Preservation of Enzymes by Conjugation with ... - ACS Publications

Jul 23, 2009 - During frozen storage, deteriorations due to putrefaction and autolysis are decreased and the foods are satisfactorily preserved from t...
0 downloads 0 Views 2MB Size
6 Preservation of Enzymes by Conjugation with Dextran J. JOHN MARSHALL Department of Biochemistry, School of Medicine, P.O. Box 520875, University of Miami, Miami, FL 33152

Many enzymes are glycoprotein i n nature and there i s evidence to suggest that the carbohydrate in such conjugated enzymes exerts a s t a b i l i z i n g effect on what would otherwise be less stable proteins (1). The mechanism of s t a b i l i z a t i o n by carbohydrate i s not understood and it may well be that the effect of carbohydrate on stability does not represent its primary function in glycoprotein enzymes. However, the observation that carbohydrate-containing enzymes are often more stable than carbohydrate-free enzymes led the author and his colleagues to consider the p o s s i b i l i t y of s t a b i l i z i n g enzymes by attachment of carbohydrate to them. By this approach it was hoped to obtain modified enzymes with improved storage stability, superior a c t i v i t y under adverse conditions of use, resistance to the action of naturally-occurring enzyme i n h i b i t o r s , and otherwise more favorable characteristics. Such tailor-made enzymes would be expected to be of value i n foodstuff processing and for industrial enzyme-catalyzed conversion processes, as well as having applications as analytical and diagnostic reagents with extended shelf l i v e s . Enzymes modified by attachment o f carbohydrate might c o n c e i v a b l y be o f g r e a t e r usefulness than the corresponding unmodified enzymes f o r medicinal p u r p o s e s , i n c l u d i n g enzyme therapy o f metabolic d i s o r d e r s . In t h i s a r t i c l e the p r e p a r a t i o n o f one c l a s s o f carbohydrateenzyme conjugates, prepared by attachment o f dextran to enzymes, i s described i n some d e t a i l and the p r o p e r t i e s o f enzymes modified i n t h i s way are d i s c u s s e d . The molecular basis o f enzyme s t a b i l i ­ z a t i o n by c o u p l i n g w i t h dextran i s a l s o c o n s i d e r e d . Synthesis

of Soluble

Dextran-Enzyme

Conjugates

There are many methods f o r c o v a l e n t l y l i n k i n g carbohydrate to enzymes, most o f these having been developed f o r i m m o b i l i z a t i o n of enzymes on i n s o l u b l e p o l y s a c c h a r i d e supports (2.). For our work we 0-8412-0543-4/80/47-123-125$05.00/0 © 1980 American C h e m i c a l Society

126

C H E M I C A L DETERIORATION OF PROTEINS

s e l e c t e d one o f the most w i d e l y used c o u p l i n g methods, t h a t i n v o l v i n g i n t e r a c t i o n o f enzymes w i t h cyanogen b r o m i d e - a c t i v a t e d polysaccharides ( 3 ) , and adapted t h i s procedure to make i t s u i t a b l e f o r the s y n t h e s i s o f s o l u b l e dextran-enzyme conjugates. I n i t i a l e f f o r t s to a c t i v a t e s o l u b l e dextran w i t h cyanogen bromide under c o n d i t i o n s s i m i l a r to those used i n the case o f i n s o l u b l e polysaccharides ( c e l l u l o s e , agarose, c r o s s - l i n k e d dextran) p r i o r to enzyme i m m o b i l i z a t i o n , r e s u l t e d i n r a p i d and i r r e v e r s i b l e p r e c i p i t a t i o n o f the p o l y s a c c h a r i d e , presumably as a r e s u l t o f the c r o s s - l i n k i n g s i d e r e a c t i o n s t h a t are known to take place during cyanogen bromide a c t i v a t i o n (i). I t was, t h e r e f o r e , necessary to develop s u i t a b l e c o n d i t i o n s f o r production o f s o l u b l e a c t i v a t e d d e x t r a n . The f a c t o r s t h a t are most important i n determining the s o l u b i l i t y behavior during a c t i v a t i o n are the concentrations o f dextran and cyanogen bromide used i n the a c t i v a t i o n r e a c t i o n , and the molecular weight o f the dextran being a c t i v a t e d ( 5 ) . In p a r t i c u l a r , the amount o f cyanogen bromide used must be s u b s t a n t i a l l y lower than t h a t used f o r a c t i v a t i o n o f i n s o l u b l e p o l y s a c c h a r i d e s ; amounts o f cyanogen bromide g r e a t e r than 0.5 gram per gram o f p o l y s a c c h a r i d e almost i n v a r i a b l y r e s u l t i n p r e c i p i t a t i o n . An a p p r o p r i a t e c o n c e n t r a t i o n o f p o l y s a c c h a r i d e i s about 10 mg/ml. The o b s e r v a t i o n t h a t the s u s c e p t i b i l i t y to p r e c i p i t a t i o n depends on the molecular weight of the dextran being a c t i v a t e d i s not s u r p r i s i n g ; w h i l e dextran o f molecular weight 40,000 remains s o l u b l e on a c t i v a t i o n w i t h cyanogen bromide used a t a c o n c e n t r a t i o n o f 0.5 gram per gram o f p o l y s a c c h a r i d e , a dextran o f molecular weight 2,000,000 p r e c i p i ­ t a t e s under the same c o n d i t i o n s . Less than 0.4 gram o f cyanogen bromide per gram o f p o l y s a c c h a r i d e must be used f o r a c t i v a t i o n i n the case o f the l a t t e r p o l y s a c c h a r i d e . A c c o r d i n g l y , we have r o u t i n e l y used the lower m o l e c u l a r weight dextran and a cyanogen bromide c o n c e n t r a t i o n o f about 0.5 gram per gram o f p o l y s a c c h a r i d e . A conjugate o f Bacillus amyloliquefaeiens α-amylase w i t h dextran was s u c c e s s f u l l y prepared by d i r e c t a d d i t i o n o f the α-amylase to a s o l u t i o n o f a c t i v a t e d dextran ( 6 ) . I n t e r a c t i o n o f the enzyme w i t h a c t i v a t e d dextran under c o n d i t i o n s s i m i l a r to those used f o r s y n t h e s i s o f i n s o l u b l e polysaccharide-enzyme conjugates (pH 9 . 0 , 4°C f o r 22 hours) r e s u l t e d i n good r e t e n t i o n o f enzymic a c t i v i t y and good c o u p l i n g . However attempts to prepare dextran conjugates o f other enzymes (e.g. t r y p s i n ) i n the same way r e s u l t e d i n r a p i d and e x t e n s i v e l o s s o f enzymic a c t i v i t y during c o n j u g a t i o n . S i m i l a r i n a c t i v a t i o n took place when the enzymes were added to a s o l u t i o n o f a c t i v a t e d dextran to which excess g l y c i n e had been added to block a l l imidocarbonate f u n c t i o n a l groupings i n the a c t i v a t e d p o l y s a c c h a r i d e . This o b s e r v a t i o n i n d i c a t e d t h a t enzyme i n a c t i v a t i o n was caused by by-products o f the a c t i v a t i o n r e a c t i o n , r a t h e r than by c o u p l i n g per se, and pointed to the n e c e s s i t y o f removing such by-products p r i o r to c o u p l i n g . When c o u p l i n g enzymes to i n s o l u b l e p o l y s a c c h a r i d e s , removal o f by-products o f the a c t i v a t i o n r e a c t i o n

6.

