Rational Design, Pharmacomodulation, and Synthesis of Dual 5

Sep 8, 2015 - Rational Design, Pharmacomodulation, and Synthesis of Dual 5-Hydroxytryptamine 7 (5-HT7)/5-Hydroxytryptamine 2A (5-HT2A) Receptor Antago...
0 downloads 15 Views 2MB Size
Subscriber access provided by UNIV OF NEBRASKA - LINCOLN

Article

Rational Design, Pharmacomodulation, Synthesis of Dual 5Hydroxytryptamine 7 (5-HT) / 5-Hydroxytryptamine 2A (5-HT ) Receptors Antagonists and Evaluation by [ F]-PET Imaging in a Primate Brain 7

2A

18

Emmanuel Deau, Elodie Robin, Raluca Voinea, Nathalie Percina, Grzegorz Sata#a, Adriana-Lumini#a Fînaru, Agnès Chartier, Gilles D Tamagnan, David Alagille, Andrzej J. Bojarski, Séverine Morisset-Lopez, Franck Suzenet, and Gérald Guillaumet J. Med. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jmedchem.5b00874 • Publication Date (Web): 08 Sep 2015 Downloaded from http://pubs.acs.org on September 16, 2015

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

Journal of Medicinal Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

Rational Design, Pharmacomodulation, Synthesis of Dual

5-Hydroxytryptamine

Hydroxytryptamine

2A

7

(5-HT7)

(5-HT2A)

/

5-

Receptors

Antagonists and Evaluation by [18F]-PET Imaging in a Primate Brain Emmanuel Deau,†,‡ Elodie Robin,§,‡ Raluca Voinea, †,┴ Nathalie Percina, † Grzegorz Satała,∞ Adriana-Luminita Finaru,┴ Agnès Chartier, † Gilles Tamagnan,║ David Alagille,║ Andrzej J. Bojarski,∞ Séverine Morisset-Lopez,§ Franck Suzenet,*,† Gérald Guillaumet*,† †

Institut de Chimie Organique et Analytique (ICOA), Université d’Orléans, CNRS, UMR 7311,

F-45067 Orleans, France ┴

Centrul de Cercetare ‘Chimie Aplicată şi Inginerie de Proces’, Universitatea din Bacău, Calea

Mărăşesti, nr. 157, 600115 Bacău, Romania. §

Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS),

UPR 4301, Université d’Orléans et INSERM, rue Charles Sadron, 45071 Orléans Cedex 2, France. ║

Molecular NeuroImaging, 60 Temple St, New Haven, CT 06510, USA.

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60



Page 2 of 101

Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków 31-343,

Poland.

ABSTRACT: We

report the synthesis of forty-six tertiary amine-bearing N-alkylated

benzo[d]imidazol-2(3H)-ones, imidazo[4,5-b]pyridin-2(3H)-ones, imidazo[4,5-c]pyridin-2(3H)ones, benzo[d]oxazol-2(3H)-ones, and oxazolo[4,5-b]pyridin-2(3H)-ones, and N,N’-dialkylated benzo[d]imidazol-2(3H)-ones. These compounds were evaluated against 5-HT7R, 5-HT2AR, 5HT1AR, and 5-HT6R, as potent dual 5-HT7/5-HT2A serotonin receptors ligands. A thorough study of the structure-activity relationship of the aromatic rings and their substituents, the alkyl chain length, and the tertiary amine was conducted. 1-(4-(4-(4-Fluorobenzoyl)piperidin-1-yl)butyl)1H-benzo[d]imidazol-2(3H)-one (79) and 1-(6-(4-(4-fluorobenzoyl)piperidin-1-yl)hexyl)-1Hbenzo[d]imidazol-2(3H)-one (81) were identified as full antagonist ligands on cyclic adenosine monophosphate (cAMP, KB = 4.9 and 5.9 nM respectively) and inositol monophosphate (IP1, KB = 0.6 and 16 nM respectively) signaling pathways of 5-HT7R and 5-HT2AR. Both antagonists crossed the blood-brain barrier as evaluated with [18F] radiolabeled compounds [18F]79 and [18F]81 in a primate’s central nervous system using Positron Emission Tomography. Both radioligands showed standard uptake values ranging from 0.8 to 1.1, a good plasmatic stability and a distribution consistent with 5-HT7R and 5-HT2AR in the CNS.

ACS Paragon Plus Environment

Page 3 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

INTRODUCTION Since its discovery in the early 90’s,1 serotonin-activated cell-surface receptor 5hydroxytryptamine 7 (5-HT7R) has become a subject of interest for numerous research groups and industries specialized in organic and medicinal chemistry, molecular biology, neurology, neurochemistry, and nuclear medicine. 5-HT7R is the last of the serotonin receptors family. This family is divided into seven types (5-HT1R to 5-HT7R), all of which count no less than fourteen subtypes. 5-HT7R is a Gαs-protein-coupled receptor (GPCR), a heptameric transmembrane domain which is positively linked to adenylate cyclase. When studied in 5-HT7 transfected cells, two potent agonists, 5-carboxytryptamine (5-CT) and 5-hydroxytryptamine (serotonin, 5-HT), induced a rapid increase in the formation of an intracellular second messenger, 3’-5’-cyclic adenosine monophosphate (cAMP).2 With the exception of 5-HT3R, a Cys-loop ligand-gated ion channel (LGIC) receptor,3 the high amino-acid sequence homology between all 5-HT receptors makes it relatively difficult to synthesize highly selective ligands. In recent years, major progress has been made with selective 5-HT7R agonists/antagonists (Figure 1) and knockout mice strains that lack the 5-HT7R, unveiling the multiple roles of this receptor in the central nervous system (CNS). Several agonists and antagonists including pyridines, long chain arylpiperazines (LCAP: LP 44, LP 211),4 triazines,5 arylsulfonamides (SB-269970, SB-656104),6 benzimidazol-2-ones (SB-691673),7 tetrahydrobenzindolones (DR 4485),8 pyrazoles (AS-19, E-55888)9 were reported as selective 5-HT7R ligands (Figure 1). 5-HT7R is believed to play major regulatory functions in the human CNS, but the full scope of its physiological, pathophysiological and neurological roles remains unraveled. In addition to its association with psychiatric disorders,10 treatment of neurodevelopmental disorders,11 deregulation of the circadian rhythm,1 sleep disturbance,12 thermoregulation,13 inflammatory processes,14 pain and control of nociception,12c learning and

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 101

memory15 (Figure 2), various studies recently underpinned the pivotal role of 5-HT7R in neuronal modeling and brain circuitry reshaping.16 Figure 1. Selected examples of selective 5-HT7R antagonists (left) and agonists (right).

Unlike 5-HT7R, 5-H2AR is a Gαq-protein-coupled heptameric transmembrane domain receptor. When triggered by an agonist, 5-HT2AR activates the phospholipase C pathway which consequently stimulates the production of diacylglycerol (DAG) and inositol triphosphate (IP3)17 Various

5-HT2AR

antagonists

(Fananserin,18

Altanserin,19

Nefazodone,20

Melperone,21

MDL100907,22 and Ketanserin23) and agonists (DOI (2,5-dimethoxy-4-iodoamphetamine),24 25CN-NBOH,25 PNU 22394,26 TCB-227) were studied in clinical trials and approved as psychotropic drugs (Figure 2). Pathologies associated with 5-HT7R1,10,15 are commonly correlated with 5-HT2AR diseases.28 Altogether, implications in mood disorders, schizophrenia, CNS-related diseases

ACS Paragon Plus Environment

Page 5 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

support that 5-HT7R is also a highly important therapeutic target in the treatment of cognitive disorders. Therefore, synthesizing dual ligands of 5-HT7R and 5-HT2AR could constitute a highly significant strategy and a potential therapeutic advance for patients suffering of CNS diseases and psychiatric disorders.29 Figure 2. Selected examples of selective 5-HT2AR antagonists (left) and agonists (right).

Our research groups previously demonstrated that 1-(4-chlorophenyl)piperazine linked to benzimidazol-2-one with a n-pentyl spacer (product I) constitutes an excellent, high-affinity 5HT7R ligand (Ki (5-HT7R) = 7 nM) with an appreciable activity against 5-HT2AR (Ki (5-HT2AR) = 79 nM).30 This manuscript describes our efforts in the development, optimization, and pharmacomodulation of dual ligands that specifically target 5-HT7R and 5-HT2AR. Upon in vitro evaluation on 5-HT7R, 5-HT2AR, 5-HT1AR, and 5-HT6R, the best dual ligands were selected and evaluated to determine their agonistic or antagonistic properties. The most promising compounds bearing a fluorine atom were radiolabeled with [18F]fluoride and evaluated in non-human

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 6 of 101

primates to estimate their propensity to cross the blood-brain barrier (BBB) by Positron Emission Tomography (PET) imaging (Figure 3).

Figure 3. Previous work and current work on the synthesis of dual 5-HT7R/5-HT2AR ligands and brain penetration study by PET imaging.

CHEMISTRY In order to increase its affinity for 5-HT2AR and maintain its affinity for 5-HT7R, various pharmacomodulations of the previously identified compound I were undertaken. The effects of the aromatic rings, the length of the alkyl chain, the simple or double substitution of the urea function, and the nature of the tertiary amine on the affinity for 5-HT7R and 5-HT2AR was investigated. This structure-activity relationship study and radiolabeling were achieved according to the following retrosynthetic pathway: the brain permeability of radiolabeled compound (II) would be studied after in vitro evaluation and radiolabeling of the target compounds (III). Compounds (III) would be synthesized after a substitution reaction on various bromoalkyl intermediates (IV) obtained by different synthetic routes from simple aromatic compounds (V) (Scheme 1). This general retrosynthetic pathway would provide access to N-alkylated or N,N’-

ACS Paragon Plus Environment

Page 7 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

dialkylated

benzo[d]imidazol-2(3H)-ones,

imidazo[4,5-b]pyridin-2(3H)-ones,

imidazo[4,5-

c]pyridin-2(3H)-ones, benzo[d]oxazol-2(3H)-ones, or oxazolo[4,5-b]pyridin-2(3H)-ones. Scheme 1. Retrosynthetic pathway and access to novel N-alkylated or N,N’-dialkylated 1Hbenzo[d]imidazol-2(3H)-ones,

1H-imidazo[4,5-b]pyridin-2(3H)-ones

or

1H-imidazo[4,5-

c]pyridin-2(3H)-ones, benzo[d]oxazol-2(3H)-ones and oxazolo[4,5-b]pyridin-2(3H)-ones and radiosynthesis of a dual 5-HT7R/5-HT2AR radioligand for the evaluation of the blood-brain barrier permeability.

In order to optimize the synthesis of dual 5-HT7R/5-HT2AR ligands, we first focused on the potential modulations of the benzo[d]imidazol-2(3H)-one moiety and its side chains.31 Commercially-available benzo[d]imidazol-2(3H)-one 1 was initially monoprotected and converted into tert-butylcarbamate 2 which was alkylated with various 1,n-dibromoalkanes (from ethyl (n = 2) to n-heptyl (n = 7)) under microwave irradiation in phase transfer-catalyzed conditions to yield intermediates 3-8. The latter were finally deprotected to yield a first set of

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 8 of 101

bromoalkylbenzo[d]imidazol-2(3H)-ones intermediates 9-14. In addition to N-alkylated series, the synthesis N,N’-dialkylated analogues bearing an n-butyl side chain was investigated as addition of an alkyl moiety could increase the brain permeability due to its higher lipophilicity. Since the direct alkylation of compounds 9-14 may be problematic, the n-butyl side chain should be inserted prior to the bromoalkyl side chain. Accordingly, tert-butylcarbamate 2 was alkylated in the same conditions as described above with n-bromobutane to isolate alkylcarbamate 15, which was deprotected into 16 and subsequently alkylated with 1,4-dibromobutane or 1,5dibromopentane to yield intermediates 17-18. Due to their potentially high pharmacological impact, the effect of halogenated substituents on the aromatic ring was also explored.32 Different synthetic strategies were implemented to synthesize monohalo-substituted bromoalkylbenzo[d]imidazol-2(3H)-ones precursors. However benzo[d]imidazol-2(3H)-one 1 cannot be directly and regioselectively desymmetrized by monohalogenation without appropriately deactivating one of the nitrogen atoms of the urea moiety. Therefore, 1 was initially converted into ethylcarbamate derivative 19 using ethylpyridin-2-yl carbonate 20, itself prepared from 2-hydroxypyridine and ethyl chloroformate. Monohalogenation of 19 was achieved regioselectively when performed in acetic acid at 65-70 °C with bromine or iodine monochloride to yield products 21 and 22, respectively. In this reaction, the temperature proved to be a critical parameter: lower temperatures gave incomplete conversions while higher temperatures provoked the partial deprotection of 19 into 1 which rapidly underwent polyhalogenation reactions. Phase transfer-catalyzed alkylation of ethylcarbamates 21 and 22 gave products 23 and 24 which protective group was conveniently removed

with

isopropylamine

in

THF

to

yield

monohalo-substituted

bromoalkylbenzo[d]imidazol-2(3H)-ones 25 and 26. Benzo[d]imidazol-2(3H)-one 1 was also

ACS Paragon Plus Environment

Page 9 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

efficiently converted into 5,6-dichlorobenzimidazol-2(3H)-one 27 using two equivalents of Nchlorosuccimide. Monoprotection of 27 into tert-butylcarbamate 28 followed by alkylation and deprotection gave 5,6-dichlorobromoalkylbenzo[d]imidazol-2(3H)-one 30. Addition of another aliphatic chain on the n-butyl dichloro derivative was conducted in the same manner as for compounds 17-18 starting from the dichlorocarbamate derivative 28. It was alkylated with nbromobutane to give intermediate 31 which was deprotected into 32 to finally yield product 33 after a second alkylation with 1,4-dibromobutane. Among the possible pharmacomodulations, we wished to synthesize a disymmetric dichlorobenzo[d]imidazol-2(3H)-one.

4,6-dichlorobenzo[d]imidazol-2(3H)-one

35

was

conveniently synthesized by a Curtius rearrangement-mediated cyclization of commercially available 2-amino-4,6-dichlorobenzoic acid 34 with diphenylphosphoryl azide (DPPA). Unlike other intermediates, monoprotection of 35 into tert-buylcarbamate 36 was achieved with dimethylaminopyridine

(DMAP)

and

di-tert-butyl

dicarbonate

(Boc2O)

with

perfect

regioselectivity in position 1 of 4,6-dichlorobenzo[d]imidazol-2(3H)-one.31 Alkylation of 36 into intermediate 37 followed by TFA-mediated deprotection yielded intermediate 38 (Scheme 2). Scheme 2. Synthesis of N-alkylated, N,N’-dialkylated, monohalo-, and dihalobenzo[d]imidazol2(3H)-ones(a).

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 10 of 101

(a) Reagents and conditions: (a) NaH (1.1 equiv), Boc2O (1 equiv), DMF, r.t., 24h; (b) TBAB (0.05 equiv), K2CO3 (5 equiv), Br(CH2)nBr or nBuBr (5 equiv), H2O, 80 °C (µw), 1h; (c) TFA (3 equiv), DCM, r.t., 3h; (d) Ethyl pyridin2-yl carbonate (20) (1.1 equiv), K2CO3 (1.1 equiv), ACN, reflux, 2h. Note: 20 was prepared using a modified protocol. For details, see experimental sections; (e) Br2 (1.2 equiv) or ICl (2 equiv), AcOH, 65 °C, 3h; (f) TBAB (0.05 equiv), K2CO3 (5 equiv), Br(CH2)nBr (5 equiv) or nBuBr (5 equiv), H2O, 60 °C (µw), 1h; (g) iPrNH2 (1.2 equiv), THF, r.t., 12h; (h) NCS (2 equiv), DMF, r.t., 6h; (i) DPPA (1.1 equiv), TEA (1 equiv), dioxane, reflux, 12h; (j) DMAP (0.1 equiv), Boc2O (1.025 equiv), THF, reflux, 2h; For detailed experimental protocols and spectroscopic data of intermediates, see experimental section/supporting information.

ACS Paragon Plus Environment

Page 11 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

Due to their potentially high pharmacological effect, the influence of new pyridine analogues on the selectivity and affinity against 5-HT7R and 5-HT2AR was also studied. Since imidazo[4,5-b]pyridin-2(3H)-one

41

and

imidazo[4,5-c]pyridin-2(3H)-one

48

are

not

commercially available, they required to be prepared from simple aromatic precursors: diaminopyridines 39 and 47, or 2-aminonicotinic acid 40. The global strategy was to access all four N-monoalkylated imidazopyridin-2(3H)-ones, all of which would bear a nitrogen atom at a different position of the aromatic cycle upon regioselective protection of 41 or 48. Accordingly, imidazo[4,5-b]pyridin-2(3H)-one 41 was prepared from 2,3-diaminopyridine which was cyclized using carbonyldiimidazole (CDI) or from 2-aminonicotinic acid 40 by Curtius rearrangement-mediated cyclization with DPPA, similarly to compound 35. Although the isolated yield was somewhat lower with the second method, it had the advantage of avoiding the laborious chromatographic purification step of this highly polar pyridine precursor. Monoprotection of imidazo[4,5-b]pyridin-2(3H)-one 41 into tert-butylcarbamate 42 was efficiently and regioselectively achieved with sodium hydride and Boc2O.31 Carbamate 42 was directly converted into 3-(4-bromobutyl)-1H-imidazo[4,5-b]pyridin-2(3H)-one 43 in a one-pot reaction without isolating the pH-sensitive alkylcarbamate intermediate. The second bromobutyl isomer 46 was synthesized from 41 using a differential protection sequence. Firstly, 41 was regioselectively converted into ethylcarbamate 44 using ethyl pyridin-2-yl carbonate 20. An orthogonal protection of the remaining free NH function with Boc2O in presence of DMAP followed by deprotection of the ethylcarbamate moiety with isopropylamine gave tertbutylcarbamate 45 in an overall good yield. Again, 45 was converted into monoalkylated isomer 46 using the same one-pot sequence as forementioned. Synthesis of the third pyridine isomer was achieved from 3,4-diaminopyridine 47. Starting material 47 was cyclized into imidazo[4,5-

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 12 of 101

c]pyridin-2-one 48 with CDI which was selectively protected into tert-butylcarbamate 49 followed by an alkylation-deprotection sequence which yielded 1-(4-bromobutyl)-1,3-dihydro2H-imidazo[4,5-c]pyridin-2-one 50. Attempt to use 3-aminoisonicotinic acid and cyclize it into 48 using DPPA (same conditions as 40) only provided an inseparable mixture of starting material and 48. Despite our efforts and regardless of the synthetic sequence or protective group, we were not able to isolate the last isomer, but a complex mixture of unidentified compounds. Finally, the synthesis of N-alkylated benzo[d]oxazol-2(3H)-ones and oxazolo[4,5b]pyridin-2(3H)-ones was achieved. Replacement of the NH function by an oxygen may help to assess the importance of the urea function on the affinity and selectivity for 5-HT7R and 5HT2AR. Commercial benzo[d]oxazol-2(3H)-one 51 was treated with 1,n-dibromoalkanes (n= 4, 5) to yield N-alkylated products 52 and 53. Pyridine isomers 56 and 57 were isolated in a similar way: 2-aminopyridin-3-ol 54 was initially cyclized into oxazolo[4,5-b]pyridin-2(3H)-one 55 with CDI and alkylated to give 56 and 57 (scheme 3). Scheme 3. Synthesis of N-alkylated imidazo[4,5-b]pyridin-2(3H)-ones, imidazo[4,5-c]pyridin2(3H)-ones, benzo[d]oxazol-2(3H)-ones, oxazolo[4,5-b]pyridin-2(3H)-ones(a).

ACS Paragon Plus Environment

Page 13 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

(a) Reagents and conditions: (a) CDI, THF, 66 °C (µw), 2h; (b) DPPA (1.1 equiv), TEA (1 equiv), dioxane, reflux, 12h; (c) NaH (1.1 equiv), Boc2O (1 equiv), DMF, r.t., 24h; (d) K2CO3 (1 equiv), Br(CH2)nBr (2 equiv), r.t., 2h, then TFA (5 equiv), DCM, r.t., 3h; (e) Ethyl pyridin-2-yl carbonate (20) (1.1 equiv), K2CO3 (1.1 equiv), ACN, reflux, 2h. Note: 20 was prepared using a modified protocol. For details, see experimental section; (f) DMAP (0.1 equiv), Boc2O (1.2 equiv), THF, r.t., 2h, then iPrNH2 (1.2 equiv); (g) K2CO3 (3 equiv), Br(CH2)nBr (5 equiv), DMF, 60 °C (µw), 3h. For detailed experimental protocols and spectroscopic data of intermediates, see experimental section/supporting information.

At this stage, twenty precursors were synthesized to perform a thorough evaluation of the effect of aromatic core and its substituents, as well as the length of the alkyl chain on the selectivity and affinity for 5-HT7R and 5-HT2AR. In order to measure the effect of the nature of the amine, the brominated precursors were reacted with a series of fifteen 4-substituted

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 14 of 101

piperazines and 4-substituted piperidines. The reason for choosing 4-substituted piperazines (Series A) and 4-substituted piperidines (Series B-E) was directly driven by previous results of numerous research groups: long-chain arylpiperazines and structurally related moieties have been long known for being one of the most important classes of serotonin receptor ligands.33 All final products were isolated after a nucleophilic substitution of the brominated precursors with the appropriate 4-substituted piperazines and 4-substituted piperidines in acetonitrile and DIPEA at 90 °C to yield products 58-102 and 103, a phtalimide analogue, in moderate to excellent yields varying from 42 to 99% (scheme 4). Scheme 4. Synthesis of series A-E: tertiary amine-bearing N-alkylated benzo[d]imidazol-2(3H)ones, imidazo[4,5-b]pyridin-2(3H)-ones, imidazo[4,5-c]pyridin-2(3H)-ones, benzo[d]oxazol2(3H)-ones, oxazolo[4,5-b]pyridin-2(3H)-ones and N,N’-dialkylated benzo[d]imidazol-2(3H)ones (a).

ACS Paragon Plus Environment

Page 15 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(a)

Journal of Medicinal Chemistry

Reagents and conditions: RNHR (or ·HCl or ·HBr) (1.2 equiv), DIPEA (2.5 equiv), ACN, 90 °C, sealed tube,

12h. For detailed experimental protocols, spectroscopic data, HPLC chromatograms of all final products, see experimental section/supporting information.

IN VITRO ASSAYS: SELECTIVITY

BIOLOGICAL

EVALUATION

AND

FUNCTIONAL

Radioligand binding assays were used to determine the affinity of the synthesized compounds for primary targets 5-HT7R and 5-HT2AR, stably expressed in human Embryonic Kidney 293 cells (HEK 293) and Chinese Hamster Ovary cells (CHO), respectively. Since long-

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 16 of 101

chain arylpiperazines or piperidines derivatives were often reported as 5-HT1AR and 5-HT6R ligands, affinity for these receptors was also determined.34 A first series of compounds 58-76 (Series A, Table 1) was studied in order to evaluate the effect of heterocyclic core, the spacer length and the substituents of the 4-phenyl piperazine. Previous results demonstrated that the optimum spacer providing affinity and selectivity for 5HT7R is a pentyl chain as shown in the case of ligand I.30,4 A butyl spacer was also reported as an optimal spacer for similar series of compounds,35 and was therefore screened to potentially improve the selectivity and the affinity against 5-HT2AR and 5-HT7R. In accordance with results from Volk et al., changing the chlorine atom in position 4 with a methoxy group in compound 58 resulted in a complete loss of affinity for 5-HT7R (Ki (5-HT7R) = 282 nM).35 Also, compound LP-44, a selective 5-HT7R agonist bearing 1-(2-(methylthio)phenyl)piperazine moiety was used as a template to synthesize thiomethylated compound 59.4 Since both products share a 1-(2(methylthio)phenyl)piperazine, similar biological results could be anticipated. Changing the position of the substituent and using a thiomethyl group instead of a chlorine substituent resulted in a similar affinity for 5-HT7R (Ki (5-HT7R) = 7.7 nM) compared to product I. However, a complete loss of selectivity was observed since product 59 also exhibits a high affinity for 5HT1AR (Ki (5-HT1AR) = 9.3 nM), unlike LP-44 which shows a selectivity fold above 200 between 5-HT7R and 5-HT1AR. This result points out the crucial role of the amide-bearing tetrahydronaphtalene moiety of LP-44 versus the benzo[d]imidazol-2(3H)-one heterocycle to conserve a high selectivity for 5-HT7R against 5-HT1AR when they are associated to substituted 4-phenylpiperazines. The in vitro study of new 4-halosubstituted products 60-62 was also carried out. Halogenated products 60 and 61, and more particularly the fluorinated derivative 62 proved to be

ACS Paragon Plus Environment

Page 17 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

highly active 5-HT7R ligands, with inhibition constants of 8, 17, and 6.2 nM, respectively. Product 62 showed much better selectivities of 73 and 197 folds for 5-HT7R versus 5-HT1AR and HT6R, respectively, and a good inhibition constant against 5-HT2AR (Ki (5-HT2AR) = 19 nM). Among the most active compounds, para-hydroxylated product 63 was also identified with an inhibition constant of 3.6 nM against 5-HT7R and excellent 712 and 587 selectivity folds for 5HT7R versus 5-HT1AR and HT6R, respectively, but a much lower affinity for 5-HT2AR (Ki (5HT2AR) = 188 nM) compared to fluorinated product 62. In an effort to assess the effect of the free NH function of the benzo[d]imidazol-2(3H)-one heterocycle of the most active ligands, the N-butyl analogue 64 of para-hydroxylated product 63 was examined. Functionalization of the free NH function resulted in a partial loss of affinity (Ki (5-HT7R) = 149 nM), indicating that functionalization of the NH function most likely results in a depleted biological activity. Taking into account the fact that compounds with the highest affinity for 5-HT7R and 5-HT2AR bear a 4fluorophenyl or 4-hydroxyphenylpiperazinyl moiety, the evaluation of products 65-76 bearing a benzo[d]oxazol-2(3H)-one or oxazolo[4,5-b]pyridin-2(3H)-one heterocyclic core was considered to appreciate the effect of the benzo[d]imidazol-2(3H)-one heterocycle on the affinity for 5HT7R and 5-HT2AR. Results presented in Table 1 demonstrate that interchanging the benzo[d]imidazol-2(3H)-one cycle with a benzo[d]oxazol-2(3H)-one moiety induced a partial loss of selectivity and affinity for 5-HT7R and 5-HT2AR. Higher inhibition constants of products 65-70 thus indicate that the benzo[d]oxazol-2(3H)-one heterocycle is not adapted to the synthesis of dual 5-HT7R/5-HT2AR ligands when it is combined to 4-fluorophenyl or 4hydroxyphenylpiperazine. However, in the case product 69 substitution with a hydroxyl group at position 4 partially restored the selectivity for 5-HT7R versus 5-HT1AR and 5-HT6R, which is consistent with the previous results obtained with product 63. Aza-analogues 71-76 of products

