Poly(thiol esters) - Advances in Chemistry (ACS Publications)

Jun 1, 1973 - HEINRICH G. BÜHRER and HANS-GEORG ELIAS. Midland Macromolecular Institute ... CHEMICAL SOCIETY. Peer Reviewed Book Chapter ...
1 downloads 0 Views 1MB Size
8

Poly(thiol

esters)

Polymerization Reactions and New Polymers Downloaded from pubs.acs.org by WESTERN SYDNEY UNIV on 01/12/19. For personal use only.

H E I N R I C H G . B Ü H R E R and H A N S - G E O R G

ELIAS

Midland Macromolecular Institute, 1910 West St. Andrews Dr., Midland, Mich. 48640, and Swiss Federal Institute of Technology, Universitätstrasse 6, CH-8006, Zürich, Switzerland.

The

reported synthesis and properties of poly(thiol esters)

of the A-B and A-A/B-B

types are reviewed

for these

classes of compounds: 2 poly(α-mercapto acids), 7 poly(β­ -mercapto acids), 4 poly (ε-mercapto acids) and 44 type poly(thiol

esters).

A-A/B-B

The melting points of poly(thiol

esters) are generally lower than those of the corresponding polyamides and higher than those of the polyesters. are readily hydrolyzed

They

by alkali, which seems to be the

main reason for the lack of commercial interest in these materials.

" O o l y ( t h i o l esters) h a v e b e e n k n o w n f o r m o r e t h a n 25 years as stable, fiber-forming

p o l y m e r s ; f o r a b r i e f r e v i e w see G o e t h a l s ( I ) .

Still,

they h a v e a t t r a c t e d little a t t e n t i o n a m o n g scientists a n d h a v e not b e e n p r o ­ d u c e d o n a c o m m e r c i a l scale.

I n this a r t i c l e , w e s u m m a r i z e these often

i n c o m p l e t e results t o get a better u n d e r s t a n d i n g of this class of p o l y m e r s . I n terms of t h e i r properties, p o l y ( t h i o l esters) l i e b e t w e e n ters a n d p o l y a m i d e s .

polyes­

I n polyesters, o x y g e n atoms c a n b e r e p l a c e d f o r ­

m a l l y b y s u l f u r i n three different w a y s to g i v e p o l y ( t h i o l esters) ( I ) , p o l y ( t h i o n esters) ( I I ) , a n d p o l y ( d i t h i o esters)

o - £

R - C - S

-J

s

s

- £ R - C - 0

I

II

J

(III).

- £ R - C - S

^j-

III

A l t h o u g h p o l y m e r s of t y p e I I o r I I I h a v e n o t y e t b e e n m a d e , i t s h o u l d b e possible to synthesize t h e m f r o m the k n o w n p o l y ( i m i d o esters) (2)

or p o l y ( i m i d o t h i o l esters)

( 3 ) b y treatment w i t h h y d r o g e n sulfide. 105

106

POLYMERIZATION

NH

N H

II

r

II

S

i

4— R — 0 — C — R ' — C — 0 - f

NH

H S 2

S

II - i > 4 - R—O—C—R'—C—0 -4r

M

N H

II

r

REACTIONS A N D N E W POLYMERS

II

P o l y ( t h i o l esters)

—| H S r II II -4- ^ 4 - R - S - C - R ' - C - S 2

-I— R - S - C - R ' - C - S

-|

-4-

h a v e b e e n p r e p a r e d b y various methods,

often

analogous to p r e p a r a t i o n of polyesters, as is s h o w n here. A s w i t h p o l y a m i d e s , it is u s e f u l to d i s t i n g u i s h b e t w e e n p o l y ( t h i o l esters) of the A - B t y p e a n d the A - A / B - B type. poly(e-thiocaprolactone)

T y p i c a l examples are

( I V ) and poly(hexamethylene dithiol tereph­

thalate) ( V ) .

S — ( C H ) — C O -J 2

5

S—(CH ) —SOC 2

CO

6

IV

V

Preparation of Poly (thiol esters) of the A-B

Type

T h e most g e n e r a l p r e p a r a t i o n of these c o m p o u n d s is the p o l y m e r i ­ z a t i o n of the c o r r e s p o n d i n g thiolactones ( V I ) .

S—(CH ) —CO 2

>

m

S—(CH ) —CO 2

m

VI T h i o l a c t o n e s a n d s u b s t i t u t e d thiolactones w i t h four to seven r i n g atoms h a v e b e e n p r e p a r e d .

