pyrazines - ACS Publications

of this heterocyclic ring core in a trans manner. 4. 3. Abstract: Efficient construction of new chemical space by way of strategic use of tandem react...
0 downloads 0 Views 421KB Size
Subscriber access provided by Bibliothèque de l'Université Paris-Sud

Article

Tandem [4+1+1] Annulation Approach to 4-Acyl-3,4dihydropyrrolo[1,2-a]pyrazines: Diastereoselective Construction of Dihydropyrazine Units from Pyrroles Anuradha Dagar, Gi Hun Bae, Jeong Hwa Lee, and Ikyon Kim J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b00724 • Publication Date (Web): 15 May 2019 Downloaded from http://pubs.acs.org on May 15, 2019

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Tandem [4+1+1] Annulation Approach to 4-Acyl-3,4-dihydropyrrolo[1,2a]pyrazines: Diastereoselective Construction of Dihydropyrazine Units from Pyrroles

Anuradha Dagar, Gi Hun Bae, Jeong Hwa Lee, and Ikyon Kim*

College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea

* Corresponding author. Tel.: +82 32 749 4515; fax: +82 32 749 4105; e-mail: [email protected]

Graphical Abstract OHC N O

G

ArCHO NH4OAc

N Ar

K2CO3 EtOH, rt

3

O

N 4

G

- an atom-economical approach to new 4-acylated 3,4-dihydropyrrolo[1,2-a]pyrazines via a one-pot three-component reaction - one C-C and two C-N bond formation via a cascade reaction sequence - a diastereoselective setup of the two substituents of this heterocyclic ring core in a trans manner

Abstract: Efficient construction of new chemical space by way of strategic use of tandem reactions is highly important in drug discovery. Described herein is an atom-economical 1

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 39

[4+1+1] annulation approach to 3-(hetero)aryl-4-acyl-3,4-dihydropyrrolo[1,2-a]pyrazines, a new chemical space, via a one-pot three-component reaction under mild reaction conditions. Formation of multiple bonds (One C-C and two C-N) was achieved by a cascade reaction sequence consisting of generation of a Schiff base, a diastereoselective Mannich reaction, and intramolecular imine formation. This modular and environment-friendly process allowed rapid access to a wide range of 4-acylated 3,4-dihydropyrrolo[1,2-a]pyrazines and their analogues, opening opportunity to explore biological activity associated with this scaffold.

Keywords: Multi-component reaction; 3,4-Dihydropyrrolo[1,2-a]pyrazine; Cascade reaction; Chemical space; Diversity-oriented synthesis; Atom-economy.

Introduction New chemical space1 is often generated by site-selective decoration of new functional groups onto basic chemical skeletons through intermolecular cross-coupling reactions.2 Alternatively, it can be created via installation of substituent(s) at the unique position(s) of the rings formed newly during cyclization of acyclic precursors, leading to the core scaffolds with distinctive substitution patterns, which was difficult to obtain by other synthetic means. As part of our research interest on nitrogen-fused heterocycles,3 the first principle was applied to some pyrrolo[1,2-a]pyrazines: intermolecular Pd-catalyzed direct arylation4

and

regiodivergent electrophilic acetylation/formylation5 allowed us to get access to pyrrolo[1,2a]pyrazine-based new chemical scaffolds with unprecedented substitution styles, respectively (Scheme 1(a) and (b)). As a means to introduce new functional moieties to a pyrrolo[1,2a]pyrazine nucleus by way of the second principle, we initially envisioned that three2

ACS Paragon Plus Environment

Page 3 of 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

component assembly of 4 with aldehyde and ammonium acetate in the presence of base would afford 4-acylated pyrrolo[1,2-a]pyrazine (5) (Scheme 1(c)). Previously, compound 4 has been utilized to make several heterocyclic systems having an acyl group at C4 position through ring annulation methods.6 However, no report on construction of 4-acylpyrrolo[1,2-a]pyrazines from 4 has been disclosed yet. It should be mentioned that it seems difficult to achieve installation of an acyl unit to the pyrazine site of this bicyclic heteroaromatic ring by intermolecular electrophilic acylation of pyrrolo[1,2-a]pyrazine as it typically occurs at the pyrrole ring.7 Scheme 1. Generation of New Chemical Space: Pyrrolo[1,2-a]pyrazines R1

Pd-catalyzed direct arylation

R1 1

N

N N

R2 3

R

1 Electrophilic acylation

1

8

N N

R2 3

three-component one-pot synthesis N

Mannich

O N

R O

RCHO NH4OAc base

G

H 2N

B

(b)

6

3

OHC

NH

O G

N

R2

1

A R

Ar

R1

N

4

6

2

R1

O

(a)

N

2

G

N R

N

3

(c)

4

G

O 5

aromatization

intramolecular imine formation

N N

R O

G

6 (this work)

3

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 39

Despite a wide range of intriguing biological activities associated with pyrrolo[1,2-a]pyrazine derivatives as can be seen in Figure 1,8 synthetic methods to make this ring system have been relatively less explored. Thus, we decided to investigate the feasibility of our idea, thereby generating a novel pyrrolo[1,2-a]pyrazine chemical library for biological evaluation.9 As illustrated in Scheme 1(c), mechanistically, we expected that intermolecular Mannich reaction of 4 with imine A formed from aldehyde and ammonium acetate would furnish B which would be converted to 3,4-dihydropyrrolo[1,2-a]pyrazine (6)10

by way of

intramolecular imine formation. Final aromatization via oxidation11 would occur to give rise to 5. It turned out, however, that the major product from this three-component reaction was 4acyl 3,4,-dihydropyrrolo[1,2-a]pyrazine (6): subsequent oxidation did not take place rapidly. Here we wish to report our results on [4+1+1] annulation route to 4-acylated 3,4dihydropyrrolo[1,2-a]pyrazine scaffold, which has not been reported yet in the literature. Figure 1. Some Bioactive Pyrrolo[1,2-a]pyrazines

4

ACS Paragon Plus Environment

Page 5 of 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

NH2

N

N

N

O N

N

N Me

N

SMe

HCl

N N

SMe

O

O

antianxiolytic agent

PI3K inhibitor NH2

HIF-1 inhibitor

Me O

O Br

OMe

N

N N

F Eis inhibitor (antitubercular agent)

MeO

N

anticancer agent

Results and discussion Reaction optimization was carried out with 4a12 and 2-methoxybenzaldehyde (Table 1). To a premixing solution of aldehyde and NH4OAc13 in solvent, 4a and base (0.5 equiv) were added at room temperature. While DABCO, DBU, or L-proline was employed as a base to give the desired product 6a in the range of 60-70% yields, use of Et3N (0.5 equiv) as a base resulted in 90% yield (entries 1-4). The relative stereochemistry of C3 and C4 positions of 6 was unambiguously confirmed by X-ray crystallographic analysis of 6e.14 Screening of inorganic bases such as NaHCO3, NaOH, and K2CO3 indicated that K2CO3 provided the best isolated yield (entries 5-7). Other reaction solvents gave inferior results (entries 8-15). A mixed solvent (EtOH/H2O, 1:1) did not improve the yield of 6a (entry 16). Only a small amount of the product was obtained in H2O (entry 17). Thus, the reaction scope of this reaction was examined with 5

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 6 of 39

K2CO3 (0.5 equiv) in EtOH. When the reaction was carried out without K2CO3, it gave a cistrans mixture product after a longer reaction time.15 Treatment of this mixture with K2CO3 in EtOH resulted in only the trans product, indicating the base plays a key role in isomerization as well. The diastereomeric ratio of the product seemed to be more than 20:1 based on the NMR spectra. Notably, this assembly is a highly atom-economical16 and green process as almost all three starting materials are embedded in the final product with loss of water (2 equiv) and the reaction is conducted with a catalytic amount of base (0.5 equiv) in a green reaction medium such as EtOH at ambient temperature. Table 1. Reaction Optimizationa OHC N Ph

O

2-MeOC6H4CHO NH4OAc

N

3

base, solvent rt

4a

entry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

OMe N 4

Ph

O 6a

base (0.5 equiv) DABCO DBU L-Proline Et3N NaHCO3 NaOH K2CO3 K2CO3 K2CO3 K2CO3 K2CO3 K2CO3 K2CO3 K2CO3 K2CO3 K2CO3

solvent EtOH EtOH EtOH EtOH EtOH EtOH EtOH MeOH THF DMSO DMF CH3CN toluene CH2Cl2 1,4-dioxane EtOH:H2O (1:1) 6

ACS Paragon Plus Environment

time (h) 30 30 30 24 24 24 14 24 24 24 24 24 24 24 24 14

yield (%)b 65 60 70 90 65 60 94 80 85 70 65 80 40 40 85 94

Page 7 of 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

17 K2CO3 H2O 30 15 After a mixture of 2-methoxybenzaldehyde (1.2 equiv) and NH4OAc (1.2 equiv) in solvent (1 mL) was stirred at rt for 10 min, 4a (1 equiv) and base (0.5 equiv) were added at rt. The reaction mixture was stirred at rt for 16 h. b Isolated yield (%). a

As shown in Table 2, reactions of 4a with various aldehydes were carried out under optimized conditions to afford the corresponding 4-acyl-3,4-dihydropyrrolo[1,2-a]pyrazines in good to excellent yields. Aldehydes bearing an electron-donating group as well as an electronwithdrawing group exhibited similar efficiency. Indole- and furan-containing 3,4dihydropyrrolo[1,2-a]pyrazines (6i and 6j) were prepared in 70 and 75% yields, respectively. Reactions with aliphatic aldehydes did not work under these conditions. Table 2. Synthesis of 6b-6ja,b RCHO NH4OAc

