Preparation of Nanoporous Carbon Particles and Their Cryogenic

Jan 16, 2008 - The porosity and pore sizes for these carbon particles depend on the type and amount of silica template precursor added to the sucrose ...
0 downloads 0 Views 636KB Size
1516

J. Phys. Chem. C 2008, 112, 1516-1523

Preparation of Nanoporous Carbon Particles and Their Cryogenic Hydrogen Storage Capacities Qingyuan Hu,†,‡ Yunfeng Lu,‡,§ and Gregory P. Meisner*,† General Motors R&D Center, Warren, Michigan 48090, Department of Chemical and Biomolecular Engineering, Tulane UniVersity, New Orleans, Louisiana 70118, and Department of Chemical and Biomolecular Engineering, UniVersity of California at Los Angeles, Los Angeles, California 90095 ReceiVed: August 9, 2007; In Final Form: October 26, 2007

Spherical nanoporous carbon particles were synthesized from carbon precursor solutions of sucrose with either silica sols or colloidal silica particles, or both, in a direct one-step aerosol-assisted process followed by carbonization and then removal of the silica template. The resulting carbon particles show very high porosity with narrow pore size distributions, surface areas up to 2000 m2/g, and pore volumes up to 4.0 cm3/g. Three different kinds of spherical nanoporous carbon particles were prepared: (1) unimodal nanoporous particles using tetraethyl orthosilicate (TEOS) as the only silica source for the template, (2) bimodal nanoporous particles using both TEOS and colloidal silica nanoparticles as a composite template, and (3) foamlike highly porous particles using only colloidal silica for the template. The porosity and pore sizes for these carbon particles depend on the type and amount of silica template precursor added to the sucrose precursor solutions. These carbon particles were characterized by transmission electron microscopy, field emission scanning electron microscopy, and nitrogen sorption surface area measurements, and we measured hydrogen adsorption at various temperatures and pressures. Hydrogen sorption of >4.0 wt % at 77 K and >20 bar was found for the unimodal nanoporous carbon particles.

