14 Regenerative Aqueous Carbonate Process for Utility and Industrial Sulfur Dioxide
Downloaded by NATL UNIV OF SINGAPORE on May 6, 2018 | https://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch014
Removal W . V. B O T T S and D. C. G E H R I Atomics International Division, Rockwell International Corp., P.O. Box 309, Canoga Park, Calif. 91304
The aqueous carbonate process (ACP) is a unique regenerative sulfur dioxide removal process which is applicable
to
utility and industrial installations. This process uses a dilute sodium carbonate solution
to remove sulfur dioxide from
flue gases. The scrubbant is atomized in a spray dryer. Sodium sulfites and sulfates are formed which are reduced and regenerated to carbonate in an aqueous regenerative subsystem which also produces sulfur.
The process elimi-
nates the great quantities of solid waste associated with open loop processes. Reheat is eliminated because the flue gas is not saturated during scrubbing.
Typical economics show a
capital cost of below $70/kw ($32 per 1000/SCF throughput).
Operating costs from 1 to 3 mills/kw-hr
of gas have
been estimated. The process, a summary of pilot test results, integration information, and system economics are discussed.
' T ' h e aqueous carbonate process ( A C P ) has been under development at Atomics International for the last 4V2 yr. The program aims to establish a technology which eliminates or minimizes the major problems encountered in operating most other sulfur dioxide removal processes. That technology includes the use of sodium carbonate as the scrubbant in the modified spray dryer and the complete regeneration of the sulfur dioxide removal products to recover elemental sulfur and produce sodium carbonate for reuse in the spray dryer-scrubber. The modified spray dryer provides intimate contact between the sulfur dioxide-containing waste gas and a finely atomized fog of sodium carbonate solution. Only small quantities of the reactive sodium car164
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
14.
BOTTS A N D G E H R I
Regenerative
Aqueous
Carbonate
165
Process
bonate s o l u t i o n are r e q u i r e d to a c h i e v e excellent s u l f u r d i o x i d e r e m o v a l . T h e r e a c t i o n p r o d u c t is a d r y p o w d e r easily c o l l e c t e d a n d stored, a n d the waste gas does not b e c o m e saturated w i t h w a t e r v a p o r . T h i s k i n d of s c r u b b e r is not subject to s c a l i n g or p l u g g i n g p r o b l e m s , does not r e q u i r e a gas reheater, a n d operates w i t h a l o w l i q u i d - t o - g a s r a t i o . B y p r o v i d i n g surge c a p a c i t y for the s o d i u m carbonate s o l u t i o n a n d storage
capacity
for the d r y r e a c t i o n p r o d u c t , the s c r u b b i n g system c a n b e easily a n d i n e x p e n s i v e l y d e c o u p l e d f r o m the r e g e n e r a t i o n system.
T h e net result
is a s u l f u r d i o x i d e s c r u b b i n g system w i t h a h i g h degree of o p e r a t i o n a l
Downloaded by NATL UNIV OF SINGAPORE on May 6, 2018 | https://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch014
reliability. C o m p l e t e r e g e n e r a t i o n i n the A C P system is a c c o m p l i s h e d b y three basic c h e m i c a l steps.
I n the first step the p r o d u c t s o d i u m sulfite a n d
sulfate are r e d u c e d to s o d i u m sulfide. A t o m i c s I n t e r n a t i o n a l has d e v e l o p e d a h i g h t e m p e r a t u r e r e d u c e r w h i c h accepts the p r o d u c t f r o m the s p r a y d r y e r - s c r u b b e r , melts i t , elevates its t e m p e r a t u r e , a n d reduces the s u l f u r - c o n t a i n i n g salts to the d e s i r e d sulfide f o r m w i t h coke or coal. second
The
r e g e n e r a t i o n step i n v o l v e s d i s s o l v i n g the sulfide i n w a t e r a n d
c a r b o n a t i n g it to r e f o r m s o d i u m c a r b o n a t e for r e c y c l e to the s c r u b b e r . A h y d r o g e n s u l f i d e - r i c h gas is e v o l v e d .
T e c h n o l o g y s i m i l a r to that u s e d
i n c h e m i c a l r e c o v e r y processes i n the p u l p a n d p a p e r i n d u s t r y is used. I n the final step the h y d r o g e n sulfide is c o n v e r t e d to e l e m e n t a l s u l f u r b y a C l a u s process.
S i n c e e l e m e n t a l s u l f u r is the o n l y system b y - p r o d u c t , the
p r o b l e m s of d i s p o s i n g of s l u d g e or sulfate b l e e d streams are e l i m i n a t e d . T h e A C P system c o m b i n e s a s u l f u r d i o x i d e s c r u b b i n g system b a s e d o n s p r a y d r y e r t e c h n o l o g y w i t h a r e g e n e r a t i o n system b a s e d o n a u n i q u e r e d u c t i o n step c o u p l e d to c h e m i c a l r e c o v e r y a n d C l a u s technologies.
This
c o m b i n a t i o n results i n a n efficient a n d r e l i a b l e process for a p p l i c a t i o n to sulfur dioxide pollution problems.
