3 Recent Developments in Structure Analysis of Fibrous Polymers Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 28, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch003
HIROYUKI TADOKORO Department of Polymer Science, Faculty of Science, Osaka University, Toyonaka, Osaka, 560 Japan
As is well known the x-ray diffraction data of polymers are less abundant than in the case of single crystals of low-molecular-weight substances. Therefore the essential process of the x-ray analysis of polymers is still a trial-and-error method (1). To overcome this difficulty, various useful methods have been developed. The Cochran-Crick-Vand equation for helical polymers (2), the molecular transform of nonhelical polymers (3), the calculation of intramolecular interaction energy (4), molecular conformation parameter equations (5-11), the cylindrical Patterson function (12), and information from infrared and Raman spectroscopy (13) are all important for setting up molecular models. The constrained least-squares method (14,15) the packing energy minimization method (16), and the combination of these two methods (17,18) are very useful for the refinement of atomic parameters. A position sensitive proportional counter (PSPC) has found to be useful in wide angle diffraction as well as in small angle scattering (19). A troidal focusing camera (20,21) and a vacuum cylindrical camera with radius 10 cm (22) have been used to obtain well separated, good intensity data. In this paper useful methods and techniques for structure analysis will be discussed using examples from the author's studies. I n t r a m o l e c u l a r I n t e r a c t i o n Energy o f T y p i c a l I s o t a c t i c
Polymers
The i n t r a m o l e c u l a r i n t e r a c t i o n e n e r g y was c a l c u l a t e d f o r f i v e i s o t a c t i c polymers, namely, i s o t a c t i c p o l y p r o p y l e n e , p o l y ( U methyl-l-pentene), poly(3-methy1-1-butene), polyacetaldehyde, and p o l y ( m e t h y l m e t h a c r y l a t e ) (23.). The m o l e c u l a r s t r u c t u r e s o f t h e f i r s t f o u r p o l y m e r s have a l r e a d y b e e n d e t e r m i n e d b y x - r a y a n a l y s e s as (3/1) ( 2 U ) , (7/2) ( l 8 , 2 5 , 2 6 ) , (h/l) ( 2 7 ) , a n d (h/l) h e l i c e s (28), r e s p e c t i v e l y . H e r e (7/2) means s e v e n monomeric u n i t s t u r n twice i n the f i b e r i d e n t i t y p e r i o d . F o ri s o t a c t i c poly(methyl m e t h a c r y l a t e ) (29), a ( 5 / l ) h e l i x was c o n s i d e r e d r e a s o n a b l e a t t h e t i m e o f t h e e n e r g y c a l c u l a t i o n i n 1970, b e f o r e t h e d i s c o v e r i n g o f
0-8412-05 89-2/ 80/47-141-043$05.00/0 © 1980 American Chemical Society French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 28, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch003
44
FIBER
DIFFRACTION
METHODS
t h e d o u b l e h e l i x s t r u c t u r e w h i c h w i l l b e d i s c u s s e d l a t e r (30.). The e n e r g y c a l c u l a t i o n s were p e r f o r m e d w i t h o u t f i x i n g t h e f i b e r i d e n t i t y p e r i o d , t h e only assumption being t h a t t h e chain forms a h e l i c a l s t r u c t u r e , t h a t i s , t h e s e t o f i n t e r n a l r o t a t i o n a n g l e s r e p e a t s a l o n g t h e s u b s e q u e n t monomeric u n i t s o f t h e c h a i n . F o r t h e c a l c u l a t i o n t h e i n t e r n a l r o t a t i o n b a r r i e r s , v a n d e r Waals i n t e r a c t i o n s [mainly a f t e r Scheraga ( 3 1 ) ] , and d i p o l e - d i p o l e i n t e r a c t i o n s were t a k e n i n t o a c c o u n t . Polypropylene and polyacetaldehyde a r e t h e s i m p l e s t o f t h e above p o l y m e r s , h a v i n g o n l y t w o i n t e r n a l r o t a t i o n a n g l e s , and T ^ , i n t h e m a i n c h a i n . F i g u r e 1 shows t h e p o t e n c i a l e n e r g y c o n t o u r map f o r p o l y a c e t a l d e h y d e . The c r o s s e s i n d i c a t e t h e p o t e n t i a l minima, and the c l o s e d c i r c l e s t h e x-ray s t r u c t u r e determined by N a t t a e t a l . (28^. The t w o m i n i m a c o r r e s p o n d t o t h e r i g h t - a n d left-hand helices. The o t h e r t h r e e p o l y m e r s have a d d i t i o n a l r o t a t i o n a n g l e s i n the s i d e c h a i n s , T ~ and/or T ^ . Forpoly(3-methyl-l-butene),the minimum was f o u n d i n t h e t h r e e - d i m e n s i o n a l p l o t . F o r poly(dim e t h y l - 1 - p e n t ene) a n d p o l y ( m e t h y l m e t h a c r y l a t e ) , t h e s t a b l e c o n f o r m a t i o n o f t h e s i d e c h a i n was f i r s t c a l c u l a t e d w i t h t h e f i x e d m a i n c h a i n c o n f o r m a t i o n c o r r e s p o n d i n g t o t h e (7/2) a n d ( 5 / 1 ) h e l i ces, respectively. The p o t e n t i a l e n e r g y was c a l c u l a t e d a g a i n s t the main c h a i n r o t a t i o n a n g l e s , x and T ^ , b y f i x i n g T and of the s i d e chain a t t h e values thus obtained. 1
