/50 125 75
poly 1,3 butadiene, trans I
phex mono phex hex
100 96 141 148
Polymer Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch006
3
II
mono ortho
23 14
tri mono
67/73 62/77
v i n y l c y c l o pentene
tri tet
292 270
poly-p-xylylene, a
mono ortho
375 420
poly a r c y l o n i t r i l e , synd.
hex ortho
317 341
poly v i n y l c h l o r i d e
ortho mono
273 310
poly v i n y l f l u o r i d e
hex ortho
200 230
p o l y 8-amino c a p r y l i c a c i d , a
mono phex
185 220
poly c i s isoprene poly-cyclo-octene,
trans
'From Polymer Handbook, Brandrup, J . and Immergut, E. H., John Wiley, New York, 1975.
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
6. BONDI
Polymer Equilibria
121
TABLE 2 POLYMORPHISM OF ASSOCIATION POLYMERS EXAMPLE:
THE ALKALI SALTS OF LONG CHAIN FATTY ACIDS*
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch006
S o l i d / S o l i d T r a n s i t i o n Temperatures and F i n a l M e l t i n g P o i n t s , °C Carbon Number o f F a t t y A c i d : Cation
C^
C
7
C
8
C
9
c
io
L i m.p.
Na m.p.
K m.p.
Rb m.p.
C
s
m.p.
a)
C
12
C
14
C
16
C
18
237
233
223
226
227
208
215
215
197
191
361
363
360
355
348
329
311
302
283
235
242
243
243
245
246
246
251
255
-
-
-
-
218
218
215
212
208
210
198
189
185
181
179
171
168
165
140
141
138
136
135
113
117
116
>400
>400
>400
>400
>400
395
375
362
348
305
301
291
282
277
273
271
269
267
-
195
170
^400
380
375
358
300
291
284
281
385
370
358
345
295
290
279
273
Demus, D.; and Sackmann, H. From Baum, E.; 37. H a l l e (1970), 19, (5)
Wiss . Z. Univ.
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
122
P H A S E EQUILIBRIA
A N D FLUID PROPERTIES I N C H E M I C A L INDUSTRY
250
200 -
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch006
o o Journal of Macromolecular Science
Figure 1. Phase diagrams of crystalline polymers (6) Figure 1A. Phase diagrams of polyethylene. Melting (solid points) and crystallization (open points) temperatures of: (• Oj fee, (A A) ecc, (| Q) unknown structure
150 -
0 2 4 6 PRESSURE (xl0 kg/cm ) 3
2
(A)
Figure IB. Pressure dependence of the melting temperature, T , of polyethylene-chain crystals ( ) and foldedchain crystals ( ) m
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch006
6.
BONDI
123
Polymer Equilibria
400 T
C
(D) Figure ID. Pressure dependence of the melting temperature, T , of Penton for samples (a) crystallized at atmospheric pressure, and (b) crystallized at the measurement pressure m
c o n d i t i o n s of t e n s i l e e l o n g a t i o n are those of n a t u r a l rubber and, o c c a s i o n a l l y , of melt s p i n n i n g . S i m i l a r l y , o r i e n t a t i o n - i n d u c e d c r y s t a l l i z a t i o n has been observed i n melt flow, such as i n i n j e c t i o n molding, a t high shear r a t e s . A very high degree of s t e r e o r e g u l a r i t y or " t a c t i c i t y " i s necessary, so that l o n g , u n i n t e r rupted p a r a l l e l a l i g n e d s t r e t c h e s of molecule chains can form s t a b l e c r y s t a l c r y s t a l n u c l e i that w i l l grow r a p i d l y i n t o macroscopic c r y s t a l s . A t h e o r e t i c a l treatment of s t r a i n induced c r y s t a l l i z a t i o n w i t h q u a n t i t a t i v e p r e d i c t i v e power i s s t i l l i n i t s infancy. The r e l a t i o n of T or b e t t e r of AS and AH (and AV ) to molecular s t r u c t u r e of c r y s t a l l i n e polymers has been thoroughly discussed elsewhere (5) and i t s d i s p l a y would go beyond the scope of t h i s review. S u f f i c e i f to say here, that T a t atmospheric pressure i s