OHC N O

N R

K2CO3 EtOH

Ph

N

3

4

Ph

O

4a

6b-6j

N

N

N N

O

MeO

N Me

Ph

6b (94)

O

N O

Ph

OMe

6c (95)

6d (87) N

N

N

N Cl

O

Br

Ph

O

6e (89) N N

N O

6g (80)

Ph

Ph

6f (86)

N

NC

Ph

O 2N

O

Ph

6h (73) 7

ACS Paragon Plus Environment

H N

N N O

6i (70)

Ph

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 8 of 39

N N

O O

Ph

6j (75) After a mixture of aldehyde (1.2 equiv) and NH4OAc (1.2 equiv) in EtOH (1 mL) was stirred at rt for 10 min, 4a (1 equiv) and K2CO3 (0.5 equiv) were added at rt. The reaction mixture was stirred at rt for 16 h. b Isolated yield (%). a

More

diverse

4-acyl-3,4-dihydropyrrolo[1,2-a]pyrazine

compounds

(6k-6ak)

were

synthesized with 4b-4i.17 The results are shown in Table 3, indicating a wide range of functional group tolerance under these reaction conditions. Table 3. Synthesis of 6k-6aka RCHO NH4OAc

OHC N O

N R

K2CO3 EtOH

G 4b-4i

3

O

N 4

G

6k-6ak

4

aldehyde (RCHO)

yield (%)b

6 N N

4b (G = 3-MeOC6H4)

R = C6H5

OMe

O

6k

90

6l

88

6m

85

N

4b

R = 4MeOC6H4

N MeO

OMe

O

N N

4b

R = 4-ClC6H4 Cl

O

8

ACS Paragon Plus Environment

OMe

Page 9 of 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

N N

4b

R = 4-pyridine

N

OMe

O

6n

72

6o

92

6p

86

6q

85

6r

75

6s

87

6t

86

N N

4c (G = 4-MeOC6H4)

R = 4-MeC6H4 Me

O OMe N

4c

R = 3,4(MeO)2C6H3

N

MeO MeO

O OMe N N

4c

R = 4-BrC6H4

Br

O OMe N N

O

4c

R = 2-furan O OMe N N

4d (G = 4-FC6H4)

R = C6H5 O F N N

4d

R = 4-MeC6H4 Me

O F

9

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 10 of 39

OMe N

4d

N

R = 2MeOC6H4

6u

83

6v

81

6w

80

6x

75

6y

72

6z

86

6aa

88

O F N

4d

R = 3,4(MeO)2C6H3

N

MeO MeO

O F N N

4d

R = 4-BrC6H4 Br

O F N N

O

4d

R = 2-furan O F N N

4d

R = 4-pyridine

N

O F N N

4e (G = 4-ClC6H4)

R = C6H5 O Cl N N

4e

R = 4-MeC6H4 Me

O Cl

10

ACS Paragon Plus Environment

Page 11 of 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

OMe N

4e

N

R = 2MeOC6H4

6ab

84

6ac

73

6ad

85

6ae

87

6af

80

6ag

80

6ah

73

O Cl H N

4e

N N

R = 2-pyrrole O Cl N N

4f (G = 4-BrC6H4)

R = C6H5

O Br N N

4f

R = 4-MeC6H4 Me

O Br N

4f

R = 4MeOC6H4

N MeO

O Br N N

O

4f

R = 2-furan O Br N N

4f

N

R = 2-pyridine O Br

11

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 12 of 39

N

4g (G = 2naphthalene)

N

R = 4-ClC6H4 Cl

6ai

88c

6aj

89

6ak

83

O

N N

4h (G = 4-PhC6H4)

R = 4-ClC6H4

Cl

O

N

4i (G = 2-furan)

N

R = 4MeOC6H4

MeO

O

O

a

After a mixture of aldehyde (1.2 equiv) and NH4OAc (1.2 equiv) in EtOH (1 mL) was stirred at rt for 10 min, 4 (1 equiv) and K2CO3 (0.5 equiv) were added at rt. The reaction mixture was stirred at rt for 16 h. b Isolated yield (%). c reaction in DMSO at rt.

When this three-component reaction was applied to 7 derived from indole-2-carbaldehyde, the corresponding 3-aryl-4-acyl-3,4-dihydropyrazino[1,2-a]indole (8) was obtained in 72% yield (Scheme 2). Furthermore, trans-cinnamaldehyde was successfully employed as an aldehyde partner of this multicomponent reaction with 4a to afford 9 in good yield. A scale-up reaction was conducted with 4f (1 mmol) and benzaldehyde to afford 6ad without compromising the isolated yield (Scheme 3). In addition, further elaboration of the resulting 6ad was demonstrated. Aromatization of 6ad in refluxing EtOH proceeded well to give pyrrolo[1,2-a]pyrazine product 5. N-alkylation of 6ad with ethyl bromoacetate and phenacyl bromide delivered 3,4-dihydropyrrolo[1,2-a]pyrazinium salts 10a and 10b in excellent yields, respectively.18 Scheme 2. Synthesis of 8 and 9 12

ACS Paragon Plus Environment

Page 13 of 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

OHC

N

PhCHO NH4OAc

N

N O

K2CO3 EtOH OMe (72%)

O 7 OHC

OMe 8

Ph

N

CHO NH4OAc

N

N

Ph

K2CO3 EtOH (70%)

O 4a

O 9

Scheme 3. Scale-up and Further Functionalization of 6ad OHC N O 4f (1 mmol)

Br

PhCHO NH4OAc

N

K2CO3 EtOH

O

N

6ad (325 mg, 86%)

Br

N

N N O 6ad

N

K2CO3

Br

reflux EtOH

O Br 5 (90%)

RCH2Br Br R

N N O

10a (R = CO2Et): 95% 10b (R = COPh): 97% Br

Conclusion In conclusion, in the course of our efforts to expand pyrrolo[1,2-a]pyrazine-based chemical territory, we have developed a highly efficient one-pot three-component synthetic route to 413

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

acylated 3,4-dihydropyrrolo[1,2-a]pyrazine skeleton via a cascade reaction where one C-C and two C-N bonds were formed. A number of derivatives were readily prepared with high atom economy in this modular approach and further elaborations of the resulting products were demonstrated as well. High functional group tolerance, ease of operation, environmentfriendliness, and high chemical yields of this atom-economical protocol would be useful for further biological exploration of the resulting new chemical scaffold. Work is in progress to extend the use of pyrrole-2-carboxaldehydes for the synthesis of other nitrogen-fused heterocycles.

Experimental Section General Methods Unless specified, all reagents and starting materials were purchased from commercial sources and used as received without purification. “Concentrated” refers to the removal of volatile solvents via distillation using a rotary evaporator. “Dried” refers to pouring onto, or passing through, anhydrous magnesium sulfate followed by filtration. Flash chromatography was performed using silica gel (230−400 mesh) with hexanes, ethyl acetate, and dichloromethane as the eluents. All reactions were monitored by thin-layer chromatography on 0.25 mm silica plates (F-254) visualized with UV light. Melting points were measured using a capillary melting point apparatus. 1H and

13C

NMR spectra were recorded on a 400 MHz NMR

spectrometer and were described as chemical shifts, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), coupling constant in hertz (Hz), and number of protons. HRMS was measured with an electrospray ionization (ESI) and Q-TOF mass analyzer.

14

ACS Paragon Plus Environment

Page 14 of 39

Page 15 of 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

General Procedure for the Synthesis of 6: Although the reactions are not air-sensitive, they were conducted in sealed vials to prevent solvent evaporation. To a stirred solution of 2-methoxybenzaldehyde (16.3 mg, 0.12 mmol, 1.2 equiv) and NH4OAc (9.2 mg, 0.12 mmol, 1.2 equiv) in ethanol (1.0 mL) were added 4a (21.3 mg, 0.1 mmol, 1 equiv) and base (6.9 mg, 0.05 mmol, 0.5 equiv) at room temperature. Then, the reaction mixture was stirred at room temperature for 14 h (monitored by TLC). Upon completion of the reaction, the reaction mixture was concentrated under reduced pressure, extracted with dichloromethane (3 × 10 mL), and washed with water and brine respectively. The organic layer was dried over MgSO4 and concentrated in vacuo to afford the crude product, which was purified by silica gel column chromatography (EtOAc/dichloromethane/hexane = 1:1:8) to give 6a (31 mg, 94%). ((3R*,4S*)-3-(2-Methoxyphenyl)-3,4-dihydropyrrolo[1,2OMe N

O

N

a]pyrazin-4-yl)(phenyl)methanone (6a). White solid, mp: 216.5-

Ph

218.7 °C (30.6 mg, 94%); 1H NMR (400 MHz, CDCl3) δ 8.52 (s, 1H),

6a

8.07 (d, J = 7.7 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.7 Hz,

2H), 7.21 (t, J = 7.7 Hz, 1H), 6.95 (d, J = 7.4 Hz, 1H), 6.82-6.88 (m, 2H), 6.60 (d, J = 3.4 Hz, 1H), 6.53 (s, 1H), 6.27-6.29 (m, 1H), 5.83 (s, 1H), 5.76 (d, J = 3.2 Hz, 1H), 3.90 (s, 3H); 13C{1H}

NMR (100 MHz, CDCl3) δ 195.4, 156.4, 153.1, 134.7, 133.9, 129.1, 129.0, 128.7,

128.4, 126.3, 126.2, 124.3, 121.1, 111.7, 110.7, 110.5, 62.4, 57.7, 55.3; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for C21H18N2O2Na 353.1260, found 353.1268.

