Reactivity of Coordinated Dioxygen - American Chemical Society

(4); Latimer, W.M. "The Oxidation. States of the Elements and their ...... HENRY TAUBE (Stanford University): Another interesting point about Collman1...
0 downloads 0 Views 2MB Size
18 Reactivity of Coordinated Dioxygen JOHN F. ENDICOTT and KRISHAN KUMAR

Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch018

Wayne State University, Department of Chemistry, Detroit, MI 48202

Contrasts between the reactivity of free and coordinated O are considered with a special focus 2

on the reactions of transient dioxygen adduct, A

=

Co([14]aneN )(OH )O 2+, observed in aqueous mixtures of O and Co([14]aneN )(OH ) 2+. The greater reactivity of A than O towards outer-sphere elec­ tron transfer reagents is in part due to A being the stronger oxidant. The preliminary observations also suggest a smaller intrinsic barrier for elec­ tron transfer to A than to O . Reactions of A which result in formation of μ-peroxo adducts tend to be favored over outer-sphere electron transfer. The rate advantage of the pathways forming adducts appears to arise almost entirely from thermodynam­ ic factors. The coordinated O of A is not a 4

2

2

2

4

2 2

2

2

2

reactive radical with respect to hydrogen atom abstraction, addition to olefins, etc. The possi­ bilities for oxygen atom transfer have only begun to be investigated. Some comparisons with the reactivity reported for μ-peroxo complexes are considered. Oxidations dependent on molecular oxygen are of fundamental importance to many chemical and biochemical processes . A large number of these processes require the presence of some transition metal ion to "activate" the oxygen. The initial step in many of these reactions is the coordination of 0^ and the nature of the coordinated dioxygen moiety has been of intense interest (1-12). Despite the extensive studies of the binding of 0 to transition metal complexes, relatively l i t t l e is known 9

0097-6156/82/0198-0425$07.50/0 © 1982 American Chemical Society Rorabacher and Endicott; Mechanistic Aspects of Inorganic Reactions ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

MECHANISTIC ASPECTS OF INORGANIC REACTIONS

426 about

the

r e a c t i v i t y o f coordinated 0^.

In f a c t

there i s

an

element o f p e c u l a r i t y to the " a c t i v a t i o n " o f 0^ by c o o r d i n a t i o n to m e t a l s , s i n c e the formation plexes must reduce the net free t i o n process (see Table I f o r meters o f 0 ^ ) . T h i s paper w i l l

o f even moderately s t a b l e com­ energy a v a i l a b l e i n the o x i d a ­ p e r t i n e n t thermochemical p a r a ­ focus on the chemical r e a c t i v i t y

of coordinated 0 . o

Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch018

Table I Summary o f Dioxygen Thermochemistry 0

+

+ 4 H + 4e~

2

°2

+

e

î

2 H

E° = 1.23 V



E° = -0.15 V (pH 7)

" t °2~ +

0 " + 2 H + e" 2

H0

0

Ο/ + H

t

2

E° = 0.87 V (pH 7)

t*2°2

+

pK = 4.88 * a

•> 2 0 ·

2

H 0 2

49 k J m o l "

-> 20Η·

2

1

146 k J m o l "

1

(a) Parameters from r e f . ( 4 ) ; L a t i m e r , W.M. "The O x i d a t i o n States of the Elements and t h e i r P o t e n t i a l s i n Aqueous S o l u ­ t i o n s " ; 2nd E d . , P r e n t i c e - H a l l : Englewood C l i f f s , N J , 1952; Sawyer, D . T . , G i b i a n , M . J . Tetrahedron, 1979, 35, 1471. Many c o b a l t ( I I ) complexes are v e r y r e a c t i v e towards d i s ­ s o l v e d oxygen. The reasonably complex k i n e t i c behavior o f these systems can u s u a l l y be i n t e r p r e t e d i n terms o f a simple two step mechanism (8, 10): n

Co L

5

CoL 0 5

2

+ 0

2

+ Co

l CoL 0 5

I 3 [

L

5

2

K ,k ,k

J L Co-0-0-CoL 5

1

5

1

(1)

- 1

* ,k ,k_ 2

2

2

2

For a v e r y l a r g e number o f c o b a l t complexes i t i s p o s s i b l e

Rorabacher and Endicott; Mechanistic Aspects of Inorganic Reactions ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

( ) to

18.