E x c e p t f o r y-thiolactones, they h a v e b e e n

polymerized.

O t h e r g e n e r a l procedures

( t h i o l esters)

are the i n t e r n a l a d d i t i o n r e a c t i o n of ^ - u n s a t u r a t e d t h i o

for m a k i n g A - B t y p e

poly

acids ( V I I ) , H C = C H ( C H ) — C O S H -> 2

2

m

£ - S—(CH ) + —CO -J 2

m

2

VII a n d t h e c o n d e n s a t i o n p o l y m e r i z a t i o n of o>-mercapto a c i d c h l o r i d e s b e a r -

8.

BUHBER A N D

ELIAS

Poly(thiol

107

esters)

i n g p r o t e c t i v e groups ( s u c h as b e n z y l , a n d t r i m e t h y l s i l y l ) o n the s u l f u r atom.

R S — (CH ) —COC1 2

-RCl

-£-S-(CH ) -CO-J 2

m

m

P o l y ( « - m e r c a p t o a c i d s ) . T h e simplest c o m p o u n d of this t y p e is poly(thioglycolide) (VIII)—poly(a-mercaptoacetic a c i d ) — w h i c h has b e e n p r e p a r e d i n different w a y s . -H 0 2

HS—CH —COOH 2

U), IX

(5),

(7)

(6),

-CH3OH

HS—CH —COOCH3 2

(4)

X

H C 2

I

base

I

0A

/

C H

-£s—ch coJ

°

2

S

VIII

XI C H

2

0 — C

\

base,

0

— C0 (4)

XII

2

(8)

-(CH ) SiCl 3

3

(CH ) Si—S—CH COCl 3

3

XIII

2

(9)

T h e condensation p o l y m e r i z a t i o n of I X a n d X yields oligomers o n l y (see T a b l e I ) . C o n d e n s a t i o n of I X gave d i t h i o g l y c o l i d e X I as a b y ­ p r o d u c t (4). X I was also o b t a i n e d b y p y r o l y s i s of p o l y ( t h i o g l y c o l i d e ) (7). T h e p o l y m e r i z a t i o n of S-carboxy-a-mercaptoacetic a c i d a n h y d r i d e X I I u s i n g bases as initiators has b e e n s t u d i e d i n d e t a i l (4). It is s i m i l a r i n m a n y respects to the w e l l - k n o w n p o l y m e r i z a t i o n of N - c a r b o x y - a - a m i n o acid anhydrides.

108

POLYMERIZATION

REACTIONS

A N D N E W

POLYMERS

Table I. Monomer

Catalyst

Solvent

HS—CH —COOH

(Bulk)

H S — C H

(Bulk)

Ti(OBu)4

Chloroform

Cyclohexylamine

Dioxane

H 0

Dioxane

Amines

Tetrahydrofuran

N (C H )

2

2

— C O O C H 3

0

V o

Y

2

o

(CH ) Si—S—CH —COC1 3

0

3

2

5

3



2



In dioxane, 94.5°C Poly(thioglycolide)

is

readily

degraded

by

aqueous

alkali

and

amines.

I t is s o l u b l e w i t h o u t d e g r a d a t i o n o n l y i n d i c h l o r o a c e t i c a c i d

(DCA)

a n d hexafluoroacetone

sesquihydrate

The

(4).

viscosity-mo­

l e c u l a r w e i g h t r e l a t i o n s h i p is M

= 0.018 MS,-

12

m l / g (25°C, D C A )

for the m o l e c u l a r - w e i g h t r a n g e M

of 5500 to 36000 D a l t o n s

w

Poly (a-mercaptopropionic

acids)

(XV),

or

(4).

poly (thiolactides),

w e r e s y n t h e s i z e d f r o m the c o r r e s p o n d i n g S - L e u c h s a n h y d r i d e s h a v i n g various optical purities ( I I ) . O *CH(CH ) 3

C

\

-co o

2

->

-£s*CH(CH )CO-J 3

-c XIV

o

XV

8.

109

Poly (thiol esters)

BUHRER A N D ELIAS

Poly (thioglycolides) Temp., °C

Yield, %

130

[rj], ml/g

100

140



25

94

100

97.4

25 -50

Reference

9

Liquid

(7)



3

"

U)





165-169

(8)

45

140-145

(10)



147-157

(8)

a



93.2

32.6



50*



mp, °C

n



15

100

x

440

6

157

c



(4)



(9)

In dichloroacetic acid, 25°C x (from light scattering)

b c

w

T h e p o l y m e r i z a t i o n i n d i o x a n e s o l u t i o n w i t h amines as initiators was v e r y s l o w a n d i n c o m p l e t e (see

Table II).