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 18 of 101

65-70 displayed a completely different affinity profile with a biological activity oriented towards 5-HT1AR. Products 71 and 74 which only differ by the dimension of the spacer, n-butyl versus npentyl chain respectively, present inhibition constants of 15 and 24 nM against 5-HT1AR. Compounds 71 and 74 also demonstrate that the optimum spacer length is no longer a n-pentyl, but a n-butyl chain if one wishes to optimize the affinity against 5-HT1AR. With regards to the affinity against 5-HT1AR, aza-analogues 71-76 interestingly prove that substitution of the paraposition of the phenylpiperazine induced a loss of affinity and selectivity against 5-HT1AR. This unexpected result highly contrasts with our previous observation: substitution in para position of the 4-phenylpiperazine was essential to conserve or enhance the activity against 5-HT7R in the benzo[d]imidazol-2(3H)-one series. With the initial intention of synthesizing new 5-HT7R/5-HT2AR dual ligands, evaluation of the most active compounds of series A as potent 5-HT2AR ligands was investigated. With the exception of compound 62, all products were insufficiently active against 5-HT2AR as previously shown. Affinity constants are limited to the double-digit nanomolar to micromolar range which might signify that substituted phenylpiperazines may not be the most adequate moiety to provide 5-HT2AR affinity. At this stage of our study, the benzo[d]imidazol-2(3H)-one heterocycle bearing a n-butyl or n-pentyl spacer seemed to be the most adequate to provide inhibition against 5-HT7R, but phenylpiperazine moieties were discarded due to insufficiently high affinities for 5HT2AR in this series. With the aim of circumventing these results and isolate pharmacophores with better inhibitory constants against 5-HT2AR, the use of new tertiary amines was envisaged. 4fluorobenzoylpiperidine was knowingly chosen as a potential pharmacophoric moiety not only due the high structural similarity with the previous series, and hence conserve the initial 5-HT7R

ACS Paragon Plus Environment

Page 19 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

activity, but also because previous studies demonstrated that compounds bearing this pharmacophoric core have high affinities for 5-HT2AR.19,21,23 Additionally, this fluorinated scaffold constitutes an ideal partner for an effective radiolabeling and evaluation of brain penetration by PET imaging. As a result, another set of ligands 77-82 (Series B, Table 2) bearing a 4fluorobenzoylpiperidine and a benzo[d]imidazol-2(3H)-one heterocycle attached together with nalkyl spacers was also investigated. The structural differences between arylpiperazines and 4fluorobenzoylpiperidine incited us to reevaluate the effect of the alkyl spacer length, using ethyl to n-heptyl chains. In this series, biological results indicate that the optimum chain length is no longer a n-pentyl chain, as in arylpiperazine series, but surprisingly a n-butyl or n-hexyl chain. Products 79 and 81 proved to have a high affinity for 5-HT7R (Ki (5-HT7R) = 2 nM for both products) with excellent selectivity against 5-HT6R and 5-HT1AR. Evaluation of the affinity of compounds of series B against 5-HT2AR demonstrated that choosing 4-fluorobenzoylpiperidine as a tertiary amine was the right choice since both products 79 and 81 also have a high affinity for 5-HT2AR (Ki (5-HT2AR) = 4 and 27 nM, respectively). In an effort to better understand this complete shift of affinity and possibly enhance the biological activities of these dual 5-HT7R/5-HT2AR ligands, various structural changes were accomplished on the core structures of products 79 and 81: position and number of fluorine atoms (Series C), role of the methyne and carbonyl functions of the 4-fluorobenzoylpiperidine (Series D), and finally addition of substituents or replacement of aromatic sp2 carbon atoms by an aromatic nitrogen atom on the benzo[d]imidazol-2(3H)-one core (Series E). Ligands 83-86 (Series C, Table 3) demonstrate that the position of the fluorine atom on the benzoylpiperidine is essential. Substitution in the para position by a fluorine atom is the best

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 20 of 101

position to maintain a selective ligand with high affinity for 5-HT7R. Any other substitution in ortho or meta positions, or disubstitutions induced a partial loss of affinity for 5-HT7R. Taking in account the high affinity of products 79 and 81, the effect of the carbonyl group and the tertiary carbon in position 4 of 4-fluorobenzoylpiperidine was investigated and ligands 87-89 were studied in that sense (Series D, Table 4). Replacement of the tertiary carbon by a nitrogen atom using 4-fluorobenzoylpiperazine lowered the affinity for 5-HT7R as demonstrated with product 87 (Ki (5-HT7R) = 81 nM), indicating that the ketone function of 4fluorobenzoylpiperidine rather than an amide function is essential to preserve the biological activity. In accordance with this observation, replacement of the carbonyl function by a methylene or a sulfonyl group with products 88 and 89 respectively, induced a partial loss of affinity and selectivity against 5-HT7R (Ki (5-HT7R) = 127 and 334 nM, respectively). At this point of the study, products 79 and 81 constitute the best dual 5-HT7R/5-HT2AR ligands and also the best candidates for radiolabeling. Keeping in mind that 4fluorobenzoylpiperidine constitute a highly potent substructure for 5-HT7R and 5-HT2AR inhibition, the effect and importance of the benzo[d]imidazol-2(3H)-one heterocycle remained to be studied. Consequently, the effect of the heteroaromatic ring and its substituents was examined and the in vitro evaluation of 90-103 (Series E, Table 5) was carried out. As shown with product 90, addition of the n-butyl side chain on the remaining free NH function expectedly gave a lower affinity for 5-HT7R (Ki (5-HT7R) = 30 nM). This result is in accordance with biological evaluation of N-alkylated product 64 compared to the non-alkylated product 63 (Table 1). Monobrominated, monoiodinated, dichlorinated, and N-alkyldichlorinated products 91-95 were also evaluated to assess the effect of substituents on the aromatic ring. Biological evaluation of

ACS Paragon Plus Environment

Page 21 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

the products 91-95 indicates that all the substitutions on the aromatic ring were detrimental for the affinity for 5-HT7R although ligand 93 remained quite active against 5-HT7R (Ki (5-HT7R) = 27 nM) and 5-HT2AR (Ki (5-HT2AR) = 26 nM). Noteworthy, adding halogen atoms noticeably enhances the affinity for the 5-HT6R for products 91-93. In the same manner, pyridine derivatives 96-98 were evaluated. Regardless of the position of the aromatic nitrogen atom, the affinities were higher than the reference compounds 79 and 81. Benzo[d]oxazol-2(3H)-one and oxazolo[4,5-b]pyridin-2(3H)-one derivatives 99-102 were also synthesized and evaluated. Attempts to change the free NH function of benzo[d]imidazol-2(3H)-one by an oxygen atom or adding a nitrogen atom to the heterocyclic ring results in a partial loss of affinity and selectivity against 5-HT7R and 5-HT2AR although compound 99 still had an acceptable inhibition constant against 5-HT7R (Ki (5-HT7R) = 13 nM) and 5-HT2AR (Ki (5-HT2AR) = 18 nM). Noteworthy, compound 103, a phtalimide analogue of product 79, demonstrated that the NHCONH sequence of the urea function is also essential to conserve the activity against 5-HT7R and 5-HT2AR. The most important SARs are summarized in figure 4. Also, lipophilicities (logD) and polar surface areas (PSA), two critical factors for brain penetration, were calculated for all compounds 58-103. Values in Tables 1-5 indicate that all products are in the commonly accepted range needed for a proper brain penetration (2 < LogD 360 °C31); 1H NMR (250 MHz, DMSO-d6) δ 10.91 (bs, 2H), 7.10 (s, 2H);

13

C NMR (63 MHz, DMSO-d6) δ 155.3, 129.9, 122.5, 109.8; IR (cm-1) υmax

3155, 3063, 2846, 2746, 2742, 1689, 1486, 1457, 1362, 1362, 1022, 967, 727, 780; HRMS calcd for C7H5Cl2N2O [M+H]+ 202.9773 found 202.9774. Tert-butyl

5,6-dichloro-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate

(28)

Sodium

hydride (60% w/w, 650 mg, 16.25 mmol, 1.1 equiv) was added portionwise to a stirred solution of 5,6dichloro-1H-benzo[d]imidazol-2(3H)-one 27 (3 g, 14.77 mmol, 1 equiv) in dry DMF (49 mL) at room temperature. The solution was vigorously stirred at room temperature for 1h and a solution of Boc2O (3.224 g, 14.77 mmol, 1 equiv) in dry DMF (7 mL) was added dropwise. The resulting mixture was stirred for 24h at room temperature and concentrated in vacuo. The crude mixture was partitioned between AcOEt and water. The aqueous layer was extracted three times with AcOEt. The combined organic layers were washed with water and brine, dried over MgSO4, and concentrated in vacuo. The solid residue was purified by chromatography on silica gel using PE/AcOEt (1:0 to 0:1) to afford monoprotected benzimidazolone 28. Yield 91% (4.074 g), colorless solid, mp = > 360 °C; 1H NMR (250 MHz, DMSO-d6) δ 11.53 (bs, 1H), 7.76 (s, 1H), 7.18 (s, 1H), 1.58 (s, 9H); 13C NMR (63 MHz, DMSO-d6) δ 150.3, 147.9, 128.7, 126.7, 125.8, 123.0, 115.1, 110.3, 84.5, 27.6; IR (cm-1) υmax 3178, 3130, 2986, 2972, 2928, 1742, 1732, 1487, 1336, 1293, 1124, 1017, 846, 768; HRMS calcd for C12H13Cl2N2O3 [M+H]+ 303.0298 found 303.0298. General protocol for the DPPA-mediated Curtius rearrangement of aminobenzoic acids and 2aminonicotinic acid. (products 35 and 41): At room temperature, DPPA (4.74 mL, 22 mmol, 1.1 equiv) was added dropwise to a stirred solution of the appropriate aminoacid (20 mmol, 1 equiv) in

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

dioxane (100 mL) and triethylamine (2.78 mL, 20 mmol, 1 equiv). The mixture was slowly brought to reflux and N2 gas started to evolve. Reflux was maintained for 12h. The cooled solution was concentrated in vacuo. The residual oily solid was agitated in a minimum amount of methanol. Filtration of the solid followed by washing with a minimum amount of methanol and diethyl ether yielded the title compound in analytically pure form. 4,6-Dichloro-1H-benzo[d]imidazol-2(3H)-one (35) Yield 93% (3.776 g), beige solid, mp > 360 °C (lit. 360-361 °C31); 1H NMR (250 MHz, DMSO-d6) δ 11.33 (bs, 1H, NH), 11.06 (bs, 1H, NH), 7.08 (d, J = 1.7 Hz, 1H), 6.92 (d, J = 1.7 Hz, 1H); 13C NMR (62 MHz, DMSO-d6) δ 154.9, 131.6, 126.6, 125.0, 119.6, 113.1, 107.4; IR (cm-1) υmax 3099, 3009, 2809, 1732, 1708, 1662, 1640, 1483, 1362, 1307, 1179, 1006, 895, 710; HRMS calcd for C7H5Cl2N2O [M+H]+ 202.9773 found 202.9774. 1H-Imidazo[4,5-b]pyridin-2(3H)-one (41) Yield 77% (2.081 g), off-white solid, mp = 274-276 °C (lit. 275-276 °C47) ; 1H NMR (250 MHz, DMSO-d6) δ 11.27 (bs, 1H), 10.79 (bs, 1H), 7.85 (dd, J = 5.2, 1.4 Hz, 1H), 7.21 (dd, J = 7.7, 1.4 Hz, 1H), 6.93 (dd, J = 7.7, 5.2 Hz, 1H); 13C NMR (63 MHz, DMSO-d6) δ 154.9, 145.3, 140.0, 124.1, 117.1, 114.8; IR (cm-1) υmax 3072, 2977, 2902, 2790, 2691, 1678, 1443, 1430, 1386, 1230, 1186, 996, 959, 863, 802; HRMS calcd for C6H6N3O [M+H]+ 136.0505 found 136.0506 (for protocol using CDI, please see reference 49) Tert-butyl 4,6-dichloro-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate (36) Boc2O (3.306 g, 15.15 mmol, 1.025 equiv) was added portionwise to a stirred solution of 35 (3 g, 14.78 mmol, 1 equiv) and DMAP (181 mg, 1.48 mmol, 0.1 equiv) in dry THF (50 mL). The solution was refluxed for 2h. The cooled mixture was concentrated in vacuo. The solid residue was solubilized in AcOEt. The organic layer was washed with aqueous 0.5M HCl, water, brine, dried over MgSO4, filtered, and concentrated in vacuo to yield the desired product in analytically pure form. Yield 97% (4.346 g), beige solid, mp = > 360 °C (lit. > 360 °C)31; 1H NMR (250 MHz, DMSO-d6) δ 11.92 (bs, 1H), 7.60 (d, J = 1.9 Hz, 1H), 7.37 (d, J = 1.9 Hz, 1H), 1.58 (s, 9H); 13C NMR (63 MHz, DMSO-d6) δ 150.3, 147.8, 128.4, 125.8, 125.5, 122.8, 113.7, 112.6, 84.6, 27.5; IR (cm-1) υmax 3160, 3077, 2989, 1739, 1476, 1341, 1296, 1136, 744, 686. IR (cm-1) υmax 3158, 3079, 2990, 1737, 1669, 1477, 1338, 1136, 868; HRMS calcd for C12H13Cl2N2O3 [M+H]+ 303.0298 found 303.0298.

ACS Paragon Plus Environment

Page 52 of 101

Page 53 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

Tert-butyl 2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridine-1-carboxylate (42) At room temperature, sodium hydride (60% w/w, 651 mg, 16.28 mmol, 1.1 equiv) was added portionwise to a stirred solution of 41 (2g, 14.8 mmol, 1 equiv) in dry DMF (37 mL). The mixture was vigorously stirred for 1h and a solution of Boc2O (3.280 g, 14.80 mmol, 1 equiv) in DMF (15 mL) was added dropwise. The solution was stirred for 24h at room temperature. The reaction mixture was concentrated in vacuo and traces of DMF were removed by co-evaporation with heptane. The solid residue was dissolved in AcOEt and the organic layer was washed with water, brine, dried over MgSO4, filtered off and concentrated in vacuo. The colorless solid was stirred in diethyl ether and filtered off on a Büchner funnel to yield the monocarbamate 42 in analytically pure form. Yield 80% (2.756 g), colorless solid, mp = 138-140 °C (lit. 156-157 °C48); 1H NMR (250 MHz, DMSO-d6) δ 11.88 (bs, 1H), 8.02 (dd, J = 5.2, 1.5 Hz, 1H), 7.82 (dd, J = 7.9, 1.5 Hz, 1H), 7.07 (dd, J = 7.9, 5.2 Hz, 1H), 1.58 (s, 9H); 13C NMR (63 MHz, DMSO-d6) δ 150.2, 148.0, 143.7, 142.7, 121.1, 120.1, 117.2, 84.1, 27.6; IR (cm-1) υmax 3003, 2895, 2755, 1785, 1720, 1618, 1299, 1127, 993, 803, 765; HRMS calcd for C11H14N3O3 [M+H]+ 236.1030 found 236.1029. Ethyl 2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridine-1-carboxylate (44) A stirred suspension of 41 (1.780 g, 13.17 mmol, 1 equiv), ), potassium carbonate (2.002 g, 14.49 mmol, 1.1 equiv) and ethyl pyridin-2-yl carbonate (2.422 g, 14.49 mmol, 1.1 equiv) in dry acetonitrile (52 mL) was refluxed for 2h. The reaction mixture was concentrated in vacuo. The solid residue was dissolved in a minimum amount of water and the resulting homogenous solution was acidified to pH 3 with an aqueous solution of 1M HCl. The precipitated solid was filtered off to yield monoprotected imidazopyridin-2one 44 in analytically pure form. Yield 91% (2.486 g), colorless solid, mp = 203-205 °C (lit. 204-206 °C31); 1H NMR (250 MHz, DMSO-d6) δ 11.94 (bs, 1H), 8.05 (dd, J = 5.2, 1.0 Hz, 1H), 7.89 (dd, J = 7.9, 1.0 Hz, 1H), 7.09 (dd, J = 7.9, 5.2 Hz, 1H), 4.40 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H); 13C NMR (63 MHz, DMSO-d6) δ 149.8, 149.7, 143.6, 142.9, 121.1, 120.4, 117.4, 63.2, 14.0; IR (cm-1) υmax 2985, 2894, 2816, 2748, 2684, 1770, 1720, 1614, 1424, 1263; 798, 743. HRMS calcd for C9H10N3O3 [M+H]+ 208.0717 found 208.0719.

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Tert-butyl 2-oxo-1,2-dihydro-3H-imidazo[4,5-b]pyridine-3-carboxylate (45) DMAP (59 mg, 483 µmol, 0.1 equiv) and Boc2O (1.263 g, 5.79 mmol, 1.2 equiv) were successively added to a stirred solution of 44 (1 g, 4.83 mmol, 1 equiv) in dry THF (16 mL) at room temperature. The mixture was stirred for 2h and isopropylamine (470 µL, 5.79 mmol, 1.2 equiv) was added dropwise. The solution was stirred another 45 min and a white precipitate evolved. The solution was concentrated in vacuo. The solid residue was stirred in a minimum amount of Et2O and filtered off on a Büchner funnel to yield tert-butylcarbamate 45 in analytically pure form. Yield 76% (863 mg), colorless solid, mp = 259261 °C; 1H NMR (250 MHz, DMSO-d6) δ 11.39 (bs, 1H), 8.02 (dd, J = 5.1, 1.5 Hz, 1H), 7.34 (dd, J = 7.8, 1.5 Hz, 1H), 7.13 (dd, J = 7.8, 5.1 Hz, 1H), 1.56 (s, 9H); 13C NMR (63 MHz, DMSO-d6) δ 150.0, 146.8 , 141.5, 140.3, 122.9, 119.5, 115.8, 83.7, 27.6; IR (cm-1) υmax 3071, 3001, 2981, 2894, 1782, 1732, 1442, 1337, 1256, 1149, 1133, 787; HRMS calcd for C11H14N3O3 [M+H]+ 236.1030 found 236.1030. 1H-Imidazo[4,5-c]pyridin-2(3H)-one (48) Protocol, results, and analytical data identical to reference 49. Tert-butyl 2-oxo-1,2-dihydro-3H-imidazo[4,5-c]pyridine-3-carboxylate (49) Protocol, results, and analytical data identical to reference 31. General protocol for the halogenation of monoprotected benzimidazolones (products 21-22): At room temperature, bromine (3.3 mL, 34.9 mmol, 1.2 equiv) or iodine chloride (9.449 g, 58.2 mmol, 2 equiv) were slowly added to a stirred solution of ethylcarbamate 19 (6 g, 29.1 mmol, 1 equiv) in acetic acid (97 mL). The resulting mixture was stirred at room temperature for 1h, gradually brought to 6570 °C, and stirred another 4h. Upon completion followed by 1H NMR of the crude, the cooled mixture was poured onto iced water. The precipitated product was filtered off onto a Büchner funnel and washed with diethyl ether. Trace amounts of starting material were removed by recrystallization (for compound 21 only) from an AcOEt/MeOH (95:5) mixture to yield the desired monohalogenated carbamate. Ethyl 6-bromo-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate (21) Yield 89% (7.384 g), off-white solid, mp = 214-216 °C; 1H NMR (250 MHz, DMSO-d6) δ 11.42 (bs, 1H), 7.78 (d, J = 2.0

ACS Paragon Plus Environment

Page 54 of 101

Page 55 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

Hz, 1H), 7.30 (dd, J = 8.3, 2.0 Hz, 1H), 6.94 (d, J = 8.3 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H); 13C NMR (63 MHz, DMSO-d6) δ 150.1, 149.8, 128.0, 127.9, 126.5, 116.4, 112.8, 110.7, 63.2, 14.0; IR (cm-1) υmax 3235, 3011, 2987, 1777, 1477, 1396, 1285, 1234, 1180, 998; HRMS calcd for C10H1079BrN2O3 [M+H]+ 284.9869 found 284.9870. Ethyl 6-iodo-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate (22) Yield 91% (8.794 g), light yellow solid, mp = 183-185 °C; 1H NMR (250 MHz, DMSO-d6) δ 11.37 (s, 1H), 7.94 (d, J = 1.7 Hz, 1H), 7.43 (dd, J = 8.2, 1.7 Hz, 1H), 6.80 (d, J = 8.2 Hz, 1H), 4.35 (q, J = 7.1 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H); 13C NMR (63 MHz, DMSO-d6) δ 149.9, 132.3, 128.4, 128.1, 121.8, 111.2, 83.8, 63.2, 14.0; IR (cm-1) υmax 3239, 2986, 1775, 1716, 1688, 1474, 1337, 1285, 1235, 1180, 1128, 997, ; HRMS calcd for C10H10IN2O3 [M+H]+ 332.9731 found 332.9728. General protocol for the phase transfer-catalyzed alkylation of monoprotected benzimidazolones (3-8, 15, 17-18, 23-24, 29, 31, 33, 37): A stirred solution of the appropriate monoprotected benzimidazolone (10 mmol, 1 equiv), TBAB (161 mg, 0.5 mmol, 0.05 equiv), potassium carbonate (6.910 g, 50 mmol, 5 equiv), the appropriate dibromoalkane or butylbromide (50 mmol, 5 equiv) in water (50 mL) was heated under microwave irradiation (ramp = 2 min, Pmax = 300 W) at 80 °C for 1 h (with Boc as protective group) or 60 °C for 1 h (with COOEt as protective group). The resulting biphasic mixture was partitioned between water and AcOEt. The aqueous layer was extracted three times with AcOEt and the combined organic layers were dried over MgSO4, and evaporated in vacuo. The oily residue was purified by chromatography on silica gel using PE/AcOEt (1:0 to 7:3) to afford the corresponding alkylated product. Tert-butyl 3-(2-bromoethyl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate (3) Yield 84% (2.866 g), colorless oil; 1H NMR (250 MHz, DMSO-d6) δ 7.72 (ddd, J = 7.8, 1.4, 0.5 Hz, 1H), 7.34 (ddd, J = 7.8, 1.4, 0.5 Hz, 1H), 7.28 – 7.08 (m, 2H), 4.25 (t, J = 6.3 Hz, 2H), 3.79 (d, J = 6.3 Hz, 2H), 1.60 (s, 9H); 13C NMR (63 MHz, DMSO-d6) δ 150.4, 148.6, 129.5, 125.9, 124.3, 122.4, 114.2, 109.1, 84.6, 42.5, 30.2, 28.1; IR (cm-1) υmax 2979, 2933, 1782, 1487, 1367, 1319, 1140, 1098, 747; HRMS calcd for C14H1879BrN2O3 [M+H]+ 341.0495 found 341.0499.

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Tert-butyl 3-(3-bromopropyl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate (4) Yield 72% (2.557 g), colorless solid, mp = 71-73 °C; 1H NMR (250 MHz, DMSO-d6) δ 7.70 – 7.64 (m, 1H), 7.26 – 6.99 (m, 3H), 3.88 (t, J = 6.9 Hz, 2H), 3.52 (t, J = 6.6 Hz, 2H), 2.14 (p, J = 6.7 Hz, 2H), 1.55 (s, 9H); 13C NMR (75 MHz, DMSO-d6) δ 13C NMR (63 MHz, DMSO-d6) δ 149.9, 148.2, 129.3, 125.6, 123.8, 121.7, 113.8, 108.0, 83.9, 39.1, 31.6, 30.7, 27.6; IR (cm-1) υmax 2980, 2935, 1775, 1737, 1694, 1489, 1364, 1319, 1141, 1101, 744; HRMS calcd for C15H2079BrN2O3 [M+H]+ 355.0652 found 355.0652. Tert-butyl 3-(4-bromobutyl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate (5) Yield 73% (2.696 g), colorless oil; 1H NMR (250 MHz, DMSO-d6) δ 7.71 (ddd, J = 7.9, 1.2, 0.6 Hz, 1H), 7.32 – 7.07 (m, 3H), 3.84 (t, J = 6.5 Hz, 2H), 3.56 (t, J = 6.3 Hz, 2H), 1.92 – 1.69 (m, 4H), 1.59 (s, 9H); 13C NMR (63 MHz, DMSO-d6) δ 149.9, 148.2, 129.2, 125.5, 123.9, 121.7, 113.7, 108.2, 84.0, 39.5, 34.5, 29.4, 27.6, 26.0; IR (cm-1) υmax 2977, 2935, 1782, 1741, 1487, 1366, 1320, 1248, 1139, 1100, 748; HRMS calcd for C16H2279BrN2O3 [M+H]+ 369.0808 found369.0808. Tert-butyl 3-(5-bromopentyl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate (6) Yield 69% (2.644 g), colorless oil; 1H NMR (250 MHz, DMSO-d6) δ 7.73 – 7.68 (m, 1H), 7.29 – 7.05 (m, 3H), 3.81 (t, J = 7.0 Hz, 2H), 3.51 (t, J = 6.7 Hz, 2H), 1.90 – 1.76 (m, 2H), 1.74 – 1.61 (m, 2H), 1.59 (s, 9H), 1.48 – 1.32 (m, 2H);

13

C NMR (63 MHz, DMSO-d6) δ 149.9, 148.2, 129.2, 125.5, 123.8,

121.6, 113.7, 108.2, 83.9, 40.2, 34.8, 31.8, 27.6, 26.4, 24.7; IR (cm-1) υmax 2978, 2934, 1784, 1742, 1488, 1365, 1320, 1139, 1099, 841, 739; HRMS calcd for C17H2479BrN2O3 [M+H]+ 383.0965 found 383.0967. Tert-butyl 3-(6-bromohexyl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate (7) Yield 65% (2.582 g), colorless oil; 1H NMR (250 MHz, DMSO-d6) δ 7.70 (d, J = 7.6 Hz, 1H), 7.28 – 7.04 (m, 3H), 3.79 (t, J = 7.1 Hz, 2H), 3.49 (t, J = 6.7 Hz, 2H), 1.87 – 1.62 (m, 4H), 1.59 (s, 9H), 1.49 – 1.23 (m, 4H); 13C NMR (63 MHz, DMSO-d6) δ 149.9, 148.2, 129.3, 125.5, 123.8, 121.6, 113.7, 108.2, 83.9, 40.2, 35.0, 32.1, 27.6, 27.1, 27.0, 25.2; IR (cm-1) υmax 2977, 2933, 2860, 1784, 1742, 1488, 1365, 1321, 1150, 1008, 748; HRMS calcd for C18H2679BrN2O3 [M+H]+ 397.1121 found 397.1122.