((3R*,4S*)-3-Phenyl-3,4-dihydropyrrolo[1,2-a]pyrazin-4-yl)methanone (6b). White solid, mp: 171.4-172.2 °C (28.0 mg, 94%); 1H NMR (400 MHz, CDCl3) δ 15

N N O 6b

Ph

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

8.42 (s, 1H), 7.87 (d, J = 7.7 Hz, 2H), 7.63 (t, J = 7.3 Hz, 1H), 7.49 (t, J = 7.5 Hz, 2H), 7.287.29 (m, 3H), 7.21-7.23 (d, J = 6.8 Hz, 2H), 6.66 (d, J = 3.3 Hz, 1H), 6.61 (s, 1H), 6.36 (s, 1H), 5.71 (d, J = 4.6 Hz, 1H), 5.32 (d, J = 2.9 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 195.6 151.7, 139.8, 134.8, 134.1, 129.1, 129.0, 128.6, 128.2, 127.4, 125.8, 124.1, 112.0, 110.9, 64.2, 62.9; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for C20H16N2ONa 323.1155, found 323.1164.

Phenyl((3R*,4S*)-3-(p-tolyl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4-yl)methanone (6c). Pale yellow solid, mp: 179.5-180.2 °C (29.5 mg, 95%); 1H NMR (400 N

Me

O

N

MHz, CDCl3) δ 8.38 (s, 1H), 7.87 (d, J = 7.5 Hz, 2H), 7.59-7.63

Ph

(m, 1H), 7.46-7.50 (m, 2H), 7.08 (s, 4H), 6.62 (d, J = 3.4 Hz, 1H),

6c

6.57 (s, 1H), 6.32-6.34 (m, 1H), 5.68 (d, J = 4.2 Hz, 1H), 5.29 (d,

J = 3.6 Hz, 1H), 2.29 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 195.4, 151.5, 137.9, 136.9, 134.6, 134.1, 129.7, 129.1, 128.6, 127.2, 125.8, 124.1, 111.9, 110.8, 63.7, 63.1, 21.2; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C21H19N2O 315.1492, found 315.1498.

((3R*,4S*)-3-(3,5-Dimethoxyphenyl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4-yl)(phenyl) methanone (6d). Pale yellow solid, mp: 139.4-140.5 °C (32.8 mg, N MeO O OMe 6d

N

87%); 1H NMR (400 MHz, CDCl3) δ 8.35 (s, 1H), 7.84 (d, J = 7.1

Ph

Hz, 2H), 7.57-7.60 (m, 1H), 7.43-7.47 (m, 2H), 6.57-6.60 (m, 2H), 6.31-6.32 (m, 4H), 5.67 (s, 1H), 5.18 (s, 1H), 3.67 (s, 6H); 13C{1H}

NMR (100 MHz, CDCl3) δ 195.5, 161.2, 151.7, 142.0, 134.8, 134.2, 129.1, 128.6, 125.6, 124.1, 112.1, 110.9, 105.5, 100.0, 64.2, 62.6, 55.4; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C22H21N2O3 361.1547, found 361.1556. 16

ACS Paragon Plus Environment

Page 16 of 39

Page 17 of 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

((3R*,4S*)-3-(4-Chlorophenyl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4yl)(phenyl)methanone N

Cl

O

(6e). White solid, mp: 208.4-209.5 °C

N

(29.5 mg, 89%); 1H NMR (400 MHz, CDCl3) δ 8.39 (s, 1H), 7.83

Ph

(d, J = 7.6 Hz, 2H), 7.60-7.63 (m, 1H), 7.45-7.49 (m, 2H), 7.23 (d,

6e

J = 8.0 Hz, 2H), 7.13 (d, J = 7.7 Hz, 2H), 6.63 (s, 1H), 6.57 (s, 1H),

6.33 (s, 1H), 5.62 (d, J = 4.8 Hz, 1H), 5.25 (d, J = 4.2 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 195.4, 152.0, 138.3, 134.8, 134.3, 134.0, 129.2, 129.1, 128.9, 128.5, 125.7, 124.2, 112.3, 111.0, 63.6, 62.7; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C20H16ClN2O 335.0946, found 335.0952.

((3R*,4S*)-3-(4-Bromophenyl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4yl)(phenyl)methanone (6f). White solid, mp: 196.0-197.1 °C N

Br

O

N

(32.5 mg, 86%); 1H NMR (400 MHz, CDCl3) δ 8.39 (s, 1H), 7.83

Ph

(d, J = 7.9 Hz, 2H), 7.60-7.64 (m, 1H), 7.46-7.49 (m, 2H), 7.38 (d,

6f

J = 8.3 Hz, 2H), 7.08 (d, J = 8.2 Hz, 2H), 6.64 (d, J = 2.7 Hz, 1H),

6.58 (s, 1H), 6.32-6.34 (m, 1H), 5.62 (d, J = 5.2 Hz, 1H), 5.24 (d, J = 4.9 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 195.3, 152.0, 138.8, 134.8, 134.3, 132.1, 129.2, 129.2, 128.5, 125.7, 124.2, 122.2, 112.4, 111.0, 63.7, 62.6; HRMS (ESI-QTOF) m/z [M+Na]+calcd for C20H15BrN2ONa 401.0260, found 401.0268.

4-((3R*,4S*)-4-Benzoyl-3,4-dihydropyrrolo[1,2-a]pyrazin-3-yl)benzonitrile (6g). White 17

N N NC

O 6g

Ph

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

solid, mp: 192.7-193.6 °C (26 mg, 80%); 1H NMR (400 MHz, CDCl3) δ 8.42 (s, 1H), 7.80 (d, J= 7.4 Hz, 2H), 7.60-7.64 (m, 1H), 7.55 (d, J = 7.7 Hz, 2H), 7.45-7.48 (m, 2H), 7.34 (d, J = 7.9 Hz, 2H), 6.67 (s, 1H), 6.58 (s, 1H), 6.34 (s, 1H), 5.60 (d, J = 5.7 Hz, 1H), 5.29 (d, J = 5.3 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 195.2, 152.5, 144.9, 134.9, 134.6, 133.9, 132.8, 132.2, 129.3, 128.5, 125.7, 124.4, 118.6, 112.9, 112.1, 111.3, 64.1, 62.3; HRMS (ESI-QTOF) m/z [M+Na]+calcd fo C21H15N3ONa 348.1107, found 348.1118.

((3R*,4S*)-3-(4-Nitrophenyl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4-yl)(phenyl)methanone (6h). White solid, mp: 191.7-192.6 °C (25.3 mg, 73%); 1H NMR N

O 2N

O

N

(400 MHz, acetone-d6) δ 8.40 (s, 1H), 8.03 (d, J = 5.8 Hz, 2H),

Ph

7.66-7.70 (m, 3H), 7.56-7.60 (m, 2H), 7.46-7.50 (m, 2H), 6.84 (s,

6h

1H), 6.62 (s, 1H), 6.25 (d, J = 5.2 Hz, 2H), 5.40 (d, J = 3.8 Hz,

1H); 13C{1H} NMR (100 MHz, acetone-d6) δ 194.9, 151.8, 148.0, 134.9, 132.8, 130.3, 129.3, 129.2, 128.9, 128.7, 125.8, 124.2, 112.2, 110.8, 63.7, 62.5; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for C20H15N3O3Na 368.1006, found 368.1016.

((3S*,4S*)-3-(1H-Indol-2-yl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4-yl)(phenyl)methanone (6i). White solid, mp: 167.7-168.6 °C (23.5 mg, 70%); 1H NMR H N

N

O 6i 13C{1H}

N

(400 MHz, CDCl3) δ 8.67 (s, 1H), 8.30 (s, 1H), 7.94 (d, J = 4.9 Hz,

Ph

2H), 7.60-7.64 (m, 1H), 7.43-7.50 (m, 4H), 7.13 (s, 1H), 7.06 (s, 1H), 6.64-6.72 (m, 2H), 6.36 (s, 2H), 5.97 (s, 1H), 5.60 (s, 1H);

NMR (100 MHz, CDCl3) δ 194.4, 152.4, 136.5, 136.1, 134.5, 131.5, 129.4, 128.7,

126.6, 125.2, 124.6, 122.3, 120.5, 120.1, 113.1, 111.2, 111.2, 99.8, 61.1, 57.5; HRMS (ESI18

ACS Paragon Plus Environment

Page 18 of 39

Page 19 of 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

QTOF) m/z [M+Na]+ calcd for C22H17N3ONa 362.1264, found 362.1272.

((3S*,4S*)-3-(Furan-2-yl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4-yl)(phenyl)methanone(6j). White solid, mp: 169.7-170.6 °C (22.0 mg, 75%); 1H NMR (400 MHz, N O O

N

CDCl3) δ 8.35 (s, 1H), 8.00 (d, J = 8.2 Hz, 2H), 7.62-7.66 (m, 1H),

Ph

7.50-7.54 (m, 2H), 7.36 (s, 1H), 6.60-6.62 (m, 2H), 6.30-6.32 (m, 1H),

6j

6.24-6.25 (m, 1H), 6.09 (d, J = 3.0 Hz, 1H), 5.98 (d, J = 4.0 Hz, 1H),

5.49 (d, J = 3.2 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 194.7, 152.9, 151.7, 142.5, 134.3, 134.2, 129.2, 128.7, 125.3, 124.4, 112.5, 110.8, 110.7, 107.8, 60.7, 58.3; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for C18H14N2O2Na 313.0947, found 313.0956.