H o w e v e r , a r a p i d solid-state

p o l y m e r i z a t i o n was o b s e r v e d d u r i n g the a t t e m p t e d s u b l i m a t i o n or r e ­ c r y s t a l l i z a t i o n of the m o n o m e r X I V . Poly(/?-mercapto

acids).

Poly(/3-mercaptopropionic acid)

has b e e n p r e p a r e d this w a y (12)

(XVI)

(see also T a b l e I I I ) : O II

H S C H C H C O O H + CICOEt + 2

2

1 2

-fsCH CH C0j 2

2

3

o

1HSCH CH C0—O—COEt] + 2

NEt

+

NEt H+Cl3

EtOH

+

C0

2

XVI An

alpha-substituted poly(/?-mercaptopropionic

acid)

has

been

110

POLYMERIZATION

Table II.

REACTIONS AND N E W

Poly(thiolactides) Temp., Yield, [rj] /c, °C % ml/g sp

Monomer

Solvent

POLYMERS

Catalyst

mp, Refer°C ence

CH-C /

\ O Dioxane

D29L71

11

n-Hexylamine

25

16

37.7°

133

(11)

"



17.4"

(460

(34)

25

60

40*





(34)

h

Gummy Vsvec/c, 25°C, tetrachloroethane-phenol, c = 0.0014 g/ml Same as c = 0.0044 g/ml Same as ' c = 0.0006 g/ml * Same as * c = 0.0005 g/ml

f

0

h

0

O

HSOC—(O)

COSH

> { - ^ ) — C — S — S - J XXVIII

w i t h a m m o n i u m p e r s u l f a t e - s o d i u m metabisulfite. T h e a d d i t i o n p r o d u c t of d i t h i o l s e b a c i c a c i d a n d 1-hexyne w a s also p r e p a r e d (22), b u t its structure is u n k n o w n . Properties

and

Applications

H i g h - m o l e c u l a r - w e i g h t p o l y ( t h i o l esters) s h o w fiber-forming p r o p e r ­ ties. T h i s section covers t h e a v a i l a b l e d a t a c o n c e r n i n g m e l t i n g p o i n t s , c r y s t a l l i n i t y , s o l u b i l i t y , a n d s t a b i l i t y of this class of esters, a n d compares t h e m w i t h polyesters a n d p o l y a m i d e s . I n f o r m a t i o n a b o u t spectra is also reviewed. M e l t i n g P o i n t s . T h e m e l t i n g points of the various p o l y m e r s are given i n Figures 1 through 4 (more data are i n Tables I - I V a n d V I ) . I n these f o r m u l a s , X m a y b e O , S, o r N H .

-Px(CH ) CO J2

f- X ( C H ) X O C (CH ) CO - J

m

2

6

2

£ - X ( C H ) X O C (CH ) CO -J 2

m

-flX(CH ) XOC 2

m

2

4

—(o)—

c o

-J

m

124

POLYMERIZATION

REACTIONS AND N E W POLYMERS

M e l t i n g points of polyesters a n d p o l y a m i d e s w e r e t a k e n f r o m the Brandrup, J . , Immergut, E . H . , "Polymer Handbook," W i l e y , N e w York, 1967.

T h e d a t a d o not represent t r u e t h e r m o d y n a m i c m e l t i n g points

b u t h a v e b e e n d e t e r m i n e d for p o l y m e r s of u n k n o w n degree of c r y s t a l linity

by

methods

such

as d i f f e r e n t i a l t h e r m a l analysis, p o l a r i z a t i o n

m i c r o s c o p y , c a p i l l a r y t u b e , a n d others. F i v e conclusions c a n b e d r a w n f r o m the d a t a . ( 1 ) T h e m e l t i n g points of p o l y ( t h i o l esters) l i e b e t w e e n those p o l y ­ esters a n d p o l y a m i d e s ( F i g u r e s 1-4). T h e y m e l t 30° to 7 0 ° C h i g h e r t h a n d o the c o r r e s p o n d i n g polyesters, the shape of the curves b e i n g v e r y s i m i l a r . T h i s b e h a v i o r is most l i k e l y because of a decreased flexibility O O of the - C - S - b o n d , c o m p a r e d w i t h the - C - O - b o n d . tions are p o l y ( t h i o g l y c o l i d e ) , w h i c h melts 6 0 ° C b e l o w (Figure 1), and poly(decamethylene l o w e r m e l t i n g p o i n t of colide)