Introduction Automotive applications of hydrogen as an alternative to conventional fuels require a reversible hydrogen storage system with large gravimetric and volumetric hydrogen densities plus fast and reversible sorption at practical temperatures and pressures.1 Many candidates for storing hydrogen are under investigation, but none are ideal solutions. The central part of hydrogen storage research, therefore, involves physics and chemistry research focused on the discovery and study of promising new materials that contain or otherwise interact with hydrogen.2-4 One class of such materials exhibits physical storage (physisorption) of molecular hydrogen and has the advantages of fast kinetics, complete reversibility, and no structural changes to the storage material. Because physisorption interaction energies are low, it requires low temperatures (20 bar, whereas at room temperature, adsorption can only reach 0.25 wt % at 50 bar. References and Notes (1) Pinkerton, F. E.; Wicke, B. G. Ind. Phys. 2004, 10, 20. (2) Pinkerton, F. E.; Meisner, G. P.; Meyer, M. S.; Balogh, M. P.; Kundrat, M. D. J. Phys. Chem. B 2005, 109, 6. (3) Filinchuk, Y. E.; Yvon, K.; Meisner, G. P.; Pinkerton, F. E.; Balogh, M. P. Inorg. Chem. 2006, 45, 1433. (4) Meisner, G. P.; Scullin, M. L.; Pinkerton, F. E.; Balogh, M. P.; Meyer, M. S. J. Phys. Chem. B 2006, 110, 4186. (5) Pinkerton, F. E.; Wicke, B. G.; Olk, C. H.; Tibbetts, G. G.; Meisner, G. P.; Meyer, M. S.; Herbst, J. F. J. Phys. Chem. B 2000, 104, 9460. (6) Yang, R. T. Carbon 2000, 38, 623. (7) Tibbetts, G. G.; Meisner, G. P.; Olk, C. H. Carbon 2001, 39, 2291. (8) Hirscher, M.; Becher, M.; Haluska, M.; Dettlaff-Weglikowska, U.; Quintel, A.; Duesberg, G. S.; Choi, Y.-M.; Downes, P.; Hulman, M.; Roth, S.; Stepanek, I.; Bernier, P. Appl. Phys. A 2001, 72, 129. (9) Meisner, G. P. Proceedings of the American Nuclear Society, International Winter Meeting, New Orleans, LA, November 16-20, 2003. (10) Meisner, G. P. Am. Chem. Soc., DiV. Fuel Chem. 2006, 51, 468. (11) Hartmann, M.; Chandrasekar, G.; Vinu, A. Chem. Mater. 2005, 17, 829. (12) Choi, M.; Ryoo, R. Nat. Mater. 2003, 2, 473. (13) Ahn, W. S.; Min, K. I.; Chung, Y. M.; Rhee, H.-K.; Joo, S. H.; Ryoo, R. Stud. Surf. Sci. Catal. 2001, 135, 4710. (14) Saliger, R.; Fischer, U.; Herta, C.; Fricke, J. J. Non-Cryst. Solids 1998, 225, 81. (15) Tamai, H.; Kouzu, M.; Morita, M.; Yasuda, H. Electrochem. SolidState Lett. 2003, 6, A214. (16) Pang, J.; Hampsey, J. E.; Wu, Z.; Hu, Q.; Lu, Y. Appl. Phys. Lett. 2004, 85, 4887. (17) Hu, Z.; Srinivasan, M. P.; Ni, Y. AdV. Mater. 2000, 12, 62. (18) Molina-sabio, M.; Rodriguez-Reinoso, F. Colloids Surf., A 2004, 241, 15. (19) Kruk, M.; Jaroniec, M.; Ryoo, R.; Joo, S. H. J. Phys. Chem. B 2000, 104, 7960. (20) Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Nature 2001, 412, 169. (21) Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M. AdV. Mater. 2001, 13, 677. (22) Ryoo, R.; Joo, S. H.; Jun, S. J. Phys. Chem. B 1999, 103, 7743. (23) Yoon, S. B.; Kim, J. Y.; Yu, J.-S. Chem. Commun. 2001, 559. (24) Wu, C.-G.; Bein, T. Science 1994, 266, 1013. (25) Lee, J.; Yoon, S.; Hyeon, T.; Oh, S. M.; Kim, K. B. Chem. Commun. 1999, 2177. (26) Yang, C. M.; Weidenthaler, C.; Spliethoff, B.; Mayanna, M.; Schuth, F. Chem. Mater. 2005, 17, 355. (27) Lu, A.; Kiefer; A.; Schmidt, W.; Schuth, F. Chem. Mater. 2004, 16, 100. (28) Kang, S.; Yu, J. S.; Kruk, M.; Jaroniec, M. Chem. Commun. 2002, 1670. (29) Ma, Z.; Kyotani, T.; Tomita, A. Chem. Commun. 2000, 2365. (30) Han, B.-H.; Zhou, W.; Sayari, A. J. Am. Chem. Soc. 2003, 125, 3444. (31) Han, S.; Sohn, K.; Hyeon, T. Chem. Mater. 2000, 12, 3337. (32) Han, S.; Kim, M.; Hyeon, T. Carbon 2003, 41, 1525. (33) Kawashima, D.; Aihara, T.; Kobayashi, Y.; Kyotani, T.; Tomita, A. Chem. Mater. 2000, 12, 3397. (34) Pang, J.; Hu, Q.; Wu, Z.; Hampsey, J. E.; He, J.; Lu, Y. Microporous Mesoporous Mater. 2004, 74, 73. (35) Hu, Q.; Pang, J.; Jiang, N.; Hampsey, J. E.; Lu, Y. Microporous Mesoporous Mater. 2005, 81, 149.