T h e r e m a i n d e r of this p a p e r discusses
the details of t h e process a n d t y p i c a l i n s t a l l a t i o n characteristics a n d also presents process e c o n o m i c s w h i c h i n d i c a t e that the A C P system is econ o m i c a l l y feasible a§ w e l l as t e c h n i c a l l y s o u n d . Process
Description
T h e k e y c o m p o n e n t of t h e A C P s c r u b b i n g system is a m o d i f i e d s p r a y d r y e r w h i c h serves as a r e a c t i o n c h a m b e r for the s u l f u r d i o x i d e r e m o v a l . I n the spray d r y e r , the s o d i u m carbonate s o l u t i o n is a t o m i z e d b y a h i g h speed c e n t r i f u g a l a t o m i z e r a n d m i x e d w i t h the hot gas e n t e r i n g the d r y e r t h r o u g h a v a n e - r i n g . T h e fine m i s t of s o l u t i o n droplets absorbs s u l f u r d i o x i d e w h i l e the t h e r m a l energy of the waste gas v a p o r i z e s the w a t e r w i t h o u t s a t u r a t i n g or excessively c o o l i n g the gas.
T h u s , the s p r a y d r y e r
p r o d u c e s a gas l o w i n s u l f u r d i o x i d e b u t c o n t a i n i n g d r y p a r t i c l e s of t h e reaction products
f r o m the c o n t a c t o r — s o d i u m
carbonate,
sulfite, a n d
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
166
SULFUR
sulfate.
REMOVAL
AND
RECOVERY
T h i s p o w d e r is s u b s e q u e n t l y separated f r o m the gas a n d c o l -
l e c t e d for d i s p o s a l w i t h the o p e n l o o p system or for processing a n d reg e n e r a t i o n i n the regenerative
version.
After product
collection,
the
t r e a t e d waste gas r e m a i n s r e l a t i v e l y h o t a n d is v e n t e d t h r o u g h a stack. F i g u r e 1 is a b l o c k d i a g r a m of the k e y subsystems of a n A C P r e g e n erative system w h i c h are i n t e g r a t e d i n t o a n e x i s t i n g p o w e r p l a n t w h e r e the c l e a n gas is v e n t e d t h r o u g h a n existing stack after i t has b e e n t h r o u g h the s c r u b b e r a n d solids r e m o v a l systems. T y p i c a l l y , a n e w i n d u c e d draft
Downloaded by NATL UNIV OF SINGAPORE on May 6, 2018 | https://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch014
EXISTING STACK
Na2S0
Figure
1.
Regenerative
AC?
block
4
ELEMENTAL SULFUR
diagram
f a n is r e q u i r e d to p r o v i d e the pressure to m o v e the gas t h r o u g h the system. D r y p o w d e r f r o m the solids r e m o v a l system is t r a n s f e r r e d to the b l o c k s h o w n as the regenerative system. T h e c h e m i c a l s n e e d e d b y the r e g e n e r a t i o n system i n c l u d e m a k e u p s o d i u m carbonate (soda ash), a c a r b o n source for the r e d u c t i o n step, a n d w a t e r . T h e p r o d u c t s f r o m this system are ash, which
is d e r i v e d
mainly from
the
w h i c h is a h i g h p u r i t y b y - p r o d u c t .
flue
gas,
and
elemental
A d d i t i o n a l d e t a i l o n the
sulfur,
scrubber
system is s h o w n i n F i g u r e 2 s u c h as the s o l u t i o n f e e d tanks a n d p u m p s , the s p r a y d r y e r , cyclones, a n d , i n this case, for v e r y h i g h p a r t i c u l a t e rem o v a l , a s m a l l electrostatic p r e c i p i t a t o r .
I n a d d i t i o n , a solids transfer
system is s h o w n w h i c h conveys the d r y p o w d e r f r o m the cyclones
and
p r e c i p i t a t o r to a separate or adjacent r e g e n e r a t i o n system. T h e e q u i p m e n t s h o w n i n F i g u r e 2 is s u i t a b l e for retrofit i n t o a n e x i s t i n g p l a n t . A n A C P r e g e n e r a t i o n system flow d i a g r a m is s h o w n i n F i g u r e 3. T h i s d i a g r a m represents t y p i c a l processing steps w i t h o u t p r o p r i e t a r y m o d i f i c a tions or o p e r a t i o n a l details. A s s h o w n , the p r o d u c t salt is c o n v e y e d a l o n g w i t h coke or a n y other c a r b o n source to the m o l t e n salt r e d u c e r .
I n the
r e d u c e r the salt is h e a t e d , m e l t e d , a n d r e d u c e d i n a single z o n e b y a d d i n g a i r a n d coke. A i r p r o v i d e s some r e o x i d a t i o n of sulfide to generate sensible heat w h i l e the coke acts d i r e c t l y to r e d u c e the sulfite a n d sulfate to sulfide. T h e m o l t e n m i x t u r e is passed i n t o a q u e n c h tank w h e r e it is d i s s o l v e d a n d processed as a l o w t e m p e r a t u r e ( b e l o w the b o i l i n g p o i n t of w a t e r )
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
14.