T h e o n l y excep­ poly(glycolide)

dithioladipate) (Figure 3).

poly (thioglycolide)

compared

with

The

poly(gly-

is p r o b a b l y caused b y the h e l i c a l c o n f o r m a t i o n of the latter.

mp

[°c] 400

300

200

100

0

1

2

3

4

5

6

m

Figure 1. Melting points of polymers with the monomer unit^:X(CH ) COh A X = NH; • X = O; • X = S;—m.p. of polyethylene 2 m

8.

BUHRER AND

ELIAS

125

Poly (thiol esters)

T h e l o w m e l t i n g p o i n t of p o l y ( d e c a m e t h y l e n e d i t h i o l a d i p a t e ) m a y be c a u s e d b y the l o w m o l e c u l a r w e i g h t ([iy] cnci3 25

(2)

10 g / m l ) .

=

T h e m e l t i n g points of a l i p h a t i c p o l y ( t h i o l esters)

(Figures 2

a n d 3 ) l i e b e l o w that of p o l y e t h y l e n e ( 1 4 3 ° C ) a n d t e n d to increase w i t h

mp

(°c)

-m 6

8

10

Figure 2. Melting points of polymers with the monomer unit -frX(CH ) XOC(CHt) CO i7 A X = NH; MX — O; • X = S;—m.p. of polyethylene t

e

m

:

i n c r e a s i n g n u m b e r of m e t h y l e n e groups p e r m o n o m e r u n i t . t r u e for some p o l y ( t h i o l a c t o n e s ) ; see F i g u r e 1.

T h i s is not

(3) T h e i n t r o d u c t i o n of a l i c y c l i c parts i n t o the p o l y ( t h i o l ester) c h a i n increases c o n f o r m a t i o n a l r i g i d i t y a n d , c o n s e q u e n t l y , the m e l t i n g p o i n t . T h i s c a n b e seen f r o m the m e l t i n g points of p o l y ( h e x a m e t h y l e n e S(CH ) SOC(CH ) CO -J 2

6

2

4

XXIX 113°-115°C

£s(CH ) SOC—(F)—COJ 2

6

£ S C H

2

— C H

2

S 0 C - ^ H y - C 0 j

XXX

XXXI

188-215°C

302-310°C

126

POLYMERIZATION

REACTIONS AND N E W POLYMERS

d i t h i o l a d i p a t e ) ( X X I X ) , p o l y ( h e x a m e t h y l e n e dithiol-£rans-cyclohexane-l, 4-dicarboxylate)

(XXX),

and

p o l y (l,4-dimethylene-£rans-cyclohexane

dithiol-£rans-cyclohexane-l,4-dicarboxylate) ( X X X I ) .

mp (°C)

300

200

100

6

8

10

Figure 3. Melting points of polymers with the monomer unit-tXtCHdnXOCfCHthCOl? AX = NH; • X = O; • X = S;—m.p. of polyethylene I n X X X I , w h e n the r r a n s - d i m e r c a p t a n is r e p l a c e d b y a 70:30 m i x t u r e of trans a n d cis isomers, the m e l t i n g p o i n t is l o w e r e d to (4)

P o l y ( t h i o l esters)

with

240°-255°C.

a t e r e p h t h a l i c m o i e t y i n the c h a i n

( F i g u r e 4 ) h a v e m e l t i n g points h i g h e r t h a n p o l y e t h y l e n e .

These melt­

i n g points decrease w i t h i n c r e a s i n g n u m b e r of m e t h y l e n e groups i n the monomer unit.

P o l y ( t h i o l esters) w i t h t e r e p h t h a l i c units a l w a y s m e l t at

h i g h e r temperatures t h a n do the i s o p h t h a l i c isomers ( T a b l e V I ) . (5)

A l l - a r o m a t i c p o l y ( t h i o l esters), s u c h as

poly(4,4'-biphenylene

d i t h i o l t e r e p h t h a l a t e ) ( X X X I I ) h a v e v e r y h i g h m e l t i n g points •SOC

^5>-

c o

}.

(34).