measured so e a s i l y that i t s e s t i m a t i o n by p r e d i c t i v e methods seems an uneconomical t h i n g to do. The e s t i m a t i o n of the slope of the T vs. P l i n e , (6) the s o - c a l l e d m e l t i n g curve of c r y s t a l l i n e polymers seems no more d i f f i c u l t than of other substances. However, given the high v i s c o s i t y of the polymer melt, e s p e c i a l l y a t high pressures, n u c l e a t i o n may be so r e t a r d e d , to make experimental m e l t i n g p o i n t determination q u i t e u n c e r t a i n . m
m
m
m
m
m
The Glass/Rubbery State " E q u i l i b r i u m " Glassy polymers are of such t e c h n i c a l (and economic) importance that i t would seem pedantic to ignore the very obvious p h y s i c a l change at the g l a s s t r a n s i t i o n temperature. Morphologically, both phases are l i q u i d l i k e , i . e . h i g h l y disordered on an atomic s c a l e . Furthermore the dramatic change i n v i s c o s i t y at the g l a s s t r a n s i t i o n temperature (Tg) i s not much more gradual than i t i s a t
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
124
PHASE
EQUILIBRIA
A N D FLUID
PROPERTIES
IN CHEMICAL
INDUSTRY
T . However, i t s strong dependence upon the c o o l i n g r a t e (Figure 2) c l e a r l y d i f f e r e n t i a t e s T from T . The curve of Tg v s . P (Figure 3) has q u a l i t a t i v e l y the same appearance as the m e l t i n g curve, but the slope i s w e l l a p p r o x i mated, but not p r e c i s e l y d e s c r i b e d as that of a second order t r a n s i t i o n depending on the d i f f e r e n c e s i n the slopes of V v s . T and V vs. P between rubbery and g l a s s y s t a t e . Hence F i g u r e 3 does not q u a l i f y as a genuine phase e q u i l i b r i u m , even i f i t looks and a c t s l i k e one. m
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch006
g
m
The Rubbery S t a t e / L i q u i d E q u i l i b r i u m There i s now i n c r e a s i n g evidence f o r the r e a l i t y of the b l i p s i n the d i f f e r e n t i a l thermal a n a l y s i s a t T > Tg, a t a temperature i d e n t i f i e d as T ^ i o r l i q u i d / l i q u i d t r a n s i t i o n by Boyer ( 7 ) . The p h y s i c s o f t h i s phenomenon have y e t to be s t u d i e d both phenomonol o g i c a l l y as w e l l as i n terms of molecular motions. According t o some conjectures ( 8 ) T ; Q i s the temperature (range) c h a r a c t e r i z i n g the change from entanglement of neighboring chains to a s t a t e o f f r e e r i n t e r m o l e c u l a r movement. The p a r a l l e l change i n T ^ and i n v i s c o s i t y w i t h moelcular weight (shown on F i g u r e 4 ) i s the source of t h i s c o n j e c t u r e . E x i s t e n c e of a r e l a t i o n between the v i s c o s i t y
V
-10
10
0 T - Tg °
20
°C
Figure 2. Effect of cooling rate f on the observed glass-transition temperature and specific volume according to the theory of Saito et al. The rate 10 C/sec was chosen for the standard for which T = T ° and V = 1.000; dV /dT was assumed independent of cooling rate. (A. Bondi, "Physical Properties of Molecular Crystals, Liquids and Glasses" Wiley, New York, N.Y., 1968) s
g
g
g
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
g
6.
BONDI
125
Polymer Equilibria
T (°C) g
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch006
260r
lOOl
1
"
1
1
1
0
2
4
6
8
10
P (Kb) g
Figure 3. Vitrification Phase diagram of polystyrene. Note that vitrification takes place over a pressure range. 4
I
0
Ht
I
I
40 Nt
I
I
l
80 Ar T
b
i
t
120 Kr
!