MARSHALL

Preservation of Enzymes

127

can be achieved simply by washing the i n s o l u b l e a c t i v a t e d c a r r i e r , but t h i s approach i s o b v i o u s l y u n s u i t a b l e when the a c t i v a t e d p o l y s a c c h a r i d e i s s o l u b l e . The a l t e r n a t i v e methods i n c l u d e p r e c i p i t a t i o n o f the a c t i v a t e d p o l y s a c c h a r i d e w i t h organic s o l v e n t , gel f i l t r a t i o n (although t h i s manipulation might r e s u l t i n losses of a c t i v a t e d p o l y s a c c h a r i d e by r e a c t i o n w i t h the gel m a t r i x ) o r , p r e f e r a b l y , a s h o r t p e r i o d o f d i a l y s i s . While the p u r i f i c a t i o n step i s not always necessary a s , f o r example, i n the case o f Bacillus amyloliquefaciens α-amylase mentioned above, d i a l y s i s o f the a c t i v a t e d polysaccharide a g a i n s t water f o r 2 hours i s r o u t i n e l y performed before a d d i t i o n o f the enzyme to be coupled. S e l e c t i o n o f c o n d i t i o n s f o r the c o u p l i n g r e a c t i o n has r e p r e ­ sented one o f the g r e a t e s t problems to be overcome. I t i s impossible to g e n e r a l i z e regarding the optimum c o u p l i n g c o n d i t i o n s . I n i t i a l l y , the c o n d i t i o n s s e l e c t e d were s i m i l a r to those g e n e r a l l y employed f o r l i n k i n g enzymes to i n s o l u b l e p o l y s a c c h a r i d e s , namely pH 9 . 0 , 4 C f o r 22 hours, and using these c o n d i t i o n s (hereafter r e f e r r e d to as standard c o n d i t i o n s ) s a t i s f a c t o r y r e s u l t s were obtained with s e v e r a l o f the enzymes we attempted to conjugate. However, a number o f enzymes, i n c l u d i n g G-amylase, glucoamylase and c a t a l a s e , f a i l e d to conjugate s a t i s f a c t o r i l y under such c o n d i t i o n s , e i t h e r g i v i n g unacceptably low r e t e n t i o n o f a c t i v i t y , or not being s u f f i c i e n t l y w e l l coupled. The c o n d i t i o n s f o r conjugating enzymes w i t h cyanogen bromide-activated polysaccharides were therefore i n v e s t i g a t e d i n d e t a i l , w i t h p a r t i c u l a r a t t e n t i o n to the l a t t e r three enzymes. The most important f a c t o r s to be taken i n t o c o n s i d e r a t i o n appear to be the d u r a t i o n , temperature and pH o f the c o u p l i n g r e a c t i o n . The e f f e c t t h a t v a r i a t i o n s i n temperature and d u r a t i o n o f c o u p l i n g may have on the production of a conjugated enzyme may be i l l u s t r a t e d by the case o f 3-amylase (2). I n i t i a l attempts to prepare a 3-amylase-dextran conjugate under standard c o n d i t i o n s r e s u l t e d i n poor r e t e n t i o n o f enzymic a c t i v i t y , although n e a r l y complete c o u p l i n g was o b t a i n e d . A study of the time course o f conjugation showed an i n i t i a l r a p i d l o s s o f a c t i v i t y , followed by a slower l o s s o f a c t i v i t y l a t e r i n the r e a c t i o n . However, when conjugation was c a r r i e d out f o r a s h o r t p e r i o d o f time to minimize a c t i v i t y l o s s , very poor c o u p l i n g was achieved. When r e a c t i o n was performed a t a higher temperature (22°C) the i n i t i a l r a t e o f a c t i v i t y l o s s was s l i g h t l y g r e a t e r than the r a t e o f a c t i v i t y l o s s at 4°C. However, the e f f i c i e n c y o f c o u p l i n g at 22°C i s very much g r e a t e r than at 4 C. Thus, r e a c t i o n at 4°C f o r 4 hours r e s u l t e d i n 70% r e t e n t i o n o f a c t i v i t y but the extent o f c o u p l i n g was o n l y 15%; conjugation a t 22 C f o r the same length o f time r e s u l t e d i n r e t e n t i o n o f 50% a c t i v i t y and the extent of c o u p l i n g was 95%. The s t a b i l i t y p r o p e r t i e s o f dextran-enzyme conjugates are a l s o a f f e c t e d by the d u r a t i o n and temperature o f the conjugation r e a c t i o n (vide infra). Attachment o f enzymes to a c t i v a t e d i n s o l u b l e polysaccharides i s r o u t i n e l y c a r r i e d out a t pH 9 . 0 , and t h i s pH has been found to be s u i t a b l e f o r s y n t h e s i s o f most s o l u b l e dextran-enzyme