XXXII >460°C

F r o m these results, it is e v i d e n t that a n u m b e r of a r o m a t i c o r a l i c y c l i c p o l y ( t h i o l esters) h a v e m e l t i n g points s u i t a b l e for m a k i n g fibers. V e r y few Table I V ) .

glass-transition temperatures h a v e b e e n p u b l i s h e d

(see

8.

Poly(thiol

BUHRER A N D ELIAS

Crystallinity.

127

esters)

M o s t p o l y ( t h i o l esters) are q u i t e c r y s t a l l i n e .

tallinity can be lowered by using nonlinear monomers—for H S C H ( C H ) C H - ( C H ) S H (31)— 2

2

5

2

x-ray p a t t e r n of

4

or b y c o p o l y m e r i z a t i o n ( 2 9 ) .

a uniaxially oriented poly(e-thiocaprolactone)

indicates that this p o l y m e r adopts

Crys-

example, The (17)

a p l a n a r structure w i t h

extended

T h e sparse d a t a a v a i l a b l e s h o w no m a r k e d

difference

chains. Solubility.

b e t w e e n polyesters a n d p o l y ( t h i o l esters) i n t h e i r b e h a v i o r t o w a r d or­ g a n i c solvents.

G o o d solvents for m a n y p o l y ( t h i o l esters)

are c h l o r i ­

n a t e d h y d r o c a r b o n s , p h e n o l , a n d o r g a n i c acids s u c h as d i c h l o r o a c e t i c acid.

W i t h the e x c e p t i o n of p o l y ( t h i o g l y c o l i d e )

tide)

(11),

and poly(thiolac-

the p r o b l e m of d e g r a d a t i o n b y o r g a n i c solvent a c t i o n was

not s t u d i e d s y s t e m a t i c a l l y . coesters)

(4)

S o l u b i l i t y is i n c r e a s e d i n p o l y ( t h i o l ester

(34).

Stability.

O n l y few

studies of the s t a b i l i t y of p o l y ( t h i o l esters)

mp

PC)

100-

0-J



1

2

4

1

1

6

1

1

8

r*m

1

10

Figure 4. Melting points of polymers with the monomer unit^X(CH ) XOC —Jgfy-COlr A X = NH; • X = O; • X = S;—m.p. of polyethylene 2 m

128

POLYMERIZATION

against c h e m i c a l agents h a v e b e e n m a d e .

REACTIONS AND N E W

POLYMERS

It appears t h a t the esters are

v e r y stable against h y d r o l y s i s i n w a t e r or acids b u t r e a d i l y react w i t h aqueous a l k a l i ( 2 8 ) .

A m i n o l y s i s w i t h p r i m a r y a n d secondary amines is

v e r y fast a n d y i e l d s the l o w - m o l e c u l a r - w e i g h t

amides.

Poly (thiogly­

c o l i d e ) is also d e g r a d e d b y d i m e t h y l f o r m a m i d e a n d t e r t i a r y amines

(4).

A p p l y i n g results f r o m l o w - m o l e c u l a r - w e i g h t thiolesters a n d esters to the c o r r e s p o n d i n g p o l y m e r s s h o u l d g i v e s l i g h t l y s l o w e r a c i d h y d r o l y s i s , e q u a l l y fast a l k a l i n e h y d r o l y s i s , a n d a m u c h faster a m i n o l y s i s of p o l y ( t h i o l esters) c o m p a r e d w i t h polyesters (24, 35,

36).

N o d a t a are a v a i l a b l e c o n c e r n i n g the t h e r m a l s t a b i l i t y of p o l y ( t h i o l esters). Infrared Spectra. 17,

show

28)

the

T h e i n f r a r e d spectra of p o l y ( t h i o l esters) (4, characteristic

- C -

stretch at

1675-1700

11,

cm" . 1

O B a n d s at 900-1000 c m "

1

are a t t r i b u t e d to the - C - S - stretch v i b r a t i o n , O

a n d those at 1100-1200 c m U V and O R D Spectra.

1

to the - C - C - stretch v i b r a t i o n (37). T h e U V spectra of t h i o l esters h a v e a peak

at about 230 n m ( l o g e 7T ->

type.

7T*

esters)

(17

3.6)

a s c r i b e d to a t r a n s i t i o n of

(38)

the

Similar absorption maxima were found i n poly (thiol

a n d 21).

