Polymers in Solar Energy: Applications and Opportunities

the potential which polymers have for applications to solar systems• .... acts as an automatic window shade which could help control ..... paring th...
3 downloads 0 Views 2MB Size
1

Downloaded by PENNSYLVANIA STATE UNIV on May 5, 2012 | http://pubs.acs.org Publication Date: June 15, 1983 | doi: 10.1021/bk-1983-0220.ch001

Polymers in Solar Energy: Applications and Opportunities W. F. CARROLL California Institute of Technology, Jet Propulsion Laboratory, Pasadena,CA91109 PAUL SCHISSEL Solar Energy Research Institute, Golden,CO80401

Polymers have many potential applications in solar technologies that can help achieve total system cost-effectiveness. For this potential to be realized, three major parameters must be optimized: cost, performance, and durability. Optimization must be achieved despite operational stresses, some of which are unique to solar technologies. This paper identifies performance of optical elements as critical to solar system performance and summarizes the status of several optical elements: flat-plate collector glazings, mirror glazings, dome enclosures, photovoltaic encapsulation, luminescent solar concentrators, and Fresnel lenses. Research and development efforts are needed to realize the full potential of polymers to reduce life-cycle solar energy conversion costs. Problem areas which are identified are the interactions of a material with or its response to the total environment; photodegradation; permeability/ adhesion; surfaces and interfaces; thermomechanical behavior; dust adhesion; and abrasion resistance. Polymeric materials can play a key role in the future development of solar energy systems [1]. Polymers offer potentially lower costs, easier processing, lighter weight, and greater design flexibility than materials in current use. Polymeric materials are used in a l l solar technologies. In addition to such conventional applications as adhesives, coatings, moisture barriers, electrical and thermal insulation, and structural members, polymers are used as optical components in solar systems. Mirrors on parabolic troughs are made up of metallized fluoropolymers and acrylics. Commercial flat-plate collectors are glazed with fluoropolymers and ultraviolet-stabilized polyester/ glass fiber composites. Photovoltaic (PV) cell arrays are encap0097-6156/83/0220-0003$06.00/0 © 1983 American Chemical Society In Polymers in Solar Energy Utilization; Gebelein, C., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Downloaded by PENNSYLVANIA STATE UNIV on May 5, 2012 | http://pubs.acs.org Publication Date: June 15, 1983 | doi: 10.1021/bk-1983-0220.ch001

4

POLYMERS

IN

SOLAR

ENERGY

UTILIZATION

s u l a t e d w i t h s i l i c o n e s and a c r y l i c s f o r p r o t e c t i o n from the weather. In laminated ( s a f e t y g l a s s ) m i r r o r s f o r c e n t r a l r e c e i v e r h e l i o s t a t systems, p o l y v i n y l b u t y r a l i s used as a l a m i n a t i n g and encapsulating agent. Cast and molded a c r y l i c F r e s n e l lenses are used to concentrate s u n l i g h t onto p h o t o v o l t a i c c e l l s and thermal receivers. The widespread use of polymers i s evident from the i n f o r m a t i o n d i s p l a y e d i n Table I , where a p p l i c a t i o n s of polymers are l i s t e d f o r each major s o l a r technology. I t i s p o s s i b l e to estimate the amount of polymer which might be used i n the o p t i c a l elements of s o l a r energy systems [ 1 ] . The estimate assumes a market p e n e t r a t i o n f o r s o l a r systems e q u i v a l e n t t o 0.4 Quads/year (U.S. 1980 energy use was about 85 Quads, 1 Quad - 1 0 Btu) s t a r t i n g i n the time p e r i o d 1985-1995. A s o l a r i n s o l a t i o n of 1 kW/m f o r ^bout 6 hours per day w i l l r e q u i r e an area p e n e t r a t i o n of 2 x 10° n r / y r (82 m i l e s / y r ) or about 5500 m e t r i c tons per year per m i l of t h i c k n e s s . An average thickness of 10 m i l s would r e q u i r e , f o r example, an a p p r e c i a b l e f r a c t i o n of the present market f o r e i t h e r a c r y l i c s or polycarbonate. Presuma b l y , c o n s i d e r a b l y l a r g e r amounts of polymer could be used i n nono p t i c a l s t r u c t u r e s but t h i s i s system s p e c i f i c and d i f f i c u l t to estimate. C a l c u l a t i o n s [1] a l s o suggest that the present low l e v e l of funding f o r R&D on polymers i m p l i e s an underestimation of the p o t e n t i a l which polymers have f o r a p p l i c a t i o n s to s o l a r systems• The use of polymers i n s o l a r equipment w i l l r e q u i r e major changes from past l a r g e - s c a l e applications, especially i n a c h i e v i n g s a t i s f a c t o r y performance under a l l combinations of s t r e s s . Cost, performance, and d u r a b i l i t y must be optimized. I f e a r l y c o s t - e f f e c t i v e commercialization of s o l a r energy i s to be r e a l i z e d , c r i t i c a l delays must be shortened. Service experience has t r a d i t i o n a l l y guided the e v o l u t i o n of systems toward an optimum design. The process can be hastened by a p p l y i n g a l l a v a i l a b l e understanding of the b a s i c behavior of m a t e r i a l s i n the i n i t i a l designs of equipment. The stalemate imposed by the l a c k of market and supply of s o l a r systems can be broken by governmentsupported development of technology that demonstrates the economic v i a b i l i t y of new or modified m a t e r i a l s . Such development would enable m a t e r i a l s s u p p l i e r s and manufacturers of s o l a r equipment to make knowledgeable business d e c i s i o n s and reduce development cost and time. 1 5

2

Applications The o p t i c a l elements of s o l a r systems are important a p p l i c a t i o n s f o r polymers. The use of polymers f o r o p t i c a l elements w i l l , however, impose s e v e r a l unusual m a t e r i a l requirements. F i v e examples of the current development of polymeric o p t i c a l elements are considered below. Problems such as d i r t accumulation and photodegradation, which are common to most o p t i c a l elements, are considered i n a l a t e r s e c t i o n . More conventional a p p l i c a t i o n s are then noted very b r i e f l y .

In Polymers in Solar Energy Utilization; Gebelein, C., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

In Polymers in Solar Energy Utilization; Gebelein, C., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

x

x

x

Biological/chemical

x

x

x

x

x

x

x

x

CO

CO

x

x

x

x

o ?H +->

+->

cd

1—1

s

0

(0 *H 0

V) cd 0


P. cd o Pi W

i—i

x

x

Photovoltaics

x

i—t EX*

cd

1

1—1

cd

0

PJ o •H cd

C/> •>H (/> CD

Wind

x

•H

S o l a r thermal conversion

S o l a r Energy System

o JH

i—i

bo p! •H N cd

bO p! •H N Cd rH CJ U 0

CO

x

x

x

x

H P! W +J c0d

§

0

bo cd U \ o

0

+->

x

x

x

P! •H cd a.