(3-Methoxyphenyl)((3R*,4S*)-3-phenyl-3,4-dihydropyrrolo[1,2-a]pyrazin-4yl)methanone (6k). White solid, mp: 147.7-148.6 °C (30.0 mg, N

90%); 1H NMR (400

N OMe

O 6k

MHz, CDCl3) δ 8.36 (s, 1H), 7.33-7.39

(m, 3H), 7.21-7.24 (m, 3H), 7.16 (d, J = 6.8 Hz, 2H), 7.11 (d, J = 7.9 Hz, 1H), 6.59 (d, J = 3.1 Hz, 1H), 6.54 (s, 1H), 6.29-6.30

(m, 1H), 5.63 (d, J = 4.7 Hz, 1H), 5.27 (d, J = 3.1 Hz, 1H), 3.79 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 195.4, 160.2, 151.7, 139.8, 136.1, 130.0, 129.0, 128.2, 127.4, 125.8, 124.1, 120.9, 120.8, 112.9, 112.0, 110.8, 64.2, 63.0, 55.6; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C21H19N2O2 331.1441, found 331.1448.

(3-Methoxyphenyl)((3R*,4S*)-3-(4-methoxyphenyl)-3,4-dihydropyrrolo[1,2-a]pyrazin19 N N MeO

O 6l

OMe

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

4-yl)methanone (6l). Pale yellow solid, mp: 179.7-180.9 °C (31.8 mg, 88%); 1H NMR (400 MHz, CDCl3) δ 8.37 (s, 1H), 7.35-7.43 (m, 3H), 7.10-7.15 (m, 3H), 6.80 (d, J = 8.2 Hz, 2H), 6.61 (d, J = 3.2 Hz, 1H), 6.57 (s, 1H), 6.33 (s, 1H), 5.63 (d, J = 4.3 Hz, 1H), 5.26 (d, J = 3.6 Hz, 1H), 3.83 (s, 3H), 3.75 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 195.4, 160.2, 159.5, 151.4, 136.1, 132.0, 130.0, 128.5, 125.7, 124.0, 120.9, 120.7, 114.4, 112.9, 111.8, 110.8, 63.6, 63.2, 55.6, 55.4; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C22H21N2O3 361.1547, found 361.1555.

((3R*,4S*)-3-(4-Chlorophenyl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4-yl)(3methoxyphenyl) methanone (6m). White solid, mp: 172.7N

173.6 °C (31.0 mg, 85%); 1H NMR (400 MHz, CDCl3) δ

N Cl

OMe

O 6m

8.38 (s, 1H), 7.35-7.38 (m, 3H), 7.25 (s, 1H), 7.23 (s, 1H), 7.14 (d, J = 8.2 Hz, 3H), 6.63 (d, J = 3.8 Hz, 1H), 6.57 (s,

1H), 6.33 (t, J = 3.1 Hz, 1H), 5.59 (d, J = 5.2 Hz, 1H), 5.26 (d, J = 5.0 Hz, 1H), 3.83 (s, 3H); 13C{1H}

NMR (100 MHz, CDCl3) δ 195.2, 160.3, 152.0, 138.3, 136.1, 134.1, 130.1, 129.1,

128.8, 125.7, 124.2, 120.8, 113.0, 112.3, 111.0, 63.6, 62.8, 55.6; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C21H18ClN2O2 365.1051, found 365.1062.

(3-Methoxyphenyl)((3R*,4S*)-3-(pyridin-4-yl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4yl)methanone (6n). Yellow solid, mp: 167.7-168.6 °C (24.0 N

mg, 72%); 1H NMR (400 MHz, acetone-d6) δ 8.56 (s, 1H),

N N

OMe

O 6n

8.37 (d, J = 7.7 Hz, 2H), 7.60 (d, J = 7.6 Hz, 1H), 7.48 – 7.52 (m, 2H), 7.33 (s, 1H), 7.29 (d, J = 3.3 Hz, 1H), 7.20-7.22 (m, 20

ACS Paragon Plus Environment

Page 20 of 39

Page 21 of 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

1H), 6.69 (d, J = 3.8 Hz, 1H), 6.65 (s, 1H), 6.45 – 6.47 (m, 1H), 5.66 (d, J = 4.8 Hz, 1H), 5.36 (d, J = 4.1 Hz, 1H), 3.86 (s, 3H); 13C{1H} NMR (100 MHz, acetone-d6) δ 196.5, 160.4, 151.2, 140.6, 135.5, 134.8, 132.6, 130.3, 129.9, 126.2, 124.0, 121.0, 115.4, 113.2, 112.7, 66.0, 64.5, 55.8; HRMS (ESI-QTOF) m/z [M+H]+calcd for C20H18N3O2 332.1394, found 332.1401.

(4-Methoxyphenyl)((3R*,4S*)-3-(p-tolyl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4yl)methanone (6o). White solid, mp: 179.7-180.6 °C (31.8 N

mg, 92%); 1H NMR (400 MHz, CDCl3) δ 8.37 (s, 1H), 7.84

N Me

(d, J = 8.9 Hz, 2H), 7.08 (s, 4H), 6.93 (d, J = 8.8 Hz, 2H),

O OMe

6o

6.60 (d, J = 3.6 Hz, 1H), 6.55 (s, 1H), 6.30-6.32 (m, 1H),

5.62 (d, J = 4.8 Hz, 1H), 5.26 (d, J = 3.0 Hz, 1H), 3.88 (s, 3H), 2.29 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 193.8, 164.3, 151.4, 137.8, 137.0, 131.0, 129.6, 127.6, 127.2, 125.8, 124.0, 114.3, 111.7, 110.7, 64.1, 62.6, 55.7, 21.2; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C22H21N2O2 345.1598, found 345.1605.

((3R*,4S*)-3-(3,4-Dimethoxyphenyl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4-yl)(4methoxyphenyl) methanone (6p). White solid, mp: 187.7N

MeO

188.6 °C (34.0 mg, 86%); 1H NMR (400 MHz, CDCl3) δ

N

MeO

8.37 (s, 1H), 7.81 (d, J = 8.4 Hz, 2H), 6.90 (d, J = 8.5 Hz,

O 6p

OMe

2H), 6.79 (d, J = 8.3 Hz, 1H), 6.74 (d, J = 8.2 Hz, 1H), 6.66

(s, 1H), 6.61 (d, J = 3.3 Hz, 1H), 6.56 (s, 1H), 6.31 (s, 1H), 5.60 (d, J = 6.0 Hz, 1H), 5.17 (d, J = 5.2 Hz, 1H), 3.87 (s, 3H), 3.82 (s, 3H), 3.74 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 194.1, 164.4, 151.4, 149.2, 148.8, 132.6, 131.0, 128.1, 125.7, 123.8, 119.9, 114.3, 111.8, 111.3, 21

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

110.8, 110.5, 64.4, 62.3, 56.0, 55.9, 55.7; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C23H23N2O4 391.1652, found 391.1660.

((3R*,4S*)-3-(4-Bromophenyl)-3,4-dihydropyrrolo[1,2N

a]pyrazin-4-yl)(4-methoxyphenyl)methanone (6q). White

N Br

solid, mp: 172.7-173.6 °C (35.0 mg, 85%); 1H NMR (400

O 6q

OMe

MHz, CDCl3) δ 8.38 (s, 1H), 7.79 (d, J = 8.3 Hz, 2H), 7.38 (d,

J = 7.8 Hz, 2H), 7.09 (d, J = 7.8 Hz, 2H), 6.91 (d, J = 8.4 Hz, 2H), 6.62 (d, J = 3.3 Hz, 1H), 6.55 (s, 1H), 6.31 (s, 1H), 5.55 (d, J = 5.8 Hz, 1H), 5.20 (d, J = 4.7 Hz, 1H), 3.88 (s, 3H); 13C{1H}

NMR (100 MHz, CDCl3) δ 193.7, 164.5, 151.9, 139.0, 132.0, 131.0, 129.3, 127.9,

125.7, 124.0, 122.1, 114.4, 112.2, 110.9, 64.0, 62.1, 55.8; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C21H18BrN2O2 409.0546, found 409.0552.

((3S*,4S*)-3-(Furan-2-yl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4-yl)(4-methoxyphenyl) methanone (6r). White solid, mp: 167.7-168.9 °C (24.1 mg, N

75%); 1H NMR (400 MHz, CDCl3) δ 8.34 (s, 1H), 7.99 (d, J

N

O

= 8.6 Hz, 2H), 7.36 (s, 1H), 6.98 (d, J = 8.6 Hz, 2H), 6.59 (d,

O 6r

OMe

J = 4.8 Hz, 2H), 6.29 (s, 1H), 6.24 (s, 1H), 6.10 (d, J = 3.2 Hz,

1H), 5.93 (d, J = 4.2 Hz, 1H), 5.46 (d, J = 2.6 Hz, 1H), 3.89 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 193.0, 164.4, 152.8, 151.9, 142.4, 131.1, 127.2, 125.4, 124.3, 114.4, 112.3, 110.7, 110.7, 107.8, 60.3, 58.5, 55.7; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C19H17N2O3 321.1234, found 321.1242.

22

ACS Paragon Plus Environment

Page 22 of 39

Page 23 of 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

(4-Fluorophenyl)((3R*,4S*)-3-phenyl-3,4-dihydropyrrolo[1,2-a]pyrazin-4-yl)methanone (6s). White solid, mp: 162.2-163.8 °C (27.8 mg, 87 %); 1H NMR N

(400 MHz, CDCl3) δ 8.38 (s, 1H), 7.84 (dd, J = 8.6, 5.4 Hz, 2H),

N

7.22-7.27 (m, 3H), 7.18 (d, J = 7.6 Hz, 2H) 7.10 (t, J = 8.5, 2H),

O 6s

F

6.62 (d, J = 2.8 Hz, 1H), 6.55 (s, 1H), 6.30-6.34 (m, 1H), 5.62 (d,

J = 5.4 Hz, 1H), 5.22 (d, J = 3.8 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 194.2, 166.1 (d, JC-F = 255.6 Hz), 165.0, 151.7, 139.6, 131.3 (d, JC-F = 9.5 Hz), 129.1, 128.3, 127.4, 125.7, 124.0, 116.3 (d, JC-F = 21.9 Hz), 112.2, 111.0, 64.5, 62.8; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C20H16FN2O 319.1241, found 319.1254.

