Proton-Transfer Reaction Rates and Mechanisms - ACS Publications

+ A 2. Κ = k ^ , k f. 2 10 1 0 M ' V 1. (1) involving oxygen or nitrogen acids with BLO, HLO+ , or OH in .... 1 X 101 0. Sound. H+. + (NH,) CoOH2 +. ...
0 downloads 0 Views 2MB Size
3 Proton-Transfer Reaction Rates and Mechanisms EDWARD M. EYRING, DAVID B. MARSHALL, FRANK STROHBUSCH Downloaded by KTH ROYAL INST OF TECHNOLOGY on August 24, 2015 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch003

University of Utah, Department of Chemistry, Salt Lake City, UT 84112 R. SÜTTINGER Institut für Physikalische Chemie der Universität Freiburg, D-78 Freiburg, Federal Republic of Germany Eight generalizations are given a r i s i n g from world-wide studies of proton transfer reactions i n aqueous media carried out over the past twenty– five years. Future directions of research on pro­ ton transfer kinetics are predicted, and recent kinetic studies by the authors on proton transfer in nonaqueous media (methanol, a c e t o n i t r i l e , and benzonitrile) are reviewed. Inorganic s o l u t i o n chemistry o f t e n i n v o l v e s p r o t o n t r a n s ­ f e r s t o and from s o l v a t e d metal ions as w e l l as t o and from the a c i d s and bases t h a t complex metal i o n s . E i g h t g e n e r a l i z a t i o n s are presented below t h a t attempt t o summarize the i n s i g h t s r e ­ garding proton t r a n s f e r r e a c t i o n s t h a t have emerged i n the p a s t quarter c e n t u r y . The m a s t e r f u l reviews by E i g e n (1_) and B e l l (2) p r o v i d e much more e x t e n s i v e a n a l y s i s o f most o f these points. Eight Generalizations 1. the type A

1

F o r thermodynamically favorable

+ B £

f

Β + A

2

α

2

Κ= k ^ , k

reactions

f

2 10

1 0

( K » l ) of

M ' V

+

1

(1)

i n v o l v i n g oxygen o r n i t r o g e n a c i d s w i t h BLO, HL O , or OH i n 10 -1 -1 aqueous s o l u t i o n a t room temperature, k^~10 M s and the r a t e constant i s s m a l l e r by a f a c t o r o f 10^^ i n the reverse (unfavorable) d i r e c t i o n ( 1 , 2 ) . 2. E i g e n s mechanism f o r p r o t o n t r a n s f e r r e a c t i o n s b e ­ tween a c i d s (AH) and bases (B) proceeds through a n e u t r a l hydro1

0097-6156/82/0198-0063$06.00/0 © 1982 American Chemical Society In Mechanistic Aspects of Inorganic Reactions; Rorabacher, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

64

MECHANISTIC ASPECTS O F INORGANIC REACTIONS

gen bonded complex (AH...B) and an i o n p a i r (A ... HB) +

Downloaded by KTH ROYAL INST OF TECHNOLOGY on August 24, 2015 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch003

AH + Β J AH...B J A"... HB | A" + HB

+

(2)

w i t h these i n t e r m e d i a t e s undetectable i n aqueous s o l u t i o n b u t observable i n p o l a r o r g a n i c s o l v e n t s under s u i t a b l e c o n d i t i o n s (3). 3. Rate constants f o r the d i f f u s i o n - c o n t r o l l e d r e a c t i o n between a p r o t o n and a s p e c i e s A i n water decrease (4) by a f a c t o r o f 0.3 t o 0.5 f o r each p o s i t i v e charge added t o the r e a c t a n t A. Thus the r a t e constant f o r the r e a c t i o n o f a hydro2+ l y z e d metal i o n such as A£0H (aq) w i t h a s o l v e n t proton w i l l d e c l i n e w i t h the i n c r e a s i n g p o s i t i v e e l e c t r o s t a t i c charge o f the hydrolyzed metal i o n s p e c i e s . 4. I n t r a m o l e c u l a r hydrogen bonding, s t e r i c hindrance, and l o c a t i o n o f the mobile p r o t o n on a carbon atom ("carbon a c i d s " ) can a l l a c t t o decrease somewhat the r e a c t i o n r a t e s ( 5 ) . 5. Removal o f the p r o t o n from an i n t r a m o l e c u l a r hydrogen bond by a base occurs i n a two-step mechanism (a r a p i d e q u i l i b ­ rium between Η-bonded and non-H-bonded forms f o l l o w e d by base c a t a l y z e d proton removal from the non-H-bonded form) r a t h e r than by d i r e c t a t t a c k o f the base on the i n t r a m o l e c u l a r l y hydrogen bonded s p e c i e s ( 6 ) . 6. Nuclear r e o r g a n i z a t i o n o r the r e h y b r i d i z a t i o n o f t h e carbon i s a main f a c t o r i n the r e t a r d a t i o n o f proton t r a n s f e r i n v o l v i n g carbon a c i d s , and s o l v a t i o n changes have much l e s s impact ( 7 ) . 7. Proton t r a n s f e r between e l e c t r o n e g a t i v e atoms i s f a s t e r the g r e a t e r the e l e c t r o n e g a t i v i t y o f t h e atoms between which the p r o t o n i s moving. Thus p r o t o n t r a n s f e r between n i t r o ­ gen atoms i s slower and r a t e l i m i t i n g over a wider range o f ApK than f o r p r o t o n t r a n s f e r between oxygen atoms ( 8 ) . 8. Proton exchange r a t e s i n aqueous s o l u t i o n s a r e en­ hanced by s m a l l amounts (0.5% V/V) o f hydrophobic substances (e.g., methanol, dioxane) because o f a consequent i n c r e a s e i n Hbonded water s t r u c t u r e i n the h y d r a t i o n s h e l l s through which the p r o t o n t r a n s f e r i s mediated ( 9 ) . A m p l i f i c a t i o n o f G e n e r a l i z e d Conclusions In the f o l l o w i n g a m p l i f i c a t i o n o f these g e n e r a l i z a t i o n s , some a t t e n t i o n w i l l be g i v e n t o c o n t r o v e r s i a l aspects o f these statements. I t i s i n t e r e s t i n g t h a t an area o f s c i e n t i f i c study such as p r o t o n t r a n s f e r k i n e t i c s could be an a c t i v e one f o r over 25 y e a r s , p a r t i c u l a r l y because o f r e l a x a t i o n techniques, and s t i l l be one f o r which i t i s d i f f i c u l t t o make many g e n e r a l i z a ­ t i o n s t h a t workers i n the f i e l d can endorse without major r e ­ servations . The f i r s t g e n e r a l i z a t i o n simply a s s e r t s t h a t there a r e many

In Mechanistic Aspects of Inorganic Reactions; Rorabacher, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

3.