\

bO •+->H cd o CJ

x

x

x

x

bO Pi •H P. •H a,

Polymer A p p l i c a t i o n

Table I.

O pi 0 O rH «H W +-> cd air i—t P* i — i t/) cd C B t-H H 0

+->

cd o •H

Downloaded by PENNSYLVANIA STATE UNIV on May 5, 2012 | http://pubs.acs.org Publication Date: June 15, 1983 | doi: 10.1021/bk-1983-0220.ch001

x

x

x

x

x

Th



p

o

Downloaded by PENNSYLVANIA STATE UNIV on May 5, 2012 | http://pubs.acs.org Publication Date: June 15, 1983 | doi: 10.1021/bk-1983-0220.ch001

6

POLYMERS

IN

SOLAR

ENERGY

UTILIZATION

Flat-Plate Collector Glazings* The cover g l a z i n g s protect the inner elements of the c o l l e c t o r from the environment and i n c r e a s e operating e f f i c i e n c y by reducing r e r a d i a t i o n and convection. Collectors with single glazings are l i m i t e d i n t h e i r o p e r a t i n g temperature; however, some recent work suggests that s i n g l y glazed c o l l e c t o r s can work i n the temperature ranges r e q u i r e d by desiccant and a b s o r p t i o n c o o l i n g [ 2 ] . Higher operati n g temperatures a r e obtained by u s i n g two g l a z i n g s . The outer g l a z i n g must withstand the environment while the inner g l a z i n g must be temperature r e s i s t a n t , t y p i c a l l y up to the s t a g n a t i o n temperature of the device. R e s u l t s on c o l l e c t o r g l a z i n g s have been reported [3] and environmental degradation studies of m a t e r i a l s f o r g l a z i n g s a r e i n progress [ 4 ] . None of the m a t e r i a l s are completely s a t i s f a c t o r y e i t h e r as an outer or inner g l a z i n g . The temperature requirement f o r the inner g l a z i n g e l i m i n a t e s most m a t e r i a l s other than fluorocarbon polymers and g l a s s . Glass i s the most common outer g l a z i n g but i t s u f f e r s from weight, c o s t , and impact r e s i s t a n c e l i m i t a t i o n s , w h i l e l a c k of environmental d u r a b i l i t y l i m i t s the a p p l i c a t i o n s of polymers. The transparent honeycomb concept i s an a l t e r n a t i v e t o t h e use of a second g l a z i n g [5] . The honeycomb i s attached t o o r i s an i n t e g r a l p a r t of the outer g l a z i n g f a c i n g the absorber p l a t e . The honeycomb improves c o l l e c t o r performance by suppressing conv e c t i o n and r a d i a t i o n heat l o s s e s w h i l e only s l i g h t l y reducing the incoming s o l a r energy. The e f f e c t i v e n e s s of the honeycomb f o r improving c o l l e c t o r performance i s approximately equivalent t o t h a t of an inner g l a z i n g . I n t e g r a l honeycombs formed from p o l y carbonate have good mechanical p r o p e r t i e s . Other m a t e r i a l s t e s t e d i n c l u d e p o l y e s t e r , fluorocarbon polymers, and polyimide [ 5 ] • Novel approaches t o c o l l e c t o r f a b r i c a t i o n use i n t e g r a l e x t r u s i o n s [6-8] or laminated t h i n f i l m s [ 2 ] . U n l i k e sheet-and-tube designs, some extruded i n t e g r a l u n i t s i n c l u d e the transparent g l a z i n g , h e a t - t r a n s f e r f l u i d pathways, and backing, a l l i n a conf i g u r a t i o n which could be r o l l e d out onto a r o o f t o p . Black f l u i d s can act as absorbers and be drained from the c o l l e c t o r t o prevent excessive s t a g n a t i o n temperatures. The designs vary i n d e t a i l but a common problem has been the i d e n t i f i c a t i o n of a polymer with acceptable environmental d u r a b i l i t y and low c o s t . An extruded polycarbonate c o l l e c t o r w i t h an i n t e g r a l o p t i c a l concentrator has been developed [ 8 ] . Other m a t e r i a l s that have been used i n designs i n c l u d e a c r y l i c and p o l y e t h e r s u l f o n e . Imaginative a p p l i c a t i o n s o f polymers t o f e n e s t r a t i o n can a l s o be used f o r f l a t - p l a t e c o l l e c t o r s . A transparent, coated p o l y meric g l a z i n g which transmits the s o l a r spectrum but r e t u r n s the i n f r a r e d r a d i a t i o n e f f e c t i v e l y increases the i n s u l a t i o n provided by the g l a z i n g , because the i n f r a r e d r a d i a t i o n generated i n s i d e the s t r u c t u r e i s r e t a i n e d . A polymeric f i l m which changes from transparent t o opaque when heated above a t r a n s i t i o n temperature a c t s as an automatic window shade which could help c o n t r o l s t a g n a t i o n temperatures [ 9 ] .

In Polymers in Solar Energy Utilization; Gebelein, C., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Downloaded by PENNSYLVANIA STATE UNIV on May 5, 2012 | http://pubs.acs.org Publication Date: June 15, 1983 | doi: 10.1021/bk-1983-0220.ch001

1.