(4-Fluorophenyl)((3R*,4S*)-3-(p-tolyl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4yl)methanone (6t). White solid, mp: 178.8-180.6 °C (28.5 mg,

N N Me

86 %); 1H NMR (400 MHz, CDCl3) δ 8.37 (s, 1H), 7.87 (dd, J = 8.4, 5.4 Hz, 2H), 7.13 (t, J = 8.5 Hz, 2H), 7.07 (s, 4H), 6.62

O 6t

F

(d, J = 3.2 Hz, 1H), 6.56 (s, 1H), 6.31-6.34 (m, 1H), 5.62 (d, J

= 4.7 Hz, 1H), 5.23 (d, J = 3.1 Hz, 1H), 2.29 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 194.1, 166.3 (d, JC-F = 255.6 Hz), 165.0, 151.5, 138.1, 136.7, 131.3 (d, JC-F = 9.4 Hz), 129.7, 127.2, 125.7, 124.0, 116.3 (d, JC-F = 21.9 Hz), 112.1, 110.9, 64.0, 63.0, 21.2; HRMS (ESIQTOF) m/z [M+H]+ calcd for C21H18FN2O 333.1398, found 333.1404.

(4-Fluorophenyl)((3R*,4S*)-3-(2-methoxyphenyl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4-yl) 23

OMe N N O 6u

F

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 24 of 39

methanone (6u). White solid, mp: 166.7-168.3 °C (28.7 mg, 83 %); 1H NMR (400 MHz, CDCl3) δ 8.52 (s, 1H), 8.11 (dd, J = 8.7, 5.4 Hz, 2H), 7.20-7.25 (m, 1H), 7.15 (t, J = 8.5 Hz, 2H), 6.95 (d, J = 8.5 Hz, 1H), 6.84-6.89 (m, 2H), 6.60-6.63 (m, 1H), 6.52 (s, 1H), 6.27-6.31 (m, 1H), 5.80 (s, 1H), 5.70 (d, J = 3.3 Hz, 1H), 3.91 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 193.8, 166.3 (d, JC-F = 255.6 Hz), 164.9, 156.3, 153.2, 131.7 (d, JC-F =

9.3 Hz), 130.5 (d,

JC-F = 9.3 Hz), 129.2, 128.4, 126.2, 124.3, 121.2, 115.8 (d, JC-F = 21.9 Hz), 111.7, 110.7, 110.6, 62.4, 57.8, 55.4; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C21H18FN2O2 349.1347, found 349.1356.

((3R*,4S*)-3-(3,4-Dimethoxyphenyl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4-yl)(4fluorophenyl) methanone (6v). White solid, mp: 156.4-

N N

MeO MeO

158.9 °C (29.8 mg, 81%); 1H NMR (400 MHz, CDCl3) δ 8.37 (s, 1H), 7.84 (dd, J = 8.7, 5.3 Hz, 2H), 7.12 (t, J = 8.5 Hz, 2H),

O 6v

F

6.72-6.78 (m, 2H), 6.61-6.63 (m, 2H), 6.57 (m, 1H), 6.32-6.34

(m, 1H), 5.61 (d, J = 5.8 Hz, 1H), 5.15 (d, J = 5.7 Hz, 1H), 3.82 (s, 3H), 3.74 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 194.4, 166.3 (d, JC-F = 255.6 Hz), 165.0, 151.5, 149.3, 132.3, 131.2 (d, JC-F = 9.5 Hz), 130.6, 125.6, 123.9, 119.8, 116.3 (d, JC-F = 21.9 Hz), 112.1, 111.4, 111.0, 110.4, 64.2, 62.7, 56.0, 55.9; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C22H20FN2O3 379.1452, found 379.1450.

((3R*,4S*)-3-(4-Bromophenyl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4-yl)(4-fluorophenyl) methanone (6w). White solid, mp: 164.2-166.1 °C (31.8 mg, N

80%); 1H NMR (400 MHz, CDCl3) δ 8.38 (s, 1H), 7.84 (dd, J

N Br

24

O 6w

F

ACS Paragon Plus Environment

Page 25 of 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

= 8.7, 5.3 Hz, 2H), 7.39 (d, J = 8.3 Hz, 2H), 7.14 (t, J = 8.5 Hz, 2H), 7.07 (d, J = 8.3 Hz, 2H), 6.64 (d, J = 3.7 Hz, 1H), 6.56 (s, 1H), 6.31 – 6.35 (m, 1H), 5.56 (d, J = 5.7 Hz, 1H), 5.19 (d, J = 5.5 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 193.9, 166.4 (d, JC-F = 256.4Hz), 165.1, 152.0, 138.7, 132.1, 131.2 (d, JC-F = 9.2 Hz), 129.2, 125.6, 124.1, 122.3, 116.5 (d, JC-F = 22.0 Hz), 112.5, 111.2, 63.9, 62.6; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for C20H14NaBrFN2O 419.0166, found 419.0156.

(4-Fluorophenyl)((3S*,4S*)-3-(furan-2-yl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4yl)methanone (6x). White solid, mp: 148.2-150.5 °C (23.2 mg,

N N

O

75%);1H NMR (400 MHz, CDCl3) δ 8.34 (s, 1H), 8.03 (dd, J = 8.7,

O

5.3 Hz, 2H), 7.36 (s, 1H), 7.19 (t, J = 8.5 Hz, 2H), 6.61 (d, J = 3.4 6x

F

Hz, 2H), 6.30 – 6.33 (m, 1H), 6.23-6.25 (m, 1H), 6.10 (d, J = 3.0

Hz, 1H), 5.93 (d, J = 4.3 Hz, 1H), 5.44 (d, J = 3.3 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 193.3, 166.4 (d, JC-F = 255.0 Hz), 165.1, 152.9, 151.5, 142.5, 131.4 (d, JC-F = 9.3 Hz), 125.3, 124.4, 116.5 (d, JC-F = 22.0 Hz), 112.6, 110.9 (d, JC-F = 9.1 Hz), 110.8, 108.0, 60.7, 58.4; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C18H14FN2O2 309.1034, found 309.1047.

(4-Fluorophenyl)((3R*,4S*)-3-(pyridin-4-yl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4yl)methanone (6y). White solid, mp: 144.7-146.8 °C (22.9 mg,

N N N

72%); 1H NMR (400 MHz, acetone-d6) δ 9.27 (s, 1H), 8.36 (d, J =

O

6.0 Hz, 2H), 8.23 (dd, J = 8.8, 5.5 Hz, 2H), 7.59 (s, 1H), 7.30 – 7.33 6y

F

(m, 2H), 7.18 (d, J = 5.8 Hz, 1H), 6.82-6.84 (m, 1H), 6.24 – 6.27

(m, 1H), 5.70 (d, J = 4.2 Hz, 1H), 5.51 (d, J = 4.3 Hz, 1H), 5.43 (d, J = 3.6 Hz, 1H). 13C{1H} 25

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 26 of 39

NMR (100 MHz, acetone-d6) δ 194.9, 180.7, 168.3 (d, JC-F = 252.5 Hz), 165.8, 150.2, 133.9, 132.8 (d, JC-F = 9.8 Hz), 130.8, 126.6, 122.5, 116.8 (d, JC-F = 24.9 Hz), 111.9, 110.7, 74.6, 65.6; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C19H15FN3O 320.1194, found 320.1206.

(4-Chlorophenyl)((3R*,4S*)-3-phenyl-3,4-dihydropyrrolo[1,2-a]pyrazin-4yl)methanone(6z). White solid, mp: 155.1-155.3°C (28.8 mg, 86%);

N N

1H

NMR(400 MHz, CDCl3) δ 8.37 (s, 1H), 7.82 (dd, J = 7.5, 5.6

Hz, 2H), 7.21-7.24 (m, 3H), 7.16 (d, J = 6.4 Hz, 2H), 7.09 (t, J = 8.2

O 6z

Cl

Hz, 2H), 6.61 (d, J = 3.4 Hz, 1H), 6.54 (s, 1H), 6.31 (s, 1H), 5.60 (d,

J = 5.2 Hz, 1H), 5.20 (d, J = 4.3 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 194.2, 151.7, 139.6, 131.3, 131.3, 129.1, 128.3, 127.4, 125.7, 124.0, 116.4, 116.2, 112.2, 111.0, 64.5, 62.8; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for C20H15ClN2ONa 357.0765, found 357.0775.

(4-Chlorophenyl)((3R*,4S*)-3-(p-tolyl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4yl)methanone (6aa). White solid, mp: 154.7-155.8°C (30.5 mg, N

88%); 1H NMR (400 MHz, CDCl3) δ 8.37 (s, 1H), 7.86 (s, 2H),

N Me

7.07-7.13 (m, 6H), 6.62 (s, 1H), 6.56 (s, 1H), 6.33 (s, 1H), 5.62

O 6aa

Cl

(s, 1H), 5.23 (s, 1H), 2.29 (s, 3H);

13C{1H}

NMR (100 MHz,

CDCl3) δ 194.1, 151.5, 138.1, 136.7, 131.4, 131.3, 129.7, 127.2, 125.7, 124.0, 116.4, 116.2, 112.0, 110.9, 64.0, 63.0, 21.2; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for C21H17ClN2ONa 371.0922, found 371.0931.