Reactivity of Coordinated

ENDICOTT A N D KUMAR

Dioxygen

427

i s o l a t e and p u r i f y the r e l a t i v e l y s t a b l e 1:2 μ-peroxo dimers. I t i s o f t e n p o s s i b l e t o manipulate r e a c t i o n c o n d i t i o n s , such as solvent or temperature, i n order to d e t e c t , o r sometimes even i s o l a t e , the more t r a n s i e n t 1:1 adducts. Direct investigation of the chemistry of r e a c t i v e 1:1 CoL^O^ adducts i s g e n e r a l l y hampered by t h e i r very short l i f e t i m e s and, consequently, small concentrations. We have found some m a c r o c y c l i c tetraamine com­ plexes o f c o b a l t ( I I ) to r e a c t r a p i d l y with 0^ to form r e l a t i v e l y i n t e n s e l y absorbing 1:1 adducts whose formation and decay may be monitored on a stopped-flow time s c a l e . Thus f o r [l4]aneN^ = Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch018

1,4,8,11-tetraazacyclotetradecane 3

1

= (8 ± 2) χ 1 0 M" , k 5

1

χ 1 0 M" , and k

(cyclam), a t 25C (μ = 0.1),

5

= (4.9 ± 0.4) χ 10 M*^"

£

1

= (5.0 ± 1.5) χ 1 0 M ' V , K 5

1

1

(13).

2

= (8 ± 3)

We have been

using t h i s system to explore the r e a c t i v i t y o f the coordinated oxygen molecule. Enough i n f o r m a t i o n has been accumulated t h a t we may make some p r e l i m i n a r y comparisons between f r e e 0^, monomeric dioxygen plexes .

complexes,

and peroxo

bridged

b i n u c l e a r com­

P o s s i b l e Reactions o f Coordinated Dioxygen F i v e c l a s s e s o f r e a c t i o n s o f coordinated 0^ may be u s e f u l l y distinguished: 1.

Outer-sphere e l e c t r o n t r a n s f e r i n which formation o f a chemical bond between the reductant and 0 i s s t e r i c ­ ally difficult: 2

M0 2.

2

+ M0 H + S 2

(3)

2

+ S- -» M0 S 2

(4)

Hydrogen atom a b s t r a c t i o n : M0

4.

+

Formation o f metastable μ-peroxo complexes ( a l s o ad­ duct formation, n u c l e o p h i l i c substitution, radical coupling, etc.) M0

3.

+ S" + H

2

+ SH -* M0 H + S 2

(5)

Oxygen atom t r a n s f e r : M0

2

+ S

MO + SO

Rorabacher and Endicott; Mechanistic Aspects of Inorganic Reactions ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

(6)

MECHANISTIC ASPECTS OF

428 5.

INORGANIC REACTIONS

H e t e r o l y t i c or homolytic displacement: (7) (8)

We have been seeking t o i l l u s t r a t e each of these r e a c t i o n s c l e a r l y w i t h a d i r e c t l y observed r e a c t i o n of the Co([14]aneN,)2+ (0H )0 complex. 2

2

Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch018

Outer-Sphere E l e c t r o n T r a n s f e r Reactions of 0^ M o i e t i e s A l l known dioxygen m o i e t i e s r e a d i l y r e a c t w i t h outer-sphere e l e c t r o n t r a n s f e r reagents, provided the thermochemical r e q u i r e ­ ments are met. A r e p r e s e n t a t i v e c o l l e c t i o n of data i s presented i n Table I I . These outer sphere r e a c t i o n s can be used t o make a comparison of the i n t r i n s i c r e a c t i v i t i e s of the dioxygen moi­ eties. Thus, one may o b t a i n f r e e energy independent r e a c t i v i ­ t i e s by c o r r e c t i n g f o r the redox e q u i l i b r i u m c o n s t a n t s , or one may c o r r e c t f o r both the e q u i l i b r i u m constant and the counter reagent self-exchange r a t e constant (14) to o b t a i n apparent self-exchange r a t e constants^ of the dioxygen m o i e t i e s themselves (i.e., for 0 + *0 " J 0 ~ + *0 , etc.). While the data i n 2