EYRING E T A L .

Proton-Transfer

Reaction Rates and

Mechanisms

65

r e a c t i o n s i n v o l v i n g a c i d s , such as h y d r o f l u o r i c a c i d and water, f o r which the r a t e s are d i f f u s i o n c o n t r o l l e d w i t h r a t e constants 1

of the order of 1 0 ^ M *s i n aqueous s o l u t i o n f o r the com­ b i n a t i o n of the i o n s . In f a c t , i t i s g e n e r a l l y found t h a t when the r e a c t i n g p a r t n e r s i n r e a c t i o n 1 have ΔρΚ > 0 ( i . e . , Κ » 1 ) , the value of i s independent of ΔρΚ ( d i f f u s i o n c o n t r o l l e d ) as

Downloaded by KTH ROYAL INST OF TECHNOLOGY on August 24, 2015 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch003

i n d i c a t e d by Bronsted p l o t s of l o g k^ v s . ΔρΚ having zero i n t h i s region.

Conversely, when ΔρΚ

of l o g k^ vs. ΔρΚ w i l l have u n i t slope.

< 0 (i.e., Κ «1),

slope a plot

Such Bronsted p l o t s are

discussed e x t e n s i v e l y by E i g e n (_1) and are a l s o considered by Margerum (10). The second statement has to do w i t h the n o t i o n t h a t i n the Eigen mechanism f o r proton t r a n s f e r there must be intermediate ion p a i r s . The reference t o the unpublished work of Kreevoy and Liang (3) r e f l e c t s the impact of t h e i r s t u d i e s on some of our own recent work surveyed below. In f a c t , there i s an extensive p u b l i s h e d l i t e r a t u r e concerning phenol-amine complexes i n which the e x i s t e n c e of the intermediates i n equation 2 has been estab­ l i s h e d i n d i f f e r e n t organic s o l v e n t s . One of the o l d e s t such papers i s t h a t of B e l l and Barrow (11) going back t o 1959. Others i n c l u d e Hudson and co-workers (12) i n 1972, and Baba and co-workers (13) i n 1969. The next g e n e r a l i z a t i o n , number 3 above, has t o do w i t h the n o t i o n t h a t two simple c a t i o n s w i l l r e a c t w i t h one another l e s s r a p i d l y than a c a t i o n and an anion of corresponding s i z e would. Table I presents examples from the l i t e r a t u r e , where, i n every case, a proton r e a c t s w i t h species of d i f f e r e n t charge types, and there i s a steady decrease i n the r a t e of r e a c t i o n as one proceeds from top t o bottom i n t h a t t a b l e . Table I I summarizes a temperature jump study (14) of the r e a c t i o n of hydroxide i o n w i t h v a r i o u s i n t r a m o l e c u l a r l y hydrogen bonded malonic a c i d monoanions and p o i n t s up the f a c t t h a t , as the s t e r i c hindrance i n c r e a s e s , a c o n s i d e r a b l e strengthening i n the hydrogen bond occurs w i t h a concomitant slowing down of the r a t e a t which the r e a c t i o n proceeds ( g e n e r a l i z a t i o n number 4 ) . At the time the authors d i d not foresee t h a t i t would be pos­ s i b l e t o d i s t i n g u i s h between whether the hydrogen bond was bro­ ken d i r e c t l y by the a t t a c k i n g base or whether, i n f a c t , there f i r s t had t o be a c o l l a p s e of the hydrogen bond i n t o an open form o f the anion t h a t would subsequently r e a c t w i t h the base. Thus, they simply p o s t u l a t e d the former mechanism ( d i r e c t a t ­ tack) . G e n e r a l i z a t i o n number 5 r e f l e c t s the work of H i b b e r t and Awwal (6) who have concluded t h a t i t i s the l a t t e r k i n d of mech­ anism ( i n v o l v i n g the open form of the anion) t h a t p r e v a i l s i n i n t r a m o l e c u l a r hyrogen bond breaking r e a c t i o n s . This i s a p o i n t , however, on which there i s s t i l l room f o r e q u i v o c a t i o n .

In Mechanistic Aspects of Inorganic Reactions; Rorabacher, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

MECHANISTIC ASPECTS O F INORGANIC REACTIONS

Downloaded by KTH ROYAL INST OF TECHNOLOGY on August 24, 2015 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch003

66

Table I Experimental Rate Constants f o r Base P r o t o n a t i o n I l l u s t r a t i n g the I n f l u e n c e of I o n i c Charge on P r o t o n a t i o n Reactions i n Aqueous S o l u t i o n (25 C, μ = 0 M) H +

+

A

(n )-l +

Reactants

H

+

H

+

H

+

H

+

H

+

k

$

n

M

+

k , M s

Method

f

+ HS"

7..5 X 1 0

1 0

E-disp

+ N(CH,)„ ? 3 + CuOH + (NH,) CoOH

2, .5 X

10

1 0

NMR

X 10

1 0

Sound

~ 1 2+

+ Pt(en) (en )

Ref:

2

J

+

1,.4 X 10

9

T-jump

2,.6 X 1 0

8

T-jump

E i g e n , M.; Kruse, W.; Maass, G.; DeMaeyer, L. Progr. React. K i n . 1964, 2, 287.

Note t h a t the r a t e constant f o r d i f f u s i o n c o n t r o l l e d r e a c t i o n s between a proton and.a base decreases by a f a c t o r o f 0.3 t o 0.5 f o r each p o s i t i v e charge added to the base.

In Mechanistic Aspects of Inorganic Reactions; Rorabacher, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

3.

EYRING E T A L .

Proton-Transfer

Reaction Rates and

67

Mechanisms.