C A R R O L L A N D SCHISSEL

Applications and Opportunities

1

Polymeric Glazings - Mirrors* The i n s t a l l e d p r i c e of h e l i o s t a t s i s estimated t o account f o r about h a l f of the t o t a l c a p i t a l cost o f a c e n t r a l - r e c e i v e r s o l a r thermal e l e c t r i c plant and a l a r g e r f r a c t i o n of the cost of systems f o r process heat product i o n [10]. M e t a l l i z e d t h i n polymeric f i l m s a r e one means to make l i g h t w e i g h t m i r r o r s that are l e s s expensive than current design. F l e x i b l e , l i g h t w e i g h t mirrors a l s o a l l o w l e s s expensive designs o f a u x i l i a r y equipment. Thin, f l e x i b l e f i l m s can be attached w i t h adhesives t o substrates w i t h s i n g l e o r compound curvature. E a r l i e r s t u d i e s of alurainized o r s i l v e r e d polymers have included a c r y l i c s , f l u o r i n a t e d polymers, polycarbonate, s i l i c o n e s , and p o l y e s t e r [11]. Tests a t Phoenix, A r i z o n a , showed n e g l i g i b l e degradation o f aluminum and s i l v e r m i r r o r s protected by a c r y l i c , T e f l o n , and glass during exposures exceeding two years, w h i l e s i m i l a r t e s t s a t other s i t e s r e s u l t e d i n severe degradation i n about one year [12]. I t was decided that the r e l i a b i l i t y of polymer-coated mirrors was i n s u f f i c i e n t f o r t h e i r use as h e l i o s t a t s a t the Barstow demonstration f a c i l i t y [13]. More systematic environmental degradation s t u d i e s o f some o f these m a t e r i a l s a r e i n progress [4] and s e v e r a l m i r r o r c o n f i g u r a t i o n s , i n c l u d i n g aluminized a c r y l i c s , are being t e s t e d c u r r e n t l y a t s e l e c t e d l o c a t i o n s around the U. S. I n recent t e s t s conducted i n dry, r e l a t i v e l y benign c l i m a t e s , aluminized a c r y l i c s have performed w e l l f o r up t o f i v e years, polymeric g l a z i n g s that p r o t e c t s i l v e r surfaces f o r comparable time periods have not been i d e n t i f i e d . L o c a l i r r e g u l a r i t i e s ( s l o p e - e r r o r ) i n the shape of r e f l e c t o r s present a problem w i t h polymer-glazed m i r r o r s . A slope-error t o l e r a n c e as low as one m i l l i r a d i a n i s needed f o r some point-focus concentrators [14]. This tolerance has been met w i t h g l a s s m i r r o r s ; however, m e t a l l i z e d polymeric f i l m s have a poorer t o l e r ance. Dome Enclosures. An e n c l o s e d - h e l i o s t a t (dome) design e n v i sions l a r g e ( 3 0 - f t diameter) bubbles made of t h i n , a i r - s u p p o r t e d , transparent polymeric f i l m s as p r o t e c t i v e covers f o r m e t a l l i z e d polymeric m i r r o r s . Studies [10] i n d i c a t e that use of domeenclosed s o l a r concentrators may r e s u l t i n s i g n i f i c a n t cost reductions. The air-supported dome c o n f i g u r a t i o n i s capable of w i t h standing wind loads and can p r o t e c t l i g h t gauge p l a s t i c membrane h e l i o s t a t s and d r i v e mechanisms which lower c o s t s . The o r i g i n a l concept from the Boeing Engineering and Construction Company used i n t e g r a l domes w h i l e l a t e r designs by the General E l e c t r i c Company used segments assembled w i t h adhesives. A number of transparent polymers have been examined and t e s t e d f o r t h i s purpose; prototype domes have been f a b r i c a t e d from p o l y v i n y l f l u o r i d e which was l a t e r determined t o be too expensive and not s u f f i c i e n t l y s t a b l e . The dominant requirement f o r t h i s a p p l i c a t i o n i s good specular t r a n s m i s s i o n . Several p o l y e s t e r s

In Polymers in Solar Energy Utilization; Gebelein, C., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Downloaded by PENNSYLVANIA STATE UNIV on May 5, 2012 | http://pubs.acs.org Publication Date: June 15, 1983 | doi: 10.1021/bk-1983-0220.ch001

8

POLYMERS

IN

SOLAR

ENERGY

UTILIZATION

were t e s t e d and had e x c e l l e n t i n i t i a l o p t i c a l transmittance. However, t h e i r environmental d u r a b i l i t y was too l i m i t e d . Energy l o s s e s due to absorption or s c a t t e r i n g decrease the system e f f i c i e n c y , reducing the cost advantages. In the case of enclosures f o r h e l i o s t a t s i n c e n t r a l r e c e i v e r systems, l o s s e s are m u l t i p l i e d because the s o l a r beam must pass through the dome t w i c e . The m a t e r i a l must be compatible w i t h c o s t - e f f e c t i v e dome f a b r i c a t i o n methods and must have s u i t a b l e mechanical p r o p e r t i e s and durab i l i t y to maintain operation under the combined e f f e c t s of wind, h a i l , temperature, s u n l i g h t , e t c . , f o r s e v e r a l years. Other m a t e r i a l s t e s t e d i n c l u d e p o l y v i n y l i d e n e f l u o r i d e , polycarbonate, and polypropylene. B i a x i a l l y oriented polyvinylidene fluoride i s p r a c t i c a l to manufacture commercially and i s s a i d to have good o p t i c a l p r o p e r t i e s and e x c e l l e n t w e a t h e r a b i l i t y [10]. Flat-Plate Photovoltaic (PV) Encapsulation.* Polymers can serve s e v e r a l f u n c t i o n s i n PV encapsulation systems [15]. The s i n g l e polymer a p p l i c a t i o n common to a l l c o n f i g u r a t i o n s and the core of the encapsulation package I s the p o t t a n t , which embeds the s o l a r c e l l s and r e l a t e d e l e c t r i c a l conductors. The key r e q u i r e ments f o r a pottant are high transparency i n the range of s o l a r c e l l response, mechanical cushioning of the f r a g i l e s o l a r c e l l s from thermal and mechanical s t r e s s e s , e l e c t r i c a l i n s u l a t i o n to i s o l a t e module voltage, and c o s t - e f f e c t i v e m a t e r i a l and module f a b r i c a t i o n processes. Other encapsulation a p p l i c a t i o n s of polymers f o r s p e c i f i c designs i n c l u d e s o i l , u l t r a v i o l e t , and a b r a s i o n - r e s i s t a n t f r o n t covers. The cover can serve as a transparent s t r u c t u r a l superstate. Substrate support designs r e q u i r e a hard, durable f r o n t cover f i l m to p r o t e c t the r e l a t i v e l y s o f t pottant from mechanical damages and excess s o i l accumulation. A polymeric f r o n t cover must be low i n c o s t , h i g h l y transparent, and weather r e s i s t a n t to compete w i t h g l a s s . For a p p l i c a t i o n s out of the o p t i c a l path between the sun and the s o l a r c e l l s (adhesives, i n s u l a t i o n , edge s e a l s , gaskets) requirements f o r polymeric use i n encapsulation are the same as f o r other a p p l i c a t i o n s . Luminescent Solar Concentrators (LSCs). The LSC uses the p r i n c i p l e of l i g h t pipe t r a p p i n g , t r a n s m i s s i o n , and c o u p l i n g i n t o a p h o t o v o l t a i c c e l l (PV) to concentrate s o l a r r a d i a t i o n [16,17]. This use of a low-cost concentrator can reduce the area r e q u i r e ments of the more expensive PV c e l l s . The LSC has s e v e r a l important advantages. I t can be made from inexpensive m a t e r i a l s , can be nontracking and i t can concentrate the l i g h t input from e i t h e r d i r e c t or d i f f u s e i n s o l a t i o n . The LSC can act as a wavelength

*Encapsulation of p h o t o v o l t a i c s f o r concentrator systems depends on c o n c e n t r a t i o n r a t i o and other system s p e c i f i c parameter t e s t s , i s s u e s that are not discussed i n t h i s paper.

In Polymers in Solar Energy Utilization; Gebelein, C., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Downloaded by PENNSYLVANIA STATE UNIV on May 5, 2012 | http://pubs.acs.org Publication Date: June 15, 1983 | doi: 10.1021/bk-1983-0220.ch001

1.