ACS Paragon Plus Environment

Page 56 of 101

Page 57 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

Tert-butyl 3-(7-bromoheptyl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate (8) Yield 61% (2.509 g), colorless oil; 1H NMR (250 MHz, DMSO-d6) δ 7.75 – 7.66 (m, 1H), 7.27 – 7.06 (m, 3H), 3.79 (t, J = 7.1 Hz, 2H), 3.50 (t, J = 6.7 Hz, 2H), 1.87 – 1.70 (m, 2H), 1.71 – 1.61 (m, 2H), 1.59 (s, 9H), 1.43 – 1.22 (m, 6H);

13

C NMR (63 MHz, DMSO-d6) δ 149.8, 148.2, 129.2, 125.5, 123.8,

121.5, 113.6, 108.1, 83.8, 40.2, 34.9, 32.1, 27.7, 27.6, 27.3, 27.2, 25.9; IR (cm-1) υmax 2978, 2931, 2856, 1785, 1742, 1488, 1365, 1321, 1140, 1094, 748; HRMS calcd for C19H2879BrN2O3 [M+H]+ 411.1278 found 411.1273. Tert-butyl 3-butyl-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate (15) Yield 67% (1.945 g), colorless oil; 1H NMR (250 MHz, CDCl3) δ 7.86 – 7.80 (m, 1H), 7.19 (td, J = 7.7, 1.5 Hz, 1H), 7.11 (td, J = 7.7, 1.5 Hz, 1H), 6.99 – 6.93 (m, 1H), 3.84 (t, J = 7.3 Hz, 2H), 1.80 – 1.69 (m, 2H), 1.67 (s, 9H), 1.49 – 1.32 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H); 13C NMR (63 MHz, CDCl3) δ 151.1, 149.1, 129.7, 126.4, 123.9, 122.0, 114.6, 107.7, 84.7, 41.0, 30.1, 28.3, 20.3, 13.9. 1-(4-Bromobutyl)-3-butyl-1H-benzo[d]imidazol-2(3H)-one (17) Yield 90% (2.927 g), colorless oil; 1

H NMR (250 MHz, CDCl3) δ 7.13 – 7.04 (m, 2H), 7.04 – 6.95 (m, 2H), 4.05 – 3.74 (m, 4H), 3.56 –

3.27 (m, 2H), 2.00 – 1.84 (m, 4H), 1.82 – 1.63 (m, 2H), 1.39 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H); 13C NMR (63 MHz CDCl3) δ 154.3, 129.6, 129.3, 121.2, 121.1, 107.8, 107.6, 41.0, 40.1, 33.2, 30.6, 29.8, 27.0, 20.2, 13.8; IR (cm-1) υmax 2957, 2930, 2871, 1695, 1493, 1404, 1365, 1190, 750; HRMS calcd for [M+H]+ C15H2279BrN2O [M+H]+ 325.0910 found 325.0908. 1-(5-Bromopentyl)-3-butyl-1H-benzo[d]imidazol-2(3H)-one (18) Yield 92% (3.121 g), colorless oil; 1H NMR (250 MHz, CDCl3) δ 7.11 – 7.04 (m, 2H), 7.04 – 6.94 (m, 2H), 3.88 (td, J = 7.2, 3.1 Hz, 4H), 3.38 (t, J = 6.7 Hz, 2H), 2.02 – 1.64 (m, 6H), 1.60 – 1.29 (m, 4H), 0.95 (t, J = 7.3 Hz, 3H); 13C NMR (63 MHz, CDCl3) δ 154.3, 129.6, 129.4, 121.1, 121.0, 107.8, 107.6, 41.0, 40.9, 33.5, 32.4, 30.6, 27.7, 25.5, 20.2, 13.8; IR (cm-1) υmax 2931, 2863, 1689, 1494, 1404, 1367, 1190, 751; HRMS calcd for C16H2479BrN2O [M+H]+ 339.1067 found 339.1068. Ethyl 6-bromo-3-(4-bromobutyl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate (23) Yield 62% (2.605 g), colorless solid, mp = 95-97 °C; 1H NMR (250 MHz, CDCl3) δ 8.08 (d, J = 1.8 Hz, 1H), 7.36 (dd, J = 8.4, 1.9 Hz, 1H), 6.86 (d, J = 8.4 Hz, 1H), 4.53 (q, J = 7.1 Hz, 2H), 3.88 (q, J =

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 58 of 101

4.6, 3.7 Hz, 2H), 3.53 – 3.33 (m, 2H), 1.92 (p, J = 3.2 Hz, 4H), 1.48 (t, J = 7.1 Hz, 3H); 13C NMR (63 MHz, CDCl3) δ 150.5, 150.4, 128.6, 127.2, 127.1, 118.0, 115.2, 108.9, 64.2, 40.4, 32.9, 29.6, 26.4, 14.4; IR (cm-1) υmax 3133, 3073, 2974, 2872, 1486, 1699, 1615, 1486, 1369, 1142, 814; HRMS calcd for C14H1779Br2N2O3 [M+H]+ 418.9600 found 418.9598. Ethyl 6-iodo-3-(4-bromobutyl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate (24) Yield 54% (2.522 g), colorless solid, mp = 104-106 °C; 1H NMR (250 MHz, DMSO-d6) δ 8.05 (d, J = 1.7 Hz, 1H), 7.58 (dd, J = 8.3, 1.7 Hz, 1H), 7.14 (d, J = 8.3 Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 3.89 – 3.79 (m, 2H), 3.55 (t, J = 6.2 Hz, 2H), 1.89 – 1.67 (m, 4H), 1.35 (t, J = 7.1 Hz, 3H); 13C NMR (63 MHz, DMSO-d6) δ 149.7, 149.2, 132.3, 129.3, 126.9, 121.8, 110.6, 84.4, 63.4, 39.7, 34.5, 29.3, 26.0, 14.0; IR (cm-1) υmax 3068, 2998, 2955, 2872, 1768, 1698, 1484, 1368, 1192, 1143, 1033, 764; HRMS calcd for C14H1779BrIN2O3 [M+H]+ 466.9462 found 466.9457. Tert-butyl

3-(4-bromobutyl)-5,6-dichloro-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-

carboxylate (29) Yield 65% (2.848 g), colorless solid, mp = 105-107 °C; 1H NMR (250 MHz, DMSO-d6) δ 7.73 (s, 1H), 7.57 (s, 1H), 3.77 (t, J = 6.7 Hz, 2H), 3.51 (t, J = 6.3 Hz, 2H), 1.89 – 1.60 (m, 4H), 1.54 (s, 9H);

13

C NMR (63 MHz, DMSO-d6) δ 149.5, 147.7, 129.5, 126.2, 125.4, 123.4,

115.0, 109.8, 84.7, 39.9, 34.5, 29.3, 27.5, 26.0; IR (cm-1) υmax 2980, 2931, 1754, 1735, 1616, 1489, 1359, 1316, 1148, 1131; 831; HRMS calcd for C16H2079BrCl2N2O3 [M+H]+ 437.0029 found 437.0027. Tert-butyl

3-butyl-5,6-dichloro-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate

(31)

Yield 63% (2.263 g), colorless oil; 1H NMR (250 MHz, CDCl3) δ 7.88 (s, 1H), 6.95 (s, 1H), 3.74 (t, J = 7.3 Hz, 2H), 1.73 – 1.63 (m, 2H), 1.61 (s, 9H), 1.43 – 1.25 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H); 13C NMR (63 MHz, CDCl3) δ 150.3, 148.4, 129.1, 127.5, 125.4, 125.4, 116.2, 108.9, 85.4, 41.2, 29.8, 28.0, 20.0, 13.6; IR (cm-1) υmax 2960, 2933, 2873, 1794, 1750, 1489, 1354, 1306, 1150, 1104, 1023, 843; HRMS calcd for C16H21Cl2N2O3 [M+H]+ 381.0924 found 359.0924. 1-(4-Bromobutyl)-3-butyl-5,6-dichloro-1H-benzo[d]imidazol-2(3H)-one (33) Yield 84% (3.311 g), colorless solid, mp = 50-52 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.58 (s, 1H), 7.55 (s, 1H), 3.92 – 3.78 (m, 4H), 3.55 (t, J = 6.3 Hz, 2H), 1.87 – 1.69 (m, 4H), 1.59 (p, J = 7.2 Hz, 2H), 1.26 (d, J = 7.4 Hz, 2H), 0.88 (t, J = 7.3 Hz, 3H); 13C NMR (101 MHz, DMSO-d6) δ 153.9, 129.5, 129.4, 123.5, 123.4,

ACS Paragon Plus Environment

Page 59 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

110.0, 109.9, 40.8, 40.2, 34.9, 30.2, 29.8, 26.9, 19.8, 14.0; IR (cm-1) υmax 3056, 2930, 2871, 1731, 1500, 1458, 1406, 1371, 1276, 1106, 860, 747; HRMS calcd for C15H2079BrCl2N2O [M+H]+ 393.0131 found 393.0130. Tert-butyl

3-(4-bromobutyl)-4,6-dichloro-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-

carboxylate (37) Yield 67% (2.936 g), colorless solid, mp = 82-84 °C; 1H NMR (250 MHz, CDCl3) δ 7.88 (d, J = 2.0 Hz, 1H), 7.15 (d, J = 2.0 Hz, 1H), 4.30 – 4.14 (m, 2H), 3.51 – 3.38 (m, 2H), 1.93 (m, 4H), 1.66 (s, 9H); 13C NMR (63 MHz, CDCl3) δ 150.9, 148.3, 128.7, 127.9, 125.5, 124.6, 114.6, 113.8, 86.0, 41.6, 32.9, 29.7, 28.9, 28.1; IR (cm-1) υmax 2985, 2973, 2922, 1755, 1741, 1478, 1360, 1309, 1251, 1124,

839; HRMS calcd for C16H2079BrCl2N2O3 [M+H]+ 437.0029 found 437.0033. General protocol for isopropylamine-mediated deprotection of ethylcarbamates (products 2526): Isopropylamine (350 µL, 4.28 mmol, 1.2 equiv) was added dropwise to a stirred solution of the appropriate ethylcarbamate 23 or 24 (3.57 mmol, 1 equiv) in dry THF (14 mL). The resulting solution was agitated for 12h. Upon completion, the mixture was evaporated to dryness. The oily residue was purified by chromatography on silica gel using DCM/AcOEt (1:0 to 7:3) to afford the corresponding deprotected product. 1-(4-Bromobutyl)-5-bromo-1H-benzo[d]imidazol-2(3H)-one (25) Yield 94% (1.167 g), colorless solid, mp = 160-162 °C; 1H NMR (250 MHz, CDCl3) δ 10.20 (bs, 1H), 7.29 (d, J = 1.8 Hz, 1H), 7.22 (dd, J = 8.4, 1.8 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 3.99 – 3.85 (m, 2H), 3.54 – 3.40 (m, 2H), 2.03 – 1.86 (m, 4H);

13

C NMR (63 MHz, CDCl3) δ 155.7, 129.4, 129.3, 124.4, 114.4, 113.1, 109.1, 40.1,

33.0, 29.7, 27.0; IR (cm-1) υmax 3164, 3095, 3003, 2939, 2861, 2813, 2716, 1685, 1621, 1605, 1487, 1459, 1403, 1203, 1140, 1109, 857, 794, 700; HRMS calcd for C11H1379Br2N2O [M+H]+ 346.9389 found 346.9386. 1-(4-Bromobutyl)-5-iodo-1H-benzo[d]imidazol-2(3H)-one (26) Yield 81% (1.142 g), colorless solid, mp = 184-186 °C; 1H NMR (250 MHz, DMSO-d6) δ 10.96 (bs, 1H), 7.33 (dd, J = 8.2, 1.6 Hz, 1H), 7.25 (d, J = 1.6 Hz, 1H), 7.00 (d, J = 8.2 Hz, 1H), 3.79 (t, J = 6.4 Hz, 2H), 3.55 (t, J = 6.2 Hz, 2H), 1.90 – 1.64 (m, 4H); 13C NMR (63 MHz, DMSO-d6) δ 153.7, 130.0, 129.9, 128.8, 116.7, 110.0,

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

83.2, 39.0, 34.5, 29.4, 26.4; IR (cm-1) υmax 3157, 3092, 3010, 2938, 2813, 1679, 1484, 1398, 1144, 1110, 794, 698; HRMS calcd for C11H1379BrIN2O [M+H]+ 394.9251 found 394.9246. General protocol for TFA-mediated deprotection of tert-butylcarbamates (products 9-14, 16, 30, 32, 38): TFA (2.1. mL, 27.1 mmol, 5 equiv) was added dropwise to stirred solution of the appropriate tert-butyl carbamate (5.42 mmol, 1 equiv) in freshly distilled DCM (36 mL) at room temperature. The solution was stirred for three hours at room temperature. The resulting mixture was concentrated in vacuo, dissolved in DCM and quenched with a saturated solution of sodium hydrogenocarbonate. The aqueous layer was extracted three times with DCM. The combined organic layers were washed with water and brine and dried over MgSO4. Evaporation of the solvent in vacuo provided a crude residue which was purified by chromatography on silica gel using DCM/AcOEt (1:1) to afford the corresponding deprotected product. 1-(2-Bromoethyl)-1H-benzo[d]imidazol-2(3H)-one (9) Yield 94% (1.228 g), colorless solid, mp = 164-166 °C; 1H NMR (250 MHz, CDCl3) δ 9.66 (bs, 1H), 7.21 – 6.94 (m, 4H), 4.30 (t, J = 6.9 Hz, 2H), 3.67 (t, J = 6.9 Hz, 2H); 13C NMR (63 MHz, CDCl3) δ 155.7, 130.0, 128.1, 122.1, 121.6, 110.1, 108.0, 42.7, 28.3; IR (cm-1) υmax 3130, 3075, 3051, 2965, 2919, 2899, 1688, 1673, 1626, 1486, 1425, 1396, 1135, 746, 735; HRMS calcd for C9H1079BrN2O [M+H]+ 240.9971 found 240.9969. 1-(3-Bromopropyl)-1H-benzo[d]imidazol-2(3H)-one (10) Yield 92% (1.272 g), colorless solid, mp = 124-126 °C; 1H NMR (250 MHz, CDCl3) δ 10.22 (s, 1H), 7.21 – 6.98 (m, 4H), 4.07 (t, J = 6.8 Hz, 2H), 3.46 (t, J = 6.4 Hz, 2H), 2.36 (p, J = 6.5 Hz, 2H); 13C NMR (63 MHz, DMSO-d6) δ 13C NMR (63 MHz, Chloroform-d) δ 156.0, 130.3, 128.2, 121.8, 121.5, 110.0, 107.9, 39.4, 31.7, 30.4; IR (cm-1) υmax 3174, 3129, 3020, 2945, 2845, 2791, 1682, 1625, 1487, 1400, 1382, 1264, 1148, 723, 689; HRMS calcd for C10H1279BrN2O [M+H]+ 255.0128 found 255.0127. 1-(4-Bromobutyl)-1H-benzo[d]imidazol-2(3H)-one (11) Yield 96% (1.4 g), off-white solid, mp = 82-84 °C; 1H NMR (250 MHz, CDCl3) δ 9.87 (bs, 1H), 7.19 – 6.91 (m, 4H), 4.02 – 3.89 (m, 2H), 3.51 – 3.40 (m, 2H), 2.11 – 1.83 (m, 4H); 13C NMR (63 MHz, CDCl3) δ 155.7, 130.3, 128.1, 121.8, 121.5, 109.9, 108.0, 39.9, 33.1, 29.8, 27.1; IR (cm-1) υmax 3131, 3059, 2946, 2922, 2849, 1716, 1687, 1621, 1483, 1396, 773; HRMS calcd for C11H1479BrN2O [M+H]+ 269.0284 found 269.0285.

ACS Paragon Plus Environment

Page 60 of 101

Page 61 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

1-(5-Bromopentyl)-1H-benzo[d]imidazol-2(3H)-one (12) Yield 95% (1.458 g), off-white solid, mp = 74-76 °C;1H NMR (400 MHz, DMSO-d6) δ 10.80 (bs, 1H), 7.10 (d, J = 6.4 Hz, 1H), 6.98 (d, J = 6.7 Hz, 3H), 3.77 (t, J = 7.0 Hz, 2H), 3.49 (t, J = 6.7 Hz, 2H), 1.82 (p, J = 6.8 Hz, 2H), 1.65 (p, J = 7.2 Hz, 2H), 1.38 (p, J = 7.6, 7.2 Hz, 2H);

13

C NMR (101 MHz, DMSO-d6) δ 154.2, 130.2, 128.2, 120.7,

120.4, 108.7, 107.7, 34.9, 31.8, 27.0, 24.8; IR (cm-1) υmax 3177, 3140, 3053, 2953, 2929, 2853, 1683, 1624, 1486, 1394, 1140, 720; HRMS calcd for C12H1679BrN2O [M+H]+ 283.0440 found 283.0440. 1-(6-Bromohexyl)-1H-benzo[d]imidazol-2(3H)-one (13) Yield 97% (1.562 g), colorless solid, mp = 105-107 °C; 1H NMR (250 MHz, CDCl3) δ 9.71 (bs, 1H), 7.15 – 7.05 (m, 3H), 7.04 – 6.97 (m, 1H), 3.90 (t, J = 7.2 Hz, 2H), 3.39 (t, J = 6.7 Hz, 2H), 1.92 – 1.74 (m, 4H), 1.58 – 1.35 (m, 4H); 13C NMR (63 MHz, CDCl3) δ 155.9, 130.4, 128.2, 121.6, 121.3, 109.9, 107.9, 40.8, 33.9, 32.7, 28.4, 27.9, 26.1; IR (cm-1) υmax 3132, 3062, 2936, 2853, 1706, 1683, 1625, 1485, 1402, 1139, 748, 682; HRMS calcd for C13H1879BrN2O [M+H]+ 297.0597 found 297.0597. 1-(7-Bromoheptyl)-1H-benzo[d]imidazol-2(3H)-one (14) Yield 92% (1.551 g), colorless solid, mp = 85-87 °C; 1H NMR (250 MHz, CDCl3) δ 7.17 – 6.96 (m, 4H), 3.90 (t, J = 7.2 Hz, 2H), 3.38 (t, J = 6.8 Hz, 2H), 1.94 – 1.72 (m, 4H), 1.49 – 1.33 (m, 6H); 13C NMR (63 MHz, DMSO-d6) δ 13C NMR (63 MHz, CDCl3) δ 156.1, 130.3, 128.3, 121.4, 121.1, 109.9, 107.9, 40.8, 33.9, 32.7, 28.5, 28.4, 28.1, 26.7; IR (cm-1) υmax 3174, 3136, 3066, 2938, 2851, 1675, 1483, 1398, 1136, 740; HRMS calcd for C14H2079BrN2O [M+H]+ 311.0754 found 311.0754. 1-Butyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (16) Yield 95% (980 mg), colorless solid, mp = 99-101 °C; 1H NMR (250 MHz, DMSO-d6) δ 10.78 (bs, 1H), 7.15 – 7.06 (m, 1H), 7.04 – 6.91 (m, 3H), 3.77 (t, J = 7.0 Hz, 2H), 1.61 (p, J = 7.3 Hz, 2H), 1.42 – 1.16 (m, 2H), 0.88 (t, J = 7.3 Hz, 3H) ; 13

C NMR (63 MHz, DMSO-d6) δ 154.7, 130.7, 128.7, 121.1, 120.9, 109.1, 108.1, 39.9, 30.4, 19.9,

14.0; IR (cm-1) υmax 3138; 3065, 2952, 2923, 2870, 1713, 1685, 1624, 1399, 1135, 1094, 719, 680; HRMS calcd for C11H15N2O [M+H]+ 191.1179 found 191.1180. 1-(4-Bromobutyl)-5,6-dichloro-1H-benzo[d]imidazol-2(3H)-one (30) Yield 95% (1.740 g), offwhite solid, mp = 197-199 °C; 1H NMR (250 MHz, DMSO-d6) δ 11.16 (bs, 1H), 7.52 (s, 1H), 7.16 (s, 1H), 3.81 (t, J = 6.5 Hz, 2H), 3.56 (t, J = 6.3 Hz, 2H), 1.87 – 1.65 (m, 4H).

ACS Paragon Plus Environment

13

C NMR (63 MHz,

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 62 of 101

DMSO-d6) δ 154.2, 130.3, 128.3, 122.8, 122.7, 110.0, 109.3, 39.2, 34.5, 29.4, 26.4; IR (cm-1) υmax 3157, 2992, 2873, 1694, 1492, 1394, 1362, 1291, 1215, 1101, 856, 710; HRMS calcd for C11H1279BrCl2N2O [M+H]+ 336.9505 found 336.9503. 1-Butyl-5,6-dichloro-1,3-dihydro-2H-benzo[d]imidazol-2-one (32) Yield 96% (1.348 g), colorless solid, mp = 164-166 °C; 1H NMR (250 MHz, DMSO-d6) δ 11.13 (s, 1H), 7.47 (s, 1H), 7.15 (s, 1H), 3.77 (t, J = 7.1 Hz, 2H), 1.65 – 1.51 (m, 2H), 1.35 – 1.18 (m, 2H), 0.88 (t, J = 7.3 Hz, 3H); 13C NMR (63 MHz, DMSO-d6) δ 154.2, 130.4, 128.3, 122.7, 122.6, 109.9, 109.3, 39.9, 29.8, 19.3, 13.6; IR (cm1

) υmax 3151, 2928, 2870, 1694, 1632, 1490, 1397, 1328, 1098, 946, 852, 721; HRMS calcd for

C11H13Cl2N2O [M+H]+ 259.0399 found 259.0400. 1-(4-Bromobutyl)-5,7-dichloro-1H-benzo[d]imidazol-2(3H)-one (38)

Yield

92% (1.686 g),

colorless solid, mp = 177-179 °C; 1H NMR (250 MHz, CDCl3) δ 10.38 (bs, 1H), 7.07 (d, J = 1.9 Hz, 1H), 7.05 (d, J = 1.9 Hz, 1H), 4.21 (m, 2H), 3.52 – 3.42 (m, 2H), 1.96 (m, 4H); 13C NMR (63 MHz, CDCl3) δ 13C NMR (63 MHz, CDCl3) δ 156.0, 130.6, 127.6, 125.1, 123.1, 115.1, 109.1, 41.3, 33.0, 29.8, 29.4; IR (cm-1) υmax 3158, 3059, 2994, 2873, 2764, 1694, 1633, 1601, 1492, 1394, 1362, 1318, 1101, 856, 783; HRMS calcd for C11H1279BrCl2N2O [M+H]+ 336.9505 found 336.9504. General protocol for the synthesis of N-alkylated imidazo[4,5-b]pyridin-2(3H)-ones, imidazo[4,5c]pyridin-2(3H)-one (products 43, 46, 50): Potassium carbonate (176 mg, 1.28 mmol, 1 equiv) and 1,4-dibromobutane (553 mg, mmol, 2 equiv) were successively added to a stirred solution of the appropriate tert-butylcarbamate 42, 45, or 49 (300 mg , 1.28 mmol, 1 equiv) in DMF (2 mL) at room temperature and resulting solution was stirred for 1h (attempt to run the reaction for a longer period resulted in the loss of the desired product). The mixture was partitioned between DCM and water. The aqueous layer was extracted three times with DCM and the combined organic layers were washed with water, brine, dried over magnesium sulfate and concentrated in vacuo. The resulting oily residue was dissolved in DCM (3 mL) and TFA (0.5 mL, 6.4 mmol; 5 equiv) was added dropwise to the solution. The mixture was stirred for three hours and concentrated in vacuo. The oily residue was partitioned between DCM and an aqueous solution of saturated NaHCO3. The aqueous layer was extracted three times with DCM and the combined organic layers were washed with water, brine, dried over

ACS Paragon Plus Environment

Page 63 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

magnesium sulfate, and concentrated in vacuo. Purification of the oily residue by chromatography on silica gel using DCM/MeOH (1:0 to 95:5) yielded the corresponding monoalkylated imidazopyridin-2one. 3-(4-Bromobutyl)-1H-imidazo[4,5-b]pyridin-2(3H)-one (43) Yield 43% (149 mg), colorless solid, mp = 110-112 °C; 1H NMR (250 MHz, CDCl3) δ 10.55 (bs, 1H), 8.06 (dd, J = 5.2, 1.4 Hz, 1H), 7.35 (dd, J = 7.8, 1.4 Hz, 1H), 7.01 (dd, J = 7.7, 5.2 Hz, 1H), 4.06 (t, J = 6.5 Hz, 2H), 3.48 (t, J = 6.2 Hz, 2H), 2.10 – 1.87 (m, 4H); 13C NMR (63 MHz, CDCl3) δ 155.5, 144.3, 141.1, 122.5, 117.6, 115.9, 38.9, 33.1, 29.9, 27.3; IR (cm-1) υmax 3077, 3037, 2956, 2849, 1709, 1630, 1597, 1475, 1434, 1365, 1275, 776; HRMS calcd for C10H1379BrN3O [M+H]+ 270.0237 found 270.0231. 1-(4-Bromobutyl)-1H-imidazo[4,5-b]pyridin-2(3H)-one (46) Yield 49% (169 mg), colorless solid, mp = 117-119 °C; 1H NMR (250 MHz, CDCl3) δ 10.98 (bs, 1H), 8.10 (dd, J = 5.3, 1.4 Hz, 1H), 7.23 (dd, J = 7.8, 1.4 Hz, 1H), 7.04 (dd, J = 7.8, 5.3 Hz, 1H), 3.94 (t, J = 6.4 Hz, 2H), 3.47 (t, J = 5.9 Hz, 2H), 2.07 – 1.78 (m, 4H); 13C NMR (63 MHz, CDCl3) δ 154.4, 143.7, 140.3, 124.8, 117.1, 114.0, 39.8, 33.0, 29.6, 26.9; IR (cm-1) υmax 3041, 2999, 2942, 2908, 2845, 2725, 1701, 1623, 1486 , 1450, 1396, 1139, 785, 745, 683; HRMS calcd for C10H1379BrN3O [M+H]+ 270.0237 found 270.0236. 1-(4-Bromobutyl)-1H-imidazo[4,5-c]pyridin-2(3H)-one (50) Yield 41% (142 mg), colorless gummy oil; 1H NMR (250 MHz, DMSO-d6) δ 11.16 (bs, 1H), 8.20 – 8.16 (m, 2H), 7.24 (dd, J = 5.3, 0.6 Hz, 1H), 3.83 (t, J = 6.4 Hz, 2H), 3.59 – 3.51 (m, 2H), 1.88 – 1.69 (m, 4H); IR (cm-1) υmax 3350, 1666, 1558, 1518, 1190, 1130, 842, 721; HRMS calcd for C10H1379BrN3O [M+H]+ 270.0237 found 270.0232. Oxazolo[4,5-b]pyridin-2(3H)-one (55) A stirred solution of 2-aminopyridin-3-ol (3 g, 27.24 mmol, 1 equiv) and CDI (5.301 g, 32.69 mmol, 1.2 equiv) in dry THF (45 mL) was heated under microwave irradiation (ramp = 2 min, Pmax = 300 W) at 65 °C for 2 h. Upon completion, the mixture was concentrated in vacuo and the resulting solid was dissolved in DCM. The organic layer was extracted three times with aqeous 2M NaOH. The organic layer was discarded and the combined aqueous layers were acidified to pH = 6-7 with aqueous 1M HCl until a precipitate appeared. The solid was filtered off on a Büchner funnel and dried in vacuo to yield the desired product in analytically pure form. Yield 80% (2.966 g), light beige solid, mp = 212-214 °C; 1H NMR (250 MHz, DMSO-d6) δ 12.41 (bs,