Table I . S t a b l e Conformations (23) Energy c a l c u l a t i o n Polymer T (°) 2
X-ray a n a l y s i s
N
T (°) 2
N
it-Polypropylene
179
-56
2.91
180
-60
3.0
it-Poly(U-methyl1-pentene)
163
-71
3.52
162
-71
3.5
it-Poly(3-methyl1-butene)
132
-83
It. 17
lk9
-81
lt.0
i t - P o l y a c etaldehyde
131
-80
3.9k
136
-83
lt.0
'
Journal of Polymer Science, Polymer Physics Edition
The r e s u l t s o f t h e f i r s t f o u r p o l y m e r s a r e l i s t e d i n T a b l e I ; t h e i n t e r n a l r o t a t i o n a n g l e s o f t h e m a i n c h a i n , T.. a n d T , t h e number o f monomeric u n i t s p e r t u r n , N, f o r t h e c a l c u l a t e d s t a b l e conformations, and a l s o t h e values f o r t h e s t r u c t u r e determined by x-ray analyses. I n t h e c a s e o f p o l y p r o p y l e n e , t h e number o f monom e r i c u n i t s p e r t u r n i s 2.91, v e r y c l o s e t o t h e x - r a y v a l u e o f 3.0. T h i s r e s u l t f o r p o l y p r o p y l e n e i s e s s e n t i a l l y t h e same as t h o s e o f N a t t a e t a l . (32) a n d L i q u o r i e t a l . (33.). F o r t h e t h r e e o t h e r p o l y m e r s , good a g r e e m e n t s were a l s o o b t a i n e d b e t w e e n t h e p r e d i c t e d models and x - r a y s t r u c t u r e s i n s p i t e o f the s i m p l e assumption o f c o n s i d e r i n g only i n t r a m o l e c u l a r i n t e r a c t i o n s . This p
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 28, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch003
3.
TADOKORO
45
Structure Analysis Developments
suggests t h a t the h e l i c a l s t r u c t u r e o f these four polymers a r e determined p r i m a r i l y by the i n t r a m o l e c u l a r i n t e r a c t i o n s , e s p e c i a l l y the s t e r i c hindrance o f the side chains. F i g u r e 2 shows t h e e n e r g y c o n t o u r map f o r i s o t a c t i c p o l y ( methyl methacrylate). The l o w e s t e n e r g y minimum was f o u n d a t t h e p o s i t i o n c o r r e s p o n d i n g t o a (12/1) h e l i x c o n t r a r y t o t h e e x p e c t a t i o n o f t h e (5/1) h e l i x . The minimum c o r r e s p o n d i n g t o t h e ( 5 / l ) h e l i x i s h i g h e r t h a n t h e (12/1) h e l i x b y 3 k c a l / m o l e o f monomer u n i t . This r e s u l t l e d t o the p o s t u l a t i o n o f the double stranded h e l i x f o r t h i s polymer. These energy c a l c u l a t i o n s c a n p r o v i d e s u i t a b l e and s t a b l e m o l e c u l a r m o d e l s , a n d have b e e n s u c c e s s f u l l y u t i l i z e d f o r t h e s t r u c t u r e a n a l y s e s o f many o t h e r p o l y m e r s , s u c h a s p o l y ( t e r t b u t y l e t h y l e n e o x i d e ) (3^0 a n d p o l y i s o b u t y l e n e (35)« Polyisobutylene The x - r a y a n a l y s i s o f p o l y i s o b u t y l e n e was a c h i e v e d b y t h e a u t h o r a n d h i s c o w o r k e r s (35.) a s shown i n F i g u r e 3 b y s t a r t i n g w i t h t h e (8/3) m o l e c u l a r m o d e l p r o p o s e d b y A l l e g r a e t a l . f r o m e n e r g y c a l c u l a t i o n s (36.). The p o l y i s o b u t y l e n e m o l e c u l e h a s o n l y a t w o f o l d screw-symmetry i n t h e c r y s t a l l a t t i c e , and d e v i a t e s a p p r e c i a b l y f r o m t h e (8/3) u n i f o r m h e l i x a s shown i n F i g u r e 3 ( b ) . The h e l i c a l molecule has a f i b e r p e r i o d c o n s i s t i n g o f two asymmetric u n i t s e a c h c o n t a i n i n g f o u r monomeric u n i t s . The h e l i x a x i s c o i n c i d e s w i t h t h e 2 s c r e w a x i s i n t h e l a t t i c e ^ i x~ 2 ^* a v e r a g e d b o n d a n g l e C-C(CH ) «C i s a b o u t 1 1 0 ° , but the a n g l e C-CI^-C i s much l a r g e r , a b o u t 1 2 8 ° . The c o n f o r m a t i o n i s t h e a l t e r n a t e s e q u e n c e o f n e a r l y gauche (-5^°) a n d n e a r l y t r a n s (-l6U° ). The o v e r a l l s t r u c t u r e i s s t i l l s i m i l a r t o t h e (8/3) h e l i x p r o posed by A l l e g r a e t a l . (36). 2 2
1
2
I)
T
h
e
1
2