2

2

2

Table I I are s e l e c t i v e , they a r e , n e v e r t h e l e s s , reasonably r e p r e s e n t a t i v e . Self-exchange parameters obtained from k i n e t i c data reported i n the l i t e r a t u r e are w i d e l y s c a t t e r e d (Table I I ) f o r both the 0 / 0 and p-superoxo/p-peroxo couples. Despite 2

2

v a r i o u s problems of d e t a i l , the i n t r i n s i c b a r r i e r s to e l e c t r o n t r a n s f e r are g e n e r a l l y l a r g e r f o r the p-superoxo/p-peroxo reac­ t i o n s than f o r the 0 / 0 r e a c t i o n s (~ 100 ± 5 k J mol compared -1 to ~ 45 ± 5 k J mol ). Much, but not a l l , of t h i s d i f f e r e n c e i n i n t r i n s i c b a r r i e r s must a r i s e from the d i f f e r e n c e s i n charge type of the r e a c t i o n s considered. The remaining c o n t r i b u t i o n s may o r i g i n a t e i n s o l v a t i o n e f f e c t s s i n c e the changes i n 0-0 bond l e n g t h accompanying e l e c t r o n t r a n s f e r make r e l a t i v e l y s m a l l c o n t r i b u t i o n s (< 5 k J m o l " ; 13,15,16) to the a c t i v a t i o n bar­ rier. The r e a c t i o n s of the Co([14]aneN^)(0H )0 complex present 1

?

9

1

2 +

2

2

us w i t h some s l i g h t l y d i f f e r e n t problems. F i r s t of a l l , the r e a c t i o n s are k i n e t i c a l l y complex s i n c e r e a c t i o n s (3) occur i n c o m p e t i t i o n w i t h ( 2 ) . One must t h e r e f o r e perform r e l a t i v e l y thorough k i n e t i c s t u d i e s , v a r y i n g counter-reagent c o n c e n t r a t i o n s over a_ s u f f i c i e n t range t h a t the r a t e becomes p s e u d o - f i r s t order i n [S ] , i n order t o s o r t out the r e a c t i o n s of i n t e r e s t . A c h a r a c t e r i s t i c c o l l e c t i o n of data i s presented i n F i g u r e 1. A matter of some concern has been the e s t i m a t i o n of a r e -

Rorabacher and Endicott; Mechanistic Aspects of Inorganic Reactions ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Rorabacher and Endicott; Mechanistic Aspects of Inorganic Reactions ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

3

5

2

[(NH ) Co] 0

2

0 "

2

5 +

2 +

6

5

2+

3

5

2 +

2+

3

Ru(NH )

Fe

6

Co(phen) 2+

Co(bpy)

3

2

+

2 +

2+

3

3+ Ru(NH ) (isn)

Ru(en)

3

2+ Ru(NH ),(phen)

3

Ru(NH ) (isn)

3

Ru(NH ) 2+

Co(sep)

0

2

Counter Reagent

n°2

M

2

63*

1.0 M LiOAc

3

0.05 Μ KN0

4

0.1 M LIC10,

2.0 M L i C 1 0

1.0 M L i C l O ^

3

0.05 Μ KN0

0.1 M NaHC0

1.0 M LiOAc

0.1 M HTFMS

8

4

f

2

£

£

£

£

£

£

0.95^

0.95^

0.95^

0.95J0.95i

0.15

-0.15

-0.15

-0.15

-0.15

-0.15

V

(M0 )

E

on next page)

6

2 E

3.7xl0 ï

2.8xl0"

9.6xl0 !5

188^

380Ï

2.2xl0 ^

36«

7.7x10"^

0.108-

45^

0.1 M HTFMS

1

M-V

k , ab

0.2 M NaCl

Medium

f

0.05-

0.74-

-0.226-

0.39^

0.319-

0.387-

0.172-

0.515^

Ο. 387-

-0.Οδ-

-0.3*

V

E (Counter reagent)

Table I I C o n t r a s t i n Outer-Sphere E l e c t r o n - T r a n s f e r R e a c t i v i t y o f Dioxygen Complexes-

Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch018

1

3

6

5 s

1

3

3 £

4χ10 ί

4.0a

3xl0"

40

20-

4.7xl0

4

5 s

3.6xl0 -

3.2xl0 ^

4.7xl0

4χ10 ί

5.1*

M-V

reagent)

exch (Counter f n

?