J. Phys. Chem. C, Vol. 112, No. 5, 2008 1523 (36) Gavalda, S.; Gubbins, K. E.; Hanzawa, Y.; Kaneko, K.; Thomson, K. T. Langmuir 2002, 18, 2141. (37) Tamon, H.; Ishizaka, H.; Mikami, M.; Okazaki, M. Carbon 1997, 35, 791. (38) Ozaki, J.; Endo, N.; Ohizumi, W.; Igarashi, K.; Nakahara, M.; Oya, A.; Yoshida, S.; Iizuka, T. Carbon 1997, 35, 1031. (39) Gilbert, M. T.; Knox, J. H.; Kaur, B. Chromatographia 1982, 16, 138. (40) Takagi, H.; Hatori, H.; Soneda, Y.; Yoshizawa, N.; Yamada, Y. Mater. Sci. Eng., B 2004, B108, 143. (41) Yu, J. S.; Kang, S.; Yoon, S. B.; Chai, G. J. Am. Chem. Soc. 2002, 124, 9382. (42) Yu, C.; Fan, J.; Tian, B.; Zhao, D.; Stucky, G. D. AdV. Mater. 2002, 14, 1742. (43) Yu, C.; Fan, J.; Tian, B.; Zhang, F.; Stucky, G. D.; Zhao, D. Stud. Surf. Sci. Catal. 2003, 146, 45. (44) Kim, M.; Yoon, S. B.; Sohn, K.; Kim, J. Y.; Shin, C. H.; Hyeon, T.; Yu, J. S. Microporous Mesoporous Mater. 2003, 63, 1. (45) Lee, S. I.; Yoon, S. H.; Park, C. W.; Korai, Y.; Mochida, I. Carbon 2003, 41, 1652. (46) Hampsey, J. E.; Hu, Q.; Wu, Z.; Pang, J.; Rice, L.; Lu, Y. Carbon 2005, 43, 2977. (47) Lu, Y.; Fan, H.; Stump, A.; Ward, T. L.; Rieker, T.; Brinker, C. J. Nature 1999, 398, 223. (48) Lu, Y.; McCaughey, B. F.; Wang, D.; Hampsey, J. E.; Doke, N.; Yang, Z.; Brinker, C. J. AdV. Mater. 2003, 15, 1733. (49) Buranda, T.; Huang, J.; Ramarao, G. V.; Ista, L. K.; Larson, R. S.; Ward, T. L.; Sklar, L. A.; Lopez, G. P. Langmuir 2003, 19, 1654. (50) Hampsey, J. E.; Arsenault, S.; Hu, Q.; Lu, Y. Chem. Mater. 2005, 17, 2475. (51) Rao, G. V. R.; Lopez, G. P.; Bravo, J.; Pham, H.; Datye, A. K.; Xu, H.; Ward, T. L. AdV. Mater. 2002, 14, 1301. (52) Hampsey, J. E.; Hu, Q.; Rice, L.; Pang, J.; Wu, Z.; Lu, Y. Chem. Commun. 2005, 3606. (53) Pang, J.; John, V. T.; Loy, D. A.; Yang, Z.; Lu, Y. AdV. Mater. 2005, 17, 704. (54) Stro¨bel, B.; Jo¨rissen, L.; Schliermann, T.; Trapp, V.; Schu¨tz, W.; Bohmhammel, K.; Wolf, G.; Garche, J. J. Power Sources 1999, 84, 221. (55) Nijkamp, M. G.; Raaymakers, J. E. M. J.; van Dillen, A. J.; de Jong, K. P. Appl. Phys. A 2001, 72, 619. (56) Panella, B.; Hirscher, M.; Roth, S. Carbon 2005, 43, 2209. (57) Benard, P.; Chahine, R. Scr. Mater. 2007, 56 (10), 803. (58) Zu¨ttel, A.; Orimo, S. MRS Bull. 2002, 27, 705. (59) Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309. (60) Barrett, E. P.; Joyner, L. G.; Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373. (61) Ravikovitch, P. I.; Haller, G. L.; Neimark, A. V. AdV. Colloid Interface Sci. 1998, 77, 203. (62) Dinca, M.; Dailly, A.; Liu, Y.; Brown, C. M.; Neumann, D. A.; Long, J. R. J. Am. Chem. Soc. 2006, 128, 16876. (63) Dailly, A.; Meisner, G. P.; Jorgensen, S. W. General Motors R&D Center Report # CL-06/148/MPL/CL-06/58/CES, 2006, unpublished. (64) Lide, D. R. CRC Handbook of Chemistry and Physics; CRC Press, Inc.: Boca Raton, FL, 1995. (65) Xia, K.; Gao, Q.; Wu, C.; Song, S.; Ruan, M. Carbon 2007, 45, 1989. (66) Moxier-Mandoki, N.; Dentzer, J.; Piquero, T.; Saadallah, S.; David, P.; Vix-Guterl, C. Carbon 2004, 42, 2735. (67) Jorda´-Beneyto, M.; Sua´rez-Garcı´a, F.; Lozano-Castello´, D.; CazorlaAmoro´s, D.; Linares-Solano, A. Carbon 2007, 45, 293. (68) Texier-Mandoki, N.; Dentzer, J.; Piquero, T.; Saadallah, S.; David, P.; Vix-Guterl, C. Carbon 2004, 42, 2744. (69) Panella, B.; Hirscher, M.; Roth, S. Carbon 2005, 43, 2209. (70) Yang, Z.; Xia, Y.; Sun, X.; Mokaya, R. J. Phys. Chem. B 2006, 110, 18424. (71) Terres, E.; Panella, B.; Hayashi, T.; Kim, Y. A.; Endo, M.; Dominguez, J. M.; Hirscher, M.; Terrones, H.; Terrones, M. Chem. Phys. Lett. 2005, 403, 363.