26

ACS Paragon Plus Environment

Page 27 of 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

(4-Chlorophenyl)((3R*,4S*)-3-(2-methoxyphenyl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4yl) methanone (6ab). White solid, mp: 150.6-151.8°C (30.6 mg, OMe N

84%); 1H NMR (400 MHz, CDCl3) δ 8.52 (s, 1H), 8.11 (dd, J

N

= 7.5, 5.9 Hz, 2H), 7.21-7.25 (m, 1H), 7.15 (t, J = 8.4 Hz, 2H),

O 6ab

Cl

6.95 (d, J = 7.4 Hz, 1H), 6.83-6.89 (m, 2H), 6.60 (d, J = 2.4 Hz,

1H), 6.52 (s, 1H), 6.28 (s, 1H), 5.80 (s, 1H), 5.70 (d, J = 2.6 Hz, 1H), 3.91 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 193.8, 156.3, 153.2, 131.8, 131.7, 129.2, 128.4, 128.4, 126.2, 124.3, 121.2, 116.0, 115.8, 111.7, 110.7, 110.6, 62.4, 57.8, 55.4; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for C21H17ClN2O2Na 387.0871, found 387.0881.

((3S*,4S)-3-(1H-Pyrrol-2-yl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4-yl)(4-chlorophenyl) methanone (6ac). White solid, mp: 152.7-153.6 °C (23.8 mg, H N

N

73%); 1H NMR (400 MHz, CDCl3) δ 8.67 (s, 1H), 8.25 (s, 1H),

N

7.93 (dd, J = 8.6, 5.4 Hz, 2H), 7.17 (t, J = 8.5 Hz, 2H), 6.67 (s,

O 6ac

Cl

2H), 6.61 (d, J = 3.6 Hz, 1H), 6.33-6.35 (m, 1H), 6.07 (d, J = 2.8

Hz, 1H), 6.00 (s, 1H), 5.79 (d, J = 4.2 Hz, 1H), 5.40 (d, J = 2.8 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 193.9, 151.4, 131.3, 131.3, 129.1, 128.3, 127.4, 125.7, 124.0, 116.4, 116.2, 112.1, 110.8, 107.1, 102.8, 62.6, 59.1; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C18H15ClN3O 324.0898, found 324.0910.

(4-Bromophenyl)((3R*,4S*)-3-phenyl-3,4-dihydropyrrolo[1,2-a]pyrazin-4-yl)methanone (6ad). White solid, mp: 167.5-168.6 °C (32.3 mg, 85%); 1H NMR N

(400 MHz, CDCl3) δ 8.37 (s, 1H), 7.64 (d, J = 8.6 Hz, 2H), 7.56

N

27

O 6ad

Br

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(d, J = 8.6 Hz, 2H), 7.22-7.25 (m, 3H), 7.15-7.19 (m, 2H), 6.61 (d, J = 3.6 Hz, 1H), 6.53 (s, 1H), 6.30-6.32 (m, 1H), 5.59 (d, J = 5.3 Hz, 1H), 5.20 (d, J = 3.3 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 194.9, 151.7, 139.6, 132.4, 130.0, 129.6, 129.1, 128.4, 128.2, 127.4, 125.7, 124.0, 112.2, 111.0, 64.4, 62.9; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for C20H15BrN2ONa 401.0260, found 401.0269.

(4-Bromophenyl)((3R*,4S*)-3-(p-tolyl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4yl)methanone (6ae). White solid, mp: 171.7-172.9 °C (34.2 mg, N

87%); 1H NMR (400 MHz, CDCl3) δ 8.37 (s, 1H), 7.68 (d, J =

N Me

8.6 Hz, 2H), 7.60 (d, J = 8.6 Hz, 2H), 7.07 (d, J = 8.4 Hz, 2H),

O 6ae

Br

7.05 (d, J = 8.4 Hz, 2H), 6.62 (d, J = 2.7 Hz, 1H), 6.56 (s, 1H),

6.32-6.34 (m, 1H), 5.60 (d, J = 4.8 Hz, 1H), 5.21 (d, J = 4.6 Hz, 1H), 2.29 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 194.8, 151.5, 138.1, 136.6, 133.5, 132.4, 130.0, 129.7, 129.5, 127.2, 125.7, 124.0, 112.1, 110.9, 63.9, 63.0, 21.2; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for C21H17BrN2ONa 415.0416, found 415.0427.

(4-Bromophenyl)((3R*,4S*)-3-(4-methoxyphenyl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4yl)methanone (6af). White solid, mp: 165.2-166.5°C (32.7 N

mg, 80%); 1H NMR (400 MHz, CDCl3) δ 8.36 (s, 1H), 7.67

N MeO

(d, J = 8.5 Hz, 2H), 7.59 (d, J = 8.5 Hz, 2H), 7.08 (d, J = 8.6

O 6af

Br

Hz, 2H), 6.78 (d, J = 8.6 Hz, 2H), 6.62 (d, J = 3.8 Hz, 1H),

6.56 (s, 1H), 6.32-6.34 (m, 1H), 5.59 (d, J = 5.1 Hz, 1H), 5.18 (d, J = 3.4 Hz, 1H), 3.75 (s, 3H); 13C{1H}

NMR (100 MHz, CDCl3) δ 194.9, 159.5, 151.4, 133.6, 132.4, 131.7, 130.0, 129.5, 28

ACS Paragon Plus Environment

Page 28 of 39

Page 29 of 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

128.5, 125.6, 124.0, 114.4, 112.0, 110.9, 63.7, 63.0, 55.4; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C21H18BrN2O2 409.0546, found 409.0555.

(4-Bromophenyl)((3S*,4S*)-3-(furan-2-yl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4yl)methanone (6ag). Yellow solid, mp: 153.1-154.4°C (29.5 mg, N

80%); 1H NMR (400 MHz, CDCl3) δ 8.34 (s, 1H), 7.83 (d, J = 8.4

N

O

Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 7.35 (s, 1H), 6.60 (s, 2H), 6.28-

O 6ag

Br

6.31 (m, 1H), 6.24 (s, 1H), 6.09 (s, 1H), 5.91 (d, J = 4.3 Hz, 1H),

5.42 (d, J = 3.9 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 194.0, 152.9, 151.4, 142.5, 133.0, 132.6, 130.1, 129.7, 125.3, 124.4, 112.6, 110.9, 110.8, 108.0, 60.7, 58.3; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for C18H13BrN2O2Na 391.0053, found 391.0061.

(4-Bromophenyl)((3S*,4S*)-3-(pyridin-2-yl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4-yl) methanone (6ah). Yellow solid, mp: 151.4-152.6 °C (20.5 mg, N N

73%); 1H NMR (400 MHz, CDCl3) δ 8.58 (d, J = 4.6 Hz, 1H),

N

8.48 (s, 1H), 8.14 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H),

O 6ah

Br

7.59-7.62 (m, 1H), 7.31 (d, J = 7.9 Hz, 1H), 7.18 (t, J = 6.2 Hz,

1H), 6.58 (d, J = 3.0 Hz, 2H), 6.51 (d, J = 2.9 Hz, 1H), 6.25-6.27 (m, 1H), 5.65 (s, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 194.5, 158.4, 154.5, 149.9, 148.3, 137.1, 136.5, 132.5, 130.7, 124.2, 122.1, 121.8, 118.0, 112.3, 110.7, 64.2, 61.8; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for C19H14BrN3ONa 402.0213, found 402.0225.

29

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 30 of 39

((3R*,4S*)-3-(4-Chlorophenyl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4-yl)(naphthalen-2-yl) methanone (6ai). Yellow solid, mp: 140.4-142.2 °C (33.8 N

mg, 88%); 1H NMR (400 MHz, CDCl3) δ 8.41 (s, 1H), 8.28

N Cl

(s, 1H), 7.89-7.90 (m, 4H), 7.65 (t, J = 7.5 Hz, 1H), 7.59 (t, J

O 6ai

= 7.5 Hz, 1H), 7.23 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.4 Hz,

2H), 6.65 – 6.66 (m, 1H), 6.61 (s, 1H), 6.34-6.35 (m, 1H), 5.77 (d, J = 5.7 Hz, 1H), 5.31 (d, J = 5.4 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 195.4, 151.9, 138.5, 136.1, 134.1, 132.5, 132.3, 130.6, 129.8, 129.4, 129.3, 129.2, 129.0, 128.0, 127.4, 125.7, 124.1, 123.8, 112.3, 111.1, 63.9, 62.7; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C24H18ClN2O 385.1102, found 385.1116.

[1,1'-Biphenyl]-4-yl((3R*,4S*)-3-(4-chlorophenyl)-3,4N

dihydropyrrolo[1,2-a]pyrazin-4-yl)methanone

N Cl

(6aj).

White solid, mp: 129.5-131.0 °C (36.5 mg, 89%); 1H

O

NMR (400 MHz, CDCl3) δ 8.41 (s, 1H), 7.89 (d, J = 8.3

6aj

Hz, 2H), 7.69 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 7.6 Hz, 2H), 7.49 (t, J = 7.4 Hz, 2H), 7.44 (d, t = 7.3 Hz, 1H), 7.24 (s, 2H), 7.17 (d, J = 8.4 Hz, 2H), 6.65 (d, J = 3.7 Hz, 1H), 6.60 (s, 1H), 6.34 – 6.35 (m, 1H), 5.65 (d, J = 5.6 Hz, 1H), 5.28 (d, J = 5.5 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 194.9, 152.0, 147.1, 139.5, 138.3, 134.1, 133.5, 132.8, 129.2, 129.2, 128.9, 128.8, 127.8, 127.4, 125.7, 124.2, 112.5, 111.1, 63.7, 62.7; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C26H20ClN2O 411.1259, found 411.1266.