é l

4.9x10"

8

6

2χ1θ" -4 1x10 7χ1θ"

H

3

4

3

3

3

1.6xlO

3.4xl0

3.8xl0

1.7xl0

l.OxlO

9.9xl0

1.3

1

M M " sc

(M0 )

^exch

Rorabacher and Endicott; Mechanistic Aspects of Inorganic Reactions ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

?

2

4

2

J

2

}

4

2

(0H )0

2

}

{Co([14]aneN )

2

(0H )0

2 +

4

{Co([14]aneN )

2

(0 ,NH ) '}

3

{[(NH ) Co)

2

(0 ,ΝΗ )"* }

τ

3

3

4

2+

2+

Ru(NH ) (phen)

„2+

Co(sep)

Ru(NHj 3'6

2

2+ Co(phen) 3 R u ( b p y ) 3+

Co(bpy)

4

{[(NH ) Co]

3

Counter Reagent

n°2

M

3+

3

A

4

0.1 M LiCIO

0.1 M HC10,

0.1 M HC10

0.2 M NaCIO,

0.1 M NaCIO, (pH 2)

1.0 M HC1

0.05 M KN0„

0.05 Μ KN0

Medium

s

5

~9xl0 -

8

5

1.8xl0 -

5

4.7xl0 -

5

2.4xl0 -

3.4xl0 -

32^-

90^

M

ab

0.22-

0.22-

0.22-

0.22-

0;75J-

0.75^

0.75J-

2

(M0 )

0.515^

-0.226-

-0.3^

0.05-

1.26-

0.39-

0.319-

V

(Counter reagent)

E

Table I I (cont.) Contrast i n Outer-Sphere E l e c t r o n - T r a n s f e r R e a c t i v i t y o f Dioxygen Complexes-

Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch018

1

3

3.2xl0 -

6

3xl0~ -

5.1*

3

4χ10 ί

.9h 2.0x10 -

40"-

20-

M'V

k

ex h (CounEer reagent)

-5

5

1.6xl0

8xl0

1.9x10

6

6

-6

4.9xl0

1.2x10

4.8x10"

6.7x10

9

(M0 ) - l -1 M s M

exch

Rorabacher and Endicott; Mechanistic Aspects of Inorganic Reactions ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

M

2

4

}

2

3

}

2

2 +

}

4

(0H2)02 }

{Co([l4]aneN )

2

(0H )0

4

{Co([l4]aneN )

2

(0 ,NH )

3

{[(NH ) Co]

2

(0 ,NH )

4

2

2+

3

4

2+

2+

6

Ru(NH ) (phen)^

„2+

Co(sep)

3

Ru(NH )

2+ Co(phen) 3 3+ Ru(bpy)

Co(bpy)

4

U(NH ) Co]

3

Counter Reagent

n°2

3+

4

0.1 M L i C 1 0

0.1 M HC10,

0.1 M HC10

0.2 M NaCIO

0.1 M NaCIO (pH 2)

4

5

5s

8

~9xl0 -

5

1.8xl0 -

5

4.7xl0 -

2.4xl0 -

3.4x10

1.0 M HC1

s1

90^ 32

3

- l -1 M s M

ab

0.05 Μ KN0„

0.05 Μ KN0

Medium

0.22-

0.22-

0.22-

0.22-

0;75^-

0.75J-

0.75^

(M0 2 )

6

-3o 3.2xl0 ^

3x10

5.1*

3

4χ10 ί

.9h 2.0x10 -

40»-

20-

exch (Counter reagent) M s

k

s

9

(M0 )

1.6X10

8x10"

1.9x10

6

6

-6

4.9xl0

1.2x10

4.8χ1θ"

6.7x10

M

exch

(Continued on next page)

0.515^

-0.226-

-0.3-

0.05-

1.26»-

0.39-

0.319-

(Counter reagent)

E

Table II (cont.) Contrast i n Outer-Sphere E l e c t r o n - T r a n s f e r R e a c t i v i t y o f Dioxygen Complexes-

Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch018

Rorabacher and Endicott; Mechanistic Aspects of Inorganic Reactions ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

ρ

5

§

Η

ο

ο2 *

>

g

Krishnamurthy,

Davies, R.; Sykes, A. G. J . Chem. Soc. (A) 1968, 2831.

K. C ; Wahl, A. C. J . Am. Chem. Soc. 1958, 80, 5921.

g

Latimer, W. M. " O x i d a t i o n P o t e n t i a l s " : 2nd Ed., P r e n t i c e - H a l l : Englewood C l i f f s , N. J . , 1952.