BOTTS A N D G E H R I
Regenerative
Aqueous
Carbonate
167
Process
FROM EXISTING PLANT UTILITIES
Downloaded by NATL UNIV OF SINGAPORE on May 6, 2018 | https://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch014
COOLING WATER PIPING TYPICAL EACH MACHINE
r
Figure 2.
u
m
r
GAS STACK
Scrubber subsystem loop
aqueous s o l u t i o n . T h e r e d u c e r off-gas is u s e d as the c a r b o n d i o x i d e source for subsequent c a r b o n a t i o n steps a n d as a source of process heat. T h e aqueous s o l u t i o n is c o o l e d a n d filtered to r e m o v e a n y excess coke, c o k e ash, or fly ash. A f t e r
filtration,
t h e s o l u t i o n is p r e c a r b o n a t e d
w i t h p u r e c a r b o n d i o x i d e r e c o v e r e d f r o m the decomposer.
F i n a l carbona-
t i o n occurs i n the b i c a r b o n a t o r - c r y s t a l l i z e r w i t h c a r b o n d i o x i d e f r o m the r e d u c e r off-gas.
Gases e v o l v e d f r o m b o t h the p r e c a r b o n a t o r
a n d the
GAS TO SCRUBBER
W-1 W-2
Figure 3.
Regeneration
STEAM CONDENSER STEAM CONDENSER
subsystem
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
168
SULFUR
REMOVAL
AND
RECOVERY
b i c a r b o n a t o r - c r y s t a l l i z e r are r i c h i n h y d r o g e n sulfide a n d are c o m b i n e d for subsequent r e c o v e r y of e l e m e n t a l s u l f u r i n the C l a u s p l a n t . T a i l gas f r o m the C l a u s p l a n t is r e t u r n e d to the s c r u b b e r for final c l e a n u p . T h e p r o d u c t f r o m t h e b i c a r b o n a t o r - c r y s t a l l i z e r is a s o d i u m c a r b o n a t e - s o d i u m b i c a r b o n a t e s l u r r y w h i c h is d e c o m p o s e d to p r o d u c e a s o d i u m carbonate s o l u t i o n for r e t u r n to the s c r u b b e r to p r o v i d e p u r e
carbon
d i o x i d e for the p r e c a r b o n a t o r . T h i s completes t h e r e g e n e r a t i o n c y c l e a n d closes the l o o p for t h e t o t a l A C P system. T h e t e c h n o l o g y i n v o l v e d is a c o m b i n a t i o n of a u n i q u e r e d u c e r a n d aqueous c h e m i c a l processing, most
Downloaded by NATL UNIV OF SINGAPORE on May 6, 2018 | https://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch014
of w h i c h is c o m m e r c i a l l y p r o v e d . So far, d e v e l o p m e n t efforts h a v e c o n c e n t r a t e d o n p i l o t d e m o n s t r a t i o n of the s c r u b b i n g system a n d t h e r e d u c e r . E x t e n s i v e test d a t a h a v e b e e n generated w i t h 5-ft a n d 7-ft d i a m e t e r spray d r y e r - s c r u b b e r s . P r o p r i e t a r y test results are a v a i l a b l e f r o m 4-ft a n d 9-ft d i a m e t e r reducers. K e y o p e r a t i n g a n d p e r f o r m a n c e characteristics of the aqueous r e g e n e r a t i o n steps h a v e also b e e n tested.
T h e s e p i l o t test results c o m b i n e d w i t h e x i s t i n g
d a t a a n d t e c h n o l o g y f r o m the s p r a y d r y i n g a n d p u l p a n d p a p e r i n d u s t r i e s p r o v i d e a firm t e c h n i c a l base for the d e s i g n a n d c o n s t r u c t i o n of large-scale ACP
systems. A k e y c o m p o n e n t of the r e g e n e r a t i o n subsystem is the r e d u c e r . T h i s
component
is a c e r a m i c - l i n e d vessel w h i c h contains the m o l t e n salt at
temperatures a p p r o a c h i n g 2000 ° F . T h e c o m p o n e n t is c o m m o n to several other s u l f u r d i o x i d e a n d c o a l gasification processes a n d has b e e n d e m o n strated at b o t h 4-ft a n d 9-ft d i a m e t e r size scales. I n the r e d u c e r , b o t h the o x i d a t i o n of sulfide to sulfate a n d the r e d u c t i o n of sulfate to sulfide b y the coke p r o c e e d s i m u l t a n e o u s l y . Test Results T h e first p i l o t s c r u b b e r tests w e r e c o n d u c t e d u s i n g s i m u l a t e d flue gas to e s t a b l i s h the f e a s i b i l i t y of s u l f u r dioxide's r e a c t i n g w i t h s o d i u m c a r bonate solutions a n d slurries i n a s p r a y d r y e r .
S u b s e q u e n t tests w e r e
c o n d u c t e d at t h e M o h a v e g e n e r a t i n g s t a t i o n , w h e r e a 5-ft d i a m e t e r m o d i fied s p r a y d r y e r was u s e d to test s u l f u r d i o x i d e r e m o v a l f r o m a side stream of flue gas f r o m this coal-fired p o w e r p l a n t ( F i g u r e 4 ). T h e s p r a y d r y e r h a d b e e n i n o p e r a t i o n for o v e r 20 y r i n v a r i o u s d r y i n g a p p l i c a t i o n s p r i o r to m o d i f i c a t i o n to a s u l f u r d i o x i d e scrubber.