CARROLL

A N D SCHISSEL

Applications and Opportunities

9

matcher between the s o l a r r a d i a t i o n and the s p e c t r a l response o f the PV c e l l . A l s o , the s o l a r i n f r a r e d r a d i a t i o n and the r e s u l t a n t heat load are prevented from reaching the s o l a r c e l l . One planar c o n f i g u r a t i o n , shown i n Figure 1, uses a polymeric host (polymethylmethacrylate) i n t o which dye molecules are d i s persed randomly. Photons w i t h wavelengths i n the adsorption band of the dye enter the host, a r e absorbed by the dye, and ate reradiated i s o t r o p i c a l l y . Reradiated photons w i t h i n a c e r t a i n s o l i d angle are trapped by t o t a l i n t e r n a l r e f l e c t i o n and guided t o the edge of the p l a t e where s o l a r c e l l s are attached. The concent r a t i o n f a c t o r i s determined by the r a t i o of the areas of the face to an edge, by the f r a c t i o n of r e r a d i a t e d photons which i s trapped (75%), and other f a c t o r s r e l a t i n g to the dye. The trapping e f f i ciency i s p a r t l y determined by the r e f r a c t i v e index o f the polymer. A second planar c o n f i g u r a t i o n uses t h i n (25 urn) polymeric f i l m host ( c e l l u l o s e acetate butyrate) coated onto a support (PMMA, g l a s s ) . When the support i s p o s i t i o n e d as a s u p e r s t r a t e i t acts as a g l a z i n g t o protect the t h i n f i l m . Some designs use s e v e r a l t h i n l a y e r s , each c o n t a i n i n g a dye matched t o d i f f e r e n t s o l a r wavelengths. The p h y s i c a l separation of the dyes can improve t h e i r d u r a b i l i t y . The t h i n f i l m approach means that more expensive m a t e r i a l s may be acceptable. F l u o r i n a t e d or deuterated dyes can improve o p t i c a l e f f i c i e n c y and h i g h l y concentrated dyes can a l t e r the mechanism and e f f i c i e n c y of energy t r a n s p o r t . System l i f e t i m e i s an important unknown f a c t o r p r i n c i p a l l y i n f l u enced by dye l i f e t i m e . Questions r e l a t i n g t o dye-host i n t e r a c t i o n s and the i n f l u e n c e of the host on system l i f e t i m e s a r e unanswered. Fresnel Lenses. F r e s n e l lens concentrators have been s t u d i e d f o r both thermal and p h o t o v o l t a i c systems. The economic v i a b i l i t y of t h e i r use depends on a l a r g e number of system-related f a c t o r s , i n c l u d i n g the performance, c o s t , and d u r a b i l i t y of the lenses. Performance requirements i n c l u d e minimum a b s o r p t i o n , s c a t t e r i n g , and surface r e f l e c t i o n . T o t a l cost depends on costs of m a t e r i a l s and f a b r i c a t i o n , or minimum thickness defined by mechanical requirements, and on a d d i t i o n a l m a t e r i a l required f o r o p t i c a l design. L i k e other s o l a r a p p l i c a t i o n s o f o p t i c a l polymers, durab i l i t y f o r extended periods i s r e q u i r e d . Other Applications. Polymers can a l s o be used as edge s e a l s i n g l a s s m i r r o r s , f i l m s f o r m i r r o r backings, adhesives, s t r u c t u r a l members, s o l a r pond l i n e r s , and energy storage systems. Glass m i r r o r s are more s t a b l e than m i r r o r s w i t h polymeric g l a z i n g s , but they are expensive, heavy, and probably not s t a b l e enough. The s t a t e of the a r t i s e x e m p l i f i e d by the developments of m i r r o r s f o r h e l i o s t a t a p p l i c a t i o n s [18]. The s t r u c t u r e c o n s i s t s o f s i l v e r e d g l a s s backed w i t h a p o l y i s o b u t y l e n e f i l m and mounted on an aluminum sheet-paper honeycomb s t r u c t u r e . The m i r r o r edges are sealed

In Polymers in Solar Energy Utilization; Gebelein, C., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

In Polymers in Solar Energy Utilization; Gebelein, C., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Downloaded by PENNSYLVANIA STATE UNIV on May 5, 2012 | http://pubs.acs.org Publication Date: June 15, 1983 | doi: 10.1021/bk-1983-0220.ch001

Ο r > w M G H Ρ Η Ο -I Η

on

3

w

r

Ο

Ο

H-»

1.

CARROLL

A N D SCHISSEL

Applications and Opportunities

11

w i t h p o l y i s o b u t y l e n e and s i l i c o n e , and the m i r r o r i s h e l d t o the supporting s t r u c t u r e using a neoprene phenolic adhesive. Other low-cost h e l i o s t a t m i r r o r modules have been designed and developed which use p l a s t i c to reduce weight and to accommodate high-volume production of complex forms by molding. Molded r i b , extruded panel, or sandwiched honeycomb s t r u c t u r e s a r e combined w i t h sprayed s i l v e r m e t a l l i z a t i o n , sprayed polymeric overcoats, o r laminated f i l m s [19]. Molded r e i n f o r c e d p l a s t i c s are a l s o used i n p a r a b o l i c trough module designs [20]• A survey of thermal energy storage p r o j e c t s i s a v a i l a b l e [21]•

Downloaded by PENNSYLVANIA STATE UNIV on May 5, 2012 | http://pubs.acs.org Publication Date: June 15, 1983 | doi: 10.1021/bk-1983-0220.ch001

Research Opportunities Optical Elements. Problems which are common to many s o l a r r e l a t e d o p t i c a l elements i n c l u d e d i r t r e t e n t i o n , c l e a n i n g , surface a b r a s i o n , and photodegradation. A common f e a t u r e of some of these problems i s that the d e l e t e r i o u s e f f e c t s occur a t an i n t e r f a c e . U l t r a v i o l e t r a d i a t i o n , atmospheric components, mechanical s t r e s s , etc., can have a profound e f f e c t on performance by changing surface c h a r a c t e r i s t i c s . The l i f e t i m e s o f UV s t a b i l i z e r s can be l i m i t e d by exudation; p e r m e a b i l i t y can cause harmful r e a c t i o n s a t i n t e r f a c e s ; and mechanical p r o p e r t i e s can be i n f l u e n c e d by surface crazing. I n other a p p l i c a t i o n s mechanical behavior of the bulk polymer i s c r i t i c a l and v i r t u a l l y a l l a p p l i c a t i o n s r e q u i r e that the polymer system withstand m u l t i p l e environmental s t r e s s e s simultaneously. Surface/Interface Properties of Polymers Surface phenomena play a s i g n i f i c a n t r o l e i n the major problem areas associated w i t h polymers and, t h e r e f o r e , are b a s i c to most o f the s t u d i e s . For example, the l i f e t i m e s of UV s t a b i l i z e r s can be l i m i t e d by exudation and accumulation a t the s u r f a c e , p e r m e a b i l i t y can cause harmful r e a c t i o n s a t i n t e r f a c e s , adhesion Is an i n t e r f a c e phenomenon, and mechanical p r o p e r t i e s can be i n f l u e n c e d by surface c r a z i n g . Examples o f surface problems a f f e c t i n g m i r r o r s i n c l u d e abrasion, dust adhesion, and c l e a n i n g procedures. Surface i n t e r a c t i o n s a l s o occur during the production of polymers; the subsequent behavior o f a polymer can be c r i t i c a l l y dependent upon the m a t e r i a l against which i t i s formed. Surface measurement techniques w i l l form a general experimental b a s i s f o r work on s p e c i f i c a p p l i c a t i o n s . Experimental and a n a l y t i c a l studies are needed t o improve understanding of the chemistry, p h y s i c s , and morphology of s u r f a c e s . Study o f i n t e r faces between polymers and other m a t e r i a l s i s a l s o needed both f o r model i n t e r f a c e s and f o r candidate engineering m a t e r i a l i n t e r faces. Such s t u d i e s should c h a r a c t e r i z e the i n t e r f a c e s as o r i g i n a l l y f a b r i c a t e d and a f t e r changes caused by t y p i c a l e n v i r o n mental exposures. The accumulation of a i r b o r n e p a r t i c u l a t e s and aerosols on the