*r Silverman, J . ; Dodson, R. W. J . Phys. Chem. 1952, 56, 846. - Hand, T. D.; Hyde, M. R.; Sykes, A. G. Inorg. Chem. 1975, 14, 1720. s Chandrasekaran, K.; Natàrajan, P. J . Chem. Soc. Dalton Trans. 1981, 478. t Kumar, Κ.; E n d i c o t t , J . F., work i n progress.

£

H

^

>

g °

Hoffman, A. B.; Taube, H. Inorg. Chem. 1968, 7, 1971.

1 McLendon, G.; Mooney, W. F. Inorg. Chem. 1980, 19, 2. - Yee, E. L.; Cave, R. J . ; Guyer, K. L.; Tyma, P.D.; Weaver, M.J. J . Am. Chem. Soc. 1979, 101, 1131. 1 Chou, M. ; C r e u t z , C ; S u t i n , N. J . Am. Chem. Soc. 1977, 99, 5615.

25

- Lavalee, C ; L a v a l l e e , D. K.; Deutsch, E. A. Inorg. Chem. 1978, 17, 2217. —

w

£

4*

- Brown, G. M.; S u t i n , N. J . Am. Chem. Soc. 1979, 101, 883.

* Brown, G. M.; K r e n t z i e n , H. J . ; Abe, M.; Taube, H. Inorg. Chem. 1979, 18, 3374.

- Meyer, T. J . ; Taube, H. Inorg. Chem. 1968, 7, 2369.

- Lim, H. S.; B a r c l a y , D. J . ; Anson, F. Inorg. Chem. 1972, 11, 1460.

- Stanbury, D. M.; Hass, 0.; Taube, H. Inorg. Chem. 1980, 19, 518.

- I l a n , Υ. Α.; C z a p s k i , G.; M e i s e l , D. Biochim. Biophys. Acta 1976, 430, 209.

- Creaser, I . I . ; H a r r o w f i e l d , J . McB.; H e r l t , A. J . ; Sargeson, A. M.; Springborg, J . ; Geue, R. J . ; Snow, M. R. J . Am. Chem. Soc. 1977, 99, 3181.

- 25°

Notes f o r Table I I .

Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch018

Reactivity of Coordinated

Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch018

ENDICOTT A N D K U M A R

"3

433

Dioxygen

"3 5 ζ Γ CRu(NH ^*D X10 , M 4

3

Figure 1. Competition kinetics for the Ru(NH ) reduction of Co([14]aneN )(OH )0 \ Reactions at 25°C, pH 2, and μ = 0.1(NaClO ). Individual pseudofirst-order rate constants were determined from the exponential (to four half-lives) decay of Co([14]aneN,,)(OH )0absorbance at 360 nm. Reactions were per­ formed by mixing a solution containing Ru(NH ) * and Co([14]aneN\)(OH ) *(1 X 10 M) with a solution saturated in 0 (1.2 χ 10~ M) in an Aminco stoppedflow system. 2¥

s

2

6

4

2

2

h

2

3

3

2

2

6

2

3

Rorabacher and Endicott; Mechanistic Aspects of Inorganic Reactions ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

2

2

MECHANISTIC ASPECTS OF

434

INORGANIC REACTIONS

2+ + r e d u c t i o n p o t e n t i a l f o r the C o ( [ l 4 ] a n e N ^ ) ( 0 H ) 0 ' Geiger and Anson (17) have observed an i r r e v e r s i b l e 2+

versible couple.

2

oxidation

of

Co( [ l4]aneN^) (OH )0 H 2

at

2

~

1 V and

2

have argued

t h a t t h i s i s a reasonable p o t e n t i a l f o r the h a l f - r e a c t i o n Co([14]aneN )(0H )0 + H + e" J Co([14]aneN )(OH )0 H 2 +

4

2

+

(9): (9)

2+

2

4

2

2

We have found the outer sphere reductions to be n e a r l y pH independent, which argues that p r o t o n a t i o n occurs a f t e r e l e c t r o n

Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch018

transfer

and

that

sequently, we

pK


+ 3.65

[14]aneN

4

+0.42

6.8

- 9.17

- 2.37

Me [14]l,lldieneN, 4

+0.384

> 5

-10.39

> - 5.39

Me [l4]4,lldieneN, 4

+0.564

2.6

- 4.30

- 1.70

2

6

Collman may w e l l have entered the " r e g i o n o f i n t e r e s t " w i t h h i s f a c e - t o - f a c e p o r p h y r i n ; i t seems t o be i n a r e g i o n where the peroxide i s i n a c o n s i d e r a b l y d i f f e r e n t s t a b i l i t y regime from anything t h a t has been looked a t so f a r . So i t i s q u i t e conceivable he does have something s p e c i a l going on. DR. HENRY TAUBE (Stanford U n i v e r s i t y ) : Another i n t e r e s t i n g p o i n t about Collman s complex should be noted. L e t us presume t h a t a peroxide intermediate i s generated i n h i s case. In a l l of Dr. E n d i c o t t * s examples, the remarkable o b s e r v a t i o n i s t h a t i t i s very d i f f i c u l t t o reduce the 0-0 bond k i n e t i c a l l y i n the b i n u c l e a r μ-peroxo complexes. I n Cullman*s case, t h i s r e d u c t i o n 1

American Chemical Society Library 1155 16th St. N. W.

Rorabacher and Endicott; Mechanistic Aspects of Inorganic Reactions Washington. D. C. 20036 ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

MECHANISTIC ASPECTS OF INORGANIC REACTIONS

448

occurs a t p o t e n t i a l s as p o s i t i v e as +0.7 V. That i s a p u r e l y k i n e t i c phenomenon which we would l i k e t o understand. I t h i n k t h a t t h i s d i f f e r e n c e i n behavior between C o l l m a n s system and the systems s t u d i e d by E n d i c o t t and by M a r t e l l i s q u i t e remark­ able.

Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch018

1

DR. ALBERT HAIM ( S t a t e U n i v e r s i t y o f New York a t Stony Brook): Dr. E n d i c o t t has discussed the r e a c t i o n s o f bound ox­ ygen. I would l i k e t o comment on the outer-sphere r e a c t i o n s o f f r e e oxygen. I n approaching t h i s problem I thought I would do something 2+ u s e f u l w i t h t h e r e a c t i o n between e x c i t e d s t a t e Ru(bpy)^ 2+ and paraquat (PQ ). I f you leave a l i t t l e oxygen i n t h e system, the paraquat r a d i c a l ^ f o r m e d i n the quenching step r e a c t s w i t h oxygen and produces 0 . This i s a very n i c e way o f generating 0 radical. The PQ / 0 r e a c t i o n ( r a t e constant o f 9-1-1 + 3+ about 10 M s ) competes e f f e c t i v e l y w i t h the PQ /Ru(bpy) 2

2

2

3

reaction. *Ru(bpy) directly

2+ 3

Consequently, f o l l o w i n g t h e e f f i c i e n t quenching o f 2+ + by PQ and t h e PQ - 0 r e a c t i o n , one may observe 2

the recombination o f 0

2

and ruthenium ( I I I )

a t 450 nm.

The r e a c t i o n r a t e may be s t u d i e d as a f u n c t i o n of pH t o produce a k i n e t i c t i t r a t i o n curve. The l i m i t i n g r e a c t i o n a t h i g h pH 3+ i n v o l v e s Ru(bpy)^ tion

and 0 2

t o the extent

The r e a c t i o n r a t e slows i n propor­

of protonation

of 0 2

Using

Bielski's

[ B i e l s k i , B. H. J . , Photochem. P h o t o b i o l . 1978, 28, 645] value for the pK o f H0 , we i n f e r t h a t the 0 r e a c t i o n i s d i f f u s i o n a ζ ζ c o n t r o l l e d and the H 0 species i s e s s e n t i a l l y u n r e a c t i v e . Thus, even i n a c i d s o l u t i o n , the l i t t l e b i t of 0 i n e q u i l i b r i u m w i t h o

o

2

2

H0

2

carries the reaction.