It was u s e d i n over 100 tests
at M o h a v e w i t h o u t a single o p e r a t i o n a l p r o b l e m . M o s t of the M o h a v e test d a t a w e r e o b t a i n e d w i t h flue gas c o n t a i n i n g 400 p p m or less s u l f u r d i o x i d e since this is c h a r a c t e r i s t i c for a p o w e r p l a n t b u r n i n g l o w s u l f u r w e s t e r n c o a l . A f e w tests w e r e r u n at v a r i o u s c o n c e n trations u p to 1500 p p m , b u t most of the a v a i l a b l e d a t a at h i g h s u l f u r d i o x i d e concentrations w e r e o b t a i n e d u s i n g s i m u l a t e d flue gas i n a 7-ft
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
14.
BOTTS A N D G E H R I
Regenerative
Aqueous
Carbonate
169
Process
d i a m e t e r s p r a y d r y e r s c r u b b e r . A f t e r e s t a b l i s h i n g that the d a t a o b t a i n e d at M o h a v e w a s i d e n t i c a l to that o b t a i n e d w h e n u s i n g s i m u l a t e d flue gas, a n extensive r a n g e of tests w a s r u n w i t h the 7-ft u n i t at s u l f u r d i o x i d e concentrations r a n g i n g f r o m 200 to 8000 p p m . T h e s e d a t a c o v e r t h e r a n g e
Downloaded by NATL UNIV OF SINGAPORE on May 6, 2018 | https://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch014
of most u t i l i t y a n d i n d u s t r i a l s c r u b b i n g a p p l i c a t i o n s a n d c a n b e s u p p l e -
Figure 4.
Pilot scrubber
installation
m e n t e d as necessary i n the f u t u r e to c o v e r s p e c i a l or u n u s u a l s u l f u r dioxide removal problems. F i g u r e 5 is a p l o t of some of the d a t a t a k e n d u r i n g t h e M o h a v e test p r o g r a m a n d illustrates a n i m p o r t a n t a n d d e s i r a b l e o p e r a t i o n c h a r a c t e r istic of a s p r a y d r y e r - s c r u b b e r .
O n l y a b o u t 0.3 g a l of the 5.5 w t
%
s o d i u m carbonate s o l u t i o n was n e e d e d / 1 0 0 0 s t a n d a r d c u ft ( S C F )
of
flue gas to o b t a i n greater t h a n 9 0 % r e m o v a l of the 400 p p m i n l e t s u l f u r dioxide.
S u b s e q u e n t tests h a v e c o n f i r m e d that this same
liquid-to-gas
ratio ( L / G ) c a n b e u s e d to r e m o v e greater t h a n 9 0 % of the s u l f u r d i o x i d e f r o m gases c o n t a i n i n g 2 0 0 - 4 0 0 0 p p m s u l f u r d i o x i d e .
T h e concentration
of s o d i u m c a r b o n a t e i n s o l u t i o n is a d j u s t e d i n p r o p o r t i o n to the s u l f u r d i o x i d e c o n c e n t r a t i o n i n the gas to p r o v i d e sufficient a l k a l i n i t y to n e u t r a l i z e the a b s o r b e d s u l f u r d i o x i d e , b u t the L / G itself r e m a i n s at a b o u t 0.3 g a l / 1 0 0 0 S C F o v e r this r a n g e of concentrations.
A b o v e 4000
ppm
s u l f u r d i o x i d e , i t is necessary to increase the L / G to p r o v i d e e n o u g h d i s s o l v e d s o d i u m c a r b o n a t e to react w i t h the a b s o r b e d s u l f u r d i o x i d e .
How-
ever, e v e n at 8000 p p m s u l f u r d i o x i d e , t h e r e q u i r e d L / G is o n l y a b o u t
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by NATL UNIV OF SINGAPORE on May 6, 2018 | https://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch014
170
SULFUR
Figure
5.