128

C H E M I C A L DETERIORATION O F PROTEINS

conjugates. Glucoamylase has, however, proven to be an e x c e p t i o n . I n i t i a l attempts to conjugate the l a t t e r enzyme w i t h cyanogen bromide-activated dextran gave r e s u l t s t h a t were v a r i a b l e , but never s a t i s f a c t o r y i n terms o f c o u p l i n g e f f i c i e n c y . Thus, between 5 and 20% o f the enzyme was u s u a l l y coupled under standard c o n d i t i o n s . I n v e s t i g a t i o n o f f a c t o r s t h a t might a f f e c t the e f f i c i e n c y o f c o u p l i n g showed pH to be o f c o n s i d e r a b l e importance, e f f i c i e n t conjugation o n l y being achieved by i n t e r a c t i o n o f the enzyme w i t h a c t i v a t e d dextran a t pH values s u b s t a n t i a l l y lower than pH 9 . 0 . A t pH 5 . 0 , f o r example, complete conjugation could be o b t a i n e d . Our s t u d i e s on glucoamylase-dextran conjugates are c o n t i n u i n g , using the l a t t e r pH r o u t i n e l y f o r t h e i r s y n t h e s i s . The p o s s i b i l i t y i s being i n v e s t i g a t e d t h a t the low pH r e q u i r e d f o r c o u p l i n g o f glucoamylase w i t h a c t i v a t e d dextran r e f l e c t s t h a t conjugation does not take place through l y s i n e residues i n the enzyme, but r a t h e r t h a t some other amino a c i d s i d e chain w i t h a lower p K value than the ε-amino group o f l y s i n e ( h i s t i d i n e ? ) i s i n v o l v e d i n the p r o c e s s . The e f f e c t o f pH on the c o u p l i n g o f c a t a l a s e to dextran i s l e s s marked b u t , a g a i n , b e t t e r r e s u l t s are obtained when c o u p l i n g i s c a r r i e d out under s l i g h t l y l e s s a l k a l i n e c o n d i t i o n s (pH 6-8) than normally used (5). The c o u p l i n g e f f i c i e n c y a t pH values i n the range 6-10 i s s i m i l a r , but g r e a t e r r e t e n t i o n o f a c t i v i t y i s obtained at lower pH (80% at pH 7.0) than at higher pH values (45% at pH 9 . 0 ) . Below pH 6 . 0 , the c o u p l i n g e f f i c i e n c y decreases s u b s t a n t i a l l y . Our present approach i n the p r e p a r a t i o n o f new dextran-enzyme conjugates i s i n i t i a l l y to t e s t the standard c o n d i t i o n s . I f such c o n d i t i o n s do not g i v e s a t i s f a c t o r y r e s u l t s , e i t h e r i n terms o f r e t e n t i o n o f a c t i v i t y o r extent o f c o n j u g a t i o n , the e f f e c t o f the three important parameters, pH, temperature and d u r a t i o n o f r e a c t i o n are then i n v e s t i g a t e d to e s t a b l i s h appropriate c o n d i t i o n s f o r c o u p l i n g . In some cases i t has a l s o been found useful to examine the e f f e c t o f these v a r i a b l e s on the s t a b i l i t y c h a r a c t e r ­ i s t i c s and other p r o p e r t i e s o f the r e s u l t i n g dextran-enzyme conjugates. In e a r l y s t u d i e s i t was observed t h a t i n s o l u b i l i z a t i o n o f conjugated enzyme preparations tended to take place on storage a t c o l d room temperature; i n a d d i t i o n , l y o p h i l i z a t i o n sometimes gave products t h a t d i d not r e d i s s o l v e . I t was recognized t h a t the i n s o l u b i l i z a t i o n was probably due to c r o s s - l i n k f o r m a t i o n , and t h i s problem has been overcome by adding to conjugation m i x t u r e s , a f t e r r e a c t i o n f o r an appropriate length o f t i m e , excess o f an amino compound {e.g. g l y c i n e ) to block r e a c t i v e imidocarbonate groupings t h a t do not become i n v o l v e d i n p o l y s a c c h a r i d e - p r o t e i n l i n k a g e s . When t h i s step i s i n c l u d e d , the s o l u b i l i t y p r o p e r t i e s o f the r e s u l t i n g conjugated enzyme p r e p a r a t i o n s , during storage or l y o p h i l i z a t i o n , remain s a t i s f a c t o r y ( 5 ) . Tests f o r extents o f c o u p l i n g are c o n v e n i e n t l y c a r r i e d out by m o l e c u l a r - s i e v e chromatography o f conjugated enzyme preparations on appropriate gel columns, and comparison o f the e l u t i o n a

6.

MARSHALL

Preservation

of

129

Enzymes

c h a r a c t e r i s t i c s w i t h those o f a mixture o f the corresponding free enzyme and p o l y s a c c h a r i d e . Conjugation i s i n d i c a t e d by e l u t i o n o f the enzyme, together w i t h d e x t r a n , a t a s m a l l e r e l u t i o n volume than t h a t o f the unmodified enzyme. This procedure a l s o serves to remove t r a c e s o f r e s i d u a l free enzyme p r i o r to c h a r a c t e r i z a t i o n o f the p r o p e r t i e s o f a conjugated enzyme. In an e f f o r t to s i m p l i f y the process o f i s o l a t i n g dextran-enzyme conjugates and the measurement o f extents o f conjugation a f t e r r e a c t i o n o f enzymes w i t h a c t i v a t e d d e x t r a n , we developed a process based on the use o f Concanavalin A-Sepharose (2). Enzyme-dextran conjugates bind to the adsorbent but unmodified enzymes do n o t . Washing w i t h methyl α - D - g l u c o s i d e releases conjugated enzyme. This procedure i s , o f course, only a p p l i c a b l e i n cases where the enzyme being modified i s , i t s e l f , c a r b o h y d r a t e - f r e e . Gel e l e c t r o p h o r e s i s under denaturing c o n d i t i o n s {i.e. i n the presence o f sodium dodecyl s u l f a t e and 2-mercaptoethanol) can a l s o be used to determine whether c o u p l i n g has taken p l a c e . Conjugated enzyme i s unable to penetrate the g e l , presumably because o f i t s high molecular w e i g h t , whereas n a t i v e enzyme migrates i n the gel according to molecular w e i g h t , as expected. Table I shows a comparison o f the c o n d i t i o n s f o r c o u p l i n g o f enzymes to s o l u b l e and i n s o l u b l e p o l y s a c c h a r i d e s . By using the approaches d e s c r i b e d we have been able to prepare s u c c e s s f u l l y dextran conjugates o f a v a r i e t y o f enzymes of d i f f e r e n t t y p e s . These i n c l u d e α-amylase, 3-amylase, g l u c o ­ amylase, r i b o n u c l e a s e , t r y p s i n , chymotrypsin and c a t a l a s e . In a l l cases we have obtained conjugated enzymes c o n t a i n i n g 50% o r more o f the a c t i v i t y o f the corresponding unmodified enzyme; i n the case o f glucoamylase and r i b o n u c l e a s e the recovery was i n the region o f 90-100%. The only enzyme we have not managed to conjugate s a t i s f a c t o r i l y i s lysozyme. While we can achieve c o u p l i n g , conjugated lysozyme preparations made under a v a r i e t y o f c o n d i t i o n s have a l l proven to be e n z y m i c a l l y i n a c t i v e . Properties

of Synthetic

Dextran-Enzyme

Conjugates

We have examined i n d e t a i l the p r o p e r t i e s o f the conjugated enzymes we have s y n t h e s i z e d . The r e s u l t s o f carbohydrate a t t a c h ­ ment may be i l l u s t r a t e d by c o n s i d e r i n g t y p i c a l p r o p e r t i e s t h a t are changed by the m o d i f i c a t i o n p r o c e s s , w i t h appropriate i l l u s ­ t r a t i o n s from the range o f conjugates we have prepared and characterized. Heat Stability. Most o f the conjugated enzymes have been found to have improved r e s i s t a n c e to heat i n a c t i v a t i o n , the magnitude o f the s t a b i l i z a t i o n v a r y i n g from moderate to very marked. Two amylase conjugates e x h i b i t the g r e a t e s t extent o f s t a b i l i z a t i o n ( 1 0 ) . Thus Bacillus amyloliquefaciens α-amylase has a h a l f - l i f e o f 2.5 mi η a t 65°C; i t s dextran conjugate has a h a l f - l i f e o f 63 mi η under the same c o n d i t i o n s . Sweet-potato 3-amylase has a h a l f - l i f e at 60°C o f 5 m i n ; i t s dextran conjugate

a g a r o s e ( 3 , 9)

Test f o r c o u p l i n g

b

D e x t r a n (5)

From Reference 23

measurement o f a c t i v i t y a s s o c i a t e d w i t h washed matrix

wash on funnel

enzyme

wash on funnel

Removal o f by-products from a c t i v a t e d polysaccharide

Removal o f unconjugated

1-30

T y p i c a l q u a n t i t y o f cvanogen bromide (mg/mg p o l y s a c c h a r i d e )

pH 9 . 0 , 4 ° C , 16-24 hr

30

Typical polysaccharide concentration during a c t i v a t i o n (mg/ml)

Coupling c o n d i t i o n s (pH, temperature, time)

Insoluble polysaccharide

procedure

Conditions or

or

column chromatography; p o l y a c r y l a m i d e gel e l e c t r o p h o r e s i s i n presence o f sodium dodecyl s u l f a t e ; Concanavalin A-Sepharose chromatography

gel f i l t r a t i o n chromatography Concanavalin A-Sepharose chromatography

must be i n v e s t i g a t e d f o r each p a r t i c u l a r enzyme being coupled

d i a l y s i s ( a l t e r n a t i v e l y organic s o l v e n t p r e c i p i t a t i o n o r gel chromatography)

0.2-0.5

10

Soluble polysaccharide

P r e p a r a t i o n o f S o l u b l e and I n s o l u b l e Polysaccharide-Enzyme Conjugates

TABLE I

6.