The p o t e n t i a l s o f t h e oxygen and

ruthenium couples are s u f f i c i e n t t o make s i n g l e t oxygen, so one must a c t u a l l y determine whether s i n g l e t o r t r i p l e t oxygen i s produced. L e t us r e c o n s i d e r the o r i g i n a l *Ru quenching r e a c t i o n . Why i s paraquat r e q u i r e d as a mediator i n order t o b r i n g about the e l e c t r o n t r a n s f e r from *Ru t o oxygen t o produce 0 which i s then 2

followed

by the r e a c t i o n o f 0

2

w i t h ruthenium(III)?

f

Why c a n t

t h i s r e a c t i o n take p l a c e d i r e c t l y ? The e x p l a n a t i o n f o r t h i s i s found i n the 1973 r e p o r t by Demas [Demas, J . N.; Diementi, D. ; H a r r i s , E. W. J . Am. Chem. Soc. 1973, 95, 6865.] i n which he noted t h a t the r e a c t i o n of *Ru

Rorabacher and Endicott; Mechanistic Aspects of Inorganic Reactions ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch018

18.

ENDICOTT A N D K U M A R

Reactivity of Coordinated

with

oxygen does not produce CL.

rate

constant

Dioxygen

449

Rather oxygen quenches *Ru 9-1-1 w i t h a r a t e constant ( i n aqueous s o l u t i o n ) o f 3.3 χ 10 M s But there i s no net r e a c t i o n , only energy t r a n s f e r . Demas demonstrated t h a t by p u t t i n g t r a p s i n methanol, n o t i n water. He obtained s i n g l e t oxygen i n h i g h y i e l d s . The r e s u l t i n g i n t e r ­ p r e t a t i o n i s t h a t the r e a c t i o n o f *Ru w i t h oxygen produces a s i n g l e t oxygen d i r e c t l y . In 1976 Dr. S u t i n [ L i n , C.-T.; S u t i n , N. J . Phys. Chem. 1976, 80, 77] placed a footnote i n one o f h i s a r t i c l e s _ s u g g e s t i n g the p o s s i b i l i t y t h a t *Ru r e a c t s w i t h 0^ t o make 0^ , which then turns around and back r e a c t s w i t h ruthenium(III) t o produce s i n g l e t oxygen. Drs. Stanbury and Taube [Stanbury, D. M. ; Mulac, W. Α.; S u l l i v a n , J . D.; Taube, H. Inorg. Chem. 1980, 19, 3735] have a l s o commented on the Demas study. They have used a r a t e con­ s t a n t f o r the self-exchange i n v o l v i n g O^-O^ t o c a l c u l a t e the f o r the *Ru oxygen r e a c t i o n . They obtained a 9 -1 -1 value o f ~2 χ 10 M s , which i s very c l o s e t o the value o f 9 -1 -1 3.3 χ 10 M s which Demas measured. They have noted t h a t these r e s u l t s suggest t h a t Demas arguments may not be very con­ c l u s i v e . I would l i k e t o suggest t h a t i t i s not p o s s i b l e t o d i s t i n g u i s h between the energy t r a n s f e r and t h e e l e c t r o n t r a n s 2+ f e r mechanism f o r the r e a c t i o n o f *Ru(bpy)^ w i t h 0^ without doing a complete k i n e t i c a n a l y s i s o f t h e systems w i t h and w i t h ­ out paraquat. The p e r t i n e n t experiment i s t o take the system where we know t h a t we a r e making 0^ from t h e paraquat system and deter­ mine what k i n d o f oxygen we a r e o b t a i n i n g from the recombina­ t i o n r e a c t i o n s . We can then repeat Demas experiment i n aqueous s o l u t i o n and compare the r e s u l t s . U n f o r t u n a t e l y , i t i s very d i f f i c u l t t o f i n d s o l u b l e t r a p s f o r s i n g l e t oxygen i n aqueous s o l u t i o n . So one has t o u t i l i z e one o f these "soups". The soup which I have used contains 0^, DPBF, D^O, paraquat, and a de­ tergent. This composition was s e l e c t e d on the b a s i s o f a paper i n 1979 by L i n d i g and Rodgers [ L i n d i g , D. Α.; Rodgers, M. A. J . Phys. Chem. 1979, 83, 1683] i n which they s t u d i e d the l i f e ­ time o f the s i n g l e t oxygen s t a t e i n aqueous s o l u t i o n by s o l u b i l i z i n g t h i s t r a p by means o f an aqueous m i c e l l a r d i s p e r s i o n . The r a t e constant f o r the r e a c t i o n o f the t r a p w i t h s i n g l e t oxygen i s very high. I n D 0 the l i f e t i m e o f the s i n g l e t oxygen i s r e l a t i v e l y l o n g , 53 microseconds. Thus, the c r i t i c a l e x p e r i ­ ment c o n s i s t s o f p l a c i n g e x c i t e d s t a t e r u t h e n i u m ( I I ) , paraquat, oxygen, and the t r a p i n D^O, and observing whether the t r a p d i s ­ appears a t the r a t e which L i n d i g and Rodgers reported o r , a l t e r 1