REMOVAL
AND RECOVERY
Sulfur dioxide removal vs. absorbent flow rate
0.6 g a l / 1 0 0 0 S C F as c o m p a r e d w i t h most other scrubbers w h i c h w o u l d r e q u i r e 1 0 - 1 0 0 g a l / S C F for s u c h a n a p p l i c a t i o n . O n e of the p r i m a r y reasons that the s p r a y d r y e r - s c r u b b e r is able to a c h i e v e excellent sulfur d i o x i d e r e m o v a l w i t h s u c h l o w l i q u i d - t o - g a s ratios is the s m a l l size of the droplets p r o d u c e d b y the h i g h speed c e n t r i f u g a l a t o m i z e r . T h i s t y p e of a t o m i z e r also has a n easily c o n t r o l l e d t u r n d o w n c a p a b i l i t y w h i c h is a d e s i r a b l e feature that has b e e n d e m o n s t r a t e d i n the p i l o t tests. A s gas flow decreases, the a m o u n t of s o d i u m carbonate s o l u t i o n c a n be decreased i n d i r e c t p r o p o r t i o n w i t h o u t i n t e r f e r i n g w i t h s u l f u r d i o x i d e r e m o v a l efficiency. T h e a t o m i z e r a c t u a l l y p r o d u c e s finer droplets at the l o w e r l i q u i d flow rates. T h i s appears to compensate for a n y g a s l i q u i d m i x i n g p r o b l e m s that c o u l d i m p a i r p e r f o r m a n c e . T h e p r o p e r o p e r a t i o n of a s p r a y d r y e r - s c r u b b e r also r e q u i r e s that a d r y p r o d u c t b e f o r m e d a n d s u b s e q u e n t l y r e m o v e d f r o m t h e gas stream. P i l o t tests h a v e s h o w n t h a t the p r o d u c t salts w i l l be d r y a n d c o l l e c t a b l e if t h e gas t e m p e r a t u r e at the d r y e r outlet is m a i n t a i n e d a b o u t 2 0 ° F a b o v e its d e w p o i n t . T h i s also tends to m i n i m i z e p l u m e f o r m a t i o n . T h e c y c l o n e collectors u s e d i n the p i l o t tests r e m o v e d 8 9 - 9 9 %
of t h e p r o d u c t . A l -
t h o u g h this w a s excellent p e r f o r m a n c e b y m e c h a n i c a l collectors, p a r t i c u late e m i s s i o n standards w i l l r e q u i r e either r e p l a c e m e n t of the cyclones or a d d i t i o n a l c o l l e c t i o n devices i n series w i t h the cyclones.
T h e system
d e s i g n p r e s e n t l y f a v o r e d i n v o l v e s u s i n g cyclones to r e m o v e the b u l k of t h e p r o d u c t a n d a d d i n g a s m a l l electrostatic p r e c i p i t a t o r for final p a r t i c u l a t e r e m o v a l . T h e s o d i u m salts p r o d u c e d i n t h e s p r a y d r y e r - s c r u b b e r
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
14.
BOTTS A N D G E H R I
Regenerative
Aqueous
Carbonate
h a v e excellent r e s i s t i v i t y p r o p e r t i e s to p r o m o t e
171
Process
effective
electrostatic
precipitation. It w a s o b s e r v e d d u r i n g the M o h a v e tests that the fine fly ash p a r t i c l e s e n t e r i n g the s p r a y d r y e r w e r e often t r a p p e d i n the c y c l o n e a l o n g w i t h the b u l k of the p r o d u c t salt, a p p a r e n t l y because of a g g l o m e r a t i o n w i t h the a t o m i z e d droplets i n the s p r a y d r y e r . T h u s , the d r y e r itself helps to m i n i m i z e e m i s s i o n of fine ash p a r t i c l e s w h i c h are n o r m a l l y difficult to r e m o v e e v e n w i t h a n electrostatic p r e c i p i t a t o r . N u m e r o u s samples h a v e
Downloaded by NATL UNIV OF SINGAPORE on May 6, 2018 | https://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch014
b e e n t a k e n a n d extensive d a t a h a v e b e e n a c c u m u l a t e d o n the p h y s i c a l Table I. Inlet Flue Gas
T y p i c a l Scrubber System Performance
Properties
Low Sulfur
Temperature (°F) S 0 concentrations (ppm) A s h content (grain/SCF) 2
H 0 content (vol
%)
2
3%
Coal
Sulfur
Coal
300 400
300 2200
0.03 ( d o w n s t r e a m of m a i n power p l a n t electrostatic precipitator) 14
2.0 (no p r i o r ash removal)
10
Spray Dryer Operating Conditions Feed composition 4.4 20 (wt % N a C 0 ) 0.34 (0.70 l b F e e d rate 0.32 (0.12 l b Na CO /1000 SCF) (gal/1000 S C F ) Na CO /1000 SCF) 10 G a s pressure d r o p ( i n . 9 H 0 , including cyclone) 2
3
2
2
3
3
2
Exit Gas Properties T e m p e r a t u r e (°F) D e w p o i n t (°F) SO 2 concentration (ppm) Particulate loading (grain/SCF with cyclone)
Product Composition Na C0 NaHC0 Na S0 Na S0 H 0 Ash 2
3
3
2
2
4
2
3
(wt
155 134.5 40 ( 9 0 % r e m o v a l ) ~0.05 ( < 0.01 g r a i n / S C F w i t h electrostatic precipitator acc o r d i n g to m a n u facturer's g u a r a n teed specification)
155 132.5 130 ( 9 4 % r e m o v a l ) —0.2 (estimated 0.01 w i t h a d d i t i o n of p r e cipitator)
%) 6 12 17 62 1 2
5 10 12 50 1 22
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
172
SULFUR
REMOVAL
AND RECOVERY
a n d c h e m i c a l p r o p e r t i e s of t h e p r o d u c t salts, b o t h u p s t r e a m a n d d o w n s t r e a m of t h e c y c l o n e .
T h e s e d a t a are c o n s i d e r e d a d e q u a t e to specify,
d e s i g n , a n d w a r r a n t p r o d u c t i o n c o l l e c t i o n systems c a p a b l e of l i m i t i n g emissions to less t h a n 0.01 g r a i n / S C F . T y p i c a l s c r u b b e r system p e r f o r m a n c e is g i v e n i n T a b l e I. I t w a s d e
Downloaded by NATL UNIV OF SINGAPORE on May 6, 2018 | https://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch014
r i v e d f r o m test results, a n d it shows t w o cases—one r e p r e s e n t i n g a p o w e r
Figure 6.