Table I I

Downloaded by KTH ROYAL INST OF TECHNOLOGY on August 24, 2015 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch003

Experimental Rate Constant Data I l l u s t r a t i n g the Role o f S t e r i c E f f e c t s i n Strengthening the I n t r a m o l e c u l a r Hydrogen Bond i n the Monoanion o f 2 , 2 - D i s u b s t i t u t e d Malonic A c i d s i n Aqueous S o l u t i o n (25 C, 0.1 M NaClO^) 0 It

r Substituents on Malonic A c i d

k , f

Diethyl 28 Ethyl-n-butyl 16 Ethylisoamyl 16 Ethylphenyl 14 Di-n-butyl 14 Di-n-heptyl 14 Di-n-propyl 13 E t h y l i s o p r o p y 15.5 Diisopropyl 4.5

M"

•1 -1 s

X 7 X 7 X 7 X 7 X 7 X 7 X 7 X 7 X 1θ' 1 0

1 0

1 0

1 0

1 0

1 0

1 0 1 0

+ OH

f

Ε * a

AG*/

5 6 6 6 6 6 6.5 7.5 8

2

A" + H0 2

6 6.5 6.5 6.5 6.5 6.5 6.5 7 7

AH*/

4.5 5.5 5.5 5 5 5 6 7 7.5

A

s

t

f"

-5 -3 -3 -4 -4 -4 -1 0 +2

+3 +6 +6 +2 +6 +6 +6 +12 +16

k Units: kcal/mol — U n i t s : e.u. Ref: M i l e s , M. H.; E y r i n g , Ε. M.; E p s t e i n , W. W.; Ostlund, R. E. J . Phys. Chem. 1965, 69, 467. Note t h a t the primary e f f e c t o f the a l k y l s u b s t i t u e n t s i s s t e r i c , r a t h e r than e l e c t r o n i c , w i t h o n l y branching on the c a r ­ bon attached t o the parent malonic a c i d e f f e c t i v e i n c l o s i n g t h e jaws t o strengthen the i n t r a m o l e c u l a r hydrogen bond. Taking the " m e l t i n g " o f one water molecule from the d i a n i o n t o c o n t r i b u t e 5 e.u. t o A S ^ , °ne may estimate the number o f s o l v e n t molecules t h a t must be removed i n the reverse r e a c t i o n t o form the a c t i ­ vated complex.

In Mechanistic Aspects of Inorganic Reactions; Rorabacher, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

MECHANISTIC ASPECTS O F INORGANIC REACTIONS

Downloaded by KTH ROYAL INST OF TECHNOLOGY on August 24, 2015 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch003

68

Perlmutter-Hayman and Shinar (15, 16) have s t u d i e d by tempera­ ture-jump the r e a c t i o n s o f bases w i t h d i f f e r e n t acid-base i n d i ­ c a t o r s having i n t r a m o l e c u l a r hydrogen bonds. With T r o p a e o l i n 0, d i r e c t a t t a c k o f the base on the hydrogen b r i d g e predominates according t o t h e i r i n t e r p r e t a t i o n , whereas, f o r A l i z a r i n Yellow G, the observed r e l a x a t i o n i s a s c r i b e d c h i e f l y t o d i f f u s i o n c o n t r o l l e d r e a c t i o n between the base and t h a t p a r t o f the i n d i ­ c a t o r present i n the open form. Thus, data e x i s t t h a t l e a d one t o doubt the g e n e r a l i t y o f statement number 5. Statement number 6 has t o do w i t h carbon a c i d s and i s sup­ ported by reference ( 7 ) . There a r e , i n f a c t , other references t h a t suggest s o l v e n t p l a y s a much more d i r e c t r o l e i n the k i n e t ­ i c s o f p r o t o n a t i n g carbanions than statement number 6 would im­ p l y . F o r example, there i s evidence t h a t n u c l e a r r e o r g a n i z a t i o n and r e h y b r i d i z a t i o n o f the carbon atom are too r a p i d t o have much k i n e t i c importance when compared w i t h s o l v e n t r e o r i e n t a ­ tion. The s t r o n g dependence o f carbanion p r o t o n a t i o n r a t e s on the s o l v e n t supports t h i s view. These r a t e s are t y p i c a l l y much f a s t e r i n organic s o l v e n t s , such as DMSO, than i n water. A par­ t i c u l a r r e a c t i o n t h a t was s t u d i e d i n d i f f e r e n t s o l v e n t s (17) i s C(N0 ) " + H 2

3

+

£ HC(N0 ) 2

3

(3)

In cyclohexanol and i n i s o b u t a n o l the r a t e s a r e d i f f u s i o n con­ t r o l l e d and 10 times f a s t e r than they are i n water, even though i n a l l s o l v e n t s the same r e h y b r i d i z a t i o n occurs. A recent com­ p a r i s o n (18) o f r a t e s o f p r o t o n a t i o n and methyl mercuration o f d e l o c a l i z e d carbanions i n aqueous s o l u t i o n by Raycheba and Geier a l s o addresses g e n e r a l i z a t i o n number 6. Only the methyl' merc u r a t i o n s are d i f f u s i o n c o n t r o l l e d and three t o four orders o f magnitude f a s t e r than the p r o t o n a t i o n . Thus, the wrong hydrogen bond s t r u c t u r e around the carbanion i n water s t r o n g l y i n h i b i t s proton t r a n s f e r , whereas a t t a c k o f the methyl mercury i o n i s not i n f l u e n c e d because t h i s i o n does not i n t e r a c t s i g n i f i c a n t l y w i t h the hydrogen bonded network. I n reference t o statement number 7, Kresge's k i n e t i c s t u d i e s (8) i n d i c a t e t h a t a proton t r a n s f e r from one oxygen t o another would be f a s t e r than t h a t from a n i t r o g e n t o another nitrogen. Some o f Kresge's recent unpublished work (19) sug­ gests t h a t the t r a n s f e r o f a proton from phosphorus t o oxygen i s somewhat slower than the corresponding t r a n s f e r between n i ­ trogen and oxygen. While there i s nothing p a r t i c u l a r l y the matter w i t h statement number 7 as w r i t t e n , i t i s one t h a t c l e a r l y i s going t o undergo more e l a b o r a t i o n . The l a s t o f these e i g h t statements has t o do w i t h the idea t h a t , i f a very s m a l l amount o f an organic s o l v e n t such as meth­ a n o l i s introduced i n t o an aqueous s o l u t i o n , the r a t e o f reac­ t i o n ( i n v o l v i n g proton t r a n s f e r ) may speed up because o f t h e i n ­ creased hydrogen-bonded water s t r u c t u r e .

In Mechanistic Aspects of Inorganic Reactions; Rorabacher, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

3.

EYRiNG E T A L .