P o l y ( e t h y l e n e o x y b e n z o a t e ) : q-Form The x - r a y d i a g r a m s u g g e s t e d t h a t t w o h e l i c a l c h a i n s , e a c h f i b e r p e r i o d c o n s i s t i n g o f t w o monomeric u n i t s , p a s s t h r o u g h a n o r t h o r h o m b i c u n i t c e l l (k). A s shown i n T a b l e I I , t h e number o f i n t e r n a l r o t a t i o n a n g l e s i s l a r g e ; x f o r t h e v i r t u a l b o n d 0-Ph-C, 0) f o r t h e d i h e d r a l a n g l e b e t w e e n t h e p l a n e s o f t h e b e n z e n e r i n g , and t h e e s t e r g r o u p a n g l e s , x ^ , x ~ , x ^ , a n d x . F i r s t , t h e i n t e r n a l r o t a t i o n a n g l e s e x c e p t f o r co were e x a m i n e d b y a s s u m i n g t h a t t h e a n g l e 1 o f t h e e s t e r g r o u p i s e s s e n t i a l l y l80° a n d t h a t t h e f i b e r p e r i o d i s 15.60 A. The p o s s i b l e c o n f o r m a t i o n s a r e l i m i t e d on t h e c l o s e d s u r f a c e i n t h e cube d e f i n e d b y t h e t h r e e - d i m e n s i o n a l C a r t e s i a n c o o r d i n a t e s x ^ , x» , a n d x ^ , e a c h c o v e r i n g f r o m 0° t o 360° ( F i g u r e U ) . I f x and x^ a r e g i v e n , x s h o u l d t a k e two v a l ues, upper and lower i n t e r s e c t i n g p o i n t s , r e s u l t i n g i n a p a i r o f v a l u e s o f x « The i n t r a m o l e c u l a r p o t e n t i a l e n e r g i e s f o r a b o u t 5,000 m o d e l s were c a l c u l a t e d , a n d s e v e n s t a b l e m o l e c u l a r m o d e l s were o b t a i n e d . Among t h e s e , o n l y m o d e l 3 was f o u n d t o g i v e a 1
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
FIBER
DIFFRACTION
METHODS
55)
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 28, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch003
> 5kcol.
1 / /i / / \\\t
/
!\
\ \*— \
v—
tf
I2CT
^—Lj 24CT
T
36Cf
2
Journal of Polymer Science, Polymer Physics Edition
Figure 1.
Potential energy map of isotactic polyacetaldehyde. The energy values are given in units of kilocalories per mole of monomer unit (23).
Journal of Polymer Science, Polymer Physics Edition
Figure 2.
Potential energy map of isotactic poly (methyl methacrylate) (23)
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 28, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch003
3.
TADOKORO
Structure Analysis Developments
47
(a)
(b) Journal of Polymer Science, Polymer Physics Edition
Figure 3.
(a) Crystal packing and (b) enlarged view of a single chain in crystal of polyisobutylene (35)
I
V
/
» /
** i
/f
/y
Y
(
T4(degree)
180
360
T3 (degree)
Figure 4. Three-dimensional closed surface for possible conformations of the skeletal chain of polyfethylene oxybenzoate) with the (2/1) helical symmetry and afiberperiod of 15.60 A (4)
American Chemical Society Library 1155 16th St. N. w. Washington. D. Diffraction C. 20036 French and Gardner; Fiber Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
48
FIBER
DIFFRACTION
Table I I . I n t e r n a l Rotation Angles o f Poly(ethylene a-Form o n t h e P r o c e s s o f A n a l y s i s (k)
- 0 - U
0
A
P
\=/
u -
CH
T (°)
V°>
3
Oxybenzoate)
n g
2
T (°) 2
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 28, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch003
CH
T (°) 5
Initial
-kl
10
180
-75
-60
-16U
Final
-13
-15
-172
-102
-59
-186
28
25
8
27
1
22
Difference
METHODS
f a i r l y good agreement b e t w e e n t h e o b s e r v e d a n d c a l c u l a t e d d i f f r a c tion intensities. M o d e l 3 was r e f i n e d w i t h t h e c o n s t r a i n e d l e a s t s q u a r e s method ( l U , 1 5 ) , u s i n g a v a r i e t y o f s t a r t i n g p o i n t s . This model 3, however, d i d n o t converge t o t h e f i n a l s t r u c t u r e . S i n c e t h e i n t e r m o l e c u l a r i n t e r a c t i o n was c o n s i d e r e d t o b e i m p o r t a n t , a n e w l y d e r i v e d p a c k i n g e n e r g y m i n i m i z a t i o n method (l6_) was a p p l i e d , and e v e n t u a l l y t h e f i n a l s t r u c t u r e was o b t a i n e d . The i n t e r n a l r o t a t i o n a n g l e s o f t h e i n i t i a l model and t h e f i n a l s t r u c t u r e a r e g i v e n i n t h e t a b l e t o g e t h e r w i t h t h e i r d i f f e r e n c e s . The d i f f e r e n c e s i n T . . , a), a n d T ~ a r e e s p e c i a l l y l a r g e , 25-28°. The r o t a t i o n a n g l e o f t h e b e n z e n e r i n g a) c h a n g e d f r o m 10° t o - 1 5 ° , a r e m a r k a b l e c h a n g e . T h i s example shows b o t h t h e u t i l i t y a n d t h e l i m i t a t i o n o f t h e i n t r a m o l e c u l a r i n t e r a c t i o n e n e r g y c a l c u l a t i o n a s t h e method t o assume t h e m o l e c u l a r m o d e l s f o r s t r u c t u r e a n a l y s i s . As shown i n F i g u r e 5, t h e m o l e c u l a r c h a i n has a z i g z a g conformation o f l a r g e s c a l e , one monomeric u n i t b e i n g a z i g z a g u n i t . This structurei s r e s p o n s i b l e f o r t h e u n u s u a l l y l o w c r y s t a l l i t e modulus o f t h i s p o l y m e r , 6 GPa (1+3). Poly (ethylene