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1H), 8.03 (dd, J = 5.3, 1.3 Hz, 1H), 7.63 (dd, J = 7.9, 1.3 Hz, 1H), 7.10 (dd, J = 7.9, 5.3 Hz, 1H); 13C NMR (63 MHz, DMSO-d6) δ 153.5, 146.3, 142.5, 137.5, 117.8, 115.9; IR (cm-1) υmax 3107, 3067, 2995, 2887, 2739, 1789, 1766, 1738, 1633, 1478, 1434, 1264, 1218, 1145, 896, 788; HRMS calcd for C6H5N2O2 [M+H]+ 137.0346 found 137.0347. General protocol for the microwave-assisted alkylation of benzo[d]oxazol-2(3H)-ones, and oxazolo[4,5-b]pyridin-2(3H)-ones (products 52-53, 56-57): A stirred solution of benzo[d]oxazol2(3H)-one or oxazolo[4,5-b]pyridin-2(3H)-one (22.2 mmol, 1 equiv), potassium carbonate (9.204 g, 66.6 mmol, 3 equiv) and the appropriate 1,n-dibromoalkane (111 mmol, 5 equiv) in dry DMF (30 mL) was heated under microwave irradiation (ramp = 2 min, Pmax = 150 W) for 3h at 60 °C. the resulting mixture was partitioned between DCM and water. The organic layer was extracted three times with DCM, and the combined organic layers were washed with water, brine, dried over MgSO4, filtered and concentrated in vacuo. Purification of the oily residue by chromatography on silica gel using EP/AcOEt (9:1 to 7:3) yielded the corresponding N-alkyled oxazolone. 3-(4-Bromobutyl)benzo[d]oxazol-2(3H)-one (52) Yield 76% (4.556 g), colorless solid, mp = 43-45 °C; 1H NMR (250 MHz, , DMSO-d6) δ 7.30 – 7.24 (m, 2H), 7.17 (td, J = 7.7, 1.3 Hz, 1H), 7.07 (td, J = 7.7, 1.5 Hz, 1H), 3.80 (t, J = 6.6 Hz, 2H), 3.56 – 3.46 (m, 2H), 1.89 – 1.68 (m, 4H); 13C NMR (63 MHz, , DMSO-d6) δ 153.8, 142.0, 130.9, 123.9, 122.2, 109.6, 109.1, 40.8, 34.3, 29.3, 26.0; IR (cm-1) υmax 3077, 3035, 2956, 2847, 2707, 1709, 1630, 1597, 1475, 1434, 1365, 1246, 1110, 896, 727; HRMS calcd for C11H1379BrNO2 [M+H]+ 270.0124 found 270.0124. 3-(5-Bromopentyl)benzo[d]oxazol-2(3H)-one (53) Yield 73% (4.605 g), colorless solid, mp = 40-42 °C; 1H NMR (250 MHz, DMSO-d6) δ 7.36 – 7.27 (m, 2H), 7.22 (td, J = 7.7, 1.3 Hz, 1H), 7.12 (td, J = 7.7, 1.5 Hz, 1H), 3.82 (t, J = 7.0 Hz, 2H), 3.50 (t, J = 6.7 Hz, 2H), 1.90 – 1.65 (m, 4H), 1.49 – 1.34 (m, 2H);

13

C NMR (63 MHz, DMSO-d6) δ 153.7, 141.9, 130.9, 123.7, 122.0, 109.5, 109.0, 41.4, 34.6,

31.7, 26.3, 24.6; IR (cm-1) υmax 3063, 2947, 2863, 1753, 1614, 1486, 1236, 1301, 1236, 921, 742; HRMS calcd for C12H1579BrNO2 [M+H]+ 284.0281 found 284.0280.

ACS Paragon Plus Environment

Page 64 of 101

Page 65 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

3-(4-Bromobutyl)oxazolo[4,5-b]pyridin-2(3H)-one (56) Yield 54% (3.250 g), colorless solid, mp = 45-47 °C; 1H NMR (250 MHz, CDCl3) δ 8.11 (dd, J = 5.3, 1.3 Hz, 1H), 7.40 (dd, J = 7.9, 1.3 Hz, 1H), 7.06 (dd, J = 7.9, 5.3 Hz, 1H), 3.98 (t, J = 6.7 Hz, 2H), 3.46 (t, J = 6.2 Hz, 2H), 2.11 – 1.88 (m, 4H); 13 1

C NMR (63 MHz, CDCl3) δ 153.4, 145.7, 143.3, 137.0, 118.2, 116.2, 40.3, 32.7, 29.6, 26.6; IR (cm-

) υmax 3084, 3044, 2956, 2934, 1768, 1632, 1307, 1440, 1339, 802, 761; HRMS calcd for

C10H1279BrN2O2 [M+H]+ 271.0077 found 271.0077. 3-(4-Bromobutyl)oxazolo[4,5-b]pyridin-2(3H)-one (57) Yield 65% (4.115 g), colorless solid, mp = 57-59 °C; 1H NMR (250 MHz, CDCl3) δ 8.10 (dd, J = 5.3, 1.3 Hz, 1H), 7.39 (dd, J = 7.9, 1.3 Hz, 1H), 7.04 (dd, J = 7.9, 5.3 Hz, 1H), 3.95 (t, J = 7.2 Hz, 2H), 3.39 (t, J = 6.7 Hz, 2H), 2.00 – 1.81 (m, 4H), 1.66 – 1.46 (m, 2H);

13

C NMR (63 MHz, CDCl3) δ 153.3, 145.7, 143.1, 136.9, 118.1, 116.1, 40.9,

33.3, 32.1, 26.9, 25.1; IR (cm-1) υmax 3097, 2951, 2863, 1762, 1628, 1594, 1474, 1454, 1430, 1347, 1264, 1033, 972, 793; HRMS calcd for C11H1479BrN2O2 [M+H]+ 285.0233 found 285.0233. General protocol for the synthesis of tertiary amine-bearing of N-alkylated or N,N’-dialkylated benzo[d]imidazol-2(3H)-ones, imidazo[4,5-b]pyridin-2(3H)-ones, imidazo[4,5-c]pyridin-2(3H)ones, benzo[d]oxazol-2(3H)-ones, and oxazolo[4,5-b]pyridin-2(3H)-ones (products 58-102, 111112) and phtalimide analogue 103: In a sealed tube, a stirred solution of the appropriate alkylbromide (500 µmol, 1 equiv), the appropriate secondary amine (600 µmol, 1.2 equiv) in DIPEA (1.25 mmol, 213 µL, 2.5 equiv) in dry and degassed acetonitrile (4 mL) was heated in an oil bath at 90 °C for 12h. The resulting solution was evaporated in vacuo and the residue was partitioned between water and DCM. The aqueous layer was extracted three times with DCM and the combined organic layers were dried over MgSO4, filtered and evaporated in vacuo. The residue was purified by chromatography on silica gel using DCM/MeOH (piperazine series: 1:0 to 95:5; piperidine series 1:0 to 9:1) to afford the corresponding substituted product. 1-(5-(4-(4-Methoxyphenyl)piperazin-1-yl)pentyl)-1H-benzo[d]imidazol-2(3H)-one (58) Yield 91% (180 mg), off-white solid, mp = 154-156 °C; 1H NMR (250 MHz, CDCl3) δ 9.98 (bs, 1H), 7.13 – 6.97 (m, 4H), 6.92 – 6.79 (m, 4H), 3.90 (t, J = 7.2 Hz, 2H), 3.76 (s, 3H), 3.14 – 3.04 (m, 4H), 2.67 – 2.56 (m, 4H), 2.47 – 2.33 (m, 2H), 1.82 (p, J = 7.5 Hz, 2H), 1.71 – 1.53 (m, 2H), 1.52 – 1.36 (m, 2H); 13C

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 66 of 101

NMR (63 MHz, CDCl3) δ 155.9, 153.9, 145.7, 130.4, 128.2, 121.5, 121.2, 118.3, 114.5, 109.8, 107.9, 58.5, 55.7, 53.4, 50.6, 40.8, 28.4, 26.4, 24.9; IR (cm-1) υmax 3131, 3063, 2925, 2817; 1707, 1687, 1514, 1486, 1401, 1250, 1239, 816, 799; HRMS calcd for C23H31N4O2 [M+H]+ 395.2441 found 395.2439; tR: 10.9 min, purity: 98.7%, λmax: 281 nm. 1-(5-(4-(2-(Methylthio)phenyl)piperazin-1-yl)pentyl)-1H-benzo[d]imidazol-2(3H)-one (59) Yield 73% (150 mg), off-white solid, mp = 128-130 °C; 1H NMR (250 MHz, DMSO-d6) δ 10.74 (bs, 1H), 7.22 – 6.77 (m, 8H), 3.74 (t, J = 7.0 Hz, 2H), 2.81 (s, 4H), 2.42 (s, 2H), 2.30 (s, 3H), 2.28 – 2.21 (m, 2H), 1.62 (p, J = 7.2 Hz, 2H), 1.43 (p, J = 7.6 Hz, 2H), 1.33 – 1.17 (m, 2H);

13

C NMR (63 MHz,

DMSO-d6) δ 154.2, 149.1, 134.4, 130.2, 128.2, 124.7, 124.2, 120.6, 120.4, 119.4, 108.6, 107.7, 57.7, 53.1, 51.1, 39.7, 27.6, 25.8, 24.0, 13.5; IR (cm-1) υmax 3019, 2933, 2808, 1691, 1490, 1470, 733; HRMS calcd for C23H31N4OS [M+H]+ 411.2213 found 411.2212; tR: 11.8 min, purity: 99.4%, λmax: 280 nm. 1-(5-(4-(4-Bromophenyl)piperazin-1-yl)pentyl)-1H-benzo[d]imidazol-2(3H)-one (60) Yield 40% (89 mg), off-white solid, mp = 180-182 °C; 1H NMR (250 MHz, CDCl3) δ 8.95 (bs, 1H), 7.32 (d, J = 9.1 Hz, 2H), 7.16 – 6.95 (m, 4H), 6.77 (d, J = 9.1 Hz, 2H), 3.89 (t, J = 7.2 Hz, 2H), 3.19 – 3.10 (m, 4H), 2.60 – 2.52 (m, 4H), 2.43 – 2.31 (m, 2H), 1.81 (p, J = 7.3 Hz, 2H), 1.63 – 1.51 (m, 2H), 1.51 – 1.35 (m, 2H); 13C NMR (63 MHz, CDCl3) δ 155.6, 150.5, 132.0, 130.5, 128.1, 121.5, 121.4, 117.7, 111.8, 109.7, 108.0, 58.5, 53.2, 49.1, 40.9, 28.4, 26.6, 24.9; IR (cm-1) υmax 3128, 2937, 2817, 1705, 1685,1484, 1400, 803; HRMS calcd for C22H2879BrN4O [M+H]+ 443.1441 found 443.1439; tR: 11.9 min, purity: 99.0%, λmax: 251 nm. 1-(5-(4-(4-Iodophenyl)piperazin-1-yl)pentyl)-1H-benzo[d]imidazol-2(3H)-one (61) Yield 62% (152 mg), light yellow solid, mp = 213-215 °C; 1H NMR (250 MHz, CDCl3) δ 10.13 (bs, 1H), 7.49 (d, J = 9.0 Hz, 2H), 7.15 – 6.96 (m, 4H), 6.65 (d, J = 9.0 Hz, 2H), 3.90 (t, J = 7.2 Hz, 2H), 3.21 – 3.10 (m, 4H), 2.62 – 2.52 (m, 4H), 2.44 – 2.32 (m, 2H), 1.81 (p, J = 7.4 Hz, 2H), 1.59 (p, J = 7.1 Hz, 2H), 1.52 – 1.34 (m, 2H); 13C NMR (63 MHz, CDCl3) δ 155.8, 151.0, 137.9, 130.5, 128.1, 121.5, 121.3, 118.1, 109.8, 108.0, 81.4, 58.5, 53.1, 48.7, 40.8, 28.4, 26.5, 24.9; IR (cm-1) υmax 3072, 3030, 2937, 28311707,

ACS Paragon Plus Environment

Page 67 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

1667, 1488, 807, 726; HRMS calcd for C22H28IN4O [M+H]+ 491.1302 found 491.1298; tR: 12.2 min, purity: 98.1%, λmax: 255 nm. 1-(5-(4-(4-Fluorophenyl)piperazin-1-yl)pentyl)-1H-benzo[d]imidazol-2(3H)-one (62) Yield 87% (166 mg), off-white solid, mp = 106-108 °C; 1H NMR (250 MHz, CDCl3) δ 9.64 (bs, 1H), 7.17 – 6.75 (m, 8H), 3.90 (t, J = 7.2 Hz, 2H), 3.25 – 2.99 (m, 4H), 2.64 – 2.50 (m, 4H), 2.45 – 2.31 (m, 2H), 1.93 – 1.78 (m, 2H), 1.69 – 1.52 (m, 2H), 1.51 – 1.36 (m, 2H); 13C NMR (63 MHz, CDCl3) δ 157.2 (d, 1JC-F = 238.6 Hz), 155.9, 148.1 (d, 4JC-F = 2.3 Hz), 130.4, 128.2, 121.5, 121.3, 117.9 (d, 3JC-F = 7.5 Hz), 115.6 (d, 2JC-F = 22.0 Hz), 109.8, 108.0, 58.5, 53.4, 50.2, 40.9, 28.4, 26.6, 24.9; 19F NMR (235 MHz, CDCl3 + TFT) δ -125.7; IR (cm-1) υmax 3120, 3016, 2940, 2810, 1686, 1509, 1483, 1398, 1257, 1158, 816, 751; HRMS calcd for C22H29FN4O [M+H]+ 383.2242 found 383.2241; tR: 11.2 min, purity: 99.4%, λmax1: 229 nm. 1-(5-(4-(4-Hydroxyphenyl)piperazin-1-yl)pentyl)-1H-benzo[d]imidazol-2(3H)-one

(63)

Yield

100% (190 mg), beige solid, mp = 177-179 °C; 1H NMR (250 MHz, DMSO-d6) δ 10.83 (bs, 1H), 8.84 (bs, 1H), 7.14 – 7.06 (m, 1H), 7.04 – 6.92 (m, 3H), 6.74 (d, J = 9.0 Hz, 2H), 6.64 (d, J = 9.0 Hz, 2H), 3.77 (t, J = 7.0 Hz, 2H), 2.99 – 2.84 (m, 4H), 2.48 – 2.40 (m, 4H), 2.26 (t, J = 7.2 Hz, 2H), 1.65 (p, J = 7.2 Hz, 2H), 1.54 – 1.38 (m, 2H), 1.36 – 1.20 (m, 2H); 13C NMR (63 MHz, DMSO-d6) δ 154.2, 150.9, 144.1, 130.2, 128.3, 120.6, 120.4, 117.6, 115.4, 108.7, 107.7, 57.7, 52.9, 49.9, 39.7, 27.7, 25.8, 24.1; IR (cm-1) υmax 3497, 3025, 2936, 2829, 1684, 1517, 1488, 1449; 1247, 815, 739; HRMS calcd for C22H29N4O2 [M+H]+ 381.2285 found 381.2284; tR: 10.0 min, purity: 98.7%, λmax: 280 nm. 1-Butyl-3-(5-(4-(4-hydroxyphenyl)piperazin-1-yl)pentyl)-1H-benzo[d]imidazol-2(3H)-one

(64)

Yield 88% (192 mg), visquous oil; 1H NMR (250 MHz, CDCl3) δ 7.76 (bs, 1H), 7.14 – 6.94 (m, 4H), 6.77 (s, 4H), 3.87 (t, J = 7.2 Hz, 4H), 3.09 (s, 4H), 2.69 (s, 4H), 2.54 – 2.38 (m, 2H), 1.84 – 1.55 (m, 6H), 1.46 – 1.28 (m, 4H), 0.93 (t, J = 7.3 Hz, 3H); 13C NMR (63 MHz, CDCl3) δ 154.4, 151.3, 144.5, 129.4, 129.3, 121.2, 118.9, 116.1, 107.9, 107.8, 58.2, 53.1, 50.2, 41.0, 40.9, 30.5, 28.1, 25.5, 24.6, 20.1, 13.8; IR (cm-1) υmax 3185, 2931, 2860, 2818, 1703, 1667, 1571, 1494, 1446, 1407, 1372, 1259, 750, 731; HRMS calcd for C26H37N4O2 [M+H]+ 437.2911 found 437.2913; tR: 12.0 min, purity: 98.2%, λmax: 283 nm.

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

3-(4-(4-Phenylpiperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (65) Yield 99% (174 mg), off-white solid, mp = 95-97 °C; 1H NMR (250 MHz, DMSO-d6) δ 7.37 – 7.30 (m, 2H), 7.27 – 7.08 (m, 4H), 6.90 (dd, J = 8.9, 1.1 Hz, 2H), 6.82 – 6.70 (m, 1H), 3.85 (t, J = 7.0 Hz, 2H), 3.13 – 3.00 (m, 4H), 2.47 – 2.43 (m, 4H), 2.34 (t, J = 7.1 Hz, 2H), 1.74 (p, J = 7.3 Hz, 2H), 1.49 (p, J = 7.5 Hz, 2H); 13C NMR (63 MHz, DMSO-d6) δ 153.8, 151.0, 141.9, 131.0, 128.9, 123.9, 122.1, 118.7, 115.3, 109.6, 109.2, 57.0, 52.7, 48.2, 41.5, 25.0, 23.2; IR (cm-1) υmax 3061, 2943, 2919, 2811, 2779, 1748, 1600, 1487, 1358, 1239, 1137, 1077, 925, 749; HRMS calcd for C21H26N3O2 [M+H]+ 352.2020 found 352.2018; tR: 11.4 min, purity: 99.4%, λmax: 229 nm. 3-(4-(4-(4-Hydroxyphenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (66) Yield 76% (140 mg), off-white solid, mp = 118-120 °C; 1H NMR (250 MHz, DMSO-d6) δ 8.78 (bs, 1H), 7.40 – 7.29 (m, 2H), 7.22 (td, J = 7.7, 1.4 Hz, 1H), 7.12 (td, J = 7.7, 1.4 Hz, 1H), 6.75 (d, J = 9.0 Hz, 2H), 6.63 (d, J = 9.0 Hz, 2H), 3.84 (t, J = 7.0 Hz, 2H), 2.98 – 2.80 (m, 4H), 2.47 – 2.40 (m, 4H), 2.33 (t, J = 7.1 Hz, 2H), 1.73 (p, J = 7.2 Hz, 2H), 1.48 (d, J = 7.2 Hz, 2H); 13C NMR (63 MHz, DMSO-d6) δ 153.8, 150.8, 144.2, 142.0, 131.0, 123.9, 122.2, 117.6, 115.4, 109.6, 109.2, 57.0, 52.9, 50.0, 41.6, 25.0, 23.2; IR (cm-1) υmax 3475, 3122, 3068, 2955, 2879, 2825, 1749, 1515, 1485, 1371, 1234, 1134, 804, 749; HRMS calcd for C21H26N3O3 [M+H]+ 368.1969 found 368.1967; tR: 10.1 min, purity: 99.7%, λmax: 229 nm. 3-(4-(4-(4-Fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (67) Yield 89% (164 mg), colorless solid, mp = 130-132 °C; 1H NMR (250 MHz, DMSO-d6) δ 7.39 – 7.26 (m, 2H), 7.22 (td, J = 7.7, 1.3 Hz, 1H), 7.12 (td, J = 7.7, 1.3 Hz, 1H), 7.02 (t, J = 8.9 Hz, 2H), 6.94 – 6.86 (m, 2H), 3.84 (t, J = 7.0 Hz, 2H), 3.08 – 2.93 (m, 4H), 2.48 – 2.41 (m, 4H), 2.33 (t, J = 7.1 Hz, 2H), 1.73 (p, J = 7.1 Hz, 2H), 1.49 (p, J = 7.1, 6.7 Hz, 2H);

13

C NMR (63 MHz, DMSO-d6) δ 155.92 (d, 1JC-F = 235.3 Hz),

153.76 , 147.92 (d, 4JC-F = 2.0 Hz), 141.94 , 131.01 , 123.85 , 122.14 , 116.97 (d, 3JC-F = 7.5 Hz), 115.18 (d, 2JC-F = 21.8 Hz), 109.62 , 109.20 , 56.92 , 52.63 , 48.96 , 41.54 , 24.98 , 23.19; 19F NMR (235 MHz, DMSO-d6 + TFT) δ -128.3; IR (cm-1) υmax 3068, 2960, 2925, 2817, 2784, 1746, 1511, 1488, 1359, 1240, 1216, 1138, 818; HRMS calcd for C21H25FN3O2 [M+H]+ 370.1925 found 370.1924; tR: 11.6 min, purity: 100%, λmax: 254 nm.

ACS Paragon Plus Environment

Page 68 of 101

Page 69 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

3-(5-(4-Phenylpiperazin-1-yl)pentyl)benzo[d]oxazol-2(3H)-one (68) Yield 80% (146 mg), off-white solid, mp = 85-87 °C; 1H NMR (250 MHz, DMSO-d6) δ 7.33 – 7.23 (m, 2H), 7.23 – 7.02 (m, 4H), 6.85 (d, J = 7.9 Hz, 2H), 6.71 (t, J = 7.2 Hz, 1H), 3.78 (t, J = 7.0 Hz, 2H), 3.06 – 2.97 (m, 4H), 2.42 – 2.37 (m, 4H), 2.22 (t, J = 7.2 Hz, 2H), 1.68 (p, J = 7.1 Hz, 2H), 1.44 (p, J = 7.1 Hz, 2H), 1.35 – 1.18 (m, 2H);

13

C NMR (63 MHz, DMSO-d6) δ 153.7, 151.0, 141.9, 131.0, 128.8, 123.8, 122.1, 118.7,

115.2, 109.6, 109.1, 57.6, 52.7, 48.2, 41.6, 27.0, 25.7, 23.9; IR (cm-1) υmax 2945, 2920, 2821, 2777, 1747, 1600, 1483, 1445, 1363, 1242, 1004, 752; HRMS calcd for C22H28N3O2 [M+H]+ 366.2176 found 366.2174; tR: 11.8 min, purity: 99.0%, λmax: 229 nm. 3-(5-(4-(4-Hydroxyphenyl)piperazin-1-yl)pentyl)benzo[d]oxazol-2(3H)-one (69) Yield 79% (151 mg), off-white solid, mp = 143-145 °C; 1H NMR (250 MHz, DMSO-d6) δ 8.78 (bs, 1H), 7.37 – 7.28 (m, 2H), 7.22 (td, J = 7.7, 1.5 Hz, 1H), 7.12 (td, J = 7.7, 1.5 Hz, 1H), 6.75 (d, J = 9.0 Hz, 2H), 6.63 (d, J = 9.0 Hz, 2H), 3.82 (t, J = 7.0 Hz, 2H), 2.98 – 2.82 (m, 4H), 2.48 – 2.40 (m, 4H), 2.26 (t, J = 7.1 Hz, 2H), 1.72 (p, J = 7.2 Hz, 2H), 1.48 (p, J = 7.4 Hz, 2H), 1.37 – 1.21 (m, 2H);

13

C NMR (63 MHz,

DMSO-d6) δ 153.8, 150.8, 144.2, 141.9, 131.0, 123.9, 122.1, 117.6, 115.4, 109.6, 109.2, 57.6, 52.9, 49.9, 41.6, 27.0, 25.7, 23.9; IR (cm-1) υmax 2939, 2822, 1770, 1512, 1485, 1524, 1228, 830, 749; HRMS calcd for C22H28N3O3 [M+H]+ 382.2125 found 382.2124; tR: 10.7 min, purity: 98.7%, λmax: 274 nm. 3-(5-(4-(4-Fluorophenyl)piperazin-1-yl)pentyl)benzo[d]oxazol-2(3H)-one (70) Yield 89% (171 mg), off-white solid, mp = 90-92 °C; 1H NMR (250 MHz, DMSO-d6) δ 7.37 – 7.28 (m, 2H), 7.22 (td, J = 7.7, 1.3 Hz, 1H), 7.12 (td, J = 7.7, 1.5 Hz, 1H), 7.07 – 6.98 (m, 2H), 6.94 – 6.86 (m, 2H), 3.82 (t, J = 7.0 Hz, 2H), 3.07 – 2.95 (m, 4H), 2.48 – 2.39 (m, 4H), 2.26 (t, J = 7.1 Hz, 2H), 1.72 (p, J = 7.2 Hz, 2H), 1.48 (p, J = 7.2 Hz, 2H), 1.41 – 1.21 (m, 2H);

13

C NMR (63 MHz, DMSO-d6)

13

C NMR (63

MHz, DMSO-d6) δ 155.9 (d, 1JC-F = 235.5 Hz), 153.7, 147.9 (d, 4JC-F = 2.0 Hz), 141.9, 131.0, 123.9, 122.1, 116.9 (d, 3JC-F = 7.6 Hz), 115.2 (d, 2JC-F = 21.8 Hz), 109.6, 109.2, 57.5, 52.7, 48.9, 41.6, 26.9, 25.7, 23.8; 19F NMR (235 MHz, DMSO-d6 + TFT) δ -128.4; IR (cm-1) υmax 3064, 2931, 2861, 2818, 1781, 1749, 1512, 1487, 1361, 1236, 817, 732; HRMS calcd for C22H27FN3O2 [M+H]+ 384.2081 found 384.2080; tR: 11.9 min, purity: 99.7%, λmax: 229 nm.