I
I
1
160 0 40 Xe H t Nc
,in°K
i — I I
80 Ar
I
1
120 Kr
I
160 Xc
T ,in°K b
Figure 4. Logarithm of the solubility coefficients of rare gases in various homopolymers vs. the boiling point, T , of the gas. [Lundstrom, J. E., Bearman, R. J., J. Polym. Sci., Polym. Phys. (1974) 12, 97] PVA = polyvinyl acetate), SR = silicone rubber, SRDC = silicone rubber, SRGE = 5 % phenyl silicone rubber, TREGEM = poly(tetraethyleneglycol dimethacrylate), PE = polyethylene, NRUA = natural rubber. b
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
126
P H A S E EQUILIBRIA AND
F L U I D PROPERTIES IN
CHEMICAL
INDUSTRY
of polymer melts and c h a i n entanglement i s f a i r l y w i d e l y accepted
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch006
Two Component, Two-Phase System Melt/Gas The p r e d i c t a b i l i t y of the s o l u b i l i t y of gases and vapors i n polymer m e l t i n g i s s t i l l j u s t as e l u s i v e as i t i s f o r simple l i q u i d s . Some hoary g e n e r a l i z a t i o n s about the r e l a t i v e e f f e c t s of the m o l e c u l a r f o r c e constants (e and r ) of gases or of t h e i r c r i t i c a l c o n s t a n t s , and the s o l u b i l i t y parameter of the polymer melt can be used f o r i n t e r p o l a t i o n purposes i n a narrow group of systems. But a good theory, or even a r e l i a b l e engineering c o r r e l a t i o n f o r a wide range of such systems have y e t to be developed. The s o l u b i l i t y of polymer melts i n h i g h l y compressed gases (at T > T and P » P ) i s of p o t e n t i a l i n t e r e s t as a f r a c t i o n a t i o n medium f o r polymers by m o l e c u l a r weight, because under some c o n d i t i o n s pressure i s a more convenient v a r i a b l e than s o l v e n t composition, and a l e s s d e s t r u c t i v e v a r i a b l e than temperature. However so f a r only e x p l o r a t o r y experiments have been p u b l i s h e d i n t h i s f i e l d (10). Q
c
c
Polymer Melt/Monomer L i q u i d ( s ) The s o l u b i l i t y of polymer melts i n s i n g l e component and i n b i n a r y monomeric l i q u i d mixtures i s so w i d e l y known and f r e q u e n t l y reviewed both w i t h r e s p e c t to p r a c t i c a l a p p l i c a t i o n s , e s p e c i a l l y f o r polymer f r a c t i o n a t i o n , and w i t h r e s p e c t to theory that l i t t l e need be s a i d here. The p r o p e r t i e s of monomer l i q u i d s and of p o l y mer melt which determine t h e i r mutual m i s c i b i l i t y have been assemb l e d on Table 3 and are seen to be q u i t e s i m i l a r to those which determine the i n t e r a c t i o n between gases and polymer melts on F i g ure 4. Four cases are of s p e c i a l i n t e r e s t , the p r e c i p i t a t i o n of a d i s s o l v e d polymer melt by a d d i t i o n of a non-solvent, the separat i o n of c h e m i c a l l y d i f f e r e n t polymers by mixtures of s e v e r a l s o l vents (below t h e i r CST), (11) the d i s s o l u t i o n of a polymer melt by mixture of two non-solvents, and the s w e l l i n g of a c r o s s l i n k e d polymer melt by monomeric s o l v e n t s . The i n c i d e n c e of the f i r s t three cases i s described i n F i g u r e s 5 and 6, r e s p e c t i v e l y , f o r nons p e c i f i c i n t e r a c t i o n s between polymer and s o l v e n t ( s ) . Specific i n t e r a c t i o n s a r e q u a l i t a t i v e l y j u s t as p r e d i c t a b l e as i n the case of s p e c i f i c i n t e r a c t i o n s between monomeric l i q u i d s , say m o l e c u l a r compound formation or acid/base i n t e r a c t i o n . But q u a n t i t a t i v e pred i c t i o n s are even more d i f f i c u l t here than i n the monomer case. Although polymers are commonly mixtures w i t h a molecular weight d i s t r i b u t i o n of f i n i t e w i d t h we t r e a t them as s i n g l e components, or b e t t e r as q u a s i - s i n g l e components. I f we do so, a l l the consequences of the phase r u l e are found to be v a l i d . Moreover,
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
± .03
Impossible
Too few d a t a so f a r on g l a s / g l a s s phase b o u n d a r i e s
P r e d i c t i o n from Experimental Data
P r e d i c t i o n from E s t i m a t e d Data
F of F u n c t i o n a l Group C o m b i n a t i o n
2
6^;6
Estimated
Data
N o t h i n g , most prop e r t i e s cannot be measured i n t h e glassy state.