Oxide)
I n 1 9 6 l a m o l e c u l a r m o d e l o f a (7/2) h e l i x [ F i g u r e 6 ( a ) ] was p r o p o s e d b y t h e a u t h o r a n d h i s c o w o r k e r s (13.) b a s e d o n t h e i n f o r m a t i o n f r o m x - r a y , i n f r a r e d , a n d Raman s p e c t r o s c o p y , b u t t h e c r y s t a l s t r u c t u r e c o u l d not be determined a t t h a t time. Afterten y e a r s , o w i n g t o t h e d e v e l o p m e n t o f methods' a n d a p p a r a t u s , e s p e c i a l l y t h e c o n s t r a i n e d l e a s t - s q u a r e s method a n d a vacuum c y l i n d r i c a l camera w i t h a r a d i u s o f 10 cm, t h e c r y s t a l s t r u c t u r e h a s b e e n d e t e r m i n e d a s shown i n F i g u r e 6 ( c ) ( 2 2 ) . The i n t e r n a l r o t a t i o n angles a r e c o n s i d e r a b l y d i s t o r t e d from t h e uniform h e l i x , although t h e m o l e c u l a r c o n f o r m a t i o n i s e s s e n t i a l l y t h e (7/2) h e l i x a n d c l o s e t o t h e TTG s e q u e n c e s . The r e a s o n f o r t h e d i s t o r t i o n was c l a r i f i e d b y u s i n g a p a c k i n g e n e r g y m i n i m i z a t i o n method (16). S t a r t i n g from a c r y s t a l s t r u c t u r e m o d e l c o n s i s t i n g o f t h e u n i f o r m (7/2) h e l i c e s [ F i g u r e 6 ( a ) ] , t h e p a c k i n g e n e r g y m i n i m i z a t i o n method w i t h o u t t h e c o n d i t i o n o f a u n i f o r m h e l i x symmetry r e s u l t e d i n t h e m o d e l shown i n
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 28, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch003
Structure Analysis Developments
49
Figure 5. Crystal structure of the a-form of polyfethylene oxybenzoate) (4)
(7/2) uniform helix
Stable crystal structure model
Polymer Journal
Figure 6. Application of packing energy minimization method to polyfethylene oxide) (16). (a) Starting model of uniform helix; (b) stable crystal structure model obtained by energy minimization calculations; and (c) the structure determined by x-ray analysis.
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
50
FIBER DIFFRACTION METHODS
F i g u r e 6 ( b ) . T h i s s t r u c t u r e i s i n a f a i r l y good agreement w i t h the s t r u c t u r e determined b y x-ray a n a l y s i s [Figure 6 ( c ) ] . This r e s u l t suggests t h a t the deformation i n the c r y s t a l o f the poly( e t h y l e n e o x i d e ) c h a i n f r o m t h e u n i f o r m h e l i x i s due p r i n c i p a l l y t o intermolecular interaction.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 28, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch003
Isotactic Poly(methyl Methacrylate) The s t r u c t u r e o f t h i s p o l y m e r h a s n o t l o n g b e e n d e t e r m i n e d , and m o d e l s o f (5/2) (37) a n d (5/1) (29,38) h a v e b e e n p r o p o s e d . The a u t h o r a n d h i s c o w o r k e r s s t a r t e d t h e a n a l y s i s i n 1966, a n d a f t e r a l o n g roundabout q u e s t , they determined the c r y s t a l s t r u c t u r e w h i c h c o n s i s t s o f d o u b l e s t r a n d e d h e l i c e s ( 3 0 ) . I n 1970, t h e y h a d c o n s i d e r e d a ( 5 / l ) h e l i x t o b e t h e most r e a s o n a b l e (29)> However, no r e a s o n a b l e p a c k i n g was f o u n d f o r t h e ( 5 / l ) h e l i c e s i n the orthorhombic l a t t i c e . On t h e o t h e r h a n d , t h e c a l c u l a t i o n o f the i n t r a m o l e c u l a r i n t e r a c t i o n energy suggested t h a t the h e l i c e s w i t h l a r g e r r a d i i s u c h a s a (12/1) h e l i x s h o u l d b e more s t a b l e t h a n t h e (5/1) h e l i x ( 2 3 ) . The a u t h o r a n d h i s c o w o r k e r s t h e n r e examined t h e s t r u c t u r a l models w i t h l a r g e r r a d i i h e l i c e s , a n d found t h a t the x - r a y d a t a can be e x p l a i n e d r e a s o n a b l y i f the c r y s t a l s t r u c t u r e c o n s i s t s o f (10/1) d o u b l e h e l i c e s , t h e f i r s t s u c h case f o r s y n t h e t i c polymers ( F i g u r e 7 ) . I n r i g h t - h a n d h e l i c e s , the e s t e r group p o i n t i n g upward and t h e m o l e c u l a r parameters a r e as f o l l o w s . The m a i n c h a i n t