In Polymers in Solar Energy Utilization; Gebelein, C., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Downloaded by PENNSYLVANIA STATE UNIV on May 5, 2012 | http://pubs.acs.org Publication Date: June 15, 1983 | doi: 10.1021/bk-1983-0220.ch001

12

POLYMERS

IN

SOLAR

ENERGY

UTILIZATION

o p t i c a l surfaces of s o l a r conversion equipment causes unwanted absorption and s c a t t e r i n g which has lowered operating e f f i c i e n c i e s more than 30%. Accumulation i s most serious f o r s o f t polymers (e.g., s i l i c o n e rubber) and l e a s t s e r i o u s f o r g l a s s . Data i n d i cate that hard polymers l i k e polymethylmethacrylate are n e a r l y as r e s i s t a n t as g l a s s . An understanding of adhesion mechanisms i s r e q u i r e d to develop c o s t - e f f e c t i v e c l e a n i n g methods and s o i l r e s i s t a n t polymeric m a t e r i a l s [22-24]. M o d i f i c a t i o n s of polymeric m a t e r i a l s , e i t h e r i n bulk or by surface treatment or c o a t i n g , may r e s u l t i n m a t e r i a l s that are " s e l f - c l e a n i n g " or that do not tend to hold s o i l , a l l o w i n g i t t o be removed e a s i l y by n a t u r a l forces such as wind and r a i n . Regular c l e a n i n g probably w i l l be r e q u i r e d to maintain high o p t i c a l performance of s o l a r systems, and c l e a n i n g w i l l be a major o p e r a t i o n a l cost f a c t o r . Automatic c l e a n i n g can be made c o s t e f f e c t i v e i f i t i s based on an understanding of s o i l adhesion mechanisms. P o s s i b l e problems i n c l u d e mechanical damage to the surface by c l e a n i n g and p o t e n t i a l c o n t r i b u t i o n s of r e s i d u a l c l e a n i n g agents to m a t e r i a l aging. The o p t i c a l f u n c t i o n of p o l y meric components can be s e r i o u s l y degraded by abrasion due to the c l e a n i n g process or by n a t u r a l causes. Considerations such as c o s t , mechanical c o m p a t i b i l i t y with supporting m a t e r i a l , or UV r e s i s t a n c e may preclude the use of i n h e r e n t l y a b r a s i o n - r e s i s t a n t materials. Since only a shallow l a y e r of r e s i s t a n t m a t e r i a l i s r e q u i r e d , adding a c o a t i n g o r using surface processes that produce a r e s i s t a n t " s k i n " can y i e l d the necessary r e s i s t a n c e . A c o a t i n g might have s e v e r a l uses, p r o v i d i n g abrasion r e s i s t a n c e , improving a n t i r e f l e c t i v e performance, screening UV r a d i a t i o n , or combining several functions. Adhesive f a i l u r e i s a problem i n s o l a r systems. In the past, polymers have been used to p r o t e c t the mechanical i n t e g r i t y of wood and metal s t r u c t u r e s i n severe outdoor environments and to p r o t e c t s e n s i t i v e e l e c t r o n i c components In r e l a t i v e l y benign enclosed environments. Polymers used i n s o l a r equipment w i l l have to p r o t e c t the o p t i c a l p r o p e r t i e s of r e f l e c t o r s , t h i n - f i l m e l e c t r i c a l conductors, and t h i n - f i l m p h o t o v o l t a i c s from the e f f e c t s of moisture and atmospheric p o l l u t a n t s i n severe outdoor environments w h i l e simultaneously maintaining o p t i c a l , mechanical, and chemical integrity. I n some systems, the prevention of mechanical f a i l u r e i s important; f r e q u e n t l y , adhesive f a i l u r e a t the metal/polymer i n t e r f a c e i s of p a r t i c u l a r concern because the ensuing c o r r o s i o n causes o p t i c a l f a i l u r e . Loss of adhesion may be caused by permeation problems. However, i n t e r n a l formation of v o l a t i l e species (outgassing) and primary bond f a i l u r e can a l s o c o n t r i b u t e t o l o s s of adhesion. A l l polymers are i n h e r e n t l y permeable, but t o widely varying degrees. Oxygen, moisture, a i r p o l l u t a n t s , e t c . , can penetrate polymer f i l m s and a t t a c k underlying r e f l e c t o r m e t a l i z a t i o n , cond u c t o r s , or other f u n c t i o n a l elements. Furthermore, these gases

In Polymers in Solar Energy Utilization; Gebelein, C., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

1.

CARROLL

A N D SCHISSEL

Applications and Opportunities

13

can modify the mechanical and o p t i c a l p r o p e r t i e s o f the polymer and a l t e r mechanical i n t e r f a c e s between l a y e r s . The p e r m e a b i l i t y of a polymer can be s e n s i t i v e t o how the m a t e r i a l i s processed and used and i s sometimes enhanced as the m a t e r i a l degrades. Although a fundamental understanding o f polymer permeability e x i s t s and experimental data are a v a i l a b l e , current information i s inadequate to model o r c o n t r o l the e f f e c t s of permeation of v a r i o u s species i n s o l a r equipment. Experimental and a n a l y t i c a l studies are needed t o consider modern t h e o r e t i c a l approaches (e.g., nonequilibrium thermodynamics, non-Fickian d i f f u s i o n ) with the g o a l of developing models f o r the transport o f H2O, O2, S0 , and other molecules i n polymers, and to develop and compile q u a n t i t a t i v e engineering data on transport through bulk m a t e r i a l and across and along i n t e r f a c e s s p e c i f i c a l l y f o r s o l a r a p p l i c a t i o n s [25, 26]. A l t e r n a t i v e l y , delamination may not be r e l a t e d d i r e c t l y t o permeation, but may be due instead t o thermal and/or UV e f f e c t s that are followed by the c o r r o s i v e f a i l u r e . Some studies and models i n d i c a t e that the polymer/metal i n t e r f a c e morphology, and the changes i n the morphology with exposure t o the environment, play a key r o l e i n c o r r o s i o n r a t e s . These c h a r a c t e r i s t i c s may be even more important i n c o r r o s i o n c o n t r o l than e i t h e r the d i f f u s i o n of vapors through the polymer or the inherent c o r r o s i o n r e s i s t a n c e of the metal.