2
A v a i l a b l e from Experiment
x
0
g
2
= f(T)±.2
6
S i n g l e phase properties only very approximately.
Phase B o u n d a r i e s No
2
.03
= f(T)
1' log n
n
g
T (1);T (2)
T ( l ) , T (2),
6 (1),6 ( 2 ) , M 6 ;6 D/A c h a r a c t e r i s t i c s
Data
Required
Time and P r o x i m i t y of Tg
Time and P r o x i m i t y o f Tg
Constraints
Glass/Glass Blends
The p r o b l e m i s too new f o r m e a n i n g f u l f o r m u l a t i o n of i t s specific character.
S i z e of I n d i v i d u a l Blocks; P r o x i m i t y to Block: Tg
Phase Diagrams and P r o p e r t i e s o f M i x t u r e s o f Gas, Glass P l a s t i c i z e r Solvents with Block Systems Copolymers
For d i l u t e s o l u t i o n s o f non-polar p o l y m e r s - f a i r . For h i g h l y p o l a r i n t e r a c t i o n s - i r r e v e r s i b l e . For concentrated s o l u t i o n a b s o r p t i o n i s o f t e n domin a t e d by dynamic phenomena. P r e d i c t i o n s not achievable now.
Polymer C o n c e n t r a t i o n Geometry o f A d s o r p t i o n S u r f a c e ; Time
Adsorption Equilibria
TABLE 3. PREDICTABILITY OF TWO VERSUS MULTICOMPONENT - TWO PHASE SYSTEMS
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch006
P H A S E EQUILIBRIA
A N D FLUID PROPERTIES
IN C H E M I C A L INDUSTRY
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch006
128
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
6. BONDI
Polymer Equilibria
129
the i n c i d e n c e and shape o f m i s c i b i l i t y gaps i s p r e d i c t e d q u a l i t a t i v e l y c o r r e c t l y by molecular theory. But no e x i s t i n g theory can p r e d i c t q u a n t i t a t i v e l y the i n t e r e s t i n g m i s c i b i l i t y gap geometries shown on Figures 6 through 8 (12). The s w e l l i n g o f c r o s s l i n k e d polymer melts i s j u s t a l i m i t e d d i s s o l u t i o n . The only d i f f e r e n c e i s t h a t the e f f e c t i v e molecularweight f o r i n t e r a c t i o n w i t h the s o l v e n t i s (M ) t h a t of the chains between c r o s s l i n k s . Hence m i n i m i z a t i o n of s w e l l i n g i s achieved by the choice of polymer and s o l v e n t chemistry that minimizes mutual compatibility. There i s i n c r e a s i n g evidence that the a c t i v i t y of the s o l v e n t such as p l a s t i c i s e r s i n h i g h l y concentrated systems i s not adequately represented by e x i s t i n g f o r m u l a t i o n s , such as the F l o r y Huggins r e l a t i o n s and t h e i r v a r i o u s higher approximations (13). In view o f the i n c r e a s i n g l y c o n v i n c i n g evidence f o r the aggregation of polymer molecules i n t o "superaggregates" i n concent r a t e d s o l u t i o n s (14,15) these d e v i a t i o n s a r e not s u r p r i s i n g . "Concentrated' means concentrations i n excess of F a r more work needs t o be done on the systematics of the aggregation cons t a n t s as f u n c t i o n of c o n c e n t r a t i o n , solvent-polymers i n t e r a c t i o n , and temperature before t h e o r i e s o f the e q u i l i b r i a from concentrated polymer s o l u t i o n s can even be formulated.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch006
c
1
M e l t / M e l t I n t e r a c t i o n . The s i m p l e s t f o r m u l a t i o n of polymer s o l u b i l i t y i n terms of r e g u l a r s o l u t i o n theory on Table 3 o r F i g ure 4 makes i t very c l e a r that h i g h molecular weight (or volume) of the s o l v e n t must be compensated f o r by s m a l l d i f f e r e n c e s i n t h e i r s o l u b i l i t y parameter, i f mutual c o m p a t i b i l i t y i s to be maintained. When both components of the mixture are h i g h polymers, compatib i l i t y i s commonly achieved only when t h e i r s o l u b i l i t y parameters d i f f e r by l e s s than .05 (cal/cm^)!' 