Furan-2-yl((3R*,4S*)-3-(4-methoxyphenyl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4yl)methanone (6ak). Yellow solid, mp: 165.2-167.4 °C (26.5 mg, N

30

N MeO

O 6ak

O

ACS Paragon Plus Environment

Page 31 of 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

83%); 1H NMR(400 MHz, CDCl3) δ 8.40 (s, 1H), 7.62 (s, 1H), 7.15 (d, J = 8.3 Hz, 2H), 7.06 (d, J = 3.0 Hz, 1H), 6.81 (d, J = 8.4 Hz, 2H), 6.57–6.60 (m, 2H), 6.54 (s, 1H), 6.31 (s, 1H), 5.43 (d, J = 4.6 Hz, 1H), 5.32 (d, J = 3.8 Hz, 1H), 3.75 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 184.3, 159.4, 151.7, 151.2, 147.4, 131.8, 128.5, 125.7, 124.0, 119.2, 114.2, 113.1, 111.8, 110.8, 63.9, 63.5, 55.4; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C19H17N2O3 321.1234, found 321.1247.

(4-Methoxyphenyl)((3R*,4S*)-3-phenyl-3,4-dihydropyrazino[1,2-a]indol-4yl)methanone (8). Yellow solid, mp: 169.6-170.8 °C (27.5 mg, N

72%); 1H NMR (400 MHz, CDCl3) δ 8.39 (s, 1H), 7.72 (d, J =

N

8.2 Hz, 2H), 7.30 (d, J = 8.3 Hz, 2H), 7.21-7.23 (m, 2H), 7.14-

O 8

OMe

7.17 (m, 2H), 7.05-7.07 (m, 2H), 6.98 (d, J = 7.0 Hz, 1H), 6.91

(d, J = 8.3 Hz, 2H), 6.30 (s, 1H), 5.69 (s, 1H), 5.51 (s, 1H), 3.83 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 195.5, 163.2, 151.4, 145.1, 143.5, 134.4, 130.4, 130.1, 129.4, 128.6, 127.4, 127.1, 124.0, 122.5, 121.5, 114.3, 112.0, 108.9, 64.3, 62.8, 55.9; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C25H21N2O2 381.1598, found 381.1608.

Phenyl((3R*,4S*)-3-((E)-styryl)-3,4-dihydropyrrolo[1,2-a]pyrazin-4-yl)methanone (9). Yellow solid, mp: 161.4-162.5 °C (22.8 mg, 70%); 1H NMR (400 N N

Ph O 9

MHz, CDCl3) δ 8.27 (s, 1H), 7.83 (d, J = 7.8 Hz, 2H), 7.57-7.60 (m, 1H), 7.43-7.47 (m, 2H), 7.22-7.24 (m, 3H), 7.18 (d, J = 7.1 Hz, 2H), 6.62(s, 1H), 6.56 (s, 1H), 6.32(s, 1H), 5.80 (s, 1H), 5.67 (d, J 31

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 32 of 39

= 4.6 Hz, 1H), 5.28 (s, 1H), 4.69 (s, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 194.7, 151.7, 136.3, 134.2, 133.3, 129.3, 128.6, 128.6, 128.4, 128.1, 126.7, 126.5, 125.7, 124.4, 112.2, 110.8, 62.2, 62.2; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C22H19N2O 327.1492, found 327.1499.

Synthesis of 5: A mixture of 6ad (37.9 mg, 0.1 mmol) and K2CO3 (20.7 mg, 1.5 equiv) in ethanol (1.0 mL) was refluxed at 80 °C for 7 h (monitored by TLC). Upon completion of the reaction, the reaction mixture was concentrated in vacuo, extracted with ethyl acetate (3 × 10 mL), and washed with water and brine respectively. The organic layer was dried over MgSO4 and concentrated in vacuo to afford the crude product, which was purified by silica gel column chromatography (EtOAc/hexane = 1:8) to give 5 (33.9 mg, 90%). (4-Bromophenyl)(3-phenylpyrrolo[1,2-a]pyrazin-4-yl)methanone (5). Yellow fluorescent solid, mp: 177.7-178.9 °C (33.9 mg, 90%); 1H NMR(400 MHz, N

CDCl3) δ 8.99 (s, 1H), 7.65-7.67 (m, 1H), 7.54 (d, J = 8.4 Hz, 2H),

N

7.46 (dd, J = 7.2, 2.0 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 7.21-7.23

O 5

Br

(m, 3H), 6.98 (d, J = 4.2 Hz, 1H), 6.94-6.96 (m, 1H);

13C{1H}

NMR (100 MHz, CDCl3) δ 191.7, 145.8, 139.8, 137.7, 135.3, 132.0, 130.9, 129.8, 129.3, 128.9, 128.5, 128.3, 116.5, 116.2, 105.5; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C20H14BrN2O 377.0284, found 377.0292.

General Procedure for the Synthesis of 10: A mixture of 6ad (37.9 mg, 0.1 mmol) and ethyl bromoacetate (33.4 mg, 0.2 mmol) in CH3CN (5.0 mL) was refluxed for 1 h (monitored by TLC). Upon completion of the reaction, the reaction mixture was cooled down to rt. The precipitate was filtered off to afford 10a (51.6 mg, 32

ACS Paragon Plus Environment

Page 33 of 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

95%). (3R*,4S*)-4-(4-Bromobenzoyl)-2-(2-ethoxy-2-oxoethyl)-3-phenyl-3,4dihydropyrrolo[1,2-a]pyrazin-2-ium bromide (10a). Yellow Br EtO2C

solid, mp: 224.5-226.6 °C (51.6 mg, 95%); 1H NMR(400 MHz,

N N

acetone-d6) δ 9.93 (s, 1H), 8.26 (d, J = 8.5 Hz, 2H), 8.24 (s,

O

1H), 7.83 (d, J = 8.3 Hz, 2H), 7.70 (d, J = 4.3 Hz, 1H), 7.68 (s,

10a

Br

1H), 7.46-7.52 (m, 2H), 7.38-7.44 (m, 3H), 6.71 (dd, J = 4.2,

2.3 Hz, 1H), 5.87 (s, 1H), 5.56 (d, J = 17.3 Hz, 1H), 4.49 (d, J = 17.3 Hz, 1H), 3.99-4.09 (m, 2H), 1.11 (t, J = 7.1 Hz, 3H); 13C{1H} NMR (100 MHz, acetone-d6) δ 192.7, 167.3, 155.6, 139.3, 134.1, 133.4, 133.0, 132.4, 130.5, 130.4, 129.5, 129.3, 127.7, 125.1, 117.3, 65.8, 63.7, 62.8, 57.4, 14.2; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C24H23BrN2O3 466.0881, found 466.0872.

(3R*,4S*)-4-(4-Bromobenzoyl)-2-(2-oxo-2-phenylethyl)-3-phenyl-3,4dihydropyrrolo[1,2-a]pyrazin-2-ium bromide(10b). Yellow Ph

O

Br

solid, mp: 247.7-248.6 °C (56 mg, 97%); 1H NMR (400 MHz,

N

acetone-d6) δ 9.90 (s, 1H), 8.31 (d, J = 8.2 Hz, 2H), 8.25 (s,

N

1H), 7.79 (d, J = 7.7 Hz, 2H), 7.72-7.75 (m, 3H), 7.55-7.58(m,

O 10b

Br

2H), 7.47-7.52 (m, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.35 (s, 3H),

6.61 (d, J = 17.6 Hz, 2H), 5.83 (s, 1H), 5.19 (d, J = 17.6 Hz, 1H); 13C{1H} NMR (100 MHz, acetone-d6) δ 193.2, 191.9, 155.3, 138.9, 134.9, 134.9, 134.4, 133.8, 132.8, 132.5, 130.3, 130.3, 129.6, 129.6, 128.9, 128.7, 127.7, 125.0, 116.8, 66.2, 63.7, 63.0; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C28H23BrN2O2 500.0912, found 500.0899. 33

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Supporting Information The Supporting Information is available free of charge on the ACS Publication website at DOI: 1H

and 13C NMR spectra of the synthesized compounds and a CIF file for 6e.

Notes The authors declare no competing financial interest.

Acknowledgements We thank the National Research Foundation of Korea (NRF-2017R1A2A2A05069364 and NRF-2018R1A6A1A03023718) for generous financial support.

References

34

ACS Paragon Plus Environment

Page 34 of 39

Page 35 of 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

1 (a) Bohacek, R. S.; McMartin, C.; Guida, W. C. The Art and Practice of Structure-Based Drug

Design: a Molecular Modeling Perspective. Med. Res. Rev. 1996, 16, 3-50. (b) Dobson, C. M. Chemical Space and Biology. Nature 2004, 432, 824-828. (c) Reymond, J.-L.; Awale, M. Exploring Chemical Space for Drug Discovery Using the Chemical Universe Database. ACS Chem. Neurosci. 2012, 3, 649-657. (d) Passador, K.; Thorimbert, S.; Botuha, C. ‘Heteroaromatic Rings of the Future’: Exploration of Unconquered Chemical Space. Syntheis 2019, 51, 384-398. 2

(a) Wimmer, L.; Rycek, L.; Koley, M.; Schnürch, M. Metal Catalyzed Cross-Coupling

Reactions in the Decoration of Pyrimidine, Pyridazine, and Pyrazine. Top. Heterocycl. Chem. 2016, 45, 61-158. (b) Soulé, J.-F.; Doucet, H. New Arylating Agents in Pd-Catalyzed C–H Bond Functionalization of 5-Membered Ring Heteroarenes. Top. Organomet. Chem. 2016, 55, 103-118. (c) Maes, J.; Maes, B. U. W. A Journey Through Metal-Catalyzed CH Functionalization of Heterocycles: Insights and Trends. Adv. Heterocycl. Chem. 2016, 120, 137-194. (d) Aziz, J.; Piguel, S. An Update on Direct C–H Bond Functionalization of NitrogenContaining Fused Heterocycles. Synthesis 2017, 49, 4562-4585. 3

(a) Kim, I.; Kim, K. Expeditious Synthesis of Highly Substituted Indolizinones via a

Palladium-Catalyzed Domino Sequence. Org. Lett. 2010, 12, 2500-2503. (b) Lee, J. H.; Kim, I. Cycloaromatization Approach to Polysubstituted Indolizines from 2-Acetylpyrroles: Decoration of the Pyridine Unit. J. Org. Chem. 2013, 78, 1283-1288. (c) Jung, Y.; Kim, I. Deformylative Intramolecular Hydroarylation: Synthesis of Benzo[e]pyrido[1,2-a]indoles. Org. Lett. 2015, 17, 4600-4603. (d) Nayak, M.; Kang, Y. K.; Kim, I. Altering the Cyclization 35

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Modes: Temperature-Dependent Intramolecular 7-Endo-Dig vs 6-Endo-Dig Electrophilic Ring Closures. Org. Lett. 2017, 19, 1474-1477. 4

(a) Park, S.; Jung, Y.; Kim, I. Diversity-Oriented Decoration of Pyrrolo[1,2-a]pyrazines.