Proton-Transfer

Reaction Rates and

Mechanisms

69

Downloaded by KTH ROYAL INST OF TECHNOLOGY on August 24, 2015 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch003

Future Trends Table I I I suggests some o f the proton t r a n s f e r k i n e t i c s t u d i e s one i s l i k e l y t o hear most about i n t h e near f u t u r e . The v e r y f i r s t e n t r y , c o l l o i d a l suspensions, i s one t h a t Pro­ f e s s o r Langford mentioned e a r l i e r i n these proceedings. I n the r e l a x a t i o n f i e l d , one o f the comparatively new developments has been the measurement o f k i n e t i c s o f i o n t r a n s f e r t o and from c o l l o i d a l suspensions. Yasunaga a t Hiroshima U n i v e r s i t y i s a pioneer i n t h i s type o f study (20, 21, 2 2 ) . H i s students take m a t e r i a l s such as i r o n oxides t h a t form c o l l o i d a l suspensions t h a t do not p r e c i p i t a t e r a p i d l y and measure the k i n e t i c s o f pro­ ton t r a n s f e r t o the c o l l o i d a l p a r t i c l e s u s i n g r e l a x a t i o n t e c h ­ niques such as the pressure-jump method. Such s t u d i e s engender i n t e r e s t i n quarters t h a t one would not a n t i c i p a t e . F o r example, a c i v i l engineer a t S t a n f o r d U n i ­ v e r s i t y r e c e n t l y sought i n f o r m a t i o n about the e l e c t r i c f i e l d jump (Ε-jump) r e l a x a t i o n technique. I t i s quite surprising that t h i s l e a s t w i d e l y used o f the r e l a x a t i o n methods would appeal t o engineers as a means o f measuring the k i n e t i c s o f t r a n s f e r o f heavy metals t o and from c o l l o i d a l suspensions as i s done i n c l e a r i n g water. T h i s , o f course, i s a very p r a c t i c a l problem f o r which engineers can deduce i n t e r e s t i n g f e a t u r e s from t h i s type o f fundamental k i n e t i c measurement. As f o r s t u d i e s o f i c e , a search o f the recent proton t r a n s ­ f e r l i t e r a t u r e d i s c l o s e s t h a t i c e i s one o f the substances t h a t s t i l l generates i n t e r e s t (23, 24) p a r t i c u l a r l y as i t r e l a t e s t o membrane p r o t o n - t r a n s f e r problems. S o l i d b a t t e r y e l e c t r o l y t e s can a l s o i n v o l v e (25, 26, 27) proton t r a n s f e r s , although these are o b v i o u s l y v e r y slow compared t o t h e kinds o f r a t e s t h a t we are used t o c o n s i d e r i n g i n aqueous i n o r g a n i c s o l u t i o n s . Picosecond time regime k i n e t i c s t u d i e s o f proton t r a n s f e r are coming i n t o vogue (28, 29, 3 0 ) , p a r t i c u l a r l y f o r i n t r a ­ molecular processes t h a t can be v e r y f a s t . Bound t o p l a y an i n c r e a s i n g l y important r o l e i n the e l u c i d a t i o n o f proton t r a n s ­ f e r s are the gas phase i o n - s o l v e n t c l u s t e r techniques that r e v e a l d r a m a t i c a l l y the r o l e played by s o l v e n t molecules i n these r e a c t i o n s (31, 3 2 ) . Dr. Swaddle's d i s c u s s i o n o f volume measurements (33) i s an i n t e r e s t i n g one from our p o i n t o f view, because we l a t e l y have b u i l t an e l e c t r i c - f i e l d - j u m p c e l l t h a t would work a t f a i r l y high pressures. Our reason f o r doing so may be amusing. We thought t h a t perhaps i t would be p o s s i b l e t o s o l v a t e i o n s , o r a t l e a s t i o n p a i r s , u s i n g xenon as a s o l v e n t . This p o s s i b i l i t y had been suggested t o us by the work o f P e t e r Rentzepis ( 3 4 ) . We d i s c o v e r e d , t o our c h a g r i n , t h a t w h i l e one can indeed d i s ­ solve r a t h e r l a r g e molecules, such as lysozyme, i n l i q u i d xenon, none o f the i o n p a i r s t h a t we t r i e d , i n c l u d i n g some v e r y l a r g e ions i n which the charge was spread over a f a i r l y l a r g e s i z e d

In Mechanistic Aspects of Inorganic Reactions; Rorabacher, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by KTH ROYAL INST OF TECHNOLOGY on August 24, 2015 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch003

70

MECHANISTIC ASPECTS OF INORGANIC REACTIONS

Table I I I E i g h t Areas f o r Future Research i n the Study of Proton T r a n s f e r K i n e t i c s

1. 2. 3. 4. 5. 6. 7. 8.

C o l l o i d a l suspensions Ice S o l i d battery electrodes Picosecond time regime Gas phase i o n - s o l v e n t i n t e r a c t i o n s Volumes of a c t i v a t i o n Solvent e f f e c t s Laser induced s o l v e n t i o n i z a t i o n

In Mechanistic Aspects of Inorganic Reactions; Rorabacher, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by KTH ROYAL INST OF TECHNOLOGY on August 24, 2015 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch003

3.

EYRING ET AL.

Proton-Transfer

Reaction Rates and

71

Mechanisms

molecule, a c t u a l l y d i s s o l v e i n the l i q u i d xenon (35). So we a r e apparently never going t o be doing Ε-jump s t u d i e s a t compara­ t i v e l y h i g h pressures i n l i q u i d xenon. But t h e r e i s no reason, i n p r i n c i p l e , why one c o u l d not perform e l e c t r i c f i e l d jump k i ­ n e t i c s t u d i e s over an extended range o f pressures on many o f the aqueous systems s t u d i e d p r e v i o u s l y o n l y a t atmospheric pressure and thus deduce volumes o f a c t i v a t i o n f o r p r o t o n t r a n s f e r and other r a p i d r e a c t i o n s i n v o l v i n g charge n e u t r a l i z a t i o n . Before t r e a t i n g the l a s t two t o p i c s i n Table I I I l e t us consider a r h e t o r i c a l q u e s t i o n : I f indeed many o f the problems r e l a t i n g t o p r o t o n t r a n s f e r are reasonably w e l l s o l v e d from the p o i n t o f view o f someone who, l i k e Dale Margerum, goes ahead and measures k i n e t i c s o f l i g a n d exchange, a r e the k i n e t i c s o f p r o t o n t r a n s f e r s i n homogeneous aqueous and non-aqueous s o l u t i o n s s t i l l going t o be s t u d i e d f o r other reasons? The obvious answer i s "Yes" s i n c e one w i l l use proton t r a n s f e r k i n e t i c s s t u d i e s as a t o o l f o r i n v e s t i g a t i n g other p r o p e r t i e s o f chemical systems. In p a r t i c u l a r , we have been v e r y much i n t e r e s t e d i n u s i n g p r o t o n t r a n s f e r k i n e t i c s as a means o f measuring how i o n s o l v a ­ t i o n changes as a s o l u t e e q u i l i b r i u m i s t r a n s f e r r e d from one organic s o l v e n t t o some other o r g a n i c s o l v e n t . The t o o l t h a t we have used i n most o f these s t u d i e s has been the e l e c t r i c f i e l d - j u m p technique. The square, h i g h v o l t a g e wave instrumenta­ t i o n w i t h spectrophotometric d e t e c t i o n (36,37) i s v e r y d i f f e r e n t from the d i s p e r s i v e Ε-jump apparatus w i t h a Wheatstone b r i d g e d e t e c t o r (38) t h a t Ken K u s t i n taught me how t o use i n E i g e n s l a b o r a t o r y over 20 years ago. I n the present day instrument the e x p o n e n t i a l decay i n the p h o t o m u l t i p l i e r v o l t a g e , a f t e r t h e h i g h v o l t a g e has been taken o f f the sample c e l l , y i e l d s t h e chemical r e l a x a t i o n ( o r r e l a x a t i o n s ) o f the chemical e q u i l i b r i u m (or e q u i l i b r i a ) . The time constant o f the l a s t e x p o n e n t i a l decay i s the chemical i n f o r m a t i o n o f i n t e r e s t i n such p r o t o n transfer kinetic studies. 1