2 i n other words, most polymer melts a r e incompatible w i t h each other. Even d i l u t e s o l u t i o n s of two d i f f e r e n t polymers i n a s i n g l e s o l v e n t w i l l separate i n t o d i l u t e phases. The r a r e exceptions of compatible yet d i f f e r e n t polymers a r e shown on Table 4. Hence most s o - c a l l e d "polyblends" are h i g h l y d i s p e r s e d two phase systems which are prevented from s e p a r a t i n g i n t o l a r g e s c a l e phases by p o t e n t i a l energy b a r r i e r s impeding flow (16) o r by the s k i l l f u l i n t r o d u c t i o n of c r o s s l i n k s (19). #
Glass/Gas (or Vapor). Polymers i n the g l a s s y s t a t e are p l a s t i c i z e d by most monomeric substances w i t h which they a r e compatible. Hence we are concerned here w i t h those s o l u t i o n s o f substances i n the g l a s s f o r which Tg > T ( o b s e r v a t i o n ) . Measurements of the part i a l pressure of the v o l a t i l e s o l u t e over such g l a s s y s o l u t i o n s a r e g e n e r a l l y b e t t e r represented by a combination of a Langmuir i s o therm w i t h Henry's law. The common e x p l a n a t i o n i s that the b u l k o f the v o l a t i l e s o l u t e i s adsorbed on the surfaces of minute voids i n the g l a s s , r a t h e r than being d i s s o l v e d i n the g l a s s (18,19). These
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
130
P H A S E EQUILIBRIA
A N D FLUID PROPERTIES I N C H E M I C A L INDUSTRY
513 37000
503 O
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch006
o
2700000
37000 0.1
0.2 POLYSTYRENE-OCETANE
POLYSTYRENE -CYCL0HEXANE British Polymer Journal
Figure 6. Experimental examples of the various types of miscibility gaps in polymer solutions (12)
British Polymer Journal
Figure 7. Experimental example of the miscibility gap for polyvinyl alcohol-water, a hydrogen bonding system (12)
Figure 8. Lower critical solution temperature observed in glassy state by mechanical relaxation spectroscopy [Akiyama, S., et al, Kob. Roab. (1976) 5, 337.]
0
0.5
WT. FRACTION
PVN
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
6.
BONDI
Polymer Equilibria
131 TABLE 4
COMPATIBLE POLYMER PAIRS*
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch006
Polymer 1 Polystyrene
Polymer 2 poly-2-methyIs tyrene
ti
p o l y - m e t h y l v i n y l ether
ii
poly-2,5 d i a l k y l - p h e n y l e n e oxide
it
benzyl-cellulose
poly caprolactam
polyvinyl chloride v a r i o u s poly ethers
II
nitrocellulose
polyvinylidene fluoride II
polymethyl methacrylate^^ "
ethyl
b u t a d i e n e / a c r y l o n i t r i l e copolymer
polyvinyl chloride II
e t h y l e n e / v i n y l a c e t a t e copolymer
Polymethyl methacrylate ( i s o )
same s y n d i o t a c t i c nitrocellulose
From data by S. Davidson and by D. R. P a u l . ^ C o n f i r m e d by B r i l l o u i n - S c a t t e r i n g , P a t t e r s o n , G. D. e t a l . , Macromol. (1976), 9 603. 9
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch006
132
P H A S E EQUILIBRIA AND
FLUID PROPERTIES IN
CHEMICAL
INDUSTRY
v o i d s are s a i d to be the r e s u l t of the i n a b i l i t y of the g l a s s to acquire i t s e q u i l i b r i u m d e n s i t y i n the face of v i s c o u s r e s i s t a n c e to b u l k flow. The p r a c t i c a l importance of t h i s o b s e r v a t i o n and of the i n c r e a s i n g evidence f o r the o r i e n t a t i o n dependence of gas or vapor s o l u b i l i t y i n g l a s s y systems d e r i v e s from the i n c r e a s i n g l y widespread use of g l a s s y polymers as gas and vapor b a r r i e r f i l m s . Their p e r m e a b i l i t y f o r the gas i s , of course, the product of gas s o l u b