Typical ACP system plot arrangement
p l a n t s u c h as M o h a v e w h i c h b u r n s l o w s u l f u r w e s t e r n c o a l a n d t h e other r e p r e s e n t i n g a p o w e r p l a n t w h i c h b u r n s 3 % s u l f u r eastern c o a l .
The
m a j o r difference i n the t w o cases occurs because of t h e w a t e r v a p o r a n d t h e a s h content i n t h e i n l e t flue gas. T h e i n l e t w a t e r v a p o r content i n the M o h a v e case l i m i t s the a m o u n t of s o l u t i o n that c a n b e s p r a y e d i n t o t h e gas a n d t h e r e b y l i m i t s s u l f u r d i o x i d e r e m o v a l . T h e i n l e t ash content i n t h e s e c o n d case causes a s l i g h t l y h i g h e r Δ Ρ a n d adds a significant b u r d e n to the p a r t i c u l a t e c o l l e c t i o n e q u i p m e n t . T h e h i g h p e r c e n t a g e of a s h i n t h e p r o d u c t w i l l also c o m p l i c a t e r e g e n e r a t i o n . B e n c h a n d p i l o t scale tests of the v a r i o u s steps i n A C P r e g e n e r a t i o n h a v e b e e n c o n d u c t e d s u c h as r e d u c t i o n , q u e n c h i n g ,
filtration,
precarbona-
t i o n , c a r b o n a t i o n , d e c o m p o s i t i o n , a n d h y d r o g e n sulfide s c r u b b i n g .
These
tests are c o n t i n u i n g i n t h e laboratories a n d the n e a r b y field test f a c i l i t y to o p t i m i z e t h e A C P r e g e n e r a t i o n system p e r f o r m a n c e a n d / o r to d e v e l o p n e w a n d better processing
technology.
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
14.
BOTTS A N D G E H R I
System
Regenerative
Aqueous
Carbonate
173
Process
Engineering
A n u m b e r of e n g i n e e r i n g studies h a v e b e e n c o n d u c t e d to e v a l u a t e the size, i n t e g r a t i o n a b i l i t y , cost, a n d interfaces of f u l l - s c a l e A C P systems. M o s t of this w o r k has b e e n d o n e i n c o n n e c t i o n w i t h p o w e r p l a n t i n t e g r a t i o n , b u t t h e results c a n be a p p l i e d to b o t h i n d u s t r i a l a n d p o w e r p l a n t s . F i g u r e 6 shows a p l o t p l a n for a n A C P system t h a t treats i n excess of 825,000 s t a n d a r d c u f t / m i n ( S C F M ) .
T h e inlet sulfur dioxide
t r a t i o n of this gas is a p p r o x i m a t e l y 2200 p p m .
concen
T h e system is d e s i g n e d
for a 9 5 . 5 % r e m o v a l a n d a n outlet p a r t i c u l a t e l o a d i n g of 0.01 g r a i n / S C F or 0.027 l b / 1 0 B t u . Downloaded by NATL UNIV OF SINGAPORE on May 6, 2018 | https://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch014
6
F i g u r e 7 is a p l a n v i e w of the s c r u b b e r i n s t a l l a t i o n w i t h t w i n s c r u b bers u s e d to treat the 825,000 S C F M .
T h e gas is r e m o v e d f r o m e x i s t i n g
d u c t w o r k , c o n v e y e d to the t o p of the s c r u b b e r , a n d passed t h r o u g h the s c r u b b e r , cyclones, p r e c i p i t a t o r , booster fans, a n d b a c k to the e x i s t i n g stack. T h e e x i s t i n g d u c t i n g or the s c r u b b e r system, c a n b e b y p a s s e d d e p e n d i n g o n o p e r a t i n g a n d m a i n t e n a n c e cycles i n the p o w e r p l a n t .
The
scrubbers are a p p r o x i m a t e l y the largest m o d u l e size p r o p o s e d for either
Iμ*-EXIST. COAL CONVEYOR EXIST. FLUE GAS DUCT AND STACK
SPRAY DRYER -EXIST. SOUTH ROAD
Figure 7.
Scrubber installation plan view
p o w e r or i n d u s t r i a l p l a n t s . T h e y are 52 ft i n d i a m e t e r a n d are m a d e of c a r b o n steel. F i g u r e 8 shows the s c r u b b e r i n s t a l l a t i o n stands 135 ft h i g h . W h i l e the e q u i p m e n t is o b v i o u s l y large, the costs associated w i t h these l o w energy s c r u b b e r systems are a c c e p t a b l y l o w . T h e t e c h n o l o g y is w e l l
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
174
SULFUR
REMOVAL
AND RECOVERY
OPERPT. EL. 131 ft 0 in.
7 ft 6 in. χ 21 ft DUCT 7 ft 6 in. χ 21 ft DUCT
16 ft χ 9 ft DUCT
Downloaded by NATL UNIV OF SINGAPORE on May 6, 2018 | https://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch014
NEW CONNECTION TO EXISTING (TYP 2 PLACES)!