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 70 of 101

3-(4-(4-Phenylpiperazin-1-yl)butyl)oxazolo[4,5-b]pyridin-2(3H)-one (71) Yield 80% (141 mg), offwhite solid, mp = 49-51 °C; 1H NMR (250 MHz, DMSO-d6) δ 8.12 (dd, J = 5.3, 1.3 Hz, 1H), 7.71 (dd, J = 7.9, 1.3 Hz, 1H), 7.24 – 7.09 (m, 3H), 6.90 (d, J = 7.9 Hz, 2H), 6.75 (t, J = 7.4 Hz, 1H), 3.86 (t, J = 7.0 Hz, 2H), 3.16 – 3.03 (m, 4H), 2.48 – 2.42 (m, 4H), 2.34 (t, J = 7.1 Hz, 2H), 1.80 (p, J = 7.2 Hz, 2H), 1.50 (p, J = 7.4 Hz, 2H);

13

C NMR (63 MHz, DMSO-d6) δ 152.8, 151.0, 145.5, 142.7, 136.5,

128.8, 118.7, 118.2, 116.2, 115.2, 57.1, 52.7, 48.1, 40.7, 25.0, 23.3; IR (cm-1) υmax 2947, 2809, 2765, 1768, 1598, 1476, 1455, 1358, 1266, 1214, 953, 756; HRMS calcd for C20H25N4O2 [M+H]+ 353.1972 found 353.1970; tR: 10.5 min, purity: 99.4%, λmax: 283 nm. 3-(4-(4-(4-Hydroxyphenyl)piperazin-1-yl)butyl)oxazolo[4,5-b]pyridin-2(3H)-one (72) Yield 78% (144 mg), off-white solid, mp = 140-142 °C; 1H NMR (250 MHz, DMSO-d6) δ 8.77 (bs, 1H), 8.12 (dd, J = 5.3, 1.3 Hz, 1H), 7.71 (dd, J = 7.9, 1.3 Hz, 1H), 7.17 (dd, J = 7.9, 5.3 Hz, 1H), 6.75 (d, J = 9.0 Hz, 2H), 6.63 (d, J = 9.0 Hz, 2H), 3.86 (t, J = 7.0 Hz, 2H), 2.98 – 2.85 (m, 4H), 2.47 – 2.41 (m, 4H), 2.33 (t, J = 7.2 Hz, 2H), 1.79 (p, J = 7.2 Hz, 2H), 1.49 (p, J = 7.3 Hz, 2H);

13

C NMR (63 MHz,

DMSO-d6) δ 152.9, 150.8, 145.5, 144.2, 142.8, 136.5, 118.2, 117.6 (2C), 116.3, 115.4 (2C), 57.1, 52.9 (2C), 49.9 (2C), 40.7, 25.0, 23.3; IR (cm-1) υmax 3101, 2946, 2885, 2825, 1777, 1513, 1481, 1445, 1359, 1262, 1240, 980, 925, 813, 747; HRMS calcd for C20H25N4O3 [M+H]+ 369.1921 found 369.1919; tR: 8.7 min, purity: 99.6%, λmax: 283 nm. 3-(4-(4-(4-Fluorophenyl)piperazin-1-yl)butyl)oxazolo[4,5-b]pyridin-2(3H)-one (73) Yield 81% (150 mg), off-white solid, mp = 61-62 °C; 1H NMR (250 MHz, DMSO-d6) δ 8.12 (dd, J = 5.3, 1.3 Hz, 1H), 7.71 (dd, J = 7.9, 1.3 Hz, 1H), 7.16 (dd, J = 7.9, 5.3 Hz, 1H), 7.02 (t, J = 9 Hz, 2H), 6.95 – 6.87 (m, 2H), 3.86 (t, J = 7.0 Hz, 2H), 3.08 – 2.95 (m, 4H), 2.51 – 2.39 (m, 4H), 2.34 (t, J = 7.2 Hz, 2H), 1.79 (p, J = 7.2 Hz, 2H), 1.50 (p, J = 7.3 Hz, 2H); 13C NMR (63 MHz, DMSO-d6) δ 155.9 (d, 1JC-F = 235.5 Hz), 152.8, 147.9 (d, 4JC-F = 2.0 Hz), 145.5, 142.7, 136.4, 118.2, 116.9 (d, 3JC-F = 7.5 Hz), 116.2, 115.1 (d, 2JC-F = 21.7 Hz), 57.0, 52.6, 48.9, 40.6, 25.0, 23.3; 19F NMR (235 MHz, DMSO-d6 + TFT) δ 128.4; IR (cm-1) υmax 2943, 2821, 2786, 1785, 1510, 1478, 1451, 1361, 1235, 1207, 1136, 978, 816, 763; HRMS calcd for C20H24FN4O2 [M+H]+ 371.1878 found 371.1875; tR: 10.8 min, purity: 99.9%, λmax: 283 nm.

ACS Paragon Plus Environment

Page 71 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

3-(5-(4-Phenylpiperazin-1-yl)pentyl)oxazolo[4,5-b]pyridin-2(3H)-one (74) Yield 81% (148 mg), off-white solid, mp = 102-104 °C; 1H NMR (250 MHz, DMSO-d6) δ 8.12 (dd, J = 5.3, 1.3 Hz, 1H), 7.70 (dd, J = 7.9, 1.3 Hz, 1H), 7.23 – 7.12 (m, 3H), 6.96 – 6.85 (m, 2H), 6.75 (t, J = 7.2 Hz, 1H), 3.84 (t, J = 7.0 Hz, 2H), 3.12 – 3.03 (m, 4H), 2.49 – 2.40 (m, 4H), 2.28 (t, J = 7.1 Hz, 2H), 1.78 (p, J = 7.2 Hz, 2H), 1.49 (p, J = 7.2 Hz, 2H), 1.41 – 1.19 (m, 2H); 13C NMR (63 MHz, DMSO-d6) δ 152.8, 151.0, 145.4, 142.7, 136.4, 128.8, 118.6, 118.2, 116.2, 115.2, 57.5, 52.7, 48.1, 40.6, 26.8, 25.6, 23.8; IR (cm1

) υmax 2938, 2812, 2773, 1765, 1595, 1474, 1454, 1429, 1353, 1263, 1223, 930, 792, 762, 698; HRMS

calcd for C21H27N4O2 [M+H]+ 367.2129 found 367.2127; tR: 11.0 min, purity: 98.0%, λmax: 241 nm. 3-(5-(4-(4-Hydroxyphenyl)piperazin-1-yl)pentyl)oxazolo[4,5-b]pyridin-2(3H)-one (75) Yield 70% (134 mg), colorless solid, mp = 131-133 °C; 1H NMR (250 MHz, DMSO-d6) δ 8.78 (bs, 1H, OH), 8.12 (dd, J = 5.3, 1.3 Hz, 1H), 7.70 (dd, J = 7.9, 1.3 Hz, 1H), 7.16 (dd, J = 7.9, 5.3 Hz, 1H), 6.75 (d, J = 9.0 Hz, 2H), 6.63 (d, J = 8.9 Hz, 2H), 3.83 (t, J = 7.0 Hz, 2H), 3.01 – 2.84 (m, 4H), 2.48 – 2.35 (m, 4H), 2.27 (t, J = 7.2 Hz, 2H), 1.78 (p, J = 7.0 Hz, 2H), 1.57 – 1.40 (m, 2H), 1.40 – 1.25 (m, 2H); 13C NMR (63 MHz, DMSO-d6) δ 152.9, 150.8, 145.5, 144.2, 142.8, 136.5, 118.2, 117.6, 116.3, 115.4, 57.5, 52.9, 49.9, 40.6, 26.8, 25.6, 23.8; IR (cm-1) υmax 2939, 2822, 1770, 1512, 1485, 1254, 1228, 830, 749; HRMS calcd for C21H27N4O3 [M+H]+ 383.2078 found 383.2077; tR: 9.5 min, purity: 98.0%, λmax: 283 nm. 3-(5-(4-(4-Fluorophenyl)piperazin-1-yl)pentyl)oxazolo[4,5-b]pyridin-2(3H)-one (76) Yield 81% (156 mg), off-white solid, mp = 83-85 °C; 1H NMR (250 MHz, DMSO-d6) δ 8.12 (dd, J = 5.3, 1.3 Hz, 1H), 7.70 (dd, J = 7.9, 1.3 Hz, 1H), 7.16 (dd, J = 7.9, 5.3 Hz, 1H), 7.07 – 6.98 (m, 2H), 6.96 – 6.84 (m, 2H), 3.83 (t, J = 7.0 Hz, 2H), 3.11 – 2.90 (m, 4H), 2.47 – 2.42 (m, 4H), 2.28 (t, J = 7.2 Hz, 2H), 1.78 (p, J = 7.5 Hz, 2H), 1.57 – 1.42 (m, 2H), 1.40 – 1.28 (m, 2H); 13C NMR (63 MHz, DMSO-d6) δ 155.9 (d, 1JC-F = 235.4 Hz), 152.8, 147.9 (d, 4JC-F = 2.0 Hz), 145.4, 142.7, 136.4, 118.2, 116.9 (d, 3JC-F = 7.5 Hz), 116.24 , 115.1 (d, 2JC-F = 21.8 Hz), 57.4, 52.7, 48.9, 40.6, 26.8, 25.6, 23.8; 19F NMR (235 MHz, DMSO-d6 + TFT) δ -128.4; IR (cm-1) υmax 2939, 2811, 1767, 1507, 1475, 1455, 1429, 1361, 1220, 831, 761; HRMS calcd for C21H26FN4O2 [M+H]+ 385.2034 found 385.2032; tR: 11.2 min, purity: 99.5%, λmax: 283 nm.

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1-(2-(4-(4-Fluorobenzoyl)piperidin-1-yl)ethyl)-1H-benzo[d]imidazol-2(3H)-one (77) Yield 74% (136 mg), off-white solid, mp = 169-171 °C; 1H NMR (250 MHz, CDCl3) δ 8.89 (bs, 1H), 7.95 (dd, J = 8.9, 5.4 Hz, 2H), 7.19 – 7.00 (m, 6H), 4.03 (t, J = 7.1 Hz, 2H), 3.30 – 3.15 (m, 1H), 3.13 – 3.02 (m, 2H), 2.74 (t, J = 7.0 Hz, 2H), 2.35 – 2.18 (m, 2H), 1.92 – 1.75 (m, 4H); 13C NMR (63 MHz, CDCl3) δ 13

C NMR (63 MHz, CDCl3) δ 201.1, 165.8 (d, 1JC-F = 254.5 Hz), 155.2, 132.6 (d, 4JC-F = 3.1 Hz), 131.0

(d, 3JC-F = 9.3 Hz), 130.7, 127.9, 121.6, 121.6, 115.9 (d, 2JC-F = 21.9 Hz), 109.5, 108.2, 56.2, 53.6, 43.7, 39.0, 28.9; 19F NMR (235 MHz, CDCl3 + TFT) δ -106.5; IR (cm-1) υmax 3069, 2953, 2807, 2749, 1690, 1676, 1594, 1489, 1278, 1226, 1195, 1139, 971, 855, 730; HRMS calcd for C21H23FN3O2 [M+H]+ 368.1769 found 368.1766; tR: 10.6 min, purity: 99.9%, λmax: 248 nm. 1-(3-(4-(4-Fluorobenzoyl)piperidin-1-yl)propyl)-1H-benzo[d]imidazol-2(3H)-one (78) Yield 66% (126 mg), off-white solid, mp = 163-165 °C; 1H NMR (250 MHz, CDCl3) δ 9.18 (bs, 1H), 7.96 (dd, J = 8.9, 5.4 Hz, 2H), 7.20 – 6.96 (m, 6H), 3.96 (t, J = 6.8 Hz, 2H), 3.18 (p, J = 7.6 Hz, 1H), 2.96 (dt, J = 11.1, 3.4 Hz, 2H), 2.42 (t, J = 6.9 Hz, 2H), 2.14 – 1.92 (m, 4H), 1.92 – 1.75 (m, 4H); 13C NMR (63 MHz, CDCl3) δ 201.3, 165.8 (d, 1JC-F = 254.5 Hz), 155.4, 132.6 (d, 4JC-F = 2.9 Hz), 131.0 (d, 3JC-F = 9.3 Hz), 130.8, 127.9, 121.5, 121.4, 115.9 (d, 2JC-F = 21.8 Hz), 109.5, 108.2, 55.5, 53.4, 43.9, 39.1, 28.9, 25.8;

19

F NMR (235 MHz, CDCl3 + TFT) δ -106.5; IR (cm-1) υmax 3144, 3069, 2959, 2807, 2769,

1686, 1663, 1596, 1489, 1376, 1227, 1208, 1160, 854, 752, 684; HRMS calcd for C22H25FN3O2 [M+H]+ 382.1925 found 382.1924; tR: 10.8 min, purity: 99.1%, λmax: 278 nm. 1-(4-(4-(4-Fluorobenzoyl)piperidin-1-yl)butyl)-1H-benzo[d]imidazol-2(3H)-one (79) Yield 73% (144 mg), off-white solid, mp = 173-175 °C; 1H NMR (250 MHz, CDCl3) δ 9.46 (bs, 1H), 7.94 (dd, J = 8.9, 5.4 Hz, 2H), 7.18 – 6.98 (m, 6H), 3.92 (t, J = 7.0 Hz, 2H), 3.32 – 3.15 (m, 1H), 3.01 (dt, J = 11.7, 3.7 Hz, 2H), 2.48 (t, J = 7.4 Hz, 2H), 2.26 – 2.14 (m, 2H), 1.97 – 1.75 (m, 6H), 1.65 (m, 2H); 13C NMR (63 MHz, CDCl3) δ 201.0, 165.7 (d, 1JC-F = 254.8 Hz), 155.8 , 132.4 (d, 4JC-F = 3.1 Hz), 131.0 (d, 3JC-F = 9.2 Hz), 130.3, 128.2, 121.5, 121.3, 115.9 (d, 2JC-F = 21.9 Hz), 109.8, 108.0, 58.0, 53.0, 43.2, 40.5, 28.3, 26.3, 23.8; 19F NMR (235 MHz, CDCl3 + TFT) δ -106.4; IR (cm-1) υmax 3125, 3066, 2933, 2807, 1710, 1677, 1597, 1487, 1404, 1203, 1155, 1142, 746, 680; HRMS calcd for C23H27FN3O2 [M+H]+ 396.2082 found 396.2078; tR: 11.1 min, purity: 98.8%, λmax: 278 nm.

ACS Paragon Plus Environment

Page 72 of 101

Page 73 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

1-(5-(4-(4-Fluorobenzoyl)piperidin-1-yl)pentyl)-1H-benzo[d]imidazol-2(3H)-one (80) Yield 75% (154 mg), off-white solid, mp = 149-151 °C; 1H NMR (250 MHz, CDCl3) δ 9.21 (bs, 1H), 7.95 (dd, J = 8.9, 5.4 Hz, 2H), 7.19 – 6.96 (m, 6H), 3.89 (t, J = 7.1 Hz, 2H), 3.33 – 3.18 (m, 1H), 3.02 (dt, J = 11.7, 4.1 Hz, 2H), 2.49 – 2.38 (m, 2H), 2.32 – 2.16 (m, 2H), 2.01 – 1.74 (m, 6H), 1.71 – 1.56 (m, 2H), 1.48 – 1.33 (m, 2H); 13C NMR (63 MHz CDCl3) δ 200.95 , 165.8 (d, 1JC-F = 254.8 Hz), 155.8, 132.4 (d, 4JC-F = 3.0 Hz), 131.0 (d, 3JC-F = 9.2 Hz), 130.4, 128.2, 121.5, 121.3, 115.9 (d, 2JC-F = 21.8 Hz), 109.8, 107.9, 58.5, 52.9, 42.9, 40.8, 28.3, 28.2, 26.1, 24.8; 19F NMR (235 MHz, CDCl3 + TFT) δ 106.3; IR (cm-1) υmax 3137, 2943, 2917, 2859, 1685, 1671, 1592, 1482, 1399, 1171, 971, 739, 675; HRMS calcd for C24H29FN3O2 [M+H]+ 410.2238 found 410.2236; tR: 11.4 min, purity: 99.2%, λmax: 279 nm. 1-(6-(4-(4-Fluorobenzoyl)piperidin-1-yl)hexyl)-1H-benzo[d]imidazol-2(3H)-one (81) Yield 89% (188 mg), off-white solid, mp = 126-128 °C; 1H NMR (250 MHz, CDCl3) δ 9.70 (bs, 1H), 7.95 (dd, J = 8.9, 5.4 Hz, 2H), 7.19 – 6.92 (m, 6H), 3.87 (t, J = 7.1 Hz, 2H), 3.46 – 3.33 (m, 1H), 3.16 – 3.02 (m, 2H), 2.67 – 2.45 (m, 4H), 2.20 – 1.87 (m, 4H), 1.86 – 1.56 (m, 4H), 1.47 – 1.30 (m, 4H); 13C NMR (63 MHz, CDCl3) δ 13C NMR (63 MHz, CDCl3) δ 200.6, 165.8 (d, 1JC-F = 255.1 Hz), 155.7, 132.1 (d, 4JC-F = 3.0 Hz), 131.1 (d, 3JC-F = 9.3 Hz), 130.3, 128.2, 121.5, 121.3, 116.0 (d, 2JC-F = 21.9 Hz), 109.8, 107.9, 58.1, 52.2, 41.7, 40.7, 28.2, 27.3, 26.9, 26.5, 25.6;

19

F NMR (235 MHz, CDCl3 + TFT) δ -

106.5; IR (cm-1) υmax 3145, 2934, 2858, 1678, 1595, 1487, 1226, 1156, 753, 681; HRMS calcd for C25H31FN3O2 [M+H]+ 424.2395 found 424.2391; tR: 11.7 min, purity: 99.1%, λmax: 280 nm. 1-(7-(4-(4-Fluorobenzoyl)piperidin-1-yl)heptyl)-1H-benzo[d]imidazol-2(3H)-one (82) Yield 71% (155 mg), light brown solid, mp = 55-58 °C; 1H NMR (250 MHz, CDCl3) δ 9.93 (bs, 1H), 7.95 (dd, J = 8.9, 5.4 Hz, 2H), 7.19 – 6.94 (m, 6H), 3.86 (t, J = 7.1 Hz, 2H), 3.45 – 3.32 (m, 1H), 3.16 – 3.03 (m, 2H), 2.63 – 2.46 (m, 4H), 2.18 – 1.85 (m, 4H), 1.83 – 1.53 (m, 4H), 1.43 – 1.26 (m, 6H); 13C NMR (63 MHz, CDCl3) δ 200.7, 165.8 (d, 1JC-F = 255.2 Hz), 155.7, 132.1 (d, 4JC-F = 3.0 Hz), 131.1 (d, 3JC-F = 9.2 Hz), 130.4, 128.2, 121.5, 121.3, 116.0 (d, 2JC-F = 21.9 Hz), 109.8, 107.9, 58.2, 52.1, 41.6, 40.7, 28.8, 28.3, 27.2, 27.1, 26.6, 25.5; 19F NMR (235 MHz, CDCl3 + TFT) δ -105.9; IR (cm-1) υmax 31050, 3066,

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 74 of 101

2931, 2856, 1678, 1595, 1487, 1224, 1156, 1224, 1156, 753, 734; HRMS calcd for C26H33FN3O2 [M+H]+ 438.2551 found 438.2547; tR: 12.0 min, purity: 97.4%, λmax: 280 nm. 1-(4-(4-(2-Fluorobenzoyl)piperidin-1-yl)butyl)-1H-benzo[d]imidazol-2(3H)-one (83) Yield 61% (121 mg), off-white solid, mp = 152-154 °C; 1H NMR (250 MHz, CDCl3) δ 9.36 (bs, 1H), 7.75 (td, J = 7.6, 1.9 Hz, 1H), 7.57 – 7.47 (m, 1H), 7.25 – 6.96 (m, 6H), 3.91 (t, J = 6.5 Hz, 2H), 3.32 – 3.21 (m, 1H), 3.15 – 3.04 (m, 2H), 2.71 (t, J = 7.2 Hz, 2H), 2.52 (d, J = 11.7 Hz, 2H), 2.18 – 1.71 (m, 8H); 13C NMR (63 MHz, CDCl3) δ 200.6 (d, 3JC=O-F = 4.3 Hz), 161.2 (d, 1JC-F = 253.1 Hz), 155.4, 134.7 (d, 3JC-F = 9.1 Hz), 131.1 (d, 4JC-F = 2.9 Hz), 130.3, 127.9, 125.2 (d, 2JC-F = 13.6 Hz), 124.9 (d, 3JC-F = 3.3 Hz), 121.7, 121.6, 116.7 (d, 2JC-F = 23.9 Hz), 109.7, 108.0, 57.5, 52.3, 46.2, 40.2, 26.5, 26.1, 22.7; 19F NMR (235 MHz, CDCl3 + TFT) δ -112.4; IR (cm-1) υmax 3066, 2935, 2773, 1697, 1682, 1607, 1486, 1448, 1205, 749; HRMS calcd for C23H27FN3O2 [M+H]+ 396.2082 found 396.2079; tR: 10.9 min, purity: 97.8%, λmax: 280 nm. 1-(4-(4-(3-Fluorobenzoyl)piperidin-1-yl)butyl)-1H-benzo[d]imidazol-2(3H)-one (84) Yield 76% (150 mg), off-white solid, mp = 203-205 °C; 1H NMR (250 MHz, DMSO-d6) δ 10.79 (bs, 1H), 7.83 – 7.78 (m, 1H), 7.75 – 7.68 (m, 1H), 7.63 – 7.43 (m, 2H), 7.16 – 7.09 (m, 1H), 7.04 – 6.94 (m, 3H), 3.78 (t, J = 7.0 Hz, 2H), 3.43 – 3.28 (m, 1H), 2.83 (d, J = 11.3 Hz, 2H), 2.30 (t, J = 7.1 Hz, 2H), 2.02 (t, J = 11.4 Hz, 2H), 1.78 – 1.35 (m, 8H); 13C NMR (63 MHz, DMSO-d6) δ 201.6 (d, 4 JC=O-F = 2.1 Hz), 162.3 (d, 1JC-F = 245.3 Hz), 154.2, 138.0 (d, 3JC-F = 6.0 Hz), 131.0 (d, 3JC-F = 7.8 Hz), 130.2, 128.2, 124.4 (d, 4

JC-F = 2.7 Hz), 120.6, 120.4, 119.9 (d, 2JC-F = 21.3 Hz), 114.6 (d, 2JC-F = 22.2 Hz), 108.6, 107.7, 57.3,

52.4, 42.9, 39.6, 28.3, 25.6, 23.4;

19

F NMR (235 MHz, DMSO-d6 + TFT) δ -114.7; IR (cm-1) υmax

3136, 1946, 2924, 2771, 1697, 1672, 1488, 1442, 1398, 1265, 787, 680; HRMS calcd for C23H26F2N3O2 [M+H]+ 414.1988 found 414.1988; tR: 11.0 min, purity: 99.3%, λmax: 280 nm. 1-(4-(4-(3,4-Difluorobenzoyl)piperidin-1-yl)butyl)-1H-benzo[d]imidazol-2(3H)-one

(85)

Yield

79% (163 mg), off-white solid, mp = 152-154 °C; 1H NMR (250 MHz, CDCl3) δ 9.76 (bs, 1H), 7.82 – 7.64 (m, 2H), 7.31 – 7.18 (m, 1H), 7.16 – 6.96 (m, 4H), 3.92 (t, J = 6.9 Hz, 2H), 3.27 – 3.12 (m, 1H), 3.10 – 2.94 (m, 2H), 2.51 (t, J = 7.4 Hz, 2H), 2.33 – 2.15 (m, 2H), 2.07 – 1.75 (m, 6H), 1.74 – 1.58 (m, 2H);

13

C NMR (63 MHz, CDCl3) δ 199.9, 155.8, 155.7, 155.5, 152.7, 152.4, 151.6, 151.4, 148.6,

ACS Paragon Plus Environment

Page 75 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

148.5, 133.2, 133.1, 133.0, 130.2, 128.2, 125.4, 125.3, 125.2, 125.2, 121.6, 121.3, 117.8, 117.5, 109.8, 108.0, 57.9, 52.8, 43.1, 40.5, 28.2, 26.2, 23.6; 19F NMR (235 MHz, CDCl3 + TFT) δ -130.8, -136.8; IR (cm-1) υmax 3131, 3066, 2941, 2801, 2758, 1709, 1681, 1513, 1487, 1404, 1275, 1141, 1109, 732; HRMS calcd for C23H26F2N3O2 [M+H]+ 414.1985 found 414.1988; tR: 11.3 min, purity: 99.5%, λmax: 280 nm. 1-(4-(4-(2,4-Difluorobenzoyl)piperidin-1-yl)butyl)-1H-benzo[d]imidazol-2(3H)-one (86) Yield 57% (118 mg), off-white solid, mp = 114-116 °C; 1H NMR (250 MHz, CDCl3) δ 9.36 (s, 1H), 7.93 – 7.72 (m, 1H), 7.20 – 6.69 (m, 6H), 3.88 (t, J = 6.8 Hz, 2H), 3.27 – 2.93 (m, 3H), 2.86 – 2.21 (m, 5H), 2.09 – 1.61 (m, 7H); 19F NMR (235 MHz, CDCl3 + TFT) δ -102.8, -107.4; IR (cm-1) υmax 2923, 1688, 1608, 1487, 1257, 973, 733; HRMS calcd for C23H26F2N3O2 [M+H]+ 414.1988 found 414.1988; tR: 11.1 min, purity: 96.1%, λmax: 280 nm. 1-(4-(4-(4-Fluorobenzoyl)piperazin-1-yl)butyl)-1H-benzo[d]imidazol-2(3H)-one (87) Yield 88% (174 mg), off-white solid, mp = 129-131 °C; 1H NMR (250 MHz, CDCl3) δ 9.30 (bs, 1H), 7.39 (dd, J = 8.7, 5.3 Hz, 2H), 7.13 – 6.96 (m, 6H), 3.91 (t, J = 7.1 Hz, 2H), 3.85 – 3.31 (m, 4H), 2.41 (t, J = 7.3 Hz, 6H), 1.82 (p, J = 7.2 Hz, 2H), 1.58 (d, J = 7.3 Hz, 2H); 13C NMR (63 MHz, CDCl3) δ 169.5, 163.5 (d, 1JC-F = 249.8 Hz), 155.6, 131.9 (d, 4JC-F = 3.5 Hz), 130.4, 129.5 (d, 3JC-F = 8.5 Hz), 128.1, 121.6, 121.4, 115.7 (d, 2JC-F = 21.8 Hz), 109.7, 108.0, 57.8, 53.2, 42.5, 40.7, 26.2, 24.0; 19F NMR (235 MHz, CDCl3 + TFT) δ -111.3; IR (cm-1) υmax 3136, 2934, 2804, 1705, 1685, 1625, 1605, 1486, 1454, 1400, 1294, 1141, 1011, 841, 747, 681; HRMS calcd for C22H26FN4O2 [M+H]+ 397.2035 found 397.2035; tR: 9.9 min, purity: 99.7%, λmax: 280 nm. 1-(4-(4-(4-Fluorobenzyl)piperidin-1-yl)butyl)-1H-benzo[d]imidazol-2(3H)-one (88) Yield 65% (124 mg), off-white solid, mp = 98-100 °C; 1H NMR (300 MHz, DMSO-d6) δ 1H NMR (250 MHz, CDCl3) δ 9.78 (bs, 1H), 7.23 – 6.84 (m, 8H), 3.88 (s, 2H), 3.28 (d, J = 11.8 Hz, 2H), 2.88 – 2.75 (m, 2H), 2.53 (d, J = 6.2 Hz, 2H), 2.43 – 2.27 (m, 2H), 1.91 – 1.56 (m, 9H); 13C NMR (63 MHz, CDCl3) δ 161.6 (d, 1JC-F = 244.1 Hz), 155.5, 135.3 (d, 4JC-F = 3.3 Hz), 130.5 (d, 3JC-F = 7.7 Hz), 130.1, 128.0, 121.8, 121.6, 115.3 (d, 2JC-F = 21.1 Hz), 109.8, 108.0, 57.2, 53.2, 41.6, 39.9, 37.0, 29.9, 25.9, 22.0; 19F NMR (235 MHz, CDCl3 + TFT) δ -118.1; IR (cm-1) υmax 3144, 2939, 2922, 2861, 1688, 1509, 1487,