I n a d d i t i o n , i n t h e U V s p e c t r u m of

poly(thio-

l a c t i d e ) ( X V ) , a s h o u l d e r at 279 n m ( l o g e = 2.5 i n C H C 1 ) (11) 3

may

b e t h e result of a n — » T T * t y p e a b s o r p t i o n . O R D a n d C D measurements of o p t i c a l l y a c t i v e thiolacetates poly(thiolactides)

(XV)

( J J ) , and poly(c-thiolactones)

(21)

(39),

show two

C o t t o n effects, one c e n t e r e d a r o u n d 2 3 0 - 2 4 0 n m a n d t h e other at about 280 n m . those

T h e O R D spectra of the p o l y m e r s are n e a r l y i d e n t i c a l w i t h

of l o w - m o l e c u l a r - w e i g h t

model

compounds,

thus i n d i c a t i n g the

absence of a h e l i c a l c o n f o r m a t i o n of the p o l y m e r s i n s o l u t i o n . Applications.

P o l y ( t h i o l esters) c a n be g o o d s t a r t i n g materials for

p r o d u c i n g fibers w h e n the esters h a v e an i n h e r e n t viscosity {77} > 0 . 3 or > 0 . 7 5 g / d l (16).

(27)

i n v o l v i n g a three- to

T h e y c a n b e c o l d - d r a w n to o r i e n t e d

fivefold

g/dl fibers

or even h i g h e r increase i n l e n g t h .

Poly(a,«-dimethyl-^-thiopropiolactone) has b e e n m e l t - s p u n at 1 8 5 ° C to

give

a

fiber

w h i c h , after d r a w i n g , h a d a t e n a c i t y of

1.4

g/den.

( p o l y e t h y l e n e terephthalate, 4 - 7 g / d e n . ) a n d a n i n i t i a l m o d u l u s of 12 g/den. 80%.

( 3 0 - 1 3 0 g / d e n . ) (16).

T e n s i l e recovery at 10% e l o n g a t i o n w a s

N o i n f o r m a t i o n is a v a i l a b l e a b o u t p o l y ( t h i o l esters)

w i t h higher

m e l t i n g points, s u c h as p o l y ( h e x a m e t h y l e n e d i t h i o l t e r e p h t h a l a t e ) . F i l m s c a n b e cast f r o m p o l y ( t h i o l esters) w i t h i n h e r e n t viscosities {77} >

0.5 g / d l (16),

Moderately

b u t n o d a t a a b o u t their properties are a v a i l a b l e .

c r y s t a l l i n e p o l y ( t h i o l esters)

may

prove

valuable in

8.

BUHRER A N D ELIAS

129

Poly (thiol esters)

p r o d u c i n g m o l d i n g plastics. T h e fast r e a c t i o n b e t w e e n p o l y ( t h i o l esters) a n d amines has b e e n u s e d to increase t h e s u l f u r content o f c a s e i n - a n d l y s i n e - c o n t a i n i n g p o l y ­ peptides

(40).

Conclusions T h e m a i n differences b e t w e e n p o l y ( t h i o l esters) o n t h e o n e h a n d a n d p o l y a m i d e s a n d polyesters o n t h e other m a y b e s u m m a r i z e d this way: (a)

P o l y ( t h i o l ester) synthesis is m o r e c o m p l i c a t e d a n d expensive

since reactions u s i n g d i a c i d s d i r e c t l y as m o n o m e r s a r e n o t p o s s i b l e ; i t is necessary t o use either t h e a c i d chlorides o r t h e p h e n o l esters. (b)

D i m e r c a p t a n s a r e m o r e expensive t h a n glycols o r d i a m i n e s .

( c ) T h e m a i n a d v a n t a g e o f p o l y ( t h i o l esters) over polyesters is t h e formers higher melting point. H o w e v e r , p o l y m e r s p r e p a r e d f r o m thiolactones m e l t a t a t e m p e r a ­ ture t o o l o w f o r fiber u s e . C o n s i d e r i n g these p o i n t s , i t is u n d e r s t a n d a b l e w h y p o l y ( t h i o l esters) h a v e n e v e r a t t r a c t e d c o m m e r c i a l interest.

F u r t h e r m o r e , most p o l y ( t h i o l

esters) seem to b e u n s t a b l e against alkalis.

T h e odors o f t h e b y - p r o d u c t s

of h y d r o l y s i s a n d t h e r m a l d e g r a d a t i o n are u n d e s i r a b l e too.