Tetrahedron 2014, 70, 7534-7550. (b) Kim, I.; Kim, S. H. KR 2016006050 A 20160118. 5

Singh, D. K.; Kim, I. Electrophilic Acetylation and Formylation of Pyrrolo[1,2-a]pyrazines:

Substituent Effects on Regioselectivity. ARKIVOC 2019, part iii, 8-21. 6 (a) Zhu, H.; Stöckigt, J.; Yu, Y.; Zou, H.

“One-Pot” Multicomponent Approach to Indolizines

and Pyrido[1,2-a]indoles. Org. Lett. 2011, 13, 2792-2794. (b) Jiang, X.; Tan, B.; Barbas III, C. F. Core‐Structure‐Motivated Design of Iminium–Enolate Organocascade Reactions: Enantioselective Syntheses of 5,6‐Dihydroindolizines. Angew. Chem., Int. Ed. 2013, 52, 92619265. (c) Kim, M.; Jung, Y.; Kim, I. Domino Knoevenagel Condensation/Intramolecular Aldol Cyclization Route to Diverse Indolizines with Densely Functionalized Pyridine Units. J. Org. Chem. 2013, 78, 10395-10404. (d) Zhong, W.; Zhu, H.; Zou, H. “One-Pot” Cascade Approach to 5,6-Dihydroindolizines and Indolizines from Pyrrole-2-carbaldehydes and Nitroethylenes. Tetrahedron 2017, 73, 3181-3187. 7

(a) Buchan, R.; Fraser, M.; Kong Thoo Lin, P. V. S. Azaindolizines. 7. 7-Azaindolizines,

Their Reactivity and Reaction with Dimethyl Acetylenedicarboxylate. J. Org. Chem. 1989, 54, 1074-1076. (b) Terenin, V. I.; Kabanova, E. V.; Tselischeva, N. A.; Ivanov, A. S.; Zyk, N. V. Trifluoroacetylation of Pyrrolo[1,2-a]pyrazines. Chem. Heterocycl. Comp. 2007, 43, 10381043. (c) Terenin, V. I.; Butkevich, M. A.; Ivanov, A. S.; Tselischeva, N. A.; Kabanova, E. V. Formylation of Pyrrolo[1,2-a]pyrazines. Chem. Heterocycl. Comp. 2008, 44, 73-77. (d) 36

ACS Paragon Plus Environment

Page 36 of 39

Page 37 of 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Terenin, V. I.; Butkevich, M. A.; Ivanov, A. S.; Kabanova, E. V. Acylation of Pyrrolo[1,2a]pyrazines. Chem. Heterocycl. Comp. 2008, 44, 200-207. 8 (a) Bhide, R. S.; Batt, D. G.; Cherney, R. J.; Cornelius, L. A. M.; Liu, Q.; Marcoux, D.; Neels,

J.; Poss, M. A.; Qin, L.-Y.; Ruan, Z.; Shi, Q.; Srivastava, A. S.; Tino, J. A.; Watterson, S. H. WO 2016064957 A1 20160428. (b) Lee, Y. H.; Lee, J. M.; Kim, S. G.; Lee, Y. S. Synthesis and biological evaluation of 1,2-dithiol-3-thiones and pyrrolo[1,2-a]pyrazines as novel hypoxia inducible factor-1 (HIF-1) inhibitor. Bioorg. Med. Chem. 2016, 24, 2843-2851. (c) Yarkova, M. A.; Mokrov, G. V.; Gudasheva, T. A.; Seredenin, S. B. Novel Pyrrolo[1,2-a]pyrazines (TSPO Ligands) with Anxiolytic Activity Dependent on Neurosteroid Biosynthesis. Pharm. Chem. J. 2016, 50, 501-504. (d) Garzan, A.; Willby, M. J.; Ngo, H. X.; Gajadeera, C. S.; Green, K. D.; Holbrook, S. Y. L.; Hou, C.; Posey, J. E.; Tsodikov, O. V.; Garneau-Tsodikova, S. Combating Enhanced Intracellular Survival (Eis)-Mediated Kanamycin Resistance of Mycobacterium tuberculosis by Novel Pyrrolo[1,5-a]pyrazine-Based Eis Inhibitors. ACS Infect. Dis. 2017, 3, 302-309. (e) Desplat, V.; Vincenzi, M.; Lucas, R.; Moreau, S.; Savrimoutou, S.; Rubio, S.; Pinaud, N.; Bigat, D.; Enriquez, E.; Marchivie, M.; Routier, S.; Sonnet, P.; Rossi, F.; Ronga, L.; Guillon, J. Synthesis and Antiproliferative Effect of Ethyl 4‐[4‐(4‐Substituted Piperidin‐1‐yl)]benzylpyrrolo[1,2‐a]quinoxalinecarboxylate Derivatives on Human Leukemia Cells. ChemMedChem 2017, 12, 940-953. (f) Aiello, F.; Carullo, G.; Giordano, F.; Spina, E.; Nigro, A.; Garofalo, A.; Tassini, S.; Costantino, G.; Vincetti, P.; Bruno, A.; Radi, M. Identification of Breast Cancer Inhibitors Specific for G Protein‐Coupled Estrogen Receptor (GPER)‐Expressing Cells. ChemMedChem 2017, 12, 1279-1285. 9

Kim, J.; Park, M.; Choi, J.; Singh, D. K.; Kwon, H. J.; Kim, S. H.; Kim, I. Design, Synthesis, 37

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

and Biological Evaluation of Novel Pyrrolo[1,2-a]pyrazine Derivatives. Bioorg. Med. Chem. Lett. 2019, 29, 1350-1356. 10

Periasamy, M.; Sanjeevakumar, N.; Dalai, M.; Gurubrahamam, R.; Reddy, P. O. Highly

Enantioselective Synthesis of Chiral Allenes by Sequential Creation of Stereogenic Center and Chirality Transfer in a Single Pot Operation. Org. Lett. 2012, 14, 2932-2935. 11

For some examples on aromatization through air oxidation, see: (a) Kawashita, Y.; Hayashi,

M. Synthesis of Heteroaromatic Compounds by Oxidative Aromatization Using an Activated Carbon/Molecular Oxygen System. Molecules 2009, 14, 3073-3093. (b) Zhang, C.; Zhang, L.; Jiao, N. Catalyst Free Approach to Benzimidazoles Using Air as the Oxidant at Room Temperature. Green Chem. 2012, 14, 3273-3276. (c) Dagar, A.; Biswas, S.; Samanta, S. A Catalyst-Free, Efficient Green MCR Protocol for Access to Functionalized γ-Carbolines in Water. RSC Adv. 2015, 5, 52497-52507. (d) Zheng, B.; Trieu, T. H.; Meng, T.-Z.; Lu, X.; Dong, J.; Zhang, Q.; Shi, X.-X. Cu-Catalyzed Mild and Efficient Oxidation of THβCs Using Air: Application in Practical Total Syntheses of Perlolyrine and Flazin. RSC Adv. 2018, 8, 68346839. 12

Compound 4 was synthesized by following the literature procedures. See ref 6c.

13

Use of other ammonium salts were screened as well. While use of ammonium formate gave

a comparable yield of 6a, other salts such as ammonium carbonate, ammonium bicarbonate, ammonium sulfate, and ammonium chloride provided inferior results. 14

For crystal structure data of 6e, see the SI. CCDC 1894586 contains the supplementary

crystallographic data for compound 6e. These data can be obtained free of charge from The 38

ACS Paragon Plus Environment

Page 38 of 39

Page 39 of 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 15

We thank the reviewer who suggested the reaction in the absence of K2CO3.

16

(a) Trost, B. M. The Atom Economy--a Search for Synthetic Efficiency. Science 1991, 254,

1471-1477. (b) Trost, B. M. Atom Economy—A Challenge for Organic Synthesis: Homogeneous Catalysis Leads the Way. Angew. Chem., Int. Ed. 1995, 34, 259-281. (c) Sheldon, R. A. Atom Efficiency and Catalysis in Organic Synthesis. Pure Appl. Chem. 2000, 72, 1233-1246. 17

These reactions can be carried out in DMSO if the starting materials are not much soluble in

EtOH. DMSO was used for the synthesis of 6ai due to poor solubility of 4g in EtOH. 18

Sypchenko, V. V.; Potikha, L. M.; Kovtunenko, V. A.; Baumer, V. N.; Shishkin, O. V.

Preparation

of

Isoindolo[2,1-a]quinoxalines

Based

on

Derivatives. Chem. Heterocycl. Compd. 2012, 48, 1033-1042.

39

ACS Paragon Plus Environment

N-(2-Aminophenyl)isoindole