MARSHALL

Preservation of Enzymes

131

has a h a l f - l i f e under these c o n d i t i o n s o f 175 min ( F i g . 1 ) . It has become apparent t h a t the degree o f s t a b i l i z a t i o n conferred upon an enzyme by conjugation w i t h dextran i s a f f e c t e d by the c o u p l i n g c o n d i t i o n s used. Thus, when 3-amylase i n t e r a c t s w i t h a c t i v a t e d dextran a t 22 C the s t a b i l i t y increases w i t h c o u p l i n g time i n a manner p a r a l l e l i n g the extent o f c o n j u g a t i o n , magimum s t a b i l i t y being achieved a f t e r c o u p l i n g f o r 4 hours. A t 4 C , maximum s t a b i l i t y o f the i s o l a t e d 3-amylase-dextran conjugate does not appear to be achieved even a f t e r c o u p l i n g f o r 22 hours. The only enzyme we have not s t a b i l i z e d a g a i n s t heat i n a c t i v a t i o n i s glucoamylase, i t s e l f a very s t a b l e fungal glycoenzyme, the s t a b i l i t y c h a r a c t e r i s t i c s o f the modified enzyme being i d e n t i c a l to those o f the n a t i v e enzyme. Proteolytic Degradation. Two examples serve to i l l u s t r a t e the e f f e c t o f p o l y s a c c h a r i d e attachment on the s u s c e p t i b i l i t y o f enzymes to p r o t e o l y s i s . The f i r s t i s a u t o l y s i s o f t r y p s i n and chymotrypsin; the second i s degradation o f r i b o n u c l e a s e by p e p s i n . Incubation o f t r y p s i n at 37°C and pH 8.1 i n the presence o f calcium r e s u l t s i n a u t o l y t i c d i g e s t i o n w i t h a l o s s o f 90% o f i t s enzymic a c t i v i t y i n 2 hours; the dextran conjugate o f t r y p s i n i s e s s e n t i a l l y completely s t a b l e under these c o n d i t i o n s ( F i g . 2) ( 1 J ) . S i m i l a r r e s u l t s are found w i t h chymotrypsin. I t has long been known t h a t r i b o n u c l e a s e i s s u s c e p t i b l e to i n a c t i v a t i o n by pepsin ( 1 2 ) ; the dextran conjugate o f r i b o n u c l e a s e i s , however, a p p r e c i a b l y more s t a b l e than the n a t i v e enzyme ( F i g . 3 ) . We are p r e s e n t l y i n v e s t i g a t i n g the e f f e c t o f the carbohydrate i n the r i b o n u c l e a s e - d e x t r a n conjugate on the s i n g l e p r o t e o l y t i c cleavage of t h i s enzyme by s u b t i l i s i n ( 1 3 ) . Removal of Cofactors. A number o f enzymes are unstable i n the absence o f m e t a l - i o n c o f a c t o r s ; one such enzyme i s α-amylase ( 1 4 ) . On removal o f e s s e n t i a l calcium from α-amylase, the enzyme unfolds and i s g e n e r a l l y i r r e v e r s i b l y i n a c t i v a t e d , the i n a c t i v a t i o n being a s c r i b e d to cleavage o f the unfolded enzyme by the t r a c e s o f p r o t e o l y t i c enzymes t h a t are u s u a l l y present even i n h i g h l y p u r i f i e d α-amylase preparations ( 1 4 ) . We have examined the e f f e c t o f conjugation on the i n a c t i v a t i o n o f Bacillus amyloliquefaciens α-amylase i n the presence o f EDTA. The conjugated enzyme i s markedly more s t a b l e than i s the n a t i v e enzyme. However, i t i s not p o s s i b l e to say whether the e f f e c t i s due to s t r o n g e r b i n d i n g o f calcium by the conjugated enzyme than by the n a t i v e enzyme, o r whether i t i s an e f f e c t on the p r o t e o l y t i c degradation s t e p . The l a t t e r s i t u a t i o n could a r i s e as a r e s u l t o f m o d i f i c a t i o n o f the amylase, o r m o d i f i c a t i o n o f the contaminating protease, o r b o t h . We have been unable to d i s t i n g u i s h between these p o s s i b i l i t i e s by s t u d y i n g the p r o t e o l y s i s o f the amylase d i r e c t l y because the enzyme i s r e s i s t a n t to exogenous proteases i n the presence o f calcium i o n s . Effect of Protein Dénaturants. Most o f the conjugated enzymes we have prepared show g r e a t e r r e s i s t a n c e to i n a c t i v a t i o n than do the corresponding n a t i v e enzymes when t r e a t e d w i t h p r o t e i n

132

C H E M I C A L DETERIORATION O F PROTEINS

DURATION OF HEATING (min)

Archives of Biochemistry and Biophysics

Figure 1. Heat inactivation (60°C) of sweet potato β-amylase tran conjugate (O).

0 «

1 20

1 40

1 60

1 80

1 100

(Φ) and its dex­

1 120

DURATION OF HEATING (min) Journal of Biological Chemistry

Figure 2. Autolysis of trypsin (Φ) and trypsin-dextran conjugate (O) at pH 8.1 and 37°C.

6.

MARSHALL

Preservation

of

Enzymes

133

d é n a t u r a n t s such as urea or sodium dodecyl s u l f a t e . This s i t u a t i o n holds i n the case o f p r o t e o l y t i c enzymes such as t r y p s i n , where both unfolding and a u t o l y s i s are l i k e l y to be i n v o l v e d i n the denaturation p r o c e s s , and i n the case o f nonp r o t e o l y t i c enzymes {e.g. amylase, r i b o n u c l e a s e ) where o n l y unfolding i s i n v o l v e d . Thus, t r y p s i n i n 8M urea loses 60% o f i t s a c t i v i t y i n 2 hours; t r y p s i n - d e x t r a n conjugate loses l e s s than 10% o f i t s a c t i v i t y under the same c o n d i t i o n s . In the presence of 8M urea and 5 mM 2-mercaptoethanol, n a t i v e t r y p s i n loses a l l of i t s a c t i v i t y i n s t a n t a n e o u s l y but the conjugated enzyme r e t a i n s 60% o f i t s a c t i v i t y a f t e r 2 hours under these c o n d i t i o n s ( F i g . 4 ) . In a d d i t i o n to showing improved s t a b i l i t y i n the presence o f p r o t e i n d é n a t u r a n t s , we have a l s o found dextran-conjugated enzymes to show improved a c t i v i t y i n the presence o f such agents. For example, i n the absence o f c a l c i u m , n a t i v e t r y p s i n i s i n a c t i v e i n 8M urea; under the same c o n d i t i o n s the modified enzyme d i s p l a y s 50% o f the a c t i v i t y measured i n the absence o f urea ( V I ) . Effect

of Carbohydrate

on Enzyme-Substrate

Interaction.