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 76 of 101

1404, 1223, 754; HRMS calcd for C23H29FN3O [M+H]+ 382.2289 found 382.2289; tR: 11.7 min, purity: 99.2%, λmax: 280 nm. 1-(4-(4-((4-Fluorophenyl)sulfonyl)piperidin-1-yl)butyl)-1H-benzo[d]imidazol-2(3H)-one

(89)

Yield 75% (162 mg), off-white solid, mp = 73-75 °C; 1H NMR (250 MHz, CDCl3) δ 10.05 (bs, 1H), 7.86 (dd, J = 8.8, 5.1 Hz, 2H), 7.22 (t, J = 8.8 Hz, 2H), 7.13 – 6.95 (m, 4H), 3.89 (t, J = 7.0 Hz, 2H), 3.03 – 2.91 (m, 2H), 2.84 (dt, J = 12.2, 3.7 Hz, 1H), 2.39 – 2.29 (m, 2H), 2.01 – 1.46 (m, 10H); 13C NMR (63 MHz, CDCl3) δ 166.0 (d, 1JC-F = 256.5 Hz), 155.7, 132.9 (d, 4JC-F = 3.2 Hz), 132.1 (d, 3JC-F = 9.5 Hz), 130.3, 128.1, 121.6, 121.4, 116.6 (d, 2JC-F = 22.5 Hz), 109.7, 108.0, 62.2, 57.5, 52.4, 40.6, 26.2, 25.6, 24.1; 19F NMR (235 MHz, CDCl3 + TFT) δ -104.5; IR (cm-1) υmax 3102, 2950, 2814, 1689, 1589, 1489, 1311, 1288, 1138, 1085, 839, 673; HRMS calcd for C22H27FN3O3S [M+H]+ 432.1752 found 432.1749; tR: 10.3 min, purity: 99.9%, λmax: 280 nm. 1-Butyl-3-(4-(4-(4-fluorobenzoyl)piperidin-1-yl)butyl)-1H-benzo[d]imidazol-2(3H)-one (90) Yield 64% (145 mg), off-white solid, mp = 81-83 °C; 1H NMR (250 MHz, CDCl3) δ 7.89 (dd, J = 8.9, 5.4 Hz, 2H), 7.10 – 6.88 (m, 6H), 3.93 – 3.70 (m, 4H), 3.12 (p, J = 7.6 Hz, 1H), 2.91 (dt, J = 10.8, 2.6 Hz, 2H), 2.41 – 2.30 (m, 2H), 2.11 – 1.96 (m, 2H), 1.86 – 1.44 (m, 10H), 1.42 – 1.23 (m, 2H), 0.88 (t, J = 7.3 Hz, 3H); 13C NMR (63 MHz, CDCl3) δ 200.9, 165.6 (d, 1JC-F = 254.5 Hz), 154.2, 132.4 (d, 4JC-F = 3.0 Hz), 130.8 (d, 3JC-F = 9.2 Hz), 129.5, 129.3, 121.0, 120.9, 115.7 (d, 2JC-F = 21.8 Hz), 107.6, 107.5, 58.0, 53.1, 43.6, 40.8, 40.8, 30.5, 28.6, 26.2, 24.0, 20.1, 13.7; 19F NMR (235 MHz, CDCl3 + TFT) δ 106.5; IR (cm-1) υmax 2931, 2874, 2802, 1697, 1678, 1598, 1493, 1229, 739; HRMS calcd for C27H35FN3O2 [M+H]+ 452.2708 found 452.2712; tR: 13.0 min, purity: 97.8%, λmax: 282 nm. 5-Bromo-1-(4-(4-(4-fluorobenzoyl)piperidin-1-yl)butyl)-1H-benzo[d]imidazol-2(3H)-one

(91)

Yield 81% (192 mg), off-white solid, mp = 153-155 °C; 1H NMR (250 MHz, CDCl3) δ 10.40 (bs, 1H), 7.95 (dd, J = 8.9, 5.4 Hz, 2H), 7.29 – 7.08 (m, 4H), 6.88 (d, J = 8.3 Hz, 1H), 3.89 (t, J = 7.0 Hz, 2H), 3.26 – 3.13 (m, 1H), 2.98 (d, J = 11.5 Hz, 2H), 2.43 (t, J = 7.3 Hz, 2H), 2.18 – 2.05 (m, 2H), 1.92 – 1.72 (m, 6H), 1.70 – 1.52 (m, 2H); 13C NMR (63 MHz, CDCl3) δ 201.1, 165.7 (d, 1JC-F = 254.5 Hz), 155.6, 132.5 (d, 4JC-F = 3.0 Hz), 131.0 (d, 3JC-F = 9.1 Hz), 129.5, 129.3, 124.2, 115.9 (d, 2JC-F = 21.8 Hz), 114.1, 112.9, 109.2, 58.1, 53.3, 43.7, 40.8, 28.7, 26.3, 24.1; 19F NMR (235 MHz, CDCl3 + TFT) δ

ACS Paragon Plus Environment

Page 77 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

-106.5; IR (cm-1) υmax 3170, 2919, 2809, 2760, 1690, 1675, 1593, 1483, 1403, 1333, 1204, 1156, 853, 785; HRMS calcd for C23H2679BrFN3O2 [M+H]+ 474.1187 found 474.1183; tR: 11.9 min, purity: 98.8%, λmax: 241 nm. 5-Iodo-1-(4-(4-(4-fluorobenzoyl)piperidin-1-yl)butyl)-1H-benzo[d]imidazol-2(3H)-one (92) Yield 89% (232 mg), off-white solid, mp = 195-197 °C; 1H NMR (250 MHz, DMSO-d6) δ 10.89 (bs, 1H), 8.00 (dd, J = 8.9, 5.5 Hz, 2H), 7.34 – 7.19 (m, 4H), 6.96 (d, J = 8.2 Hz, 1H), 3.72 (t, J = 6.9 Hz, 2H), 3.39 – 3.22 (m, 1H), 2.79 (d, J = 11.6 Hz, 2H), 2.25 (t, J = 7.1 Hz, 2H), 2.06 – 1.89 (m, 2H), 1.76 – 1.27 (m, 8H); 13C NMR (63 MHz, DMSO-d6) δ 201.0, 164.9 (d, 1JC-F = 251.7 Hz), 153.7, 132.3 (d, 4JCF

= 2.9 Hz), 131.1 (d, 3JC-F = 9.3 Hz), 130.1, 130.0, 128.8, 116.7, 115.8 (d, 2JC-F = 21.8 Hz), 110.0,

83.1, 57.1, 52.3, 42.5, 39.7, 28.2, 25.4, 23.1; 19F NMR (235 MHz, DMSO-d6 + TFT) δ -108.8; IR (cm1

) υmax 3162, 3107, 3014, 2937, 2916, 2862, 2805, 1682, 1596, 1487, 1145, 1108, 974, 749; HRMS

calcd for C23H26FIN3O2 [M+H]+ 522.1048 found 522.1042; tR: 12.1 min, purity: 99.4%, λmax: 241 nm. 5,6-Dichloro-1-(4-(4-(4-fluorobenzoyl)piperidin-1-yl)butyl)-1H-benzo[d]imidazol-2(3H)-one (93) Yield 65% (169 mg), colorless solid, mp = 164-166 °C; 1H NMR (250 MHz, DMSO-d6) δ 11.13 (bs, 1H, NH), 8.04 (dd, J = 9.0, 5.6 Hz, 2H), 7.48 (s, 1H), 7.34 (t, J = 8.9 Hz, 2H), 7.15 (s, 1H), 3.78 (t, J = 7.0 Hz, 2H), 3.42 – 3.23 (m, 1H), 2.84 (d, J = 11.7 Hz, 2H), 2.29 (t, J = 7.1 Hz, 2H), 2.01 (td, J = 11.4, 2.1 Hz, 2H), 1.81 – 1.34 (m, 8H); 13C NMR (63 MHz, DMSO-d6) δ 201.1, 164.9 (d, 1JC-F = 251.6 Hz), 154.2, 132.4 (d, 4JC-F = 2.9 Hz), 131.1 (d, 3JC-F = 9.3 Hz), 130.3, 128.3, 122.7, 122.6, 115.8 (d, 2JC-F = 21.9 Hz), 109.9, 109.3, 57.3, 52.5, 42.8, 39.9, 28.4, 25.4, 23.3; 19F NMR (235 MHz, DMSO-d6 + TFT) δ -108.9; IR (cm-1) υmax 2934, 2764, 1698, 1677, 1597, 1493, 1102, 851; HRMS calcd for C23H25Cl2FN3O2 [M+H]+ 464.1302 found 464.1302; tR: 12.3 min, purity: 100%, λmax1: 241 nm, λmax2: 298 nm. 1-Butyl-5,6-dichloro-3-(4-(4-(4-fluorobenzoyl)piperidin-1-yl)butyl)-1H-benzo[d]imidazol-2(3H)one (94) Yield 68% (177 mg), light brown oil; 1H NMR (250 MHz, CDCl3) δ 7.93 (dd, J = 9.0, 5.4 Hz, 2H), 7.11 (t, J = 8.7 Hz, 2H), 7.05 (s, 1H), 7.02 (s, 1H), 3.82 (q, J = 7.3 Hz, 4H), 3.24 – 3.10 (m, 1H), 2.95 (dt, J = 10.9, 2.7 Hz, 2H), 2.38 (t, J = 7.3 Hz, 2H), 2.13 – 2.00 (m, 2H), 1.87 – 1.62 (m, 8H), 1.61 – 1.47 (m, 2H), 1.44 – 1.26 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H);

ACS Paragon Plus Environment

13

C NMR (63 MHz, CDCl3) δ

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

201.0, 165.7 (d, 1JC-F = 254.4 Hz), 154.2, 132.6 (d, 4JC-F = 3.0 Hz), 130.9 (d, 3JC-F = 9.2 Hz), 129.1, 129.0, 124.7, 124.6, 115.8 (d, 2JC-F = 21.8 Hz), 109.3, 109.2, 58.0, 53.3, 43.8, 41.3, 41.2, 30.4, 28.8, 26.2, 24.0, 20.1, 13.8; 19F NMR (235 MHz, CDCl3 + TFT) δ -106.6; IR (cm-1) υmax 2932, 2872, 2808, 2769, 1704, 1678, 1595, 1500, 1404, 1227, 1104, 850, 650; HRMS calcd for C27H33Cl2FN3O2 [M+H]+ 520.1928 found 520.1923; tR: 14.2 min, purity: 97.1%, λmax: 244 nm. 5,7-Dichloro-1-(4-(4-(4-fluorobenzoyl)piperidin-1-yl)butyl)-1H-benzo[d]imidazol-2(3H)-one (95) Yield 71% (165 mg), off-white solid, mp = 212-214 °C; 1H NMR (250 MHz, DMSO-d6) δ 11.37 (s, 1H), 8.04 (dd, J = 8.8, 5.6 Hz, 2H), 7.34 (t, J = 8.8 Hz, 2H), 7.13 (d, J = 1.9 Hz, 1H), 6.99 (d, J = 2.0 Hz, 1H), 4.01 (t, J = 7.2 Hz, 2H), 3.51 – 3.19 (m, 1H), 2.83 (d, J = 11.5 Hz, 2H), 2.29 (t, J = 7.1 Hz, 2H), 2.01 (t, J = 10.7 Hz, 2H), 1.83 – 1.34 (m, 8H). 13C NMR (63 MHz, DMSO-d6) δ 201.1, 164.9 (d, 1

JC-F = 251.6 Hz), 154.1, 132.3 (d, 4JC-F = 2.9 Hz), 131.3, 131.1 (d, 3JC-F = 9.3 Hz), 125.3, 125.2, 121.2,

115.8 (d, 2JC-F = 21.7 Hz), 113.3, 107.9, 57.4, 52.5, 42.8, 41.0, 28.4, 28.0, 23.3; 19F NMR (235 MHz, DMSO-d6 + TFT) δ -108.9; IR (cm-1) υmax 3100, 2921, 2859, 1467, 1401, 1114, 980, 829, 746; HRMS calcd for C23H25Cl2FN3O2 [M+H]+ 464.1302 found 464.1300; tR: 12.4 min, purity: 99.6%, λmax: 241 nm. 3-(4-(4-(4-Fluorobenzoyl)piperidin-1-yl)butyl)-1H-imidazo[4,5-b]pyridin-2(3H)-one (96) Yield 52% (103 mg), colorless solid, mp = 159-161 °C; 1H NMR (300 MHz, CDCl3) δ 9.84 (bs, 1H, NH), 8.05 (dd, J = 5.2, 1.4 Hz, 1H), 7.95 (dd, J = 8.7, 5.4 Hz, 2H), 7.29 (dd, J = 7.7, 1.4 Hz, 1H), 7.13 (t, J = 8.7 Hz, 2H), 6.98 (dd, J = 7.7, 5.2 Hz, 1H), 4.04 (t, J = 7.1 Hz, 2H), 3.31 – 3.09 (m, 1H), 3.00 (d, J = 11.8 Hz, 2H), 2.45 (d, J = 7.5 Hz, 2H), 2.24 – 2.00 (m, 2H), 1.97 – 1.72 (m, 6H), 1.73 – 1.51 (m, 2H); 13

C NMR (63 MHz, CDCl3) δ 201.1, 165.8 (d, 1JC-F = 254.5 Hz), 155.1, 144.5, 141.0, 132.6 (d, 4JC-F =

3.1 Hz), 131.0 (d, 3JC-F = 9.2 Hz), 122.4, 117.3, 115.9 (d, 2JC-F = 21.8 Hz), 115.5, 58.4, 53.3, 43.7, 39.8, 28.7, 26.6, 24.2; 19F NMR (235 MHz, CDCl3 + TFT) δ -106.5; IR (cm-1) υmax 3072, 2942, 2805, 2765, 1717, 1693, 1676, 1597, 1467, 1394, 1226, 1203, 1103, 888, 794, 771, 679; HRMS calcd for C22H26FN4O2 [M+H]+ 397.2034 found 397.2030; tR: 10.3 min, purity: 100%, λmax: 247 nm. 1-(4-(4-(4-Fluorobenzoyl)piperidin-1-yl)butyl)-1H-imidazo[4,5-b]pyridin-2(3H)-one (97) Yield 55% (109 mg), colorless solid, mp = 147-149 °C; 1H NMR (250 MHz, DMSO-d6) δ 11.49 (bs, 1H),

ACS Paragon Plus Environment

Page 78 of 101

Page 79 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

8.04 (dd, J = 8.8, 5.7 Hz, 2H), 7.90 (dd, J = 5.3, 1.3 Hz, 1H), 7.47 (dd, J = 7.7, 1.3 Hz, 1H), 7.34 (t, J = 8.8 Hz, 2H), 7.01 (dd, J = 7.7, 5.3 Hz, 1H), 3.80 (t, J = 6.9 Hz, 2H), 3.37 – 3.29 (m, 1H), 2.90 – 2.79 (m, 2H), 2.41 – 2.22 (m, 2H), 2.11 – 1.91 (m, 2H), 1.79 – 1.35 (m, 8H); 13C NMR (63 MHz, DMSOd6) δ 201.1, 164.9 (d, 1JC-F = 251.6 Hz), 153.6, 143.5, 139.7, 132.3 (d, 4JC-F = 2.9 Hz), 131.1 (d, 3JC-F = 9.3 Hz), 124.3, 116.5, 115.8 (d, 2JC-F = 21.8 Hz), 113.7, 57.2, 52.4, 42.7, 39.6, 28.4, 25.5, 23.4; 19F NMR (235 MHz, DMSO-d6 + TFT) δ -108.9; IR (cm-1) υmax 3121, 3062, 2950, 2806, 2770, 1705, 1671, 1593, 1443, 1406, 1135, 975, 867, 688; HRMS calcd for C22H26FN4O2 [M+H]+ 397.2034 found 397.2031; tR: 10.1 min, purity: 99.7%, λmax: 248 nm. 1-(4-(4-(4-Fluorobenzoyl)piperidin-1-yl)butyl)-1H-imidazo[4,5-c]pyridin-2(3H)-one (98) Yield 42% (83 mg), off-white solid, mp = 145-147 °C; 1H NMR (250 MHz, CDCl3) δ 8.37 (s, 1H), 8.32 (d, J = 5.3 Hz, 1H), 7.95 (dd, J = 8.8, 5.4 Hz, 2H), 7.13 (t, J = 8.6 Hz, 2H), 6.98 (d, J = 5.3 Hz, 1H), 3.91 (t, J = 6.9 Hz, 2H), 3.37 – 3.19 (m, 1H), 3.09 – 2.95 (m, 2H), 2.63 – 2.46 (m, 2H), 2.37 – 2.18 (m, 2H), 2.07 – 1.76 (m, 6H), 1.74 – 1.59 (m, 2H); 13C NMR (63 MHz, CDCl3) δ 200.9, 165.9 (d, 1JC-F = 254.9 Hz), 154.9, 143.1, 136.8, 132.4 (d, 4JC-F = 3.0 Hz), 131.0 (d, 3JC-F = 9.3 Hz), 130.4, 125.6, 116.0 (d, 2

JC-F = 21.7 Hz), 103.5, 57.8, 52.8, 42.7, 40.9, 28.1, 26.2, 23.6; 19F NMR (235 MHz, CDCl3 + TFT) δ -

106.3; IR (cm-1) υmax 3179, 3044, 2949, 2925, 2804, 1726, 1676, 1598, 1504, 1114, 976, 835, 606; HRMS calcd for C22H26FN4O2 [M+H]+ 397.2034 found 397.2033. 3-(4-(4-(4-Fluorobenzoyl)piperidin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (99) Yield 66% (131 mg), off-white solid, mp = 93-95 °C; 1H NMR (250 MHz, DMSO-d6) δ 8.04 (dd, J = 8.8, 5.7 Hz, 2H), 7.39 – 7.28 (m, 4H), 7.27 – 7.08 (m, 2H), 3.83 (t, J = 7.0 Hz, 2H), 3.45 – 3.35 (m, 1H), 2.84 (d, J = 11.4 Hz, 2H), 2.31 (t, J = 7.1 Hz, 2H), 2.12 – 1.92 (m, 2H), 1.79 – 1.63 (m, 4H), 1.61 – 1.38 (m, 4H); 13

C NMR (63 MHz, DMSO-d6) δ 201.1, 164.9 (d, 1JC-F = 251.7 Hz), 153.8, 141.9, 132.3 (d, 4JC-F = 2.9

Hz), 131.1 (d, 3JC-F = 9.4 Hz), 131.0, 123.8, 122.1, 115.8 (d, 2JC-F = 21.8 Hz), 109.6, 109.2, 57.1, 52.5, 42.7, 41.5, 28.4, 25.0, 23.2;

19

F NMR (235 MHz, DMSO-d6 + TFT) δ -108.9; IR (cm-1) υmax 3273,

3072, 2972, 2938, 2819, 2779, 1778, 1676, 1597, 1486, 1360, 1223, 828, 735; HRMS calcd for C23H26FN2O3 [M+H]+ 397.1922 found 397.1919; tR: 11.7 min, purity: 99.9%, λmax: 254 nm.

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 80 of 101

3-(4-(4-(4-Fluorobenzoyl)piperidin-1-yl)butyl)oxazolo[4,5-b]pyridin-2(3H)-one (100) Yield 58% 115 mg), off-white solid, mp = 96-98 °C; 1H NMR (250 MHz, DMSO-d6) δ 8.12 (dd, J = 5.3, 1.3 Hz, 1H), 8.04 (dd, J = 8.9, 5.5 Hz, 2H), 7.70 (dd, J = 7.9, 1.3 Hz, 1H), 7.34 (t, J = 8.9 Hz, 2H), 7.16 (dd, J = 7.9, 5.3 Hz, 1H), 3.84 (t, J = 7.0 Hz, 2H), 3.46 – 3.33 (m, 1H), 2.83 (d, J = 11.4 Hz, 2H), 2.31 (t, J = 7.2 Hz, 2H), 2.13 – 1.93 (m, 2H), 1.88 – 1.65 (m, 4H), 1.63 – 1.39 (m, 4H);

13

C NMR (63 MHz,

DMSO-d6) δ 201.1, 164.9 (d, 1JC-F = 251.5 Hz), 152.9, 145.5, 142.7, 136.5, 132.3 (d, 4JC-F = 2.8 Hz), 131.1 (d, 3JC-F = 9.5 Hz), 118.2, 116.3, 115.8 (d, 2JC-F = 21.8 Hz), 57.3, 52.5, 42.7, 40.7, 28.4, 25.0, 23.4; 19F NMR (235 MHz, DMSO-d6 + TFT) δ -108.9; IR (cm-1) υmax 2932, 2863, 2805, 1777, 1674, 1593, 1479, 1457, 1263, 1204, 1157, 972, 763; HRMS calcd for C22H25FN3O3 [M+H]+ 398.1874 found 398.1872; tR: 11.1 min, purity: 99.9%, λmax: 248 nm. 3-(5-(4-(4-Fluorobenzoyl)piperidin-1-yl)pentyl)benzo[d]oxazol-2(3H)-one (101) Yield 63% (129 mg), off-white solid, mp = 86-88 °C; 1H NMR (250 MHz, DMSO-d6) δ 8.03 (dd, J = 8.7, 5.7 Hz, 2H), 7.37 – 7.27 (m, 4H), 7.21 (td, J = 7.6, 1.3 Hz, 1H), 7.11 (td, J = 7.7, 1.5 Hz, 1H), 3.81 (t, J = 7.0 Hz, 2H), 3.34 – 3.25 (m, 1H), 2.83 (d, J = 11.5 Hz, 2H), 2.24 (t, J = 7.1 Hz, 2H), 1.99 (t, J = 10.6 Hz, 2H), 1.82 – 1.62 (m, 4H), 1.61 – 1.38 (m, 4H), 1.36 – 1.21 (m, 2H);

13

C NMR (63 MHz, DMSO-d6) δ

201.1, 164.9 (d, 1JC-F = 251.7 Hz), 153.8, 141.9, 132.4 (d, 4JC-F = 2.9 Hz), 131.1 (d, 3JC-F = 9.5 Hz), 131.0, 123.9, 122.1, 115.8 (d, 2JC-F = 21.8 Hz), 109.6, 109.2, 57.8, 52.6, 42.8, 41.6, 28.4, 27.0, 25.8, 23.9; 19F NMR (235 MHz, DMSO-d6 + TFT) δ -108.9; IR (cm-1) υmax 2941, 2864, 2806, 2751, 1761, 1667, 1593, 1487, 1364, 1250, 1222, 1161, 754; HRMS calcd for C24H28FN2O3 [M+H]+ 411,2078 found 411.2076; tR: 12.2 min, purity: 100%, λmax: 254 nm. 3-(5-(4-(4-Fluorobenzoyl)piperidin-1-yl)pentyl)oxazolo[4,5-b]pyridin-2(3H)-one (102) Yield 76% (156 mg), colorless solid, mp = 80-82 °C; 1H NMR (250 MHz, DMSO-d6) δ 8.12 (dd, J = 5.3, 1.3 Hz, 1H), 8.04 (dd, J = 8.9, 5.6 Hz, 2H), 7.71 (dd, J = 7.9, 1.3 Hz, 1H), 7.34 (t, J = 8.9 Hz, 2H), 7.16 (dd, J = 7.9, 5.3 Hz, 1H), 3.83 (t, J = 7.0 Hz, 2H), 3.43 – 3.23 (m, 1H), 2.84 (d, J = 11.6 Hz, 2H), 2.24 (t, J = 7.1 Hz, 2H), 1.99 (td, J = 11.7, 2.5 Hz, 2H), 1.75 (td, J = 13.5, 12.7, 6.0 Hz, 4H), 1.61 – 1.39 (m, 4H), 1.38 – 1.25 (m, 2H); 13C NMR (63 MHz, DMSO-d6) δ 201.2, 164.9 (d, 1JC-F = 251.7 Hz), 152.8, 145.5, 142.8, 136.4, 132.4 (d, 4JC-F = 2.9 Hz), 131.1 (d, 3JC-F = 9.5 Hz), 118.2, 116.3, 115.8 (d, 2JC-F = 21.8