o r s i o n a l a n g l e s a r e : x, = - 1 7 9 ° a n d T p = - l U 8 ° , s i d e c h a i n t o r s i o n a l a n g l e s : x [MCC(0)0J = -2**° a n d T. [CC(0)0M] = 1TU°. E n e r g y c a l c u l a t i o n s a l s o i n d i c a t e d t h a t t h e d o u b l e h e l i x i s k.k k c a l / m o l e o f monomer u n i t more s t a b l e t h a n t w o i s o l a t e d (10/1) h e l i c e s . T h i s r e s u l t s u g g e s t s t h e s t a b l i l i z a t i o n i s due t o good f i t t i n g o f t h e i n t e r t w i n e d c h a i n s , a l t h o u g h t h e r e i s no h y d r o g e n - b o n d b e t w e e n them a s i n t h e c a s e o f DNA. Further refinement o f the c r y s t a l s t r u c t u r e c o n s i s t i n g o f double h e l i c e s i s d i f f i c u l t , because the x-ray photograph i s n o t w e l l - d e f i n e d , a n d t h e p o s s i b i l i t y o f a d i s o r d e r e d s t r u c t u r e must be c o n s i d e r e d , e . g . , r i g h t a n d l e f t - h a n d h e l i c e s , a n d u p a n d down c h a i n s . A l t h o u g h t h e r e a r e some u n e x p l a i n e d f e a t u r e o f t h e d o u b l e h e l i c a l m o d e l , s u c h a s t h e mode o f r a p i d d o u b l e h e l i x f o r m a t i o n d u r i n g c r y s t a l l i z a t i o n , the author and h i s coworkers b e l i e v e t h e r e s u l t t o be e s s e n t i a l l y c o r r e c t . Syndiotactic Poly(methyl Methacrylate) T h e r e h a s b e e n no r e p o r t o f o r i e n t e d c r y s t a l l i n e s y n d i o t a c t i c PMMA s o f a r a s t h e a u t h o r knows. The a u t h o r a n d h i s c o w o r k e r s (39) f o u n d t h a t o r i e n t e d c r y s t a l l i n e s a m p l e s o f s y n d i o t a c t i c PMMA can be o b t a i n e d b y a d s o r p t i o n o f v a r i o u s s o l v e n t s such as c h l o r o acetone and d i e t h y l ketone. F i g u r e 8 shows t h e x - r a y d i a g r a m s . When t h e p o l y m e r i s c a s t f r o m c h l o r o f o r m s o l u t i o n a n d i s s t r e t c h e d i n h o t w a t e r a t 80°C, t h e sample i s n o n c r y s t a l l i n e a s shown i n F i g u r e 8. By a d s o r p t i o n o f the s o l v e n t t h e f i b e r diagram can be
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 28, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch003
3.
TADOKORO
Structure Analysis Developments
51
Figure 7. Double-stranded helix of isotactic poly (methyl methacrylate) (30)
Figure 8. X-ray diagrams of syndiotactic polyfmethyl methacrylate)(39)
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 28, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch003
52
FIBER
DIFFRACTION
METHODS
o b t a i n e d . B y h e a t i n g a t a b o u t 9 0 ° C , t h e c r y s t a l l i n e sample b e comes n o n c r y s t a l l i n e b u t o r i e n t e d , a n d t h e p r o c e s s i s r e v e r s i b l e . In the f i b e r diagram, spots corresponding t o a l o n g f i b e r p e r i o d (35 A ) were o b s e r v e d , i n a d d i t i o n t o t h e l i n e s c o r r e s p o n d i n g t o 8 . 8 A. The s t r u c t u r e a n a l y s i s i s i n p r o g r e s s b u t a v e r y complicated molecular and a c r y s t a l s t r u c t u r e i s a n t i c i p a t e d . F i g u r e 9 shows t h e change o f t h e p o l a r i z e d i n f r a r e d s p e c t r a by a d s o r p t i o n o f d i e t h y l k e t o n e . S e v e r a l bands a p p e a r b y c r y s t a l l i z a t i o n e s p e c i a l l y a t 858 cm" . The b a n d s due t o d i e t h y l k e t o n e i t s e l f are not observed. The e s s e n t i a l f e a t u r e s o f t h e x - r a y d i a g r a m s a n d i n f r a r e d s p e c t r a a r e t h e same i r r e s p e c t i v e o f t h e k i n d s o f s o l v e n t s . From t h e s e r e s u l t s i t may b e c o n s i d e r e d t h a t f o r m a t i o n o f a c o m p l e x o f s y n d i o t a c t i c PMMA a n d s o l v e n t m o l e c u l e s i s n o t reasonable, and the adsorbed molecules c o n t r i b u t e t o t h e s t a b i l i z a t i o n o f c r y s t a l l i t e s o f s y n d i o t a c t i c PMMA. Polyethylene R e c e n t l y t h e a u t h o r a n d h i s c o w o r k e r s made d e t a i l e d s t r u c t u r e a n a l y s e s f o r h i g h d e n s i t y p o l y e t h y l e n e samples w i t h v a r i o u s h i s t o r i e s u s i n g a PSPC (ho). The PSPC h a s b e e n a p p l i e d t o s m a l l angle s c a t t e r i n g , and f u r t h e r a p p l i c a t i o n s t o the wide-angle d i f f r a c t i o n o f h i g h polymers have a l s o been found. The PSPC h a s been v e r y u s e f u l i n e x p e r i m e n t s w i t h p o l y e t h y l e