Downloaded by PENNSYLVANIA STATE UNIV on May 5, 2012 | http://pubs.acs.org Publication Date: June 15, 1983 | doi: 10.1021/bk-1983-0220.ch001

X

Photochemistry of Polymers V i r t u a l l y a l l polymers d e t e r i o r a t e under exposure to outdoor weathering and s o l a r r a d i a t i o n , but a t g r e a t l y varying r a t e s . Polymers i n s o l a r equipment must maintain o p t i c a l , mechanical, and chemical i n t e g r i t y despite prolonged exposure to s o l a r u l t r a v i o l e t radiation. F o r most outdoor a p p l i c a t i o n s of polymers, s o l a r r a d i a t i o n exposure i s i n c i d e n t a l , but f o r many s o l a r a p p l i c a t i o n s , exposure t o s o l a r r a d i a t i o n i s d e l i b e r a t e l y maximized i n the equipment design. Transparency i s e s s e n t i a l f o r many o f t h e p o t e n t i a l l y most c o s t - e f f e c t i v e a p p l i c a t i o n s , and conventional approaches t o u l t r a v i o l e t p r o t e c t i o n such as opaque coatings and f i l l e r s are unacceptable. Photodegradation i n polymers begins w i t h the primary e x c i t e d s t a t e s produced by absorption of u l t r a v i o l e t photon energy by the polymer. These e x c i t e d s t a t e s undergo f a s t - r e a c t i o n sequences t o form chain r a d i c a l s which, i n t u r n , decay through chemical r e a c t i o n s w i t h i n the polymer o r with O2, R^O, e t c . These r e a c t i o n s can produce changes i n chemistry or molecular s i z e . The r e a c t i o n products can absorb a d d i t i o n a l photons, r e s u l t i n g i n f u r t h e r degradation by analogous processes. The cumulative changes may r e s u l t i n y e l l o w i n g ( l o s s o f transparency), change i n r e f r a c t i v e index, and d e t e r i o r a t i o n o f surface p r o p e r t i e s (e.g., crazing)• Changes i n the mechanical p r o p e r t i e s cause increased creep or c r a c k i n g , w h i l e changes i n the chemical p r o p e r t i e s r e s u l t i n increased permeability to R^O, S0 , e t c . , and subsequent corX

In Polymers in Solar Energy Utilization; Gebelein, C., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Downloaded by PENNSYLVANIA STATE UNIV on May 5, 2012 | http://pubs.acs.org Publication Date: June 15, 1983 | doi: 10.1021/bk-1983-0220.ch001

14

POLYMERS

IN

SOLAR

ENERGY

UTILIZATION

r o s i v e i n t e r a c t i o n w i t h m e t a l l i c components i n contact w i t h the polymer. Polymers that are s e n s i t i v e to u l t r a v i o l e t r a d i a t i o n but that otherwise have d e s i r a b l e p r o p e r t i e s can be s t a b l i z e d by u l t r a v i o l e t screens, absorbers, quenchers, r a d i c a l scavengers, and antioxidants. U l t r a v i o l e t s t a b l i z e r s can be incorporated by simple a d d i t i o n or by chemical combination w i t h the polymer molecule. Long l i f e t i m e can best be a t t a i n e d by i m m o b i l i z i n g the a d d i t i v e as part of the molecular s t r u c t u r e . Using e x i s t i n g photochemistry, a n a l y t i c a l and experimental s t u d i e s are needed t o develop models of photochemical processes i n s o l a r - r e l a t e d polymers. Recent screening s t u d i e s u s i n g commercial a d d i t i v e s have been d i r e c t e d toward s o l a r a p p l i c a t i o n s . They can provide some input to the system s e l e c t i o n s [28-31]. Thermomechanical Behavior. Requirements f o r o p t i c a l performance impose unprecedented requirements f o r dimensional s t a b i l i t y of polymers used i n h i g h - c o n c e n t r a t i o n r e f l e c t o r s . Requirements f o r mechanical c o m p a t i b i l i t y are a l s o s t r i c t f o r p h o t o v o l t a i c systems subjected to moisture and thermal s t r e s s e s . Moisture, temperature, and UV, s e p a r a t e l y and i n combination, can change the volume and thus the s t r e s s s t a t e of polymers. For example, temperature and humidity c y c l e s alone do not cause surface microcracks i n polycarbonate. However, i n the presence of UV r a d i a tion, such c y c l e s cause m i c r o c r a c k s , w h i l e UV alone does not [32]. An understanding of these r e l a t i o n s h i p s i s e s s e n t i a l t o permit r e l i a b l e design of equipment that uses polymers. These f a c t o r s , coupled w i t h need f o r r e l i a b l e design and low c o s t , n e c e s s i t a t e both a fundamental understanding of mechanical behavior and r e l i a b l e mechanical design d a t a . The r e l a t i o n s h i p s between process and environmental e f f e c t s to mechanical behavior have been developed f o r e l a s t o m e r i c polymers to the degree t h a t these m a t e r i a l s can be s e l e c t e d , and t h e i r long-term performance r e l i a b l y p r e d i c t e d , by a knowledge of some fundamental parameters determined from a few s t r a i g h t f o r w a r d experimental measurements. If the current l e v e l of understanding of v i s c o - e l a s t i c i t y of elastomers can be extended i n t o the range of g l a s s y polymers, then i t w i l l be p o s s i b l e to make comparable p r e d i c t i o n s of mechanical s t r e s s / t i m e / t e m p e r a t u r e / s t r a i n response and failure relationships. U l t i m a t e l y , e q u i v a l e n t understanding of g l a s s y polymers w i l l g r e a t l y reduce the need f o r c o s t l y e m p i r i c a l t e s t i n g each time a new a p p l i c a t i o n i s contemplated. Combined Environmental Effect. Any l i s t of s i g n i f i c a n t e f f e c t s of the environment on polymers i n s o l a r a p p l i c a t i o n s w i l l i n c l u d e UV degradation, weathering, p e r m e a b i l i t y , high-temperature performance, d e l a m i n a t i o n / f a t i g u e , dimensional s t a b i l i t y , and soiling/cleaning. These effects are not necessarily independent: polymers are expected to s u f f e r more s e r i o u s degradation during exposure to combined environmental s t r e s s e s

In Polymers in Solar Energy Utilization; Gebelein, C., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Downloaded by PENNSYLVANIA STATE UNIV on May 5, 2012 | http://pubs.acs.org Publication Date: June 15, 1983 | doi: 10.1021/bk-1983-0220.ch001

1.