ACS Paragon Plus Environment

Page 81 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

Hz), 57.8, 52.6, 42.8, 40.6, 28.4, 26.8, 25.8, 23.9; 19F NMR (235 MHz, DMSO-d6 + TFT) δ -108.9; IR (cm-1) υmax 2944, 2927, 2854, 2808, 1766, 1675, 1597, 1475, 1455, 1361, 1265, 1217, 979, 789; HRMS calcd for C23H27FN3O3 [M+H]+ 412.2031 found 412.2028; tR: 11.3 min, purity: 96.9%, λmax: 249 nm. 2-(4-(4-(4-Fluorobenzoyl)piperidin-1-yl)butyl)isoindoline-1,3-dione (103) Yield 65% (133 mg), colorless solid; mp = 105-107 °C; 1H NMR (250 MHz, DMSO-d6) δ 8.04 (dd, J = 8.9, 5.6 Hz, 2H), 7.90 – 7.79 (m, 4H), 7.33 (t, J = 8.8 Hz, 2H), 3.58 (t, J = 6.9 Hz, 2H), 3.43 – 3.35 (m, 1H), 2.84 (d, J = 11.7 Hz, 2H), 2.29 (t, J = 7.2 Hz, 2H), 2.02 (td, J = 11.4, 2.0 Hz, 2H), 1.77 – 1.36 (m, 8H); 13C NMR (63 MHz, DMSO-d6) δ 201.1, 168.0, 164.9 (d, 1JC-F = 251.6 Hz), 134.3, 132.4 (d, 4JC-F = 2.9 Hz), 131.6, 131.1 (d, 3JC-F = 9.4 Hz), 123.0, 115.8 (d, 2JC-F = 21.8 Hz), 57.4, 52.5, 42.8, 37.4, 28.4, 25.9, 23.7; 19F NMR (235 MHz, DMSO-d6 + TFT) δ -108.9; IR (cm-1) υmax 2943, 2927, 2871, 2807, 1766, 1712, 1682, 1592, 1395, 1370, 1224, 1047, 972, 860, 721; HRMS calcd for C24H26FN2O3 [M+H]+ 409.1922 found 409.1920; tR: 11.6 min, purity: 96.4%, λmax: 290 nm. 1-(4-(4-(4-Nitrobenzoyl)piperidin-1-yl)butyl)-1,3-dihydro-2H-benzo[d]imidazol-2(3H)-one (111) Yield 80% (169 mg), light yellow solid; mp = 128-130 °C; 1H NMR (400 MHz, CDCl3) δ 10.20 (bs, 1H), 8.29 (d, J = 8.6 Hz, 2H), 8.04 (d, J = 8.6 Hz, 2H), 7.16 – 6.98 (m, 4H), 3.92 (t, J = 7.1 Hz, 2H), 3.27 – 3.15 (m, 1H), 2.97 (d, J = 11.6 Hz, 2H), 2.42 (t, J = 7.4 Hz, 2H), 2.10 (td, J = 11.1, 2.7 Hz, 2H), 1.90 – 1.73 (m, 6H), 1.66 – 1.54 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 201.2, 155.8, 150.3, 140.8, 130.4, 129.3, 128.2, 124.0, 121.5, 121.3, 109.8, 108.0, 58.1, 53.1, 44.4, 40.7, 28.5, 26.3, 24.1; IR (cm1

) υmax 3138, 3066, 2930, 2856, 2807, 1708, 1683, 1522, 1485, 1400, 1358, 1201, 751; HRMS calcd

for C23H27N4O4 [M+H]+ 423.2027 found 423.2022; tR: 11.1 min, purity: 98.5%, λmax: 273 nm. 1-(6-(4-(4-Nitrobenzoyl)piperidin-1-yl)butyl)-1,3-dihydro-2H-benzo[d]imidazol-2(3H)-one (112) Yield 99% (223 mg), off-white solid, mp = 193-195 °C; 1H NMR (400 MHz, CDCl3) δ 9.72 (bs, 1H), 8.30 (d, J = 8.8 Hz, 2H), 8.05 (d, J = 8.8 Hz, 2H), 7.14 – 6.93 (m, 4H), 3.88 (t, J = 7.2 Hz, 2H), 3.30 – 3.13 (m, 1H), 2.98 (d, J = 11.8 Hz, 2H), 2.39 – 2.26 (m, 2H), 2.07 (dt, J = 11.2, 5.8 Hz, 2H), 1.92 – 1.72 (m, 6H), 1.56 – 1.31 (m, 6H); 13C NMR (101 MHz, CDCl3) δ 201.3, 155.6, 150.3, 140.9, 130.5, 129.4, 128.1, 124.1, 121.5, 121.4, 109.7, 108.0, 58.9, 53.2, 44.5, 40.9, 28.6, 28.5, 27.4, 26.9, 26.8; IR

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(cm-1) υmax 3132, 2942, 2923, 2871, 2758, 1712, 1685, 1520, 1487, 1405, 1200, 1142, 753; HRMS calcd for C25H31N4O4 [M+H]+ 451.2340 found 451.2337; tR: 11.7 min, purity: 96.8%, λmax: 273 nm. Ethyl 1-benzoylpiperidine-4-carboxylate (105): Benzoyl chloride (7.4 mL, 63.61 mmol, 1 equiv) was added dropwise to a stirred solution of ethyl isonipecotate 104 (10 g, 63.61 mmol, 1 equiv) and triethylamine (13.3 mL, 95.42 mmol, 1.5 equiv) in dry DCM (100 mL) at room temperature. The mixture was stirred at room temperature for 20 h. the solution was quenched with water and the organic layer was extracted three times with DCM. The combined organic layers were washed with aqueous 0.5M HCl and sat. NaHCO3, dried over magnesium sulfate, filtered and concentrated in vacuo. Product 105 was isolated and engaged in the next step without further purification. Yield 100% (16.623 g), off-white solid, mp = 69-71 °C; 1H NMR (250 MHz, CDCl3) δ 7.38 (s, 5H), 4.49 (s, 1H), 4.23 – 4.07 (m, 2H), 3.73 (s, 1H), 3.03 (t, J = 12.0 Hz, 2H), 2.67 – 2.46 (m, 1H), 2.30 – 1.46 (m, 4H), 1.34 – 1.17 (m, 3H); 13C NMR (63 MHz, CDCl3) δ 174.2, 170.4, 136.1, 129.6, 128.5, 126.8 , 60.7, 46.9, 41.6, 41.1, 28.3, 14.2; IR (cm-1) υmax 2959, 2930, 2859, 1717, 1631, 1427, 1316, 1182, 1046, 707; HRMS calcd for C15H20NO3 [M+H]+ 262.1437 found 262.1441. 1-Benzoylpiperidine-4-carboxylic acid (106) At room temperature, sodium hydroxide (6.12 g, 0.153 mol) was added portionwise to a stirred solution of benzamide 105 (7.4 mL, 63.61 mmol, 1 equiv) in EtOH 70% (60 mL) and the mixture was stirred for 18h. The solution was slowly acidified to pH 3 with AcOH and the resulting mixture was concentrated in vacuo. The oily residue was partitioned between DCM and water, the aqueous layer was extracted three times with DCM. The combined organic layers were dried over MgSO4, concentrated in vacuo, co-evaporated with toluene to remove traces of AcOH, and yielded the desired carboxylic acid 106 in analytically pure form. Yield 89% (12.795 g), colorless solid, mp = 125-127 °C; 1H NMR (250 MHz, CDCl3) δ 10.71 (bs, 1H), 7.38 (s, 5H), 4.48 (s, 1H), 3.71 (s, 1H), 3.06 (t, J = 11.8 Hz, 2H), 2.68 – 2.48 (m, 1H), 2.15 – 1.52 (m, 4H); 13C NMR (63 MHz, CDCl3) δ 178.5, 170.9, 135.5, 129.8, 128.5, 126.9, 47.0, 41.7, 40.7, 27.9; IR (cm-1) υmax 3055, 2976, 2858, 1729, 1611, 1575, 1446, 1401, 1293, 1169, 1014, 707; HRMS calcd for C13H16NO3 [M+H]+ 234.1125 found 234.1126.

ACS Paragon Plus Environment

Page 82 of 101

Page 83 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

(1-Benzoylpiperidin-4-yl)(4-bromophenyl)methanone (107) oxalyl chloride (1.9 mL, 22.40 mmol, 1.1 equiv) was added dropwise to a stirred solution of carboxylic acid 106 (4.75 g, 20.36 mmol, 1 equiv) dissolved in anhydrous DCM (190 mL) at room temperature. The solution was stirred for 15h and concentrated in vacuo. The residue was dissolved in bromobenzene (24 mL) and aluminum chloride (4.07 g, 30.54 mmol, 1.5 equiv) was added portionwise to the stirred solution. The mixture was heated at 90 °C for 6.5 h, cooled to room temperature and poured onto iced water. The aqueous layer was extracted three times with DCM, and the combined organic layers were dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel using a PE/AcOEt mixture (7:3 to 1:1) to afford the desired product 107. Yield 40% (3.032 g), colorless solid, mp = 118-120 °C; 1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 8.6 Hz, 2H), 7.62 (d, J = 8.6 Hz, 2H), 7.41 (s, 5H), 4.95 – 4.53 (m, 1H), 4.11 – 3.69 (m, 1H), 3.56 – 3.42 (m, 1H), 3.25 – 2.96 (m, 2H), 2.08 – 1.70 (m, 4H); 13C NMR (101 MHz, CDCl3) δ 200.7, 170.6, 136.0, 134.5, 132.3, 129.9, 129.8, 128.6, 128.6, 127.0, 47.2, 43.4, 41.8, 28.7; IR (cm-1) υmax 3060, 2940, 2857, 1678, 1616, 1585, 1444, 1317, 1215, 1070, 971, 707; HRMS calcd for C19H1979BrNO2 [M+H]+ 372.0594 found 372.0596. (4-(4-Aminobenzoyl)piperidin-1-yl)(phenyl)methanone (108) An oven-dried tube was successively charged with brominated product 107 (3.9 g, 10.48 mmol, 1 equiv), copper iodide (201 mg, 1.048 mmol, 10 mol%), and potassium phosphate (4.44 g, 20.9 mmol, 2 equiv) sealed and purged with vacuum-argon cycles. The solid mixture was dissolved in ammonium hydroxide 28% (21 mL) and DMF (30 mL) and purged again with vacuum-argon cycles. The resulting mixture was heated at 90 °C for 27h, cooled down to room temperature, and partitioned between DCM and water. The aqueous layer was extracted three times with DCM, and the combined organic layers were dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was purified by chromatography on silica gel using a PE/AcOEt/MeOH mixture (1:1:0 then 0:1:0 then 0:95:5) to yield the desired benzoylamine 108. Yield 85% (2.329 g), colorless solid, mp = 184-186 °C; 1H NMR (400 MHz, CDCl3) δ 7.80 (d, J = 8.8 Hz, 2H), 7.40 (s, 5H), 6.64 (d, J = 8.8 Hz, 2H), 4.70 (m, 1H), 4.24 (m, 2H), 3.85 (m, 1H), 3.53 – 3.40 (m, 1H), 3.09 (m, 2H), 2.07 – 1.66 (m, 4H); 13C NMR (101 MHz, CDCl3) δ

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

199.8, 170.6, 151.6, 136.2, 130.9, 129.7, 128.6, 126.9, 125.9, 114.0, 47.4, 42.7, 42.0, 29.0; IR (cm-1) υmax 3453, 3340, 3220, 2958, 2928, 1654, 1588, 1575, 1558, 1432, 1333, 1170, 972; HRMS calcd for C19H21N2O2 [M+H]+ 309.1598 found 309.1597. (1-Benzoylpiperidin-4-yl)(4-nitrophenyl)methanone (109) A solution of benzoylamine 108 (2.73 g, 8.85 mmol, 1 equiv) in CHCl3 (150 mL) was added dropwise to a stirred solution of m-CPBA (8.73 g, 35.41 mmol, 4 equiv) in CHCl3 (150 mL). the mixture was heated at 60 °C for 45 min. the cooled solution was washed with aqueous 1N NaOH, water, dried over MgSO4, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel using a PE/AcOEt mixture (6:4 to 4:6) to yield the desired 4-nitrobenzoyl derivative 109. Yield 65% (1.261 g), light brown solid; mp = 149-151 °C; 1H NMR (400 MHz, CDCl3) δ 8.33 (d, J = 8.8 Hz, 2H), 8.10 (d, J = 8.8 Hz, 2H), 7.42 (s, 5H), 4.79 – 4.60 (m, 1H), 4.03 – 3.77 (m, 1H), 3.62 – 3.50 (m, 1H), 3.14 (s, 2H), 2.09 – 1.74 (m, 4H); 13

C NMR (101 MHz, CDCl3) δ 200.3, 170.6, 150.5, 140.4, 135.9, 129.9, 129.4, 128.7, 127.0, 124.2,

47.0, 44.0, 41.7, 28.5; IR (cm-1) υmax 3065, 2941, 2860, 1687, 1615, 1526, 1443, 1347, 1313, 1211, 1103, 968, 704; HRMS calcd for C19H19N2O4 [M+H]+ 339.1339 found 339.1339. (4-Nitrophenyl)(piperidin-4-yl)methanone (110) A solution of nitrobenzoylpiperidine 109 (500 mg, 1.48 mmol, 1 equiv) was solubilized in EtOH 70% (6 mL) and 12M HCl (aq) (20 mL). The solution was heated at 110 °C for 24h. The cooled mixture was concentrated in vacuo until no EtOH remained. The residue was carefully alkalized with a saturated solution of KOH until pH= 13-14. The aqueous layer was extracted three times with AcOEt. The combined organic layers were dried over magnesium, filtered, and concentrated in vacuo to yield product 110 in analytically pure form. Yield 81% (280 mg), light yellow solid; mp = 65-67 °C; 1H NMR (250 MHz, CDCl3) δ 8.31 (d, J = 9.0 Hz, 2H), 8.07 (d, J = 9.0 Hz, 2H), 3.37 (tt, J = 11.1, 3.7 Hz, 1H), 3.20 (dt, J = 12.8, 3.3 Hz, 2H), 2.77 (td, J = 12.4, 2.8 Hz, 2H), 1.90 – 1.79 (m, 2H), 1.78 – 1.62 (m, 2H), 1.60 (bs, 1H); 13C NMR (63 MHz, CDCl3) δ 201.1, 150.3, 140.8, 129.4, 124.0, 46.0, 44.8, 29.5; IR (cm-1) υmax 3235, 3112, 2934, 2804, 1520, 1349, 1275, 990, 707; HRMS calcd for C12H15N2O3 [M+H]+ 235.1077 found 235.1079.

ACS Paragon Plus Environment

Page 84 of 101

Page 85 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

ASSOCIATED CONTENT Supporting Information. 1H and 13C NMR of synthetic intermediates and final products, HPLC chromatograms of products tested in vitro and in vivo, Reference and negative controls of 5-CT, SB-26970 and ligands I, 62, 63, 79, and 81 for cAMP accumulation.

AUTHOR INFORMATION Corresponding Authors *email addresses: [email protected] Tel.: +33 2 38 41 70 73; fax: +33 2 38 41 72 81 [email protected] . Tel.: +33 2 38 49 45 80; fax: +33 2 38 41 72 81 Author Contributions The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. ‡These authors contributed equally. Funding Sources This work has been partially supported by University of Orleans, region Centre, CNRS, Labex SynOrg (ANR-11-LABX-0029), the Ligue contre le Cancer (Loiret and Cher comities) and EFRD. Radioligand binding experiments were financially supported by the project POIG.01.01.02-12-004/09-00 (De-Me-Ter), which was co-financed by the European Union from the European Fund of Regional Development (EFRD). Notes The authors declare no competing financial interest.

ACKNOWLEDGMENT

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 86 of 101

ED and ER thank the Région Centre (Project serosero7) for financial support. Christelle Pillard (Greenpharma, Orléans, France) is gratefully acknowledged for performing the synthesis of the three nitro precursors. ABBREVIATIONS USED 5-HT, 5-hydroxytryptamine (serotonin); 5-HT7R, 5-HT7 receptor; CNS, central nervous system; GPCR, G-protein-coupled receptor; cAMP, 3’-5’-cyclic adenosine monophosphate; LGIC, ligand-gated ion channel; PET, positron emission tomography; HPLC, high pressure liquid chromatography; DPPA, diphenyl phosphorylazide; PE, petroleum ether; AcOEt, ethyl acetate; DCM, methylene chloride; DMF, dimethylformamide; TFT, α,α,α-trifluorotoluene; SUV, Standard Uptake Value.

ACS Paragon Plus Environment

Page 87 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

REFERENCES

(1) (a) Bard, J. A.; Zgombick, J.; Adham, N.; Vaysse, P.; Branchek, T. A.; Weinshank, R. L. Cloning of a Novel Human Serotonin Receptor (5-HT7) Positively Linked to Adenylate Cyclase. J. Biol. Chem. 1993, 268, 23422-23426. (b) Ruat, M.; Traiffort, E.; Leurs, R.; Tardivel-Lacombe, J.; Diaz, J.; Arrang, J.-M.; Schwartz, J.-C. Molecular Cloning, Characterization, and Localization of a High-Affinity Serotonin Receptor (5-HT7) Activating cAMP Formation. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 8547-8551. (c) Lovenberg, T. W.; Baron, B. M.; De Lecea, L.; Miller, J. D.; Prosser, R. A.; Rea, M. A.; Foye, P. E.; Racke, M.; Slone, A. L.; Siegel, B. W.; Danielson, P. E.; Sutcliffe, J. G.; Erlander, M. G. A Novel Adenylyl Cyclase-Activated Serotonin Receptor (5HT7) Implicated in the Regulation of Mammalian Circadian Rhythms. Neuron 1993, 11, 449458. (2) For a comprehensive review on 5-HT7R biochemistry and molecular biology, please see: Gellynck, E.; Heyninck, K.; Andressen, K. W.; Haegeman, G.; Levy, F. O.; Vanhoenacker, P.; Van Craenenbroeck, K. The Serotonin 5‑HT7 Receptors: Two decades of Research. Exp. Brain Res. 2013, 230, 555-568. (3) Hassaine, G.; Deluz, C.; Grasso, L.; Wyss, R.; Tol, M. B.; Hovius, R.; Graff, A.; Stahlberg, H.; Tomizaki, T.; Desmyter, A.; Moreau, C.; Li, X.-D.; Poitevin, F.; Vogel, H.; Nury, H. X-ray Structure of Mouse Serotonin 5-HT3 Receptor. Nature 2014, 512, 276−281. (4) (a) Leopoldo, M.; Berardi, F.; Colabufo, N. A.; Contino, M.; Lacivita, E.; Niso, M.; Perrone, R.; Tortorella, V. Structure-Affinity Relationship Study on N-(1,2,3,4-Tetrahydronaphthalen-1yl)-4-aryl-1-piperazinealkylamides, a New Class of 5-Hydroxytryptamine 7 Receptor Agents. J. Med. Chem. 2004, 47, 6616-6624. (b) Leopoldo, M.; Lacivita, E.; Contino, M.; Colabufo, N. A.;

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Berardi,

F.;

Perrone,

R.

Structure-Activity

Relationship

Page 88 of 101

Study

on

N-(1,2,3,4-

Tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinehexanamides, a Class of 5-HT7 Receptor Agents. J. Med. Chem. 2007, 50, 4214-4221. (5) Mattson, R. J.; Denhart, D. J.; Catt, J. D.; Dee, M. F.; Deskus, J. A.; Ditta, J. L.; Epperson, J.; Dalton King, H.; Gao, A.; Poss, M. A.; Purandare, A.; Tortolani, D.; Zhao, Y.; Yang, H.; Yeola, S.; Palmer, J.; Torrente, J.; Stark, A.; Johnson, G. Aminotriazine 5-HT7 Antagonists. Bioorg. Med. Chem. Lett. 2004, 14, 4245-4248. (6) (a) Hagan, J. J.; Price, G. W.; Jeffrey, P.; Deeks, N. J.; Stean, T.; Piper, D.; Smith, M. I.; Upton, N.; Medhurst, A. D.; Middlemiss, D. N.; Riley, G. J.; Lovell, P. J.; Bromidge, S. M.; Thomas, D. R. Characterization of SB-269970-A, a Selective 5-HT7 Receptor Antagonist. Br. J. Pharmacol. 2000, 130, 539-548. (b) Forbes, I. T.; Douglas, S.; Gribble, A. D.; Ife, R. J.; Lightfoot, A. P.; Garner, A. E.; Riley, G. J.; Jeffrey, P.; Stevens, A. J.; Stean, T. O.; Thomas, D. R. SB-656104-A: A Novel 5-HT7 Receptor Antagonist with Improved In Vivo Properties. Bioorg. Med. Chem. Lett. 2002, 12, 3341-3344. (7) Forbes, I. T.; Cooper, D. G.; Dodds, E. K.; Douglas, S. E.; Gribble, A. D.; Ife, R. J.; Lightfoot, A. P.; Meeson M.; Campbell, L. P.; Coleman, T.; Riley, G. J.; Thomas, D. R. Identification of a Novel Series of Selective 5-HT7 Receptor Antagonists. Bioorg. Med. Chem. Lett. 2003, 13, 1055-1058. (8) (a) Kikuchi, C.; Suzuki, H.; Hiranuma, T.; Koyama, M. New Tetrahydrobenzindoles as Potent and Selective 5-HT7 Antagonists with Increased In Vitro Metabolic Stability. Bioorg. Med. Chem. Lett. 2003, 13, 61-64. (b) Medina, R. A.; Sallander, J.; Benhamú, B.; Porras, E.; Campillo, M.; Pardo, L.; Lόpez-Rodríguez, M. L. Synthesis of New Serotonin 5-HT7 Receptor

ACS Paragon Plus Environment

Page 89 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

Ligands. Determinants of 5-HT7/5-HT1A Receptor Selectivity. J. Med. Chem. 2009, 52, 23842392. (9) (a) Holmberg, P.; Sohn, D.; Leideborg, R.; Caldirola, P.; Zlatoidsky, P.; Hanson, S.; Mohell, N.; Rosqvist, S.; Nordvall; G.; Johansson, A. M.; Johansson, R. Novel 2-Aminotetralin and 3Aminochroman Derivatives as Selective Serotonin 5-HT7 Receptor Agonists and Antagonists. J. Med. Chem. 2004, 47, 3927-3930. (b) Romero-Alonso, L.; Zamanillo-Castanedo, D.; VelaHernandez, J. –M.; Buschmann, H. H. Combination of a 5-HT7 Receptor Ligand and an Opioid Ligand. WO2008/145335, Chem. Abstr. 2008, 150, 19899. (c) Garcia-Lopez, M.; Torrens-Jover, A.; Romero-Alonso, L.; Buschmann, H. H. Heterocyclic-substituted-ethylamino-phenyl Derivatives, Their Preparation and use as Medicaments. WO2008/077625, Chem. Abstr. 2008, 149, 79600. (d) Brenchat, A.; Romero, L.; García, M.; Pujol, M.; Burgueño, J.; Torrens, A.; Hamon, M.; Baeyens, J. M.; Buschmann, H.; Zamanillo, D.; Vela, J. M. 5-HT7 Receptor Activation Inhibits Mechanical Hypersensitivity Secondary to Capsaicin Sensitization in Mice. Pain 2009, 141, 239-247. (10) (a) Hedlund, P. B.; Huitron-Resendiz, S.; Henriksen, S. J.; Sutcliffe, J. G. 5-HT7 Receptor Inhibition and Inactivation Induce Antidepressantlike Behavior and Sleep Pattern. Biol. Psychiatry 2005, 58, 831-837. (b) Purohit, A.; Smith, C.; Herrick-Davis, K.; Teitler, M. Stable Expression of Constitutively Activated Mutant h5HT6 and h5HT7 Serotonin Receptors: Inverse Agonist Activity of Antipsychotic Drugs. Psychopharmacology 2005, 179, 461-469. (c) Ikeda, M.; Iwata, N.; Kitajima, T.; Suzuki, T.; Yamanouchi, Y.; Kinoshita, Y.; Ozaki, N. Positive Association of the Serotonin 5-HT7 Receptor Gene with Schizophrenia in a Japanese Population. Neuropsychopharmacology 2006, 31, 866-871. (d) Cates, L. N.; Roberts, A. J.; HuitronResendiz, S.; Hedlund, P. B. Effects of Lurasidone in Behavioral Models of Depression. Role of

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 90 of 101

the 5-HT7 receptor subtype. Neuropharmacology, 2013, 70, 211-217. (e) For a comprehensive review on 5-HT7R and its association to psychiatric disorders, please see: Hedlund, P. B. The 5HT7 Receptor and Disorders of the Nervous System: an Overview. Psychopharmacology 2009, 206, 345-354. (11) De Filippis, B.; Nativio, P.; Fabbri, A.; Ricceri, L.; Adriani, W.; Lacivita, E.; Leopoldo, M.; Passarelli, F.; Fuso, A.; Laviola, G. Pharmacological Stimulation of the Brain Serotonin Receptor 7 as a Novel Therapeutic Approach for Rett Syndrome. Neuropsychopharmacology 2014, 39, 2506-2518. (12) (a) Thomas, D. R.; Melotto, S.; Massagrande, M.; Gribble, A. D.; Jeffrey, P.; Stevens, A. J.; Deeks, N. J.; Eddershaw, P. J.; Fenwick, S. H.; Riley, G.; Stean, T.; Scott, C. M.; Hill, M. J.; Middlemiss, D. N.; Hagan, J. J.; Price, G. W.; Forbes, I. T. SB-656104-A, a Novel Selective 5HT7 Receptor Antagonist Modulates REM Sleep in rats. Br. J. Pharmacol. 2003, 139, 705-714. (b) Montia, J. M.; Leopoldo, M.; Jantos, H. Systemic Administration and Local Microinjection into the Central Nervous System of the 5-HT7 Receptor Agonist LP-211 Modify the Sleep-Wake Cycle in the Rat. Behav. Brain Res. 2014, 259, 321-329. (13) (a) Guscott, M. R.; Egan, E.; Cook, G. P.; Stanton, J. A.; Beer, M. S.; Rosahl, T. W.; Hartmann, S.; Kulagowski, J.; McAllister, G.; Fone, K. C.; Hutson, P. H. The Hypothermic Effect of 5-CT in Mice is Mediated Through the 5-HT7 Receptor. Neuropharmacology 2003, 44, 1031-1037. (b) Hedlund, P. B.; Danielson, P. E.; Thomas, E. A.; Slanina, K.; Carson, M. J.; Sutcliffe, J. G. No Hypothermic Response to Serotonin in 5-HT7 Receptor Knockout Mice. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 1375-1380. (14) (a) Mahé, C.; Loetscher, E.; Dev, K. .K.; Bobirnac, I.; Otten, U.; Schoeffter, P. Serotonin 5HT7 Receptors Coupled to Induction of Interleukin-6 in Human Microglial MC-3 Cells.