Since

many o f the enzymes we have conjugated w i t h dextran have macromolecules as t h e i r n a t u r a l s u b s t r a t e s , we recognized t h a t the conjugation process might r e s u l t i n unfavorable s t e r i c i n t e r a c t i o n s t h a t would i m p a i r the a b i l i t y o f the enzymes to i n t e r a c t w i t h such s u b s t r a t e s , i n the same way t h a t attached carbohydrate a f f e c t s the s u s c e p t i b i l i t y o f the conjugated enzymes to p r o t e o l y t i c a t t a c k . We have therefore i n v e s t i g a t e d the e f f e c t of carbohydrate on the i n t e r a c t i o n o f conjugated enzymes w i t h substrate. I t i s not p o s s i b l e to g e n e r a l i z e regarding the e f f e c t carbo­ hydrate has on enzyme-substrate i n t e r a c t i o n ; the e f f e c t v a r i e s from enzyme to enzyme. In the case o f r i b o n u c l e a s e a c t i n g on r i b o n u c l e i c a c i d , there i s no change i n the Km value o f the enzyme for r i b o n u c l e i c a c i d a f t e r c o n j u g a t i o n , suggesting t h a t dextran does not i n t e r f e r e w i t h the a b i l i t y o f r i b o n u c l e a s e and i t s s u b s t r a t e to combine. S i m i l a r r e s u l t s were found i n the case o f Bacillus amyloliquefaciens α - a m y l a s e a c t i n g on s t a r c h , and i n the case o f t h i s enzyme i t was p o s s i b l e to o b t a i n f u r t h e r evidence for the l a c k o f any e f f e c t o f attached carbohydrate on enzymes u b s t r a t e i n t e r a c t i o n ( 6 ) . Thus s i n c e α - a m y l a s e , during the complete degradation o f s t a r c h , acts on s u b s t r a t e molecules o f d i f f e r e n t s i z e s , namely p o l y s a c c h a r i d e i n the e a r l y s t a g e s , megalosaccharides during the intermediate s t a g e s , and small o l i g o s a c c h a r i d e s i n the l a t e r stages o f r e a c t i o n , i t might be expected t h a t any hindrance o f the enzyme to i n t e r a c t i o n w i t h macromolecular s u b s t r a t e would be r e f l e c t e d i n a d i f f e r e n t time course o f h y d r o l y s i s by the n a t i v e and conjugated enzymes. Such a d i f f e r e n c e was not observed, the production o f reducing sugars from s t a r c h by both forms o f the enzyme being i d e n t i c a l up to 80% conversion i n t o m a l t o s e , suggesting t h a t both forms o f the enzyme have the same r e l a t i v e a f f i n i t y f o r h i g h - and low-molecular weight s u b s t r a t e m o l e c u l e s .

C H E M I C A L DETERIORATION O F PROTEINS

134

0

10

20

DURATION Figure 3.

30 OF

40

50

60

I N C U B A T I O N (MIN)

Inactivation of ribonuclease (Φ) and ribonuclease-dextran conjugate on treatment with pepsin at pH 2.4 and 37°C.

100 ο 80 Ο Ζ ζ 60 Ζ < >-

Κ; >

40 20

20

40

60

80

100

120

DURATION OF HEATING (min) Journal of Biological Chemistry Figure 4. Inactivation of trypsin (Φ) and trypsin-dextran conjugate (O) at 37°C and pH 8.1 in 8M urea and 5mM 2-mercaptoethanol. The broken line shows the rate of inactivation of trypsin-dextran conjugate after dextranase treatment.

6.

MARSHALL

Preservation

of

Enzymes

135

In the case o f t r y p s i n , conjugation r e s u l t e d i n r e t e n t i o n o f over h a l f the e s t e r a s e a c t i v i t y , but the a c t i v i t y towards a p r o t e i n s u b s t r a t e (casein) was e s s e n t i a l l y completely a b o l i s h e d (1J). This i s the most marked e f f e c t o f carbohydrate i m p a i r i n g enzyme-substrate i n t e r a c t i o n t h a t we have seen. However, i t should be emphasized t h a t p r e p a r a t i o n o f the t r y p s i n - d e x t r a n conjugate was c a r r i e d out under a r b i t r a r i l y chosen c o n d i t i o n s (the standard c o n d i t i o n s we have r e f e r r e d to above). The f i n d i n g t h a t we could prepare dextran conjugates o f other enzymes t h a t a c t on macromolecular s u b s t r a t e s ( i n p a r t i c u l a r a - and 3-amylases and r i b o n u c l e a s e ) w i t h o u t causing such extreme l o s s o f a c t i v i t y led us to b e l i e v e t h a t i t should be p o s s i b l e to s y n t h e s i z e a t r y p s i n - d e x t r a n conjugate r e t a i n i n g protease a c t i v i t y . Recent s t u d i e s on the e f f e c t o f changes i n c o u p l i n g parameters have i n d i c a t e d t h a t by m o d i f i c a t i o n o f the c o u p l i n g c o n d i t i o n s i t i s , indeed, p o s s i b l e to achieve c o n j u g a t i o n , confer improved s t a b i l i t y p r o p e r t i e s , and at the same time r e t a i n protease activity. In the case o f glucoamylase, we have a l s o seen a marked e f f e c t o f dextran attachment on the a b i l i t y o f the enzyme to i n t e r a c t w i t h s t a r c h , although not w i t h maltose. In the case o f t h i s enzyme, however, we have gone one stage f u r t h e r and i n t e n t i o n a l l y t r i e d to e l i m i n a t e a l l a c t i v i t y towards the macromolecular s u b s t r a t e by s u i t a b l e choice o f the c o u p l i n g c o n d i t i o n s . The r e s u l t s o f t h i s work are described i n more d e t a i l below. Effect of Enzyme Inhibitors. Four o f the enzymes we have conjugated, namely α-amylase, r i b o n u c l e a s e , t r y p s i n and chymotrypsin are i n h i b i t e d by n a t u r a l l y - o c c u r r i n g proteinaceous i n h i b i t o r s . We have compared the e f f e c t o f such i n h i b i t o r s on the n a t i v e and conjugated enzymes. In a l l cases we found r e s i s t a n c e o f the conjugated enzymes to i n h i b i t i o n by the r e s p e c t i v e i n h i b i t o r s . Conjugated p a n c r e a t i c α-amylase and conjugated r i b o n u c l e a s e are almost completely r e s i s t a n t to i n h i b i t i o n by phaseolamin (15) and r a t l i v e r r i b o n u c l e a s e i n h i b i t o r (IS), r e s p e c t i v e l y . Of p a r t i c u l a r i n t e r e s t i s a comparison o f the e f f e c t o f s e v e r a l common t r y p s i n i n h i b i t o r s on n a t i v e and conjugated t r y p s i n (Table I I ) . While n a t i v e t r y p s i n i s e s s e n t i a l l y completely i n h i b i t e d by a l l the i n h i b i t o r s t e s t e d , the conjugated enzyme i s i n h i b i t e d to a l e s s e r e x t e n t . The extents of i n h i b i t i o n o f the conjugated enzyme are i n v e r s e l y r e l a t e d to the molecular weights o f the i n h i b i t o r s used. A more d e t a i l e d study o f the i n h i b i t i o n o f t r y p s i n and i t s dextran conjugate by ovomucoid ( F i g . 5) showed a l a r g e p r o p o r t i o n o f the conjugated enzyme to be completely r e s i s t a n t to i n h i b i t i o n by t h i s i n h i b i t o r , r a t h e r than a l l molecules being i n h i b i t e d at a slower r a t e than i n the case o f the n a t i v e enzyme. The r e s i s t a n c e to i n h i b i t i o n can be e x p l a i n e d i n terms o f s t e r i c i n t e r a c t i o n s between the attached carbohydrate chains and the i n h i b i t o r molecules. Con­ s i d e r a t i o n o f the i n t e r a c t i o n o f i n h i b i t o r s w i t h conjugated

136

C H E M I C A L DETERIORATION OF PROTEINS

100 r 80 60 40 20 0

r

V 100

JL

200

300

_1_

400

OVOMUCOID

500

600

700

800

(jjg) Journal of Biological Chemistry

Figure 5.