ROTATE EXISTING ID FAN AS SHOWN EL. EXISTING ID FAN 17 ft 5-1/2 in. EL. 9 ft 6 in.
CONNECTION EXISTING (TYP 2 PLACES) SECTION A-A T
ELECTROSTATIC PRECIPITATORS
0
Figure 8.
Scrubber installation elevation view
e s t a b l i s h e d , a n d materials s u c h as c a r b o n steel c a n b e u s e d because of t h e u n i q u e i n t e r n a l e n v i r o n m e n t of a s p r a y d r y e r - s c r u b b e r . T h e r e g e n e r a t i o n system associated w i t h , b u t d e c o u p l e d f r o m , t h e s c r u b b e r i n s t a l l a t i o n o c c u p i e s a p l o t of a b o u t 7 / 1 0 acre ( F i g u r e 9 ) .
It
contains d u a l reducers a n d m u l t i p l e aqueous p r o c e s s i n g c o l u m n s t h r o u g h out. T h e system c a n p r o d u c e 17.7 t o n s / h r of s o d i u m c a r b o n a t e .
That
PRECARBONATION TOWERS PC-1 AND PC-2 SPENT ABSORBENT SYSTEM H-1b
CARBONATION TOWERS CT-1 AND CT-2
REDUCER R-1 \
CARBONATE UNLOADING SYSTEM CARBONATE HANDLING SYSTEM H-3a
CONTROL HOUSE AND MAINTENANCE
REDUCER R-2
BLDG. (25 ft χ 120 ft REDUCER AIR COMPRESSORS C-2a AND C-2b
AIR PREHTR B-4
PROCESS GAS COMPRESSORS C-3a, C-3b, C-3c
Figure 9.
Regeneration
MAXIMUM)
system plot
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
14.
BOTTS A N D G E H R I
Regenerative
Aqueous
Carbonate
175
Process
Downloaded by NATL UNIV OF SINGAPORE on May 6, 2018 | https://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch014
EL. 16 ft-0 in.
$8πί * Figure 10.
Regeneration
elevation
M 2 J
view
a m o u n t p r o v i d e s for p r o d u c t salt r e g e n e r a t i o n o n a c o n t i n u o u s basis w h e n t h e p o w e r p l a n t operates at f u l l c a p a c i t y o n 3 . 5 % s u l f u r c o a l . F i g u r e 10 shows a n e l e v a t i o n of this r e g e n e r a t i o n system. T h e largest e q u i p m e n t is associated w i t h the r e g e n e r a t e d carbonate h a n d l i n g a n d storage system. T h e r e d u c e r e q u i p m e n t , w h i c h is e l e v a t e d a b o v e the q u e n c h t a n k , is a b o u t 60 ft h i g h . T h i s p a r t i c u l a r regenerative A C P system i n c l u d i n g the C l a u s p l a n t r e q u i r e s a p p r o x i m a t e l y 2 % acres of l a n d , or a b o u t 300 s q f t / M w sq f t / 1 0 0 0
SCFM
treated).
T h e regeneration equipment can be
(140 de
c o u p l e d f r o m the s c r u b b e r system, y i e l d i n g h i g h o v e r a l l A C P system reliability.
T h e d e c o u p l i n g is a f u n c t i o n of the surge c a p a c i t y w h i c h is
p l a c e d b e t w e e n the s c r u b b e r a n d the r e g e n e r a t i o n e q u i p m e n t .
Table II
shows the e x p e c t e d p e r f o r m a n c e f r o m this p l a n t . T h e t w o c o l u m n s i n d i c a t e the d e s i g n p e r f o r m a n c e a n d the w a r r a n t e d p e r f o r m a n c e . T h e p l a n t w i l l b e d e s i g n e d for s o m e w h a t better o p e r a t i n g p e r f o r m a n c e t h a n w i l l be w a r r a n t e d . H o w e v e r , e v e n the w a r r a n t e d p e r f o r m a n c e is s u b s t a n t i a l l y better t h a n m a n y other a v a i l a b l e systems, a n d a l l f e d e r a l standards are m e t or e x c e e d e d b y the system. Table II.
A C P System Performance Warranty
S 0 r e m o v a l " (%) S 0 émissions» ( l b / 1 0 B t u ) P a r t i c u l a t e emissions ( g r a i n / S C F ) E l e c t r i c a l power d e m a n d ( k w , 24-hr average) P e t r o l e u m coke ( t o n / h r ) 2 2
a b
6
90 ( m i n i m i u m ) 0.55 0.02 6
9900 8
Design 95.5 0.25 0.01 7580 6.6
3.5 wt % sulfur coal. T o meet mass and opacity standards.