Proton T r a n s f e r s i n Methanol, A c e t o n i t r i l e , and B e n z o n i t r i l e Methanol i s one o f the easy s o l v e n t s t o work w i t h u s i n g the e l e c t r i c - f i e l d - j u m p technique. The p r e p a r a t i o n o f the s o l v e n t i s not n e a r l y as arduous as i s t h a t o f some other s o l v e n t s such as a c e t o n i t r i l e . I n methanol we observed t h a t p i c r i c a c i d anion protonates a t the d i f f u s i o n c o n t r o l l e d r a t e whereas d i p i c r y l amine s t e r i c a l l y hinders the p r o t o n from recombining w i t h i t . (39).

In Mechanistic Aspects of Inorganic Reactions; Rorabacher, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by KTH ROYAL INST OF TECHNOLOGY on August 24, 2015 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch003

72

MECHANISTIC ASPECTS OF INORGANIC REACTIONS

In another study (40) we found t h a t p r o t o n a t i o n o f p y r i d i n e i s d i f f u s i o n - c o n t r o l l e d w i t h a one-to-one solute-methanol com­ p l e x as the r e a c t i v e s p e c i e s . Thus, w h i l e methanol p l a y s essen­ t i a l l y no r o l e i n the p r o t o n t r a n s f e r t o d i p i c r y l a m i n e i n t h e f i r s t study, i t i s indeed i n t i m a t e l y i n v o l v e d i n the p r o t o n transfer to pyridine. Now l e t us c o n s i d e r the r e s u l t s o f an Ε-jump study (14) o f p r o t o n t r a n s f e r between p i c r i c a c i d (A) and methyl r e d (B) k

AH + Β

l

2

A

in acetonitrile.

y

+ +

HB

(4)

The formula f o r methyl red i s

r-COOH N(CH ) 3

2

Rates a r e found t o be a f a c t o r o f t e n slower than d i f f u s i o n con­ t r o l suggesting a requirement f o r s o l v e n t r e o r g a n i z a t i o n around the s t r o n g l y s o l v a t e d c a t i o n s . Another p r o t o n t r a n s f e r s t u d i e d by the Ε-jump technique i n a c e t o n i t r i l e (42) i s t h a t between p - n i t r o p h e n o l (AH) and t r i ethylamine ( B ) . The e x t i n c t i o n c o e f f i c i e n t s f o r each o f t h e species i n t h e f o l l o w i n g e q u i l i b r i u m have been measured by Kreevoy and L i a n g ( 3 ) : +

AH + Β £ AH...B £ A"... HB J A" + BH λ = 306 nm 320 400 427

+

(5)

One can be e x c i t e d about a s p e c t r o p h o t o m e t r y Ε-jump study o f t h i s system because, i n p r i n c i p l e , i t should be p o s s i b l e t o mea­ sure t h e r e l a x a t i o n times a s s o c i a t e d w i t h each o f the s u c c e s s i v e equilibria. The i n t e r m e d i a t e s are s t a b l e , b u t t h e r e l a x a t i o n data a r e c o n s i s t e n t w i t h the s i n g l e e q u i l i b r i u m

In Mechanistic Aspects of Inorganic Reactions; Rorabacher, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

3.

EYRING E T A L .

Downloaded by KTH ROYAL INST OF TECHNOLOGY on August 24, 2015 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch003

AH + B j> A

Proton-Transfer

Reaction Rates and

Mechanisms

+ BH

73 (6)

r e g a r d l e s s of the m o n i t o r i n g wavelength. The i o n recombination 9 -1 -1 r a t e constant, ~9 χ 10 M s , i s 5 times slower than a d i f ­ fusion controlled rate. A requirement f o r s o l v e n t r e o r g a n i ­ z a t i o n around the c a t i o n i s again p o s t u l a t e d . Thus, i n both cases i n v o l v i n g a c e t o n i t r i l e , s o l v e n t movement i s i n t i m a t e l y involved i n proton t r a n s f e r . Whereas i n a c e t o n i t r i l e the r a t e l i m i t i n g step i s an open­ ing of the s o l v e n t s h e l l of a r e a c t a n t , i n b e n z o n i t r i l e the back r e a c t i o n of (5) between the protonated a c r i d i n e orange c a t i o n (BH ) and the 3-methyl-4-nitrophenolate i o n (A ) t o form the i o n p a i r i s d i f f u s i o n c o n t r o l l e d (although the o v e r a l l r e a c t i o n t o the n e u t r a l molecules i s an endothermic p r o c e s s ) . Because of i t s lower d i e l e c t r i c constant than a c e t o n i t r i l e , the e l e c t r o ­ s t a t i c i n t e r a c t i o n s between r e a c t a n t s i n b e n z o n i t r i l e outweigh s p e c i f i c solvent effects. I n other words, i n b e n z o n i t r i l e a r a t e l i m i t i n g c o u p l i n g of p r o t o n t r a n s f e r t o the r e o r i e n t a t i o n of s o l v e n t d i p o l e s does not occur and the measured r a t e s are v e r y f a s t . The i o n recombination ( I ) + ( I I ) ·+ i n b e n z o n i t r i l e has a d i f f u s i o n c o n t r o l l e d s p e c i f i c r a t e ( t h e o r e t i c a l ) k = 9 -1 -1 (4.3 - 5.6) χ 10 M s and a measured (T-jump) s p e c i f i c r a t e k = (3.5 ± 0.8) χ 10 M" S " a t 0.1 M i o n i c s t r e n g t h . Table IV i s an attempt t o summarize the r e s u l t s of these p r o t o n t r a n s f e r s t u d i e s i n nonaqueous s o l v e n t s . There i s no systematic t r e n d i n what seems t o be the r a t e l i m i t i n g step i n c o n t r a s t t o the a t t r a c t i v e E i g e n - W i l k i n s g e n e r a l i z a t i o n f o r the mechanism of metal i o n complexation. O b v i o u s l y , many more pro­ t o n t r a n s f e r k i n e t i c s t u d i e s i n nonaqueous s o l u t i o n s are needed f o r b e a u t i f u l g e n e r a l i z a t i o n s t o emerge. Whether i n v e s t i g a t o r s w i l l have the p a t i e n c e t o c a r r y them out or not i s the o n l y uncertainty. 9