n e . T h i s may b e t h e f i r s t c a s e o f s t r u c t u r e a n a l y s i s b y u s i n g a PSPC. Deformation e f f e c t s o n r e f l e c t i o n p r o f i l e s f r o m o b l i q u e i n c i d e n c e was c o n s i d ered f i r s t . F i g u r e 10 shows r e f l e c t i o n s f r o m a s i l i c o n s i n g l e c r y s t a l t a k e n a t v a r i o u s p o s i t i o n s o n t h e l i n e a r - a n o d e o f t h e PSPC p r o b e . The i n t e g r a t e d i n t e n s i t i e s a r e c o n s t a n t i n d e p e n d e n t o f t h e positions. F i g u r e 11 shows t h e s i m i l a r f i g u r e s f o r a p o l y e t h y l e n e sample. The p o l y e t h y l e n e s a m p l e s e x a m i n e d a r e shown i n T a b l e I I I ; s l o w l y c o o l e d o r quenched from m e l t , o r i g i n a l m o n o f i l a m e n t , a n n e a l e d , over drawn, c o l d drawn, s i n g l e c r y s t a l , c a s t f i l m , e x t e n d e d c h a i n c r y s t a l , e t c . The s a m p l e - p r o b e d i s t a n c e c a n b e c h o s e n f r o m 70 t o 260 mm. The s e t t i n g a n g l e c|> i s d e f i n e d a s t h e a n g l e b e t w e e n t h e m o l e c u l a r p l a n e a n d t h e b e p l a n e a c c o r d i n g t o Bunn (hi) a s shown i n F i g u r e 12. A summary o f t h e c e l l c o n s t a n t s a n d s e t t i n g a n g l e s o f t h e s a m p l e s a r e g i v e n i n T a b l e I V . The a a x i s d i m e n s i o n a n d t h e s e t t i n g a n g l e a r e s m a l l e s t i n t h e sample s l o w l y c r y s t a l l i z e d f r o m m e l t ; 1A. The a a x i s d i m e n s i o n i s 7.399 A a n d $ i s l+l+.l+°. T h e s e two v a l u e s i n c r e a s e b y s t r e t c h i n g , f r o m 1A t o 3A, t o 7.1+32 A a n d 1+6.2°, a n d d e c r e a s e b y a n n e a l i n g , f r o m 3A t o 1+A, t o 7.1+27 A a n d 1+5.8°. These v a l u e s f o r a s i n g l e c r y s t a l mat a r e r a t h e r l a r g e , 9A, 7.1+16 A a n d 1+7.1°, a n d d e c r e a s e b y a n n e a l i n g , 11a, 7-389 A a n d 1+6.3°. The e x t e n d e d c h a i n c r y s t a l , ECC, g i v e s r a t h e r l a r g e v a l u e s 7.1+12 A a n d 1+7.2°. The b a n d c a x i s d i m e n s i o n s show no s i g n i f i cant change. I n F i g u r e 13 c e l l d i m e n s i o n s a r e p l o t t e d a g a i n s t t h e l a t t i c e o
0
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
3.
TADOKORO
53
Structure Analysis Developments
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 28, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch003
Adsorption-Time Dependence (DEK)
Figure 9. The change of the polarized IR spectra of syndiotactic poly (methyl methacrylate) by adsorption of diethyl ketone (39)
1000 8 0 0 Wavenumber (cm ') -
4 20(deg.) 8000r
S g
12
12
8 6 4 2 0 2 4 6
£
J 1 6000JT c
400Q **
300a •fg 3
200O 1000
50
100
150
200
channel number Figure 10. Oblique effect on profile and integrated intensity of reflection of silicon single crystal (40)
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
FIBER
DIFFRACTION
4
8
METHODS
4 29(deg.) 12
8
4
0
12
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 28, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch003
c 22000 •2 — § 18000
| 8 ioooo 6000-
f
JO 6 0 0 0 H 4000 3 ° 2000 200 channel number
Figure 11.
Figure 12.
(a) Oblique effect on profile and (b) integrated intensity of reflections of polyethylene (40)
The setting angle of polyethylene molecule in the unit cell (41)
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Under h i g h pressure
lUC
No
No No No No Yes
From s o l u t i o n
9A 10A 11A 12A 13A
Drawing No No Yes Yes Yes Yes No Yes
Crystallization
Extended chain c r y s t a l ( s u p p l i e d by P r o f e s s o r o f Kyushu U n i v e r s i t y )
T. Takemura
S i n g l e c r y s t a l grown f r o m 0.01$ p - x y l e n e s o l u t i o n a t 80°C As No. 9A, a n n e a l e d a t 110°C As No. 9A, a n n e a l e d a t 120°C C a s t f r o m 5% t e t r a c h l o r o e t h y l e n e s o l u t i o n a t 110°C As No. 12A, c o l d - d r a w n ( x 13)
S l o w l y c o o l e d f r o m l60°C a n d a n n e a l e d a t 110°C Quenched f r o m l60°C i n d r y - i c e / m e t h a n o l O r i g i n a l m o n o f i l a m e n t (X 11) As No. 3A, a n n e a l e d a t 120°C u n d e r f r e e t e n s i o n As No. 3A, o v e r - d r a w n a t 70°C (X 23) As No. 2A, c o l d - d r a w n a t room t e m p e r a t u r e (x 7) S l o w l y c o o l e d f r o m l60°C a n d a n n e a l e d a t 110°C C o l d - d r a w n a n d a n n e a l e d a t 110°C f r o m 7B (x 10)
Treatment
Sample Number a n d T r e a t m e n t (kO)
From m e l t
1A 2A 3A UA 5A 6A 7B 8B
Sample No.