Inhibition of trypsin (Φ) and trypsin-dextran conjugate (O)by amounts of ovomucoid.

various

6.

MARSHALL

Preservation

of

137

Enzymes

t r y p s i n i s r e l e v a n t to an understanding o f the nature o f the dextran-enzyme conjugates t h a t have been s y n t h e s i z e d {videinfra).

TABLE II

I n h i b i t i o n o f Native T r y p s i n and T r y p s i n - D e x t r a n Conjugate by Protease I n h i b i t o r s ' * A c t i v i t y remaining (%)

Enzyme Native Conjugated

Bovi ne pancreatic trypsin inhibitor

Lima bean trypsin inhibitor

Soybean trypsin inhibitor

Ovomucoid

6

6

6

9

13

24

29

70

A c t i v i t i e s remaining a f t e r treatment o f n a t i v e o r conjugated t r y p s i n (0.276 u n i t ) w i t h t r y p s i n i n h i b i t o r s (5 yg). From Réf. I L Dextranase Treatment. Dextranase treatment o f conjugated enzymes has been shown to b r i n g about changes i n a t l e a s t three p r o p e r t i e s o f conjugates, a t l e a s t one o f which was unexpected. Treatment o f a t r y p s i n - d e x t r a n conjugate with dextranase d e s t a b i l i z e d the conjugate as evidenced by i t s r a t e o f i n a c t i v a ­ t i o n i n the presence o f 8 M urea and 5 mM 2-mercaptoethanol a f t e r dextranase treatment ( F i g . 4 ) . The same treatment o f the conjugated enzyme a l s o r e s u l t e d i n an i n c r e a s e i n i t s s u s c e p t i b i l i t y t o i n h i b i t i o n by ovomucoid, t h i s i n c r e a s i n g from 30% to 54%. Since attachment o f carbohydrate to t r y p s i n causes s t a b i l i z a t i o n o f the enzyme, i t i s not s u r p r i s i n g to f i n d t h a t removal o f the carbohydrate r e s u l t s i n d é s t a b i l i s a t i o n . The increased s u s c e p t i b i l i t y to i n h i b i t i o n by ovomucoid a f t e r dextranase treatment can be e x p l a i n e d by the removal o f unfavorable s t e r i c i n t e r a c t i o n s t h a t prevent combination o f enzyme and i n h i b i t o r . What was s u r p r i s i n g was the f i n d i n g t h a t treatment o f the b a c t e r i a l α - a m y l a s e - d e x t r a n conjugate r e s u l t e d i n an i n c r e a s e i n i t s a c t i v i t y o f about 50%. A l i k e l y explanation of t h i s phenomenon i s discussed below. Specificity

and Action

Pattern.

In the case o f some

a m y l o l y t i c enzymes we have observed changes i n s p e c i f i c i t y and a c t i o n p a t t e r n a f t e r conjugation w i t h d e x t r a n . Attempts to conjugate glucoamylase {vide supra) showed s u b s t a n t i a l losses o f

138

C H E M I C A L DETERIORATION O F PROTEINS

a c t i v i t y towards s t a r c h . In order to determine whether t h i s e f f e c t was a t t r i b u t a b l e to unfavorable s t e r i c i n t e r a c t i o n s preventing e f f i c i e n t enzyme-substrate c o n t a c t , o r the r e s u l t o f enzyme i n a c t i v a t i o n , we assayed the conjugated glucoamylase a g a i n s t maltose and found t h a t e s s e n t i a l l y a l l the a c t i v i t y towards the l a t t e r s u b s t r a t e was r e t a i n e d . Having e s t a b l i s h e d the f a c t o r s t h a t determine the e f f i c i e n c y o f c o n j u g a t i o n , p a r t i c u l a r l y the pH o f the c o u p l i n g r e a c t i o n {vide supra), we attempted to e l i m i n a t e completely the a c t i v i t y o f glucoamylase a g a i n s t i t s macromolecular s u b s t r a t e , s t a r c h . E f f o r t s to do t h i s i n v o l v e d i n c r e a s i n g the carbohydrate:enzyme r a t i o , i n c r e a s i n g the s i z e o f the dextran to which the enzyme i s c o u p l e d , and i n c r e a s i n g the d u r a t i o n o f the c o u p l i n g r e a c t i o n . The n a t i v e enzyme acts on s t a r c h about e i g h t times f a s t e r than i t does on maltose; conjugates prepared by modifying the c o u p l i n g r e a c t i o n as d e s c r i b e d a c t on maltose as much as ten times f a s t e r than on s t a r c h . Thus a major change i n s u b s t r a t e s p e c i f i c i t y r e s u l t s from conjugation o f glucoamylase w i t h d e x t r a n . While we have not y e t managed to e l i m i n a t e completely a c t i v i t y towards s t a r c h , c l e a r l y we have a l t e r e d the s p e c i f i c i t y o f the enzyme from t h a t o f a p o l y ­ saccharide hydrolase towards t h a t o f an o l i g o s a c c h a r i d e h y d r o l a s e . A conjugated glucoamylase devoid o f a c t i v i t y towards s t a r c h could have important p r a c t i c a l a p p l i c a t i o n s , f o r example i n the s p e c i f i c h y d r o l y s i s o f maltose and other small amylaceous o l i g o s a c c h a r i d e s , i n the presence o f p o l y s a c c h a r i d e . We have a l s o , i n the case o f b a c t e r i a l α-amylase, shown t h a t conjugation r e s u l t s i n a change i n a c t i o n p a t t e r n . Thus, equal a c t i v i t i e s o f n a t i v e and conjugated enzyme, measured i n terms o f a b i l i t y to r e l e a s e reducing sugars from s t a r c h , d i f f e r i n t h e i r e f f e c t on the i o d i n e s t a i n i n g power o f the s u b s t r a t e . The con­ jugated enzyme causes a lower decrease i n i o d i n e s t a i n i n g power than does the n a t i v e enzyme, at any given extent o f h y d r o l y s i s . The conjugated enzyme, t h e r e f o r e , appears to be c o n s t r a i n e d to a c t a t l e a s t p a r t l y i n an e x o - f a s h i o n , r a t h e r than i n the completely endo-fashion o f the n a t i v e enzyme. I t remains to be determined whether a l t e r a t i o n o f the c o u p l i n g c o n d i t i o n s w i l l enable us to convert an endo-acting enzyme completely i n t o an e x o - a c t i n g enzyme. Miscellaneous. In a d d i t i o n to the e f f e c t o f conjugation o f α-amylase on i t s heat s t a b i l i t y , s t a b i l i t y i n d é n a t u r a n t s , and s t a b i l i t y on c o f a c t o r removal, the attachment o f dextran a l s o r e s u l t s i n improved s t a b i l i t y o f t h i s a c i d - l a b i l e enzyme at pH values below about 5 . 0 . Studies on the dependence o f s t a b i l i t y o f Bacillus amyloliquefaciens α-amylase on pH showed t h a t the conjugated enzyme r e t a i n e d 20, 15 and 7% more a c t i v i t y a t pH 3 . 5 , 4.0 and 4.5 than d i d the n a t i v e enzyme. Many enzymes are known to bind to g l a s s , e s p e c i a l l y when i n d i l u t e s o l u t i o n . Common examples o f enzymes t h a t demonstrate t h i s phenomenon are 3-amylase ( 1 7 ) , t r y p s i n ( 1 8 ) , r i b o n u c l e a s e (T£) and c a t a l a s e ( 2 0 ) . Conjugation o f these enzymes w i t h dextran