ACS Paragon Plus Environment

Page 91 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

Neuropharmacology 2005, 49, 40-47. (b) Lieb, K.; Biersack, L.; Waschbisch, A.; Orlikowski, S.; Akundi, R. S.; Candelario-Jalil, E.; Hull, M.; Fiebich, B. L. Serotonin via 5-HT7 Receptors Activates p38 Mitogen-Activated Protein Kinase and Protein Kinase C ε Resulting in Interleukin-6 Synthesis in Human U373 MG Astrocytoma Cells. J. Neurochem. 2005, 93, 549559. (15) (a) Roberts, A. J.; Krucker, T.; Levy, C. L.; Slanina, K. A.; Sutcliffe, J. G.; Hedlund, P. B. Mice Lacking 5-HT7 Receptors Show Specific Impairements in Contextual Learning. Eur. J. Neurosci. 2004, 19, 1913-1922. (b) Perez-García, G.; Meneses, A. Effects of the Potential 5-HT7 Receptor Agonist AS 19 in an Autoshaping Learning Task. Behav. Brain Res. 2005, 163, 136140. (c) Pérez-García, G.; Gonzalez-Espinosa, C.; Meneses, A. An mRNA Expression Analysis of Stimulation and blockade of 5-HT7 Receptors During Memory Consolidation. Behav. Brain Res. 2006, 169, 83-92. (d) Perez-García, G.; Meneses, A. Ex vivo Study of 5-HT1A and 5-HT7 Receptor Agonists and Antagonists on cAMP Accumulation During Memory Formation and Amnesia. Behav. Brain Res. 2008, 195, 139-146. (e) Horiguchi, M.; Huang, M.; Meltzer, H. Y. The Role of 5-Hydroxytryptamine 7 Receptors in the Phencyclidine-Induced Novel Object Recognition Deficit in Rats. J. Pharmacol. Exp. Ther. 2011, 338, 605-614. (f) Freret, T.; Paizanis, E.; Beaudet, G.; Gusmao-Montaigne, A.; Nee, G.; Dauphin, F.; Bouet, V.; Boulouard, M. Modulation of 5-HT7 Receptor: Effect on Object Recognition Performances in mice. Psychopharmacology 2014, 231, 393-400. (f) Meneses, A. 5-HT7 Receptor Stimulation and Blockade: a Therapeutic Paradox about Memory Formation and Amnesia. Front. Behav. Neurosci. 2014, 8, 1-4. (16) (a) Kvachnina, E.; Liu, G.; Dityatev, A.; Renner, U.; Dumuis, A.; Richter, D. W.; Dityateva, G.; Schachner, M.; Voyno-Yasenetskaya, T. A.; Ponimaskin, E. G. 5-HT7 Receptor Is Coupled

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 92 of 101

to Gα Subunits of Heterotrimeric G12-Protein to Regulate Gene Transcription and Neuronal Morphology. J. Neurosci. 2005, 25, 7821-7830. (b) Tajiri, M.; Hayata-Takano, A.; Seiriki, K.; Ogata, K.; Hazama, K.; Shintani, N.; Baba, A.; Hashimoto, H. Serotonin 5-HT7 Receptor Blockade Reverses Behavioral Abnormalities in PACAP-Deficient Mice and Receptor Activation Promotes Neurite Extension in Primary Embryonic Hippocampal Neurons. J. Mol. Neurosci. 2012, 48, 473-481. (c) Rojas, P. S.; Neira, D.; Muñoz, M.; Lavandero, S.; Fiedler, J. L. Serotonin (5-HT) Regulates Neurite Outgrowth Through 5-HT1A and 5-HT7 Receptors in Cultured Hippocampal Neurons. J. Neurosci. Res. 2014, 92, 1000-1009. (d) Canese, R.; Zoratto, F.; Altabella, L.; Porcari, P.; Mercurio, L.; de Pasquale, F.; Butti, E.; Martino, G.; Lacivita, E.; Leopoldo, M.; Laviola, G.; Adriani, W. Persistent Modification of Forebrain Networks and Metabolism in Rats Following Adolescent Exposure to a 5-HT7 Receptor Agonist. Psychopharmacology 2014. doi: 10.1007/s00213-014-3639-6. (17) (a) Raymond, J. R.; Mukhin, Y. V.; Gelasco, A.; Turner, J.; Collinsworth, G.; Gettys, T. W.; Grewal, J. S.; Garnovskaya, M. N. Multiplicity of Mechanisms of Serotonin Receptor Signal Transduction. Pharmacol. Ther. 2001, 92, 179-212. (b) Porter, R. H. P.; Benwell, K. R.; Lamb, H.; Malcolm, C. S.; Allen, N. H.; Revell, D. F.; Adams, D. R.; Sheardown, M. J. Functional Characterization of Agonists at Human Recombinant 5-HT2A, 5-HT2B and 5-HT2C in CHO-K1 Cells. Br. J. Pharmacol. 1999, 128, 13-20. (c) Nakaki, T.; Roth, B. L.; Chuang, D. M.; Costa, E. Phasic and Tonic Components in 5-HT2 Receptor-Mediated Rat Aorta Contraction: Participation of Ca++ Channels and Phospholipase C. J. Pharmacol. Exp. Ther. 1985, 234, 442-446. (18) (a) Malleron, J. -L.; Comte, M. –T.; Gueremy, C.; Peyronel, J. F.; Truchon, A.; Blanchard, J. C.; Doble, A.; Piot, O.; Zundel, J. –L.; Huon, C.; Martin, B.; Mouton, P.; Viroulaud, A.; Allam, D.; Betschart, J. Naphtosultam Derivatives : A New class of Potent and Selective 5-HT2

ACS Paragon Plus Environment

Page 93 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

Antagonists. J. Med. Chem. 1991, 34, 2477-2483. (b) Doble, A.; Girdlestone, D.; Piot, O.; Allam, D.; Betschart, J.; Boireau, A.; Dupuy, A.; Guérémy C.; Ménager, J.; Zundel, J. L.; Blanchard, J. C. Pharmacological Characterization of RP 62203, a Novel 5-Hydroxytryptamine 5-HT2 Receptor Antagonist. Br. J. Pharmacol. 1992, 105, 27-36. (c) Heuillet, E.; Petitet, F.; Mignani, S.; Malleron, J. -L.; Lavayre, J.; Néliat, G.; Doble, A.; Blanchard, J. –C. The Naphtosultam Derivative RP 62203 (Fananserin) has High Affinity for the Dopamine D4 Receptor. Eur. J. Pharmacol. 1996, 314, 229-233. (19) (a) Herth, M. M.; Kramer, V.; Piel, M.; Palner, M.; Riss, P. J.; Knudsen, G. M.; Rösch, F. Synthesis and In Vitro Affinities of Various MDL 100907 Derivatives as Potential

18

F-

Radioligands for 5-HT2A Receptor Imaging with PET. Bioorg. Med. Chem. 2009, 17, 2989-3002. (20) (a) Eison, A. S.; Eison, M. S.; Torrente, J .R.; Wright, R. N.; Yocca, F. D. Nefazodone: Preclinical Pharmacology of a New Anti-Depressant. Psychopharmacol. Bull. 1990, 26, 311-315. (b) Armitage, R.; Rush, A. J.; Trivedi, M.; Cain, J.; Roffwarg, H. P. The effects of Nefazodone on Sleep Architecture in Depression. Neuropsychopharmacology 1994, 10, 123-127. (c) Pullar, I .A.; Carney, S. L.; Colvin, E. M.; Lucaites, V. L.; Nelson, D. L.; Wedley, S. LY367265, an Inhibitor of the 5-Hydroxytryptamine Transporter and 5-Hydroxytryptamine 2A Receptor Antagonist: a Comparison with the Antidepressant, Nefazodone. Eur. J. Pharmacol. 2000, 407, 39-46. (d) For a comprehensive review on Nefazodone: Davis, R.; Whittington, R.; Bryson, H. M. Nefazodone. A Review of its Pharmacology and Clinical Efficacy in the Management of Major Depression. Drugs 1997, 53, 608-636. (21) (a) Seeman, P.; Corbett, R.; Van Tol, H. H. M. Atypical Neuroleptics Have Low Affinity for Dopamine D2 Receptors or Are Selective for D4 Receptors. Neuropsychopharmacology 1997, 16, 93-110. (b) Ichikawa, J.; Li, Z.; Dai, J.; Meltzer, H. Y. Atypical Antipsychotic Drugs,

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 94 of 101

Quetiapine, Iloperidone, and Melperone Preferentially Increase Dopamine and Acetylcholine Release in Rat Medial Prefrontal Cortex: Role of 5-HT1A Receptor Agonism. Brain Res. 2002, 956, 349-357. (c) Uhr, M.; Namendorf, C.; Grauer, M. T.; Rosenhagen, M.; Ebinger, M. PGlycoprotein is a Factor in the Uptake of Dextromethorphan, but not of Melperone, into the Mouse Brain: Evidence for an Overlap in Substrate Specificity Between P-gp and CYP2D6. J. Psychopharmacol. 2004, 18, 509-515. (22) (a) Sorensen, S. M.; Kehne, J. H.; Fadayel, G. M.; Humphreys, T. M.; Ketteler, H. J.; Sullivan, C. K.; Taylor, V. L.; Schmidt, C. J. Characterization of 5-HT2 Receptor Antagonist MDL 100907 as a Putative Atypical Antipsychotic: Behavioral, Electrophysiological and Neurochemical Studies. J. Pharmacol. Exp. Ther. 1993, 266, 684-691. (b) Kehne, J. H.; Baron, M. M.; Carr, A. A.; Chaney, S. F.; Elands, J.; Feldman, D. J.; Franck, R. A.; Van Giersbergen, P. L.; McCloskey, T. C.; Johnson, M. P.; McCarty, D. R.; Poirot, M.; Senyah, Y.; Siegel, B. W.; Wildmaier, C. Preclinical Characterization of the Potential of the Putative Atypical Antipsychotic MDL 100,907 as a Potent 5-HT2A Antagonist with a Favorable CNS Safety Profile. J. Pharmacol. Exp. Ther. 1996, 277, 968-981. (c) Ardayfio, P. A.; Benvenga, M. J.; Chaney, S. F.; Love, P. L.; Catlow, J.; Swanson, S. P.; Marek, G. J. The Hydroxytryptamine2A Receptor

Antagonist

R-(+)-α-(2,3-Dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl-4-

piperidinemethanol (M100907) Attenuates Impulsivity after Both Drug-Induced Disruption (Dizocilpine) and Enhancement (Antidepressant Drugs) of Differential-Reinforcement-of-LowRate 72-s Behavior in the Rat. J. Pharmacol. Exp. Ther. 2008, 327, 891-897. (23) (a) Leysen, J. E.; Awouters, F.; Kennis, L.; Laduron; P. M.; Vanderberk, J.; P.A.J. Janssen. Receptor Binding Profile of R 41 468, a Novel Antagonist at 5-HT2 Receptors. Life Sci. 1981, 28, 1015-1022. (b) Van Nueten, J. M.; Janssen, P. A.; Van Beek, J.; Xhonneux, R.; Verbeuren,

ACS Paragon Plus Environment

Page 95 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

T. J.; Vanhoutte, P. M. Vascular Effects of Ketanserin (R 41468), a Novel Antagonist of 5-HT2 Serotonergic Receptors. J. Pharmacol. Exp. Ther. 1981, 218, 217-230. (c) Razzaque, Z.; Longmore, J.; Hill, R. G. Differences in the Effects of Ketanserin and GR127935 on the 5-HTReceptor Mediated Responses in Rabbit Saphenous Vein and Guinea-Pig jugular Vein. Eur. J. Pharmacol. 1995, 283, 199-206. (d) Zgombick, J. M.; Schechter, L. E.; Kucharewicz, S. A.; Weinshank, R. L.; Branchek, T. A. Ketanserin and Ritanserin Discriminate Between Recombinant Human 5-HT1Dα and 5-HT1Dβ Receptor Subtypes. Eur. J. Pharmacol. 1995, 291, 915. (24) Nelson, D. L.; Lucaites, V. L.; Wainscott, D. B.; Glennon, R. A. Comparisons of Hallucinogenic Phenylisopropylamine Binding Affinities at Cloned Human 5-HT2A, 5-HT2B, and 5-HT2C Receptors. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1999, 359, 1-6. (b) Monti, J. M.; Jantos, H. Effect of the Serotonin 5-HT2A/2C Receptor Agonist DOI and of the Selective 5-HT2A or 5-HT2C Receptor Antagonists EMD 281014 and SB-243213, Respectively, on Sleep and Waking in the Rat. Eur. J. Pharmacol. 2006, 553, 163-170. (25) (a) Fantegrossi, W. E.; Gray, B. W.; Bailey, J. M.; Smith, D. A.; Hansen, M.; Kristensen, J. L.

Hallucinogen-Like

Effects

of

2-([2-(4-Cyano-2,5-dimethoxyphenyl)ethylamino]

methyl)phenol (25CN-NBOH), a Novel N-Benzylphenethylamine with 100-Fold Selectivity for 5-HT2A Receptors, in Mice. Psychopharmacology 2015, 232, 1039-1047. (b) Hansen, M.; Phonekeo, K.; Paine, J. S.; Leth-Petersen, S.; Begtrup, M.; Bräuner-Osborne, H.; Kristensen, J. L. Synthesis and Structure-Activity Relationships of N-Benzyl phenethylamines as 5-HT2A/2C Agonists. ACS Chem. Neurosci. 2014, 5, 243-249. (26) Jensen, A. A.; Plath, N.; Pedersen, M. H. F.; Isberg, V.; Krall, J.; Wellendorph, P.; Stensbøl, T. B.; Gloriam, D. E.; Krogsgaard-Larsen, P.; Frølund, B. Design, Synthesis, and

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 96 of 101

Pharmacological Characterization of N- and O-Substituted 5,6,7,8-Tetrahydro-4H-isoxazolo[4,5d]azepin-3-ol Analogues: Novel 5-HT2A/5-HT2C Receptor Agonists with Pro-Cognitive Properties. J. Med. Chem. 2013, 56, 1211-1227. (27) (a) McLean, T. H.; Parrish, J. C.; Braden, M. R.; Marona-Lewicka, D.; Gallardo-Godoy, A.; Nichols, D. E. 1-Aminomethylbenzocycloalkanes: Conformationally Restricted Hallucinogenic Phenethylamine Analogues as Functionally Selective 5-HT2A Receptor Agonists. J. Med. Chem. 2006, 49, 5794-5803. (b) Fox, M. A.; French, H. T.; LaPorte, J. L.; Blackler, A. R.; Murphy, D. L. The Serotonin 5-HT2A Receptor Agonist TCB-2: a Behavioral and Neurophysiological Analysis. Psychopharmacology 2010, 212, 13-23. (28) (a) Zhang, G.; Asgeirsdottir, H. N.; Cohen, S. J.; Munchow, A. H.; Barrera, M. P.; Stackman, R. W., Jr. Stimulation of Serotonin 2A Receptors facilitates Consolidation and Extinction of Fear Memory in C57BL/6J Mice. Neuropharmacology 2013, 64, 403-413. (b) Blasi, G.; De Virgilio, C.; Papazacharias, A.; Taurisano, P.; Gelao, B.; Fazio, L.; Ursini, G.; Sinibaldi, L.; Andriola, I.; Masellis, R.; Romano, R.; Rampino, A.; Di Giorgio, A.; Lo Bianco, L.; Caforio, G.; Piva, F.; Popolizio, T.; Bellantuono, C.; Todarello, O.; Kleinman, J. E.; Gadaleta, G.; Weinberger, D. R.; Bertolino, A. Converging Evidence for the Association of Functional Genetic Variation in the Serotonin Receptor 2a Gene with Prefrontal function and Olanzapine Treatment. JAMA Psychiatry 2013, 70, 921-930. (c) Mestre, T. A.; Zurowski, M.; Fox, S. H. 5-Hydroxytryptamine 2A Receptors Antagonists as Potential Treatment for Psychiatric Disorders. Expert Opin. Invest. Drugs 2013, 22, 411-421. (d) Price, D. L.; Bonhaus, D. W.; McFarland, K. Pimavanserin, a 5-HT2A Receptor Inverse Agonist, Reverses PsychosisLike Behaviors in a Rodent Model of Alzheimer's Disease. Behav. Pharmacol. 2012, 23, 426433. (e) Gong, P.; Li, J.; Wang, J.; Lei, X.; Chen, D.; Zhang, K.; Zhang, W.; Zhen, A.; Gao, X.;

ACS Paragon Plus Environment

Page 97 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

Zhang, F. Variations in 5-HT2A Influence Spatial Cognitive Abilities and Working Memory. Can. J. Neurol. Sci. 2011, 38, 303-308. (f) Hasselbalch, S. G.; Madsen, K.; Svarer, C.; Pinborg, L. H.; Holm, S.; Paulson, O. B.; Waldemar, G.; Knudsen, G. M. Reduced 5-HT2A Receptor Binding in Patients with Mild Cognitive Impairment. Neurobiol. Aging 2008, 29, 1830-1838. (g) Celada, P.; Puig, M. V.; Amargόs-Bosch, M.; Adell, A.; Artigas, F. The Therapeutic Role of 5HT1A and 5-HT2A Receptors in Depression. J. Psychiatry Neurosci. 2004, 29, 252-265. (h) Ohuoha, D. C.; Hyde, T. M.; Kleinman, J. E. The role of Serotonin in Schizophrenia: an Overview of the Nomenclature, Distribution and Alterations of Serotonin Receptors in the Central Nervous System. Psychopharmacology 1993, 112, S5-15. (29) (a) Moritomo, A.; Yamada, H.; Watanabe, T.; Itahana, H.; Akuzawa, S.; Okada, M.; Ohta, M. Synthesis and Structure-Activity Relationships of New Carbonyl Guanidine Derivatives as Novel Dual 5-HT2B and 5-HT7 Receptor Antagonists. Bioorg. Med. Chem. 2013, 21, 7841-7852 and references cited therein (b) For a thorough review on 5-HT receptors, please see: Barnes, N. M., Sharp, T. A Review of Central 5-HT Receptors and their Function. Neuropharmacology 1999, 38, 1083-1152. (30) Badarau, E.; Suzenet, F.; Bojarski, A. J.; Fînaru, A.-L.; Guillaumet, G. BenzimidazoloneBased Serotonin 5-HT1A or 5-HT7R Ligands: Synthesis and Biological Evaluation. Bioorg. Med. Chem. Lett. 2009, 19, 1600-1603. 5-HT2AR binding result on (I) is unpublished. (31) Meanwell, N. A.; Sit, S. Y.; Gao, J.; Wong, H. S.; Gao, Q.; St. Laurent, D. R.; Balasubramanian, N. Regiospecific Functionalization of 1,3-Dihydro-2H-benzimidazol-2-one and Structurally Related Cyclic Urea Derivatives. J. Org. Chem. 1995, 60, 1565-1582. (32) (a) Wilcken, R.; Zimmermann, M. O.; Lange, A.; Joerger, A. C.; Boeckler, F. M. Principles and Applications of Halogen Bonding in Medicinal Chemistry and Chemical Biology. J. Med.

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 98 of 101

Chem. 2013, 56, 1363−1388. (b) Topliss, J. G. Utilization of Operational Schemes for Analog Synthesis in Drug Design. J. Med. Chem. 1972, 15, 1006−1011. (33) (a) Leopoldo, M.; Lacivita, E.; Berardi, F.; Perrone, R. 5HT7 Receptor Modulators: a Medicinal Chemistry Survey of Recent Patent Literature (2004-2009). Expert Opin. Ther. Pat. 2010, 20, 739-754 and references cited therein. (b) Leopoldo, M.; Lacivita, E.; Berardi, F.; Perrone, R.; Hedlund, P. B. Serotonin 5-HT7 Receptor Agents: Structure-Activity Relationships and Potential Therapeutic Applications in Central Nervous system Disorders. Pharmacol. Ther. 2011, 129, 120-148 and references cited therein. (34) (a) López-Rodríguez, M.L.; Ayala, D.; Benhamú, B.; Morcillo, M.J.; Viso, A. Arylpiperazine Derivatives Acting at 5-HT(1A) Receptors. Curr. Med. Chem. 2002, 9, 443-469. (b) Kołaczkowski, M.; Marcinkowska, M.; Bucki, A.; Śniecikowska, J.; Pawłowski, M.; Kazek, G.; Siwek, A.; Jastrzębska-Więsek, M.; Partyka, A.; Wasik, A.; Wesołowska, A.; Mierzejewski, P.; Bienkowski, P. Novel 5-HT6 Receptor Antagonists/D2 Receptor Partial Agonists Targeting Behavioral and Psychological Symptoms of Dementia. Eur. J. Med. Chem. 2015, 92, 221-235. (c) The full binding profiles of the most active compounds were not evaluated. (35) (a) Volk, B.; Barkóczy, J.; Hegedus, E.; Udvari, S.; Gacsályi, I.; Mezei, T.; Pallagi, K.; Kompagne, H.; Lévay, G.; Egyed, A.; Hársing, L. G.; Spedding, M.; Simig, G. (Phenylpiperazinyl-butyl)oxindoles as Selective 5-HT7 Receptor Antagonists. J. Med. Chem. 2008, 51, 2522-2532. (b) Volk, B.; Gacsalyi, I.; Pallagi, K.; Poszavacz, L.; Gyonos, I.; Szabo, E.; Bako, T.; Spedding, M.; Simig, G.; Szenasi, G. Optimization of (Arylpiperazinylbutyl)oxindoles Exhibiting Selective 5-HT7 Receptor Antagonist Activity. J. Med. Chem. 2011, 54, 6657−6669. (36) (a) Laruelle, M.; Slifstein, M. Huang, Y. Relationships Between Radiotracer Properties and Image Quality in Molecular Imaging of the Brain with Positron Emission Tomography; Mol.

ACS Paragon Plus Environment

Page 99 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

Imaging Biol. 2003; 5, 363-375. (b) Waterhouse, R. N. Determination of Lipophilicity and its Use as a Predictor of Blood-Brain Barrier Penetration of Molecular Imaging Agents. Mol. Imaging Biol. 2003, 5, 376-389. For a comprehensive review on drugs’ physico-chemical properties and CNS penetration see: Pajouhesh, H.; Lenz, G. R. Medicinal Chemical Properties of Successful Central Nervous System Drugs. NeuroRX 2005, 2, 541-553. (37) (a) Ertl, P.; Rohde, B.; Selzer, P. Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties. J. Med. Chem. 2000, 43, 3714-3717. (b) Kelder, J.; Grootenhuis, P D. J.; Bayada, D. M.; Delbressine, L. P. C.; Ploemen, J. –P. Polar Molecular Surface as a dominating Determinant for Oral Absorption and Brain Penetration of Drugs. Pharm. Res. 1999, 16, 1514-1519. (38) Lovell, P. J.; Bromidge, S. M.; Dabbs, S.; Duckworth, D. M.; Forbes, I. T.; Jennings, A. J.; King, F. D.; Middlemiss, D. N.; Rahman, S. K.; Saunders, D. V.; Collin, L. L.; Hagan, J. J.; Riley, G. J.; Thomas, D. R. A Novel, Potent, and Selective 5-HT7 Antagonist: (R)-3-(2-(2-(4Methylpiperidin-1-yl)-ethyl)pyrrolidine-1-sulfonyl)phenol (SB-269970). J. Med. Chem. 2000, 43, 342-345. (39) Lazareno, S.; Birdsall, N. J. Estimation of Competitive Antagonist Affinity from Functional Inhibition Curves Using the Gaddum, Schild and Cheng-Prusoff Equations. Br. J. Pharmacol. 1993, 109, 1110-1119. (40) Pike, V. W. PET Radiotracers: Crossing the Blood-Brain Barrier and Surviving Metabolism. Trends Pharmacol. Sci. 2009, 30, 431-440. (41) Tu, Z.; Efange, S. M. N.; Xu, J.; Li, S.; Jones, L. A.; Parsons, S. M.; Mach, R. H.; Synthesis and in Vitro and in Vivo Evaluation of

18

F-Labeled Positron Emission Tomography (PET)

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 100 of 101

Ligands for Imaging the Vesicular Acetylcholine Transporter. J. Med. Chem. 2009, 52, 13581369. (42) (a) Mengod, G.; Vilaro, M. T. ; Raurich, A.; Lopez-Gimenez, J. F.; Cortes R.; Palacios J. M. 5-HT Receptors in Mammalian Brain: Receptor Autoradiography and In Situ Hybridization Studies of New Ligands and Newly Identified Receptors. Histochem. J. 1996, 28, 747-758. (b) Martin-Cora, F. J. ; Pazos, A. Autoradiographic Distribution of 5-HT7 Receptors in the Human Brain Using [3H]Mesulergine: Comparison to Other Mammalian Species Br. J. Pharmacol. 2004, 141, 92–104. (43) Lacivita, E.; Miso, M.; Hansen, H. D.; Di Pilato, P.; Herth, M. M.; Lehel, S.; Ettrup, A.; Montenegro, L.; Perrone, R.; Berardi, F.; Colabufo, N. A.; Leopoldo, M.; Knudsen. Design, Synthesis, Radiolabeling and In Vivo Evaluation of Potential Positron Emission Tomography (PET) Radioligands for Brain Imaging of the 5-HT7 Receptor. Bioorg. Med. Chem. 2014, 22, 1736-1750. (44) (a) Elsinga, P. H.; Hendrikse, N. H.; Bart, J.; Vaalburg, W.; Van Waarde, A. PET Studies on P-Glycoprotein Function in the Blood-Brain Barrier: How it Affects Uptake and Binding of Drugs within the CNS. Curr. Pharm. Des. 2004, 10, 1493-1503. (b) Ishiwata, K.; Kawamura, K.; Yanai, K.; Hendrikse, N. H. In Vivo Evaluation of P-Glycoproteins Modulation of 8 PET Radioligands Used Clinically. J. Nucl. Med. 2007, 48, 81-87. (45) Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals, 6th ed.; Elsevier: Oxford, UK, 2009. (46) Ding, Y. –S.; Lin, K. –S.; Logan, J.; Benveniste, H.; Carter, P. Comparative Evaluation of Positron Emission Tomography Radiotracers for Imaging the Norepinephrine Transporter: (S,S) and

(R,R)

Enantiomers

of

Reboxetine

Analogs

([11C]Methylreboxetine,

ACS Paragon Plus Environment

3-Cl-

Page 101 of 101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of Medicinal Chemistry

[11C]Methylreboxetine and [18F]Fluororeboxetine), (R)-[11C]Nisoxetine, [11C]Oxaprotiline and [11C]Lortalamine. J. Neurochem. 2005, 94, 337-351. (47) Yoshida, T. Kambe, N.; Murai, S.; Sonoda, N. A New Synthesis of Cyclic Ureas, Cyclic Urethanes, and a Quinozolinedione. Selenium-Assisted Carbonylation of Aromatic Amines with Carbon Monoxide. Bull. Chem. Soc. Jpn. 1987, 60, 1793-1799. (48) Pagani Zecchini, G.; Torrini, I.; Paradisi, P. The Reactivity of 2,3-Diaminopyridine toward Alkyl Chloroformates and Dicarbonates. J. Heterocycl. Chem. 1985, 22, 1061-1064. (49) Borgens, R. B.; Shi, R.; Stephen, R.; Daniel, T. Pyridines for Treating Injured Mammalian Nerve Tissue. WO2004/052291, Chem. Abstr. 2004, 141, 47362. For alternative syntheses of 1H-Imidazo[4,5-c]pyridin-2(3H)-one, please see: (a) Debeljak-Šuštar, M.; Stanovnik, B.; Tišler, M.; Zrimšek, Z. Neighboring Group Interaction in Ortho-Substituted Aminopyridines. Pyridopyrimidines and Related Systems. J. Org. Chem. 1978, 43, 393-397. (b)Tomažič, A.; Tišler, M.; Stanovnik, B. Syntheses of Some Azinylhydroxylamines. J. Heterocycl. Chem. 1979, 16, 861-864.

TABLE OF CONTENTS GRAPHICS

ACS Paragon Plus Environment