1

2

Rorabacher and Endicott; Mechanistic Aspects of Inorganic Reactions ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

MECHANISTIC ASPECTS OF INORGANIC REACTIONS

450

n a t i v e l y , whether there i s no consumption. Then the experiment i s repeated i n the absence of paraquat. F o r t u n a t e l y , we obtained f o u r measurements, two f o r each one o f these systems. So I b e l i e v e they a r e good r e s u l t s . In the case o f the system c o n t a i n i n g paraquat, we are cer­ t a i n t h a t there i s 0^ . The r e a c t i o n of 0^ and ruthenium(III) consumes the s i n g l e t t r a p . Therefore, we conclude t h a t the r e ­ a c t i o n produces s i n g l e t oxygen. Repeating Demas experiment, but now i n aqueous s o l u t i o n , t h e t r a p disappears a t t h e r a t e which L i n d i g and Rodgers reported and i n the amount r e q u i r e d f o r h i g h y i e l d s o f s i n g l e t oxygen i n t h i s r e a c t i o n . So we conclude t h a t t h e e x c i t e d s t a t e ruthenium(II)-oxy­ gen r e a c t i o n produces s i n g l e t oxygen, as does the one i n v o l v i n g

Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: September 27, 1982 | doi: 10.1021/bk-1982-0198.ch018

1

ruthenium(III)

and 0^"*

DR. KENNETH KUSTIN (Brandeis U n i v e r s i t y ) : I would l i k e t o b r i n g t o your a t t e n t i o n a developing f i e l d which I b e l i e v e should be g e t t i n g more n o t i c e from mechanistic i n o r g a n i c chem­ i s t s , namely, t h e f i e l d o f o s c i l l a t i n g r e a c t i o n s . Up u n t i l r e c e n t l y , t h e only o s c i l l a t o r s t h a t had been discovered were discovered by s e r e n d i p i t y . But now we are i n v o l v e d i n a s p e c i ­ f i c program o f t r y i n g t o design new o s c i l l a t i n g systems based on chemical p r i n c i p l e s r a t h e r than r e l y i n g on a c c i d e n t a l d i s ­ coveries. And we appear t o be having c o n s i d e r a b l e success. Our progress i n t h i s f i e l d depends on two techniques t h a t have not been mentioned p r e v i o u s l y a t t h i s conference. F i r s t o f a l l , those o f us who learned something about r e l a x a t i o n w i l l a p p r e c i a t e the f a c t t h a t one can use conventional equipment f o r c a r r y i n g out r e l a x a t i o n experiments. When one has a complicated waveform, as i s t h e case i n o s c i l l a t i n g r e a c t i o n s , there i s s t i l l no reason why t h a t waveform cannot be perturbed by, f o r example, i n j e c t i n g i n t o the system a pulse o f some r e a c t a n t and then observing the change ( t h a t i s , the r e l a x a t i o n ) t h a t ensues. This p e r t u r b a t i o n and t h e ensuing r e l a x a t i o n can then be ana­ l y z e d i n the t y p i c a l f a s h i o n . Thus, one can s t i l l use a concen­ t r a t i o n jump experiment i n an o p e r a t i n g system. The other technique which has poved v a l u a b l e i n t h i s area i s computer s i m u l a t i o n . When the k i n e t i c data become very com­ p l i c a t e d , as w i t h o s c i l l a t i n g r e a c t i o n s i n v o l v i n g two elementary s t e p s , i t i s s t i l l p o s s i b l e t o o b t a i n r a t e constants from the data by doing computer s i m u l a t i o n . That i s a c t u a l l y not as out­ l a n d i s h as i t might appear. I t i s r e a l l y i n the same category as the F o u r i e r transform approach. I t h i n k t h i s i s an area t h a t w i l l make a c o n s i d e r a b l e impact upon i n o r g a n i c k i n e t i c s t u d i e s i n the f u t u r e .

Rorabacher and Endicott; Mechanistic Aspects of Inorganic Reactions ACS Symposium Series; American Chemical Society: Washington, DC, 1982.