Table I I I .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 28, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch003
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 28, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch003
FIBER DIFFRACTION METHODS
0.2
0.4
0.6
0.8
LATTICE DISTORTION, e (*) Figure 13. Cell dimensions plotted against the lattice distortion parameter of polyethylene (40) ((O) melt crystallized, A; (%) melt crystallized, B; (A) single crystal; (±) castfilm;( Q ) high pressure crystallized, C)
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 28, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch003
3.
TADOKORO
Structure Analysis Developments
48
0.2
0.4
0.6
0.8
LATTICE DISTORTION, e (%) Figure 14. Setting angle plotted against the lattice distortion parameter (AO) ((O) melt crystallized; (%) melt crystallized; (A) single crystal from p-xylene; (A) castfilmfrom tetrachloroethylene; ([J) pressure crystallized)
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
FIBER
58
Table IV.
Crystallograpic
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 28, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch003
a
1A C o o l e d f r o m m e l t 2A Quenched f r o m m e l t 3A O r i g i n a l - d r a w n 1*A Annealed 5A Over-drawn 6A C o l d - d r a w n TB C o o l e d f r o m m e l t 8B Drawn a n d a n n e a l e d 9A S i n g l e c r y s t a l 10A A n n e a l e d (110°C) 11A A n n e a l e d (120°C) 12A C a s t f i l m 13A C a s t a n d drawn l U C ECC
METHODS
D a t a o f P o l y e t h y l e n e Samples (1*0) Cell
Sample
DIFFRACTION
c o n s t a n t s (A) b
7.399 7.^03
7.^32 7.1*27 7.1*1*0 7.1*1*8 7.389 7.1*10 l.kl6 l.hOO 7.398 7.1*00 7.1*1*7 7.1*12
k.936 k.932 U.9U6 ^.959 k.9h0 1*.935 U.955 U.935 U.950 k.9h0 J+.955 4.937
c
Setting a n g l e (°)
2.5^3 2.5^2 2.5^3 2.5^3 2.5kk 2.5k5 2.5k2 2.5^3 2.5^2 2.5^3 2.5kk 2.$k2 2.5U6 2.5kh
1*1*.1* U5.3 1*6.2 1*5.8 46.6
1*6.9 45.3 1*6.1* 1*7.1 1*6.7 1*6.3 1*6.6 1*6.6 1*7.2
d i s t o r t i o n p a r a m e t e r o b t a i n e d b y t h e B u c h a n a n - M i l l e r method (1*2). The a a x i s d i m e n s i o n shows a l i n e a r r e l a t i o n s h i p . This suggests t h a t t h e i n c r e a s e o f l a t t i c e d i s t o r t i o n i s one r e a s o n f o r t h e e x pansion o f the unit c e l l e s p e c i a l l y the a a x i s . F i g u r e ik shows t h e s e t t i n g a n g l e p l o t t e d a g a i n s t t h e l a t t i c e distortion. Open a n d f i l l e d c i r c l e s a r e f o r m e l t c r y s t a l l i z e d samples w i t h v a r i o u s e x t e n t s o f s t r e t c h i n g a n d a n n e a l i n g . These p l o t s h a v e a good l i n e a r r e l a t i o n s h i p . Open t r i a n g l e s a r e f o r s i n g l e c r y s t a l mats w i t h a n d w i t h o u t a n n e a l i n g , f i l l e d t r i a n g l e s are c a s t f i l m s , and squares represent extended c h a i n c r y s t a l s . The l a t t e r s a m p l e s show l a r g e s e t t i n g a n g l e s a n d t h e e x p l a n a t i o n t h e r e o f i s an i n t e r e s t i n g f u t u r e problem. The d e t a i l e d a n a l y s e s o f p o l y e t h y l e n e s a m p l e s w i t h v a r i o u s h i s t o r i e s , show a p p r e c i a b l e v a r i a t i o n o f t h e s e t t i n g a n g l e , t h e a a x i s d i m e n s i o n , a n d l a t t i c e d i s t o r t i o n . These changes a r e s m a l l b u t a p p r e c i a b l e , a n d some o f them a r e i n a l i n e a r r e l a t i o n , b u t some a r e n o t . S i m i l a r phenomena w i l l b e f o u n d i n o t h e r p o l y m e r s , and t h e r e a s o n may b e i n t e r e s t i n g . F u r t h e r Remarks In the future, complicated s t r u c t u r e s which are d i f f i c u l t t o be a n a l y s e d w i l l r e m a i n . F u r t h e r development o f t h i s f i e l d w i l l r e q u i r e more a c c u r a t e measurements o f d i f f r a c t i o n d a t a , c o n s i d e r a t i o n o f d i s o r d e r s , s p e c i a l s a m p l i n g t e c h n i q u e s , new d e v i c e s a n d ideas f o r a n a l y s i s o f i n d i v i d u a l samples.
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
3.