1

1

Proton T r a n s f e r i n IR Laser E x c i t e d Solvents Another s i t u a t i o n i n which an a l r e a d y w e l l - s t u d i e d p r o t o n t r a n s f e r r e a c t i o n serves as a probe o f a p h y s i c a l phenomenon has been suggested by K n i g h t , Goodall and Greenhow (43, 44). They i o n i z e d water w i t h s i n g l e photons of Nd:glass l a s e r i n f r a r e d r a d i a t i o n and measured an i o n recombination r a t e constant f o r the r e a c t i o n +

H ( a q ) + 0H~(aq)

H 0(£) 2

(7)

i n e x c e l l e n t agreement w i t h t h a t r e p o r t e d by E i g e n and De Maeyer (45). One might a t f i r s t wonder why, more than two decades a f t e r the c l a s s i c Eigen-De Maeyer experiments, someone would remeasure the k i n e t i c s of i o n recombination i n water. The

In Mechanistic Aspects of Inorganic Reactions; Rorabacher, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

74

MECHANISTIC ASPECTS OF INORGANIC REACTIONS

Downloaded by KTH ROYAL INST OF TECHNOLOGY on August 24, 2015 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch003

Table IV Summary o f the R e l a t i o n s h i p s between Nonaqueous Solvent P r o p e r t i e s and Rate L i m i t i n g Steps f o r Proton T r a n s f e r

Solvent Type

Solvents

Rate L i m i t i n g Step

Polar, Protic

Water, Methanol

Polar, Aprotic Moderately P o l a r , Aprotic Low P o l a r , A p r o t i c

Acetonitrile Benzonitrile

D i f f u s i o n together of r e a c t a n t s Solvent r e o r g a n i z a t i o n D i f f u s i o n together of reactants R o t a t i o n o f encounter complex

Chlorobenzene

100

Wavelength, microns Figure 1. The near IR absorption spectrum of anhydrous liquid hydrofluoric acid with a few of the many possible IR wavelengths obtainable from a neodymiumdoped glass laser superimposed.

In Mechanistic Aspects of Inorganic Reactions; Rorabacher, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by KTH ROYAL INST OF TECHNOLOGY on August 24, 2015 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch003

3.

EYRING ET A L .

Proton-Transfer

Reaction Rates and

Mechanisms

75

i n t r i g u i n g aspect o f such an experiment i n any neat s o l v e n t i s t h a t the i o n - c r e a t i n g mechanism competes s u c c e s s f u l l y i n time w i t h the t h e r m a l i z a t i o n o f the near i n f r a r e d l a s e r energy de­ p o s i t e d i n the s o l v e n t v i b r a t i o n s . C l e a r l y , one ought to study other u l t r a p u r e , a u t o i o n i z i n g s o l v e n t s to see whether there i s something i n t r i n s i c a l l y p e c u l i a r about water, such as i t s hydro­ gen bonded s t r u c t u r e , t h a t makes p o s s i b l e a long l i f e t i m e f o r the d e r e a l i z a t i o n o f the thermal energy deposited by the l a s e r . As F i g u r e 1 suggests, i t i s now easy t o generate i n f r a r e d p u l s e s from a l a s e r at a v a r i e t y o f wavelengths and thus e x c i t e a p a r ­ t i c u l a r s o l v e n t at many d i f f e r e n t i n f r a r e d wavelengths t o see what impact t h a t v a r i a b l e has on t h i s process o f c r e a t i n g i o n s i n the pure s o l v e n t . Hydrogen f l u o r i d e i s the most obvious o f s e v e r a l a u t o i o n i z i n g s o l v e n t s t h a t an i n o r g a n i c chemist could probe i n t h i s f a s h i o n . Acknowledgments We thank Professors M. M. Kreevoy and A . J . Kresge f o r en­ l i g h t e n i n g comments and the donors o f the Petroleum Research Fund, administered by the American Chemical S o c i e t y , f o r p a r t i a l support o f t h i s r e s e a r c h .

Literature Cited 1. Eigen, M. Angew. Chem., Int. Ed., Engl. 1964, 3, 1. 2. Bell, R. P. "The Proton in Chemistry;" Chapman and Hall, London, 1973, pp.130, 194. 3. Kreevoy, M. M.; Liang, Τ. Μ., unpublished work. 4. De Maeyer, L.; Kustin, K. Ann. Rev. Phys. Chem. 1963, 14, 5. 5. Bell, R. P. op. cit., pp. 130, 131. 6. Hibbert, F.; Awwal, A. J. Chem. Soc., Perkin II 1978, 939. 7. Okuyama, T.; Ikenouchi, Y.; Fueno, T. J. Am. Chem. Soc. 1978, 100, 6162. 8. Kresge, A. J. Pure Appl. Chem. 1981, 53, 189. 9. Nicola, C. U.; Labhardt, Α.; Schwarz, G. Ber. Bunsenges. Phys. Chem. 1979, 83, 43; for an alternative view see Symons, M. C. R. Acc. Chem. Res. 1981, 14, 179. 10. Margerum, D. W. This Volume, American Chemical Society: Washington, D. C., 1982. 11. Bell, C. L.; Barrow, G. M. J. Chem. Phys. 1959, 31 1158. 12. Hudson, R. Α.; Scott, R. M.; Vinogradov, S. N. J. Phys. Chem. 1972, 76, 1989. 13. Baba, H.; Matsuyama, Α.; Kokubun, H. Spectrochim. Acta 1969, 25A, 1709. 14. Miles, M. H.; Eyring, Ε. M.; Epstein, W. W.; Ostlund, R. E. J. Phys. Chem. 1965, 69, 467. 15. Perlmutter-Hayman, B.; Shinar, R. Int. J. Chem. Kinet. 1977, 9, 1.