6.

MARSHALL

Preservation of Enzymes

139

e l i m i n a t e d o r s u b s t a n t i a l l y reduced t h e i r a b i l i t y to bind to g l a s s , presumably because o f s h i e l d i n g o f the groupings t h a t i n t e r a c t w i t h g l a s s surfaces by the uncharged, h y d r o p h i l i c carbohydrate chains attached at the surface o f these enzymes. Two "non-effects" o f conjugation may a l s o be mentioned briefly. In no case does carbohydrate attachment markedly a f f e c t the p H - a c t i v i t y r e l a t i o n s h i p o f any o f the enzymes we have conjugated. T h i s o b s e r v a t i o n i s not s u r p r i s i n g s i n c e we have always conjugated enzymes w i t h uncharged p o l y s a c c h a r i d e . It remains to be determined whether attachment o f an enzyme to a charged p o l y s a c c h a r i d e a f f e c t s i t s pH optimum. We reasoned t h a t c o u p l i n g o f p o l y s a c c h a r i d e to a c h l o r i d e dependent mammalian α-amylase might a f f e c t the dependence o f the enzyme on c h l o r i d e f o r a c t i v i t y . This reasoning was based on the suggestion t h a t c h l o r i d e i s an a l l o s t e r i c e f f e c t o r o f mammalian α-amylase, s e r v i n g to convert the enzyme i n t o an a c t i v e form by i n t e r a c t i o n w i t h l y s i n e residues i n the enzyme ( 2 1 ) . Since conjugation was c a r r i e d out i n the presence o f c h l o r i d e , the enzyme should be c o n f o r m a t i o n a l l y locked i n i t s most a c t i v e form i f the e f f e c t o f conjugation i s to s t a b i l i z e the t e r t i a r y s t r u c t u r e o f the enzyme. However, the n a t i v e and conjugated enzymes were found to show the same dependence on c h l o r i d e ions f o r a c t i v i t y . This f i n d i n g suggests t h a t the conjugated enzyme s t i l l has enough conformational f l e x i b i l i t y to r e q u i r e c h l o r i d e ions f o r formation o f the most c a t a l y t i c a l l y - e f f i c i e n t conformation. Fractionation on Sepharose. Chromatography o f a t r y p s i n dextran-conjugate p r e p a r a t i o n on Sepharose 4B showed i t to c o n s i s t o f a heterogenous p o p u l a t i o n o f molecules o f very high molecular weight ( F i g . 6 ) . A comparison o f the p r o p e r t i e s o f t r y p s i n - d e x t r a n conjugate "molecules" o f d i f f e r e n t s i z e s showed l i t t l e d i f f e r e n c e i n p r o p e r t i e s , w i t h the exception o f the s u s c e p t i b i l i t y to i n h i b i t i o n by ovomucoid. Highest molecular weight f r a c t i o n s were only s l i g h t l y (25%) i n h i b i t e d by t h i s i n h i b i t o r ; the lowest molecular weight molecules were i n h i b i t e d to the extent o f 70%. Discussion

Nature of Soluble Dextran-Enzyme Conjugates. Column chroma­ tography o f dextran-enzyme conjugate preparations on Sepharose ( F i g . 6) has shown them to c o n s i s t o f heterogeneous mixtures o f very high molecular weight m o l e c u l e s . The conjugation procedure c l e a r l y does not r e s u l t i n formation o f products c o n t a i n i n g one molecule o f dextran and one molecule o f enzyme. This s i t u a t i o n a r i s e s because the amount o f cyanogen bromide used i n the a c t i v a ­ t i o n step i s s u f f i c i e n t to a c t i v a t e many monosaccharide residues i n every dextran m o l e c u l e , and each a c t i v a t e d dextran molecule thus has the a b i l i t y to c r o s s - l i n k p o l y p e p t i d e chains i n t e r m o l e c u l a r l y by the i n t e r a c t i o n o f two o r more a c t i v a t e d monosaccharide

140

C H E M I C A L DETERIORATION O F PROTEINS

20 ρ

15

20

25

30

35

40

45

50

FRACTION NUMBER

Journal of Biological Chemistry

Figure 6. Sepharose 4B chromatography of trypsin-dextran conjugate (A). The sample contained approximately 145 mg dextran and 14 mg of trypsin. Chroma­ tography of a mixture containing corresponding amounts of dextran and trypsin is shown in B.

6.