I t is, n e v e r ­

theless, possible that, i n some cases as yet u n k n o w n , they m a y offer s o m e advantages over other p o l y m e r s .

Literature

Cited

1. Goethals, E . J., J. Macromol. Sci. (Reviews) (1968) C-2, 73. 2. Zillberman, E . N . , Teplyakov, N . M . , Vysokomolekul. Soed. (1960) 2, 133. 3. Coffman, D . D . , McGrew, F . C., U.S. Patent 2,317,155 (1943). 4. Elias, H.-G., Bührer, H . G . , Makromol. Chem. (1970) 140, 21. 5. Schöberl, A., Krumey, F . , Ber. Dtsch. Chem. Ges. (1944) 77, 371. 6. Schöberl, A., Wiehler, G., Angew. Chem. (1954) 60, 273. 7. Schöberl, A., Wiehler, G., Liebigs Ann. Chem. (1955) 595, 101. 8. Schöberl, A., Makromol. Chem. (1960) 37, 64. 9. Greber, G . (1970) private communication. 10. Frehsen, H . , Ph.D. thesis, Hannover Technical University (West Ger­ many), 1960. 11. Bührer, H . G . , Elias H.-G., Makromol. Chem. (1970) 140, 41. 12. Knunyants, I. L . , Kuleshova, N . D . , Lin'kova, M . G . , Izv. Akad. Nauk SSSR, Ser. Khim. (1965) 1081; C. A. (1965) 63, 8192 g. 13. Fleš, D . , Markovac-Prpic, A., Tomasic, V . , J. Amer. Chem. Soc. (1958) 80, 4654. 14. Fles, D . and Tomasic, V., J. Polym. Sci. (1968) B-6, 809. 15. Knunyants, I. L . , Pervova, E . Ya., Lin'kova, M . G., Kil'disheva, O. V . , Khim. Nauka i Prom. (1958) 3, 278. C . A. 52, 19929a (1958). 16. Sweeny, W . , Casey D .J.,U . S . Patent 3,367,921 (1968).

130

17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40.

POLYMERIZATION REACTIONS AND N E W POLYMERS

Overberger, C. G., Weise, J. K., J. Amer. Chem. Soc. (1968) 90, 3533. Korte, F., Glet, W., J. Polym. Sci. (1966) B-4, 685. Korte, F . , Christoph, H . , Ber. Dtsch. Chem. Ges. (1961) 94, 1966. Overberger, C. G., Weise, J. K., Polym. Sci. (1964) B-2, 329. Overberger, C . G . , Weise, J. K., J. Amer. Chem. Soc. (1968) 90, 3538. Marvel, C. S., Kraiman, E . A., J. Org. Chem. (1953) 18, 1664. Houben-Weyl, "Methoden der Organischen Chemie," Vol. 9, p. 745, G . Thieme, Stuttgart, West Germany (1955). Janssen, M . J., in S. Patai, Ed., "The Chemistry of Carboxylic Acids and Esters," Interscience, New York (1969). Reid, E . E . , "Organic Chemistry of Bivalent Sulfur," Vol. 4, p. 24, Chemical Publishing, New York (1962). Patrick, J. C., Ferguson, H . R., U.S. Patent 2,563,133 (1951). Murphey, W. A., U.S. Patent 2,870,126 (1959). Marvel, C. S., Kotch, A., J. Amer. Chem. Soc. (1951) 73, 1100. Flory, P. J., U.S. Patent 2,510,567 (1950). Marvel, C. S., Kraiman, E . A., J. Org. Chem. (1953) 18, 707. Martin, J. C., Gilkey, R., U.S. Patent 3,254,061 (1966). Stimpson, J. W., British Patent 853,730 (1960). British Patent 783,546 (1957). Korshak, V. V . , Vinogradova, S. V., Lebedeva, A. S., U.S.S.R. Patent 203,902 (1967). Noda, L . H . , Kuby, St. A., Lardy, H . A., J. Amer. Chem. Soc. (1953) 75, 913. Schwyzer, R., Helv. Chim. Acta (1953) 36, 414. Nyquist, R. A., Potts, W. J., Spectrochim. Acta (1959) 7, 514. Sjöberg, B., Z. Physik. Chem. (1942) 52B, 209. Kuriyama, K., Komeno, T . , Takeda, K., Ann. Rep. Shionogi Res. Lab. (1967) 17, 72. Schöberl, A., Angew. Chem. (1948) A-60, 7.

R E C E I V E D February 2, 1972.