In Mechanistic Aspects of Inorganic Reactions; Rorabacher, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by KTH ROYAL INST OF TECHNOLOGY on August 24, 2015 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch003

76

MECHANISTIC ASPECTS OF INORGANIC REACTIONS

16. Perlmutter-Hayman, B.; Shinar, R. Int. J. Chem. Kinet. 1978, 10, 407. 17 Chaudri, S. Α.; Asmus, K.-D. J. Chem. Soc., Faraday I 1972, 68, 385. 18. Raycheba, J. M. T.; Geier, G. Inorg. Chem. 1979, 18, 2486. 19. Kresge, A. J. Private communication. 20. Ashida, M.; Sasaki, M.; Kan, H.; Yasunaga, T.; Hachiya, K.; Inoue, T. J. Colloid Interface Sci. 1978, 67, 219. 21. Hachiya, K.; Ashida, M.; Sasaki, M.; Kan, H.; Inoue, T.; Yasunaga, T. J. Phys. Chem. 1979, 83, 1866. 22. Astumian, R. D.; Sasaki, M.; Yasunaga, T.; Schelly, Z. A. J. Phys. Chem., in press. 23. Knapp, E. W.; Schulten, K.; Schulten, Z. Chem. Phys. 1980, 46 215. 24. Kunst, M.; Warman, J. M. Nature 1980, 288, 465. 25. Farrington, G. C.; Briant, J. L. Mat. Res. Bull. 1978, 13, 763. 26. Farrington, G. C.; Briant, J. L. Science 1979, 204, 1371. 27. Roth, W. L.; Anne, M.; Tranqui, D. Revue de Chimie Minerale 1980, 17, 379. 28. Smith, Κ. K.; Kaufmann, Κ. J.; Huppert, D.; Gutman, M. Chem. Phys. Lett. 1979, 64, 522. 29. Hetherington, W. Μ., III; Miukeels, R. H.; Eisenthal, Κ. B. Chem. Phys. Lett. 1979, 66, 230. 30. Barbara, P. F.; Brus, L. E.; Rentzepis, P. M. J. Am. Chem. Soc. 1980, 102, 5631. 31. Farneth, W. E.; Brauman, J. I. J. Am. Chem. Soc. 1976, 98, 7891. 32. McDonald, R. N.; Chowdhury, A. K.; Setser, D. W. J. Am. Chem. Soc. 1980, 102, 4836. 33. Swaddle, T. W. This Volume, American Chemical Society: Washington, D. C., 1982. 34. Rentzepis, P. M.; Douglass, D. C. Biophys. J. 1981, 33, 271a. 35. Marshall, D. B.; Strohbusch, F.; Eyring, E. M. J. Chem. Eng. Data 1981, 26, 333. 36. Olsen, S. L.; Silver, R. L.; Holmes, L. P.; Auborn, J. J.; Warrick, P., Jr.; Eyring, Ε. M. Rev. Sci. Instrum. 1971, 42, 1247. 37. Olsen, S. L.; Holmes, L. P.; Eyring, Ε. M. Rev. Sci. In­ strum. 1971, 45, 859. 38. Eigen, M.; De Maeyer, L. "Investigation of Rates and Mechanisms of Reactions," Technique of Organic Chemistry, Vol. 8, Part 2, Friess, S. L.; Lewis, E. S.; Weissberger, A. Eds.; Interscience Publishers: New York, 1963; p. 988. 39. Strohbusch, F.; Marshall, D. B.; Vazquez, F. Α.; Cummings, A. L.; Eyring, E. M. J. Chem. Soc., Faraday I 1979, 75, 2137.

In Mechanistic Aspects of Inorganic Reactions; Rorabacher, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by KTH ROYAL INST OF TECHNOLOGY on August 24, 2015 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch003

3.

EYRING

ET

AL.

Proton-Transfer

Reaction Rates and

Mechanisms

77

40. Marshall, D. B.; Eyring, Ε. M.; Strohbusch, F.; White, R. D. J. Am. Chem. Soc. 1980, 102, 7065. 41. Strohbusch, F.; Marshall, D. B.; Eyring, E. M. J. Phys. Chem. 1978, 82, 2447. 42. Marshall, D. B.; Strohbusch, F.; Eyring, E. M. J. Phys. Chem. 1981, 85, 2270. 43. Goodall, D. M.; Greenhow, R. C. Chem. Phys. Lett. 1971, 9, 583. 44. Knight, B.; Goodall, D. M.; Greenhow, R. C. J. Chem. Soc., Faraday II 1979, 75, 841. 45. Eigen, M.; De Maeyer, L. Z. Elektrochem. 1955, 59, 986. RECEIVED April 5,1982.

In Mechanistic Aspects of Inorganic Reactions; Rorabacher, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

General Discussion—Proton-Transfer Reaction Rates and Mechanisms

Downloaded by KTH ROYAL INST OF TECHNOLOGY on August 24, 2015 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch003

Leader:

Ramesh Patel

DR. RAMESH PATEL (Clarkson C o l l e g e ) : I t appears t h a t s t u d i e s on c o l l o i d a l systems may represent an extremely impor­ t a n t area f o r the f u t u r e . We have a l s o been doing some c o l l o i ­ d a l work, p a r t i c u l a r l y d e a l i n g w i t h the s o l u t i o n chemistry t h a t precedes the formation of very h i g h l y monodispersed c o l l o i d a l p a r t i c l e s . One such system w i t h i r o n phosphate has been i n c l u d e d i n the p o s t e r p r e s e n t a t i o n . Yasunaga has s t u d i e d c o l l o i d a l systems i n v o l v i n g t i t a n i u m d i o x i d e . What I f i n d very curious i f t h a t he r e p o r t s t h a t the recombination r a t e of hydroxyl ions r e a c t i n g w i t h the t i t a n i u m i s orders of magnitude s m a l l e r than what one f i n d s i n other sys­ tems, i n c l u d i n g i c e , of course, and other s o l u t i o n s . I was won­ d e r i n g whether you have any comment. DR. EYRING: I have no f a c t , what you say i s t r u e .