MARSHALL

Preservation of Enzymes

141

residues w i t h two o r more ε-amino groups o f l y s i n e i n d i f f e r e n t enzyme m o l e c u l e s . In t h i s way macromolecular aggregates c o n s i s t ­ ing o f many enzyme molecules and many dextran molecules are p r o ­ duced during the c o u p l i n g r e a c t i o n . The enzyme molecules a t the e x t e r i o r o f such aggregates are l i k e l y to be f u l l y a c t i v e . However, i t i s easy to envisage the a c t i v i t y o f the enzyme molecules i n the i n t e r i o r o f the aggregates being l a t e n t . Hence the e x p l a n a t i o n o f the apparently c o n t r a d i c t o r y r e s u l t s obtained when studying the b a c t e r i a l α - a m y l a s e - d e x t r a n conjugate ( 6 ) . While the n a t i v e and conjugated enzymes were found to have the same 1^ value f o r s t a r c h , the a c t i v i t y o f the conjugated enzyme was markedly increased by dextranase treatment. These observations are compatible i f the conjugated enzyme contains a mixture o f f u l l y a c t i v e enzyme molecules (those a t the surface) and p o t e n t i a l l y a c t i v e molecules (the b u r i e d o n e s ) , the a c t i v i t y of the l a t t e r being completely masked u n t i l breakdown o f the conjugated enzyme by dextranase. In a s i m i l a r manner we can e x p l a i n the observations regarding the e f f e c t o f t r y p s i n i n h i b i t o r s on the t r y p s i n - d e x t r a n conjugate, i n h i b i t o r s being unable to penetrate f r e e l y to the enzyme molecules i n the i n t e r i o r of the aggregates, the extents o f i n h i b i t i o n being r e l a t e d to the molecular weights o f the i n h i b i t o r s used, and the s u s c e p t i b i l i t y to i n h i b i t i o n i n c r e a s i n g a f t e r dextranase treatment o f the conjugated enzyme ( U ) . Mechanism of Stabilization by Dextran. I t i s l i k e l y t h a t the s t a b i l i z a t i o n conferred upon enzymes by attachment o f dextran to them a r i s e s i n a number o f ways. F i r s t l y , the degree o f h y d r a t i o n of an enzyme molecule i s probably changed by attachment o f hydrophi l i e p o l y s a c c h a r i d e molecules to i t and i t i s l i k e l y t h a t heat s t a b i l i t y p r o p e r t i e s are a f f e c t e d by h y d r a t i o n c h a r a c t e r i s t i c s . Indeed, such an e x p l a n a t i o n has been g i v e n f o r the s t a b i l i z i n g e f f e c t o f the carbohydrate i n n a t u r a l l y - o c c u r r i n g g l y c o p r o t e i n s ( 2 2 ) . The e f f e c t o f the p o l y s a c c h a r i d e i n conjugated enzyme preparations on c o n f e r r i n g s t a b i l i t y a g a i n s t p r o t e o l y t i c degradation i s probably t w o - f o l d . In the case o f t r y p s i n autod i g e s t i o n , i t must be recognized t h a t a number o f s i t e s where t r y p s i n might a c t are e l i m i n a t e d by c o n j u g a t i o n . Thus, s i n c e l y s i n e residues are i n v o l v e d i n l i n k a g e s w i t h carbohydrate, t r y p s i n a c t i o n i s r e s t r i c t e d to a r g i n i n e r e s i d u e s . Secondly, s t e r i c r e s i s t a n c e to protease a c t i o n i s probably a l s o i n v o l v e d , t h i s presumably r e p r e s e n t i n g the major f a c t o r preventing chymotrypsin a c t i o n on conjugated enzymes or r i b o n u c l e a s e d i g e s t i o n by p e p s i n . However, the most important f a c t o r i n v o l v e d i n s t a b i l i z a t i o n o f enzymes by dextran i s the e f f e c t o f the attached p o l y s a c c h a r i d e on enzyme conformation. Intramolecular c r o s s - l i n k i n g o f enzyme molecules i n the macromolecular aggregates i s l i k e l y to be caused by r e a c t i o n o f two o r more a c t i v a t e d monosaccharide residues i n a s i n g l e dextran molecule w i t h two o r more ε-amino groupings o f l y s i n e i n the same enzyme m o l e c u l e .

142

C H E M I C A L DETERIORATION OF PROTEINS

The o v e r a l l e f f e c t o f such c r o s s - l i n k i n g on p r o t e i n conformation i s seen as being s i m i l a r to t h a t o f d i s u l f i d e b r i d g e s , t h i s s i t u a t i o n being apparent from the experiment where the d i s u l f i d e bridges o f t r y p s i n and i t s dextran conjugate were reduced w i t h 2-mercaptoethanol i n the presence o f 8M urea. The n a t i v e enzyme l o s t a l l o f i t s a c t i v i t y i n s t a n t a n e o u s l y ; the conjugated enzyme r e t a i n e d 60% o f i t s a c t i v i t y even a f t e r 2 hours under these c o n d i t i o n s ( F i g . 4 ) . However cleavage o f the carbohydrate bridges by dextranase treatment r e s u l t e d i n marked d é s t a b i l i s a t i o n o f the conjugated enzyme. Thus c r o s s - l i n k i n g by attached carbohydrate c l e a r l y plays an important p a r t i n s t a b i l i z i n g the conformation o f enzyme m o l e c u l e s . We must conclude t h a t w h i l e we have managed by attachment o f dextran to endow a number o f enzymes w i t h improved s t a b i l i t y as we p r e d i c t e d , the s t a b i l i z a t i o n r e s u l t i n g from c o u p l i n g w i t h dextran i s , f o r the most p a r t , due to f a c t o r s t h a t are d i s t i n c t from those i n v o l v e d i n the s t a b i l i z i n g r o l e o f carbohydrate i n n a t u r a l g l y c o p r o t e i n s . In the l a t t e r , there i s u s u a l l y no c r o s s l i n k i n g o f polypeptide chains by carbohydrate; each carbohydrate moiety i s attached to the polypeptide through a s i n g l e l i n k a g e . Nevertheless enzymes modified by the procedure we have developed are l i k e l y to have important p r a c t i c a l a p p l i c a t i o n s i n biochemical technology and medicine (23). Acknowledgments

The author i s an I n v e s t i g a t o r o f Howard Hughes Medical Institute. Support from the National I n s t i t u t e s o f Health (G.M. 21258) i s a l s o acknowledged.

References 1. Pazur, J. H., Knull, H. R. and Simpson, D. L . , Biochem. Biophys. Res. Commun. (1970) 40, 110. 2. Kennedy, J. F., Adv. Carbohyd. Chem. Biochem. (1974) 29, 306. 3. Axén, R. and Ernback, S., Europ. J. Biochem. (1971) 18, 351. 4. Kagedal, L. and Akerstrom, S., Acta Chem. Scand. (1971) 25, 1855. 5. Marshall, J. J. and Humphreys, J. D., Biotechnol. Bioeng. (1977) 19, 1739. 6. Marshall, J. J., Carbohyd. Res. (1976) 49, 389. 7. Marshall, J. J., Fed. Proc.,Fed. Amer. Soc. Exp. Biol. (1976) 35, 1632. 8. Marshall, J. J. and Humphreys, J. D., J. Chromatog. (1977) 137, 468. 9. Cuatrecasas, P. and Anfinsen, C. B., Methods Enzymol. (1971) 22, 345. 10. Marshall, J. J. and Rabinowitz, M. L . , Arch. Biochem. Biophys. (1975) 167, 777.

6. Marshall

11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23.

Preservation of Enzymes

143

Marshall, J. J . and Rabinowitz, M. L . , J . Biol. Chem. (1976) 251, 1081. Anfinsen, C. B., J . Biol. Chem. (1956) 221, 405. Richards, F. M., Proc. Nat. Acad. Sci. U.S.A. (1958) 44, 162. Fischer, Ε. H. and Stein, E. A. in Boyer, P. D., Lardy, H. and Myrback, K. (eds.), The Enzymes, 2nd edn., Vol. 4, p. 313, Academic Press, New York, 1960. Marshall, J. J . and Lauda, C. M., J . Biol. Chem. (1975) 250, 8030. Gribnau, Α. A. M., Schoenmakers, J. G., Van Kraaikamp, M., Hilak, M. and Bloemendal, H., Biochim. Biophys. Acta (1970) 224, 55. Marshall, J . J., unpublished observations (1970). Johnson, P. and Whateley, T. L . , Biochim. Biophys. Acta (1972) 276, 323. Hummel, J. P. and Anderson, B. S., Arch. Biochem. Biophys. (1965), 112, 443. Svendsen, A., Acta Chem. Scand. (1953) 7, 551. Levitzki, A. and Steer, M. L . , Europ. J. Biochem. (1974) 41, 171. von Euler, H. and Laurin, I., Z. Physiol. Chem. (1919) 108, 64. Marshall, J. J., Trends in Biochemical Sciences (1978) 3, 79.

Received October 18, 1979.