TADOKORO
Structure Analysis Developments
59
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 28, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch003
Literature Cited 1. e.g., Tadokoro, H . , "Structure of Crystalline Polymers," Wiley-Interscience, New York, (1979). 2. Cochran, W., Crick, F. H. C., and Vand, V., Acta Crystallogr., (1952), 5, 581. 3. Suehiro, K . , Chatani, Y . , and Tadokoro, H . , Polym. J., (1975), 7, 352. 4. Kusanagi, H . , Tadokoro, H . , Chatani, Y . , and Suehiro, K . , Macromolecules, (1977), 10, 405. 5. Shimanouchi, T. and Mizushima, S., J. Chem. Phys., (1955), 23, 707. 6. Miyazawa, T., J. Polym. Sci., (1961), 55, 215. 7. Sugeta, H. and Miyazawa, T., Biopolymers, (1967), 5, 673. 8. Yokouchi, M . , Tadokoro, H . , and Chatani, Y . , Macromolecules, (1974), 7, 769. 9. Ganis, P. and Temussi, P. A . , Makromol. Chem., (1965), 89, 1. 10. Tai, K. and Tadokoro, H . , Macromolecules, (1974), 7, 507. 11. Go, N. and Okuyama, K . , Macromolecules, (1976), 9, 867. 12. MacGillavry, C. H. and Bruins, E. M . , Acta Crystallogr., (1948), 1, 156. 13. Tadokoro, H . , Chatani, Y . , Yoshihara, T., Tahara, S., and Murahashi, S., Makromol. Chem., (1964), 73, 109. 14. Arnott, S. and Wonacott, A. J., Polymer, (1966), 7, 15715. Takahashi, Y . , Sato, T., Tadokoro, H . , and Tanaka, Y . , J. Polym. S c i . , Polym. Phys. Ed., (1973), 11, 233. 16. Kusanagi, H . , Tadokoro, H . , and Chatani, Y . , Polym. J., (1977), 9, 181. 17. Arnott, S., Scott, W. E., Rees, E. A., and McNab, C. G., J. Mol. Biol., (1974), 90, 253. 18. Kusanagi, H . , Takase, M . , Chatani, Y . , and Tadokoro, H . , J. Polym. S c i . , Polym. Phys. Ed., (1978), 16, 131. 19. Chatani, Y . , Ueda, Y . , and Tadokoro, H . , Rep. Progr. Polym. Phys. Jpn., (1977), 20, 179. 20. Elliott, A . , S c i . Instrum., (1965), 42, 312. 21. Hall, I . H. and Rammo, N. N., J. Polym. Sci., Polym. Phys. Ed., (1978), 16, 2189. 22. Takahashi, Y. and Tadokoro, H . , Macromolecules, (1973), 6, 672. 23. Tadokoro, H . , Tai, K . , Yokoyama, M . , and Kobayashi, M . , J . Polym. S c i . , Polym. Phys. Ed., (1973), 11, 825. 24. Natta, G. and Corradini, P . , Nuovo Cimento, Suppl., (1960), 15, 40. 25. Frank, F. C., Keller, A . , and O'Connor, A . , Phils. Mag., (1959), 4, 200. 26. Bassi, I . W., Bonsignori, O., Lorenzi, G. P . , Pino, P . , Corradini, P. and Temussi, P. A . , J. Polym. Sci. A-2, (1971), 9, 193. 27. Corradini, P . , Ganis, P . , and Petracone, V . , Eur. Polym. J., (1970), 6, 281. 28. Natta, G., Corradini, P . , and Bassi, I. W., J. Polym. Sci., (1961), 51, 505. French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 28, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch003
60
FIBER DIFFRACTION METHODS
29. Tadokoro, H . , Chatani, Y . , Kusanagi, H . , and Yokoyama, M . , Macromolecules, (1970), 3, 441. 30. Kusanagi, H . , Tadokoro, H . , and Chatani, Y . , Macromolecules, (1976), 9, 531. 31. Scott, R. A. and Scheraga, H. A., J. Chem. Phys., (1966), 45, 2091. 32. Natta, G., Corradini, P . , and Ganis, P., Makromol. Chem., (1960), 39, 238. 33. De Santis, P . , Giglio, E . , Liquori, A. M . , and Ripamonti, A . , J . Polym. Sci. A, (1963), 1, 1383. 34. Sakakihara, H . , Takahashi, Y . , Tadokoro, H . , Oguni, N . , and Tani, H . , Macromolecules,(1973), 6, 205. 35. Tanaka, T., Chatani, Y . , and Tadokoro, H . , J. Polym. Sci., Polym. Phys. Ed., (1974), 12, 515. 36. Allegra, G., Benedetti, E . , and Pedone, C., Macromolecules, (1970), 3, 727. 37. Stroupe, J . D. and Hughes, R. E . , J. Am. Chem. Soc., (1958), 80, 2341. 38. Coiro, V. M . , De Santis, P., Liquori, A. M . , and Mazzarella, L., J . Polym. Sci. C, (1969), 16, 4591. 39. Takase, M. Higashihata, Y . , Tseng, Hsiung-To, Chatani, Y . , Tadokoro, H . , Miyamoto, T., and Inagaki, H . , J. Polym. Sci., Polym. Phys. Ed., submitted. 40. Chatani, Y . , Ueda, Y . , and Tadokoro, H . , Rep. Progr. Polym. Phys. Jpn., (1977), 20, 179. To be published in detail elsewhere. 41. Bunn, C. W., Trans. Faraday Soc., (1939), 35, 482. 42. Buchanan, D. R. and Miller, R. L., J. Appl. Phys., (1966), 37, 4003. 43. Sakurada, I . and Kaji, K . , J. Polym. Sci. C, (1970), 31, 57. RECEIVED
February 19, 1980.
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.