explanation

f o r i t e i t h e r , but

in

DR. PATEL: One reason f o r much of the i n t e r e s t which pre­ v a i l s i n t h i s area r i g h t now, e s p e c i a l l y w i t h i r o n ' I I ) , has to do w i t h the c o r r o s i o n of s t e e l i n i n d u s t r y and a l s o i n nuclear r e a c t o r s . Normally one t h i n k s of forming p r e c i p i t a t e s or par­ t i c l e s by adding base t o a s o l u t i o n and c o o l i n g i t down. I f i r o n ( I I I ) s o l u t i o n s are made more a c i d i c and i f you r a i s e the temperature, these c o n d i t i o n s l e a d t o the formation of v e r y , very w e l l - d e f i n e d p a r t i c l e s . A very important event i n t h i s i s the p r o t o n t r a n s f e r k i n e t i c s t h a t l e a d to the formation of the h y d r o l y s i s of many of these t r i v a l e n t i o n s . DR. THOMAS MEYER ( U n i v e r s i t y of North C a r o l i n a ) : F i r s t , do you have any comments to make about chemical r e a c t i o n s i n which proton t r a n s f e r accompanies e l e c t r o n t r a n s f e r ? Second, do you have any comments to make on s i t u a t i o n s where p r o t o n t r a n s f e r takes p l a c e between i n t e r f a c e s , e.g., from one s o l v e n t to anoth­ er or perhaps from a s o l v e n t i n t o a membrane? DR. EYRING: C e r t a i n l y the l a t t e r of the two subjects you are t a l k i n g about i s one t h a t i s of p a r t i c u l a r i n t e r e s t t o us. We have i n v e s t e d a great d e a l of our recent e f f o r t on a t e c h ­ nique c a l l e d photoacoustic spectroscopy, which we initially thought we could use f o r l o o k i n g a t r e a c t i o n s o c c u r r i n g a t a surface. Up to t h i s p o i n t , however, we have been disappointed because, i n f a c t , the s i g n a l - t o - n o i s e r a t i o i s so bad t h a t i t would take a very long time to o b t a i n s a t i s f a c t o r y data. Thus, the r e a c t i o n would have to be extremely slow before we would be able t o say anything about i t from photoacoustic spectroscopic measurements.

In Mechanistic Aspects of Inorganic Reactions; Rorabacher, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

3.

EYRING E T A L .

Proton-Transfer

Reaction Rates and

Mechanisms

79

Downloaded by KTH ROYAL INST OF TECHNOLOGY on August 24, 2015 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch003

DR. EPHRAIM BUHKS ( U n i v e r s i t y of Delaware): I would l i k e to ask your o p i n i o n about a p o s s i b l e i n t e r p r e t a t i o n of proton t r a n s f e r i n terms of n u c l e a r t u n n e l i n g e f f e c t s . Might i t be p o s s i b l e t h a t as the energy of the v i b r a t i o n a l modes becomes very l a r g e , the c l a s s i c a l r a t e theory might not work? DR. EYRING: W e l l , I t h i n k we are a l l conscious of the f a c t t h a t B e l l w r i t e s e x t e n s i v e l y on the s u b j e c t of t u n n e l i n g i n connection w i t h proton t r a n s f e r . I n f a c t , there i s a recent book t h a t was p u b l i s h e d w i t h i n the l a s t year t h a t i s on t h a t p a r t i c u l a r t o p i c [ B e l l , R. P. "The Tunnel E f f e c t i n Chemistry"; Chapman and H a l l : London, 1980]. DR. NORTON (Colorado State U n i v e r s i t y ) : As a novice i n t h i s f i e l d , something t h a t i s s t a r t i n g t o worry me about metal­ l i c systems i s the d i f f i c u l t y of d i s t i n g u i s h i n g between an orthodox proton t r a n s f e r as opposed to an e l e c t r o n t r a n s f e r f o l l o w e d by hydrogen atom t r a n s f e r i n the reverse d i r e c t i o n . I s t h i s ever a problem i n the kinds of more c l a s s i c a l systems you have been d e s c r i b i n g ? DR. EYRING: I f i t i s , I am not aware of i t . One of the a t t r a c t i v e f e a t u r e s about the e a r l y f a s t r e a c t i o n s t u d i e s of proton t r a n s f e r systems i s t h a t they were comparatively simple. Some of the problems which have been mentioned today, such as p e r c h l o r a t e ions causing c o m p l i c a t i o n s , are not present i n e x t r a pure water t o which Dr. Ken K u s t i n has added j u s t a t r a c e of HF. I f you take a membrane or some other k i n d of a s u r f a c e , the proton t r a n s f e r i s c e r t a i n l y a great d e a l more complex. My research group has not t r i e d t o do i t . We have gone o f f on a tangent, where we went l o o k i n g f o r a probe t h a t would be u s e f u l f o r l o o k i n g a t surfaces k i n e t i c a l l y , and d i s c o v e r e d , to our c h a g r i n , t h a t photoacoustic spectroscopy i s much more s u i t ­ able f o r i n v e s t i g a t i n g the i n f r a r e d spectrum of p o l y a c e t y l e n e . That happens t o be an e x c i t i n g t o p i c , and there are indeed p u b l i c a t i o n s a r i s i n g from our work on photoacoustic s p e c t r o ­ scopy. But I must confess, i t i s a l i t t l e f r u s t r a t i n g t o have become i n v o l v e d i n a f i e l d l i k e t h a t , f u l l y i n t e n d i n g t o use i t as a k i n e t i c t o o l , and then d i s c o v e r i n g t h a t i t j u s t i s n ' t very suitable. I t may be s u i t a b l e f o r making k i n e t i c s t u d i e s a t electrode surfaces. Bard a t Texas has done some i n t e r e s t i n g experiments which suggest t h a t i f one i s l o o k i n g a t a s m a l l d i f f e r e n c e between two b i g f e a t u r e s , as may be the case a t the s u r f a c e of an e l e c t r o d e , perhaps photoacoustic spectroscopy may be used f o r k i n e t i c measurements. But f o r the kinds of sys­ tems t h a t we thought would be i n t e r e s t i n g , such as proton t r a n s ­ f e r t o and from a membrane, t h i s technique does not appear t o be a promising k i n e t i c t o o l . DR. anything

J . KERRY THOMAS ( U n i v e r s i t y of Notre Dame): I s there wrong w i t h p u t t i n g a f l u o r e s c e n t probe t h a t i s pH

In Mechanistic Aspects of Inorganic Reactions; Rorabacher, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

MECHANISTIC ASPECTS OF INORGANIC REACTIONS

80

dependent i n these systems? Fluorescence i s a very s e n s i t i v e method. I t i s used i n many membrane s t u d i e s where m o n i t o r i n g o f a s p e c i f i c process i s r e q u i r e d . One could l o c a t e such a probe i n a s e l e c t e d p o s i t i o n and e s s e n t i a l l y use t h i s as a method f o r checking d i f f u s i o n i n t h a t r e g i o n . We do t h i s i n m i c e l l e sys­ tems, and i t i s a r e l a t i v e l y easy method. That i s d i s t i n c t l y p o s s i b l e .

Downloaded by KTH ROYAL INST OF TECHNOLOGY on August 24, 2015 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch003

DR. EYRING:

In Mechanistic Aspects of Inorganic Reactions; Rorabacher, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.