CARROLL

A N D SCHISSEL

Applications and Opportunities

15

E f f e c t i v e methods f o r p r e d i c t i n g and v e r i f y i n g the performance o f polymers under i n t e r a c t i v e e f f e c t s are r e q u i r e d , p a r t i c u l a r l y f o r those a p p l i c a t i o n s unique to s o l a r energy systems. The simultaneous and s e q u e n t i a l combinations of environmental s t r e s s e s that a l t e r the p r o p e r t i e s and a f f e c t the performance o f polymers should be i d e n t i f i e d e x p e r i m e n t a l l y . Assessment of the s t a b i l i t y o f polymers from fundamental r a t e data o r from e x p e r i mental engineering data r e q u i r e s an understanding of the i n t e r a c t i v e e f f e c t s o f environmental s t r e s s [11, 32]. Testing o f a l l combinations of the s t r e s s e s would r e q u i r e an unacceptable number of experiments. The number of combinations s t u d i e d can be l i m i t e d by r e c o g n i z i n g the unique p o s i t i o n o f o p t i c a l elements which may use transparent polymers and o f s t r u c t u r a l members; by f i r s t ranking the importance of i n d i v i d u a l s t r e s s e s ; and by using screening t e s t s to i d e n t i f y promising m a t e r i a l s [28-30]• Improved a n a l y t i c a l and t e s t methods are needed. Accelerated t e s t s s t r e s s some parameters to decrease the time before f a i l u r e occurs, abbreviated t e s t s use a n a l y t i c a l techniques t o estimate f a i l u r e r a t e s from i n c i p i e n t degradation during short-term exposures at u s u a l s t r e s s l e v e l s . Methods are needed t o demonstrate c o r r e l a t i o n s between these t e s t r e s u l t s and r e a l - t i m e behavior. E a r l i e r s t u d i e s [33, 34] provide some b a s i s f o r t h i s work. Performance p r e d i c t i o n modeling (PPM) i s one method f o r e v a l u a t i n g m a t e r i a l s performance that has been defined and i s being a p p l i e d a t the Jet P r o p u l s i o n Laboratory. I n i t s simplest form, PPM can v e r i f y the s a t i s f a c t o r y performance of a p a r t i c u l a r m a t e r i a l used i n a s p e c i f i c design and subject to a defined set o f s t r e s s e s (e.g., temperature, thermal c y c l i n g , u l t r a v i o l e t r a d i a t i o n , mechanical l o a d s ) . Conversely, I t can d e f i n e l i m i t s o f s t r e s s e s f o r the m a t e r i a l s i n an a v a i l a b l e piece of hardware o r design. This approach has been used s u c c e s s f u l l y as part o f the demonstration of the f e a s i b i l i t y of using an u l t r a - t h i n polymer f i l m on a s o l a r s a i l f o r space p r o p u l s i o n [35], f o r a n a l y t i c a l assessment of an experimental f a c i l i t y t o study space r a d i a t i o n e f f e c t s [36], and f o r a n a l y t i c a l assessment and i d e n t i f i c a t i o n o f c r i t i c a l technologies f o r ceramic r e c e i v e r s [37]. The method i s c u r r e n t l y being a p p l i e d to p h o t o v o l t a i c encapsulation [38]. A second procedure, using the methods of thermodynamics a p p l i e d to i r r e v e r s i b l e processes, o f f e r s another new approach f o r understanding the f a i l u r e of m a t e r i a l s . For example, the e q u i l i b r i u m thermodynamics o f closed systems p r e d i c t s that a system w i l l evolve i n a manner that minimizes i t s energy (or maximizes i t s entropy). The thermodynamics of i r r e v e r s i b l e processes i n open systems p r e d i c t s that the system w i l l evolve i n a manner that minimizes the d i s s i p a t i o n o f energy under the c o n s t r a i n t that a balance of power i s maintained between the system and i t s environment. A p p l i c a t i o n o f these p r i n c i p l e s o f nonlinear i r r e v e r s i b l e thermodynamics has made p o s s i b l e a formal r e l a t i o n s h i p between thermodynamics, molecular and morphological s t r u c t u r a l parameters,

In Polymers in Solar Energy Utilization; Gebelein, C., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

16

POLYMERS IN SOLAR ENERGY UTILIZATION

Downloaded by PENNSYLVANIA STATE UNIV on May 5, 2012 | http://pubs.acs.org Publication Date: June 15, 1983 | doi: 10.1021/bk-1983-0220.ch001

than from a simple sum of e f f e c t s of i n d i v i d u a l s t r e s s e s , and t h e i r r a t e of change. E x p e r i m e n t a l l y , these p r i n c i p l e s emphasize dynamic measurements t h a t make p o s s i b l e the s e p a r a t i o n o f the d i s s i p a t i v e and the conservative components of energy i n c i d e n t upon the system. Dynamic mechanical a n a l y s i s has been an important area o f research f o r over 40 years. Computer-controlled experimentation now makes i t p o s s i b l e t o apply analogous techniques t o the measurement o f many other thermodynamic s t r e s s e s . One example c u r r e n t l y under i n v e s t i g a t i o n , dynamic photothermal spectroscopy, i s expected t o provide a new approach t o p r e d i c t i n g the long-term e f f e c t s of u l t r a v i o l e t r a d i a t i o n on m a t e r i a l s [39]. Acknowledgments

The authors wish t o express t h e i r g r a t i t u d e f o r the support of the M a t e r i a l s Research Branch and, i n p a r t i c u l a r , Barry B u t l e r , A.W. Czanderna, and R.F. R e i n i s c h f o r t h e i r c o n t r i b u t i o n s . Thanks a l s o a r e due t o members of the Energy and M a t e r i a l s Research S e c t i o n of the J e t P r o p u l s i o n Laboratory f o r t h e i r help i n preparing t h i s document. This document was prepared f o r the U.S. Department of Energy under Contract No. EG-77-C-01-4024. The J e t P r o p u l s i o n Laboratory i s a N a t i o n a l Aeronautics and Space A d m i n i s t r a t i o n f a c i l i t y , and the S o l a r Energy Research I n s t i t u t e i s a Department of Energy f a c i l i t y .

Literature Cited 1. 2. 3.

4. 5. 6. 7. 8. 9.

Carroll, W. F.; Schissel, P. "Polymers in Solar Technologies: An R&D Strategy"; SERI/TR-334-601; Solar Energy Research Institute: Golden, CO 1980. Wilhelm, W. G. "Low Cost Solar Energy Collection for Cooling Applications"; BNL51408; Brookhaven National Laboratory: Upton, NY, 1981. Clark, Elizabeth; Roberts, W. E . ; Grimes, J . W.; Embree, E. J . "Solar Energy Systems—Standards for Cover Plates for Flat-Plate Solar Collectors"; NBS Technical Note 1132; National Bureau of Standards, Center for Building Technology: Washington, D.C., 1980. DSET Laboratories, Inc. "Properties and Durability Data for Solar Materials"; Contract XH-9-8215-1; Solar Energy Research Institute: Golden, CO, 1981. Lockheed Missiles and Space Co., Inc. Optimization of Thin-Film Transparent Plastic Honeycomb Covered Flat-Plate Solar Collectors. SAN/1256-78/1. Lockheed: Palo, Alto, CA, 1978. Acurex Corp., Mountain View, CA. DOE Contract No. DE-AC0479L12032. 1980. Fafco Inc., Menlo Park, CA. DOE Contract No DE-AC0378CS32241. 1980 Ramada Energy Systems, Inc. Technical Bulletin RES TB 180. Suntex Research Associates. "An Energy Efficient Window

In Polymers in Solar Energy Utilization; Gebelein, C., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

I.