i l i t y and d i f f u s i o n c o e f f i c i e n t . Given t h i s p r a c t i c a l importance, i t i s o b v i o u s l y awkward that the e q u i l i b r i u m constants of the dual mode s o r p t i o n equations cannot be c o r r e l a t e d w i t h the p r o p e r t i e s of the polymer and of the permeant. Such c o r r e l a t i o n s are reasonably s u c c e s s f u l i n the rubbery s t a t e . Owing to .the e f f e c t s of mechanical and thermal h i s t o r y of the g l a s s on the i n c i d e n c e and e f f e c t i v e s u r f a c e area of the v o i d s , a r e l i a b l e g e n e r a l i z e d c o r r e l a t i o n f o r p r i o r e s t i m a t i o n s of the three constants f o r gas s o r p t i o n i n g l a s s y polymers may never be p o s s i b l e . Yet more complicated i s the s o r p t i o n e q u i l i b r i u m of more s o l u b l e substances i n g l a s s y polymers. Since they p l a s t i c i z e the g l a s s f a r more than the l e s s s o l u b l e gases do, s o r p t i o n causes d r a s t i c changes i n the polymer, i n c l u d i n g the b u i l d i n g up of s t r e s s e s along the s o r p t i o n f r o n t . S o r p t i o n e q u i l i b r a t i o n under such circumstances i s w i t h a glass only at very low s o l v e n t a c t i v i t i e s , w h i l e at higher s o l v e n t a c t i v i t i e s i t would be w i t h a rubbery substance. The " v i t r i f i c a t i o n c o n c e n t r a t i o n " of the s o l v e n t which separates these two regimes i s , of course, w e l l known from p l a s t i c i z a t i o n experiments, but has r a r e l y been systematized f o r other s o l v e n t s . C r y s t a l / S o l v e n t . Given the d i f f i c u l t y of f i n d i n g s u i t a b l e s o l v e n t s f o r the t e c h n i c a l l y important high m e l t i n g c r y s t a l l i n e polymers, i t i s perhaps not s u r p r i s i n g that only l i t t l e work has been done on the discovery of e u t e c t i c s between c r y s t a l l i n e p o l y mers and s o l v e n t s of n e a r l y s i m i l a r m e l t i n g p o i n t s . These s o l v e n t s then must be completely m i s c i b l e w i t h the polymer i n t h e i r respect i v e melt s t a t e s , and completely i m m i s c i b l e as s o l i d s . Such systems have acquired p r a c t i c a l s i g n i f i c a n c e because of the unique f i b r i l l a r morphology of c r y s t a l l i n e polymer which p r e c i p i t a t e s at or near the e u t e c t i c p o i n t . In the c u r r e n t context i t i s important to note that the e x p e r i m e n t a l l y observed phase diagram, F i g u r e 9, d i f f e r s s u b s t a n t i a l l y from that p r e d i c t e d by the Flory-Huggins theory. At present i t i s not c l e a r whether that d i f f e r e n c e i s r e a l or whether i t i s due to retarded c r y s t a l l i z a t i o n of the p o l y mer (12,20). G l a s s / P l a s t i c i z e r . B a s i c a l l y t h i s system i s j u s t a v a r i a n t of the l i q u i d / l i q u i d system. However, the e f f e c t of phase separat i o n on the g l a s s t r a n s i t i o n temperature i s not only time dependent, as expected, but can a l s o be q u i t e unique. This i s best
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
BONDI
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch006
150
Polymer Equilibria
133
r
Figure 9. Eutectics in quasi-binary systems: crystalline polymer plus crystalline, high-melting-point solvents British Polymer Journal
1101—•—i—i—i—I—i
i
•
i
0.5
0
i 1.0
Figure 9A. Phase diagram of the system linear polyethylene-l,2,4,5-tetrachlorobenzene. ( ) Flory-Huggins theory calculations, (%) melting temperatures of mixtures quenched at 87 C.(20)
British Polymer Journal
100 '—I—i—J I
SOLVENT! I)
i i
-*