10. 11. 12.

Downloaded by PENNSYLVANIA STATE UNIV on May 5, 2012 | http://pubs.acs.org Publication Date: June 15, 1983 | doi: 10.1021/bk-1983-0220.ch001

13. 14. 15. 16.

17. 18. 19. 20. 21. 22. 23. 24. 25.

26.

CARROLL

A N D SCHISSEL

Applications and Opportunities

17

System: Phase 1 Technical Report;" Suntex: Corte Madera, CA, 1976. Mavis, C.L. "Status and Recommended Future of Plastic-Enclosed Heliostat Development; SAND 80-8032. Sandia National Laboratories: Albuquerque, NM, 1980. Schissel, Paul; Czanderna, A.W. "Reactions at the Silver/Polymer Interface: A Review." Solar Energy Materials. 1980, 3; 225-245. University of Minnesota; Honeywell, Inc. "Research Applied to Solar Thermal Power Systems"; NSF/RANN/SE/GI34871/PR/74/4; 1975. McDonnell-Douglas Astronautics Co. "Central Receiver Solar Thermal Power System, Phase 1 Vol. III (Book 1, Collector Subsystem), Preliminary Draft, MDCG 6776 (May 1977). Jet Propulsion Laboratory. "Annual Technical Report: Fiscal Year 1980"; JPL 81-39; Pasadena, CA, 1981. Jet Propulsion Laboratory. "Photovoltaic Module Encapsulation Design and Materials Selection"; LSA Encapsulation Task, Project Report 5101-177. Batchelder, J . S.; Zewail, A. H.; Cole, T. "Luminescent Solar Concentrators—1: Theory of Operation and Techniques for Performance Evaluation; Applied Optics. 1979, 18, 30903110. Hermann, A. M. 1981. "Luminescent Solar Concentrators--A Review"; to be published in Solar Energy. Martin Marietta Corp. "Second-Generation Heliostat Development"; SAND 79-8192; Denver, CO., 1980. Hobbs, Robert B., Jr. "Solar Central Receiver Heliostat Mirror Module Development"; SAND 79-8189; General Electric Co.: Philadelphia, PA, 1981. General Electric Co. "Design and Development of a Reinforced Plastic Trough Module"; SAND 80-7150; Sandia National Laboratories: Albuquerque, NM, 1981. Baylin, F . ; Merino, M. "A Survey of Sensible and Latent Heat Thermal Energy Storage Projects"; SERI/RR-355-456; Solar Energy Research Institute; Golden, CO, 1981. Berg, R. S. "A Survey of Mirror-Dust Interactions" presented at the ERDA Concentrating Solar Collector Conference; Georgia Institute of Technology; 26-28 Sept. 1977. Berg, R. S. 1978 (March). SAND 78-0510. Albuquerque, NM: Sandia Laboratories. Hampton, H.L.; Lind, M. A. "The Effects of Noncontact Cleaners on Transparent Solar Materials"; Battelle Pacific Northwest Laboratory: Richland, WA, 1979. Carmichael, D. C. "Studies of Encapsulation Materials for Terrestrial Photovoltaic Arrays"; 5th Quarterly Progress Report"; ERDA/JPL-954328-76/6; Battelle Columbus Laboratories: Columbus, OH, 1976. Carmichael, D. C. et a l . "Evaluation of Available Encapsulation Materials for Low-Cost Long-Life Silicon Photovoltaic

In Polymers in Solar Energy Utilization; Gebelein, C., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

18

27. 28. 29.

Downloaded by PENNSYLVANIA STATE UNIV on May 5, 2012 | http://pubs.acs.org Publication Date: June 15, 1983 | doi: 10.1021/bk-1983-0220.ch001

30.

31.

32. 33. 34. 35. 36. 37. 38.

39.

POLYMERS

IN SOLAR

ENERGY

UTILIZATION

Arrays"; DOE/JPL-954328-78/2; Batelle Columbus Laboratories: Columbus, OH, 1978. Roberts, F. R.; Schonhorn, H. "Polymer Preprints"; Amer. Chem. Soc., Div. Polym. Chem. 1975, 16, 146. Baum, B.; Binnette, Mark. "Solar Collectors--Technical Status Report No. 14, 5 Oct.-5 Nov. 1979"; Contract EM-78-C04-5359; Springborn Laboratories, Inc.: Enfield, CT, 1979. Baum, B.; Cambron, R.; White, R. "Technical Report No. 2, 19 Oct.-19 Nov. 1979"; Contract DE-AC01-79ET21106; Springborn Laboratories, Inc.: Enfield, CT, 1979. Willis, P. B.; Baum, B. "Investigation of Test Methods, Material Properties, and Processes for Solar Cell Encapsulants"; DOE/JPL-954527-79-10; Springborn Laboratories, Inc.: Enfield, CT, 1979. Willis, P. B. et al. "Investigation of Test Methods, Material Properties, and Processes for Solar Cell Encapsulants: Annual Report"; ERDA/JPL-954527-77/2; Springborn Laboratories, Inc.: Enfield, CT. Blaga, A; Yamasaki, R. S. Journal of Material Science. 1976, 11, 1513. Kolyer, J.M.; Mann, N.R. "Accelerated/Abbreviated Test Methods: Interim Report, Apr. 1-Oct. 24, 1977; ERDA-JPL954458-77/2; Rockwell International: Anaheim, CA, 1977. Thomas, R.E.: Carmichael, D.C. "Terrestrial Service Environments for Selected Geographic Locations." ERDA/JPL-95432876/5; Battelle Columbus Laboratories: Columbus, OH, 1976. Jet Propulsion Laboratory. "Sail Film Materials and Supporting Structures for a Solar Sail"; JPL Report 720-9; Pasadena, CA:, 1979. Jet Propulsion Laboratory. "Effects of Space Environment on Composites: An Analytical Study of Critical Experimental Parameters"; JPL Report 79-47; Pasadena, CA, 1979. Jet Propulsion Laboratory. "Performance Prediction Evaluation of Ceramic Materials in Point Focusing Solar Receivers"; DOE/JPL-1060-23; Pasadena, CA. 1079. Jet Propulsion Laboratory. "Physical/Chemical Modeling for Photovoltaic Module Life Prediction"; presented at the International Photovoltaics Conference, Berlin. Jet Propulsion Laboratory: Pasadena, CA, 1979. Lindenmeyer, P.H. "Principles of Nonlinear Irreversible Thermodynamics Applied to the Testing of Materials"; D18025583-1; Boeing Co.: Seattle, WA.

RECEIVED February

9,1983

In Polymers in Solar Energy Utilization; Gebelein, C., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.