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
176
SULFUR
REMOVAL
AND
RECOVERY
Economics A t h o r o u g h analysis of the c a p i t a l a n d o p e r a t i n g e c o n o m i c s w a s m a d e for the system d e s c r i b e d above. T h e basis for this estimate is s h o w n i n T a b l e I I I , a n d r e l a t i v e l y conservative assumptions h a v e b e e n m a d e
for
the cost of the v a r i o u s u t i l i t i e s , m a i n t e n a n c e , o p e r a t i n g s u p p l i e s , overh e a d , a n d c a p i t a l c h a r g e rate. T h e analysis w a s b a s e d o n d e s i g n i n g t h e p l a n t f o r the e q u i v a l e n t of 7000 h r / y r of f u l l l o a d o p e r a t i o n . T h e c a p i t a l costs, b r o k e n d o w n i n t o the gas i n t e r f a c e l o o p a n d the r e g e n e r a t i o n sys-
Downloaded by NATL UNIV OF SINGAPORE on May 6, 2018 | https://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch014
t e m , are s h o w n i n T a b l e I V . T h e cost for the s c r u b b e r l o o p a n d its assoTable III.
Total A n n u a l Cost Assumptions
O p e r a t i o n at f u l l p o w e r — 7 0 0 0 hx/yr Natural gas—$0.40/Mcf Coke—$20/ton E l e c t r i c a l power c o s t — 1 0 m i l l s / k w - h r Operation labor—$10/hr M a i n t e n a n c e — 3 % of c a p i t a l cost O p e r a t i n g s u p p l i e s — 0 . 5 % of c a p i t a l cost Overhead P a y r o l l — 4 0 % of l a b o r P l a n t — 5 0 % of l a b o r , m a i n t e n a n c e , a n d supplies C a p i t a l charge r a t e — 1 5 % / y r Table IV. Capital Cost Estimate U t i l i t y Systems for a 330-Mw Plant Using 3.5% Sulfur Coal G a s interface l o o p — i n s t a l l e d Engineering and management
$ 7,343,000 1,586,000 Subtotal
Regeneration system installed Engineering and management
8,929,000 ( 2 7 / k w ) 9,201,000 2,917,000
Subtotal Total
12,118,000
(36.8/kw)
$21,047,000
(63.8/kw)
c i a t e d e q u i p m e n t is a p p r o x i m a t e l y $ 2 7 / k w . T h i s i n c l u d e s a l l e n g i n e e r i n g , m a n a g e m e n t , e q u i p m e n t , c o n s t r u c t i o n , startup, a n d d e b u g g i n g .
T h e re-
g e n e r a t i o n s u b s y s t e m is s o m e w h a t m o r e expensive a n d is estimated at $36.80/kw.
T h i s cost is for r e g e n e r a t i o n associated w i t h h i g h s u l f u r f u e l .
T h e t o t a l cost t h e n for the regenerative aqueous c a r b o n a t e process o n a n eastern u t i l i t i e s site is $ 6 3 . 8 0 / k w .
T h i s compares
quite favorably with
the cost for n o n - r e g e n e r a t i v e l i m e a n d limestone systems, a n d the system has the a d v a n t a g e of b e i n g f u l l y regenerative. T a b l e V shows the utilities costs for this specific p l a n t site a n d c o n ditions.
T h e largest o p e r a t i n g cost i n the u t i l i t y category is s u p p l y i n g
p e t r o l e u m c o k e at $ 2 0 / t o n .
T h e next largest expense is e l e c t r i c a l p o w e r ,
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
14.
BOTTS A N D G E H R I
Regenerative Table V .
Aqueous
Carbonate
Utility Costs
Parameter
380 Mw Plant
E l e c t r i c i t y a t 10 m i l l s / k w - h r N a t u r a l gas a t 4 0 ° F / 1 0 0 Coke at $20/ton Cooling water Process w a t e r B o i l e r feed w a t e r Steam M a k e u p carbonate
(mills/kw-hr)
0.230 0.039 0.400 0.0087 0.0136 0.0022 0.0114 0.0076
T o t a l u t i l i t y cost Downloaded by NATL UNIV OF SINGAPORE on May 6, 2018 | https://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch014
177
Process
0.7125
w h i c h is to b e e x p e c t e d w i t h a n y s u l f u r d i o x i d e r e m o v a l system.
With
r e g a r d to t h e coke r e q u i r e m e n t , one c o u l d d e s i g n this p l a n t to use c o a l as t h e r e d u c i n g agent i n t h e r e d u c e r at some p e n a l t y i n r e g e n e r a t i o n a n d filtration
equipment.
H o w e v e r , a n e t savings i n o p e r a t i n g costs c o u l d
w e l l o c c u r because of t h e m a g n i t u d e of t h e costs. T h e other o p e r a t i n g costs associated w i t h t h e p l a n t i n c l u d e l a b o r , m a i n t e n a n c e , s u p p l i e s , p a y r o l l , p l a n t o v e r h e a d , c a p i t a l c h a r g e , etc. T a b l e V I s u m m a r i z e s u t i l i t y a n d m a t e r i a l costs f o r e a c h s u b s y s t e m , i.e., t h e gas
a n d regenerative
subsystems,
a n d gives
total
operating
costs.
T h e costs a r e s o m e t h i n g less t h a n 1 m i l l / k w - h r f o r t h e gas interface syst e m a n d a b o u t 1.8 m i l l s / k w - h r f o r t h e r e g e n e r a t i o n system, o r a t o t a l o p e r a t i n g cost o f 2.8 m i l l s / k w - h r to p r o v i d e s u l f u r d i o x i d e r e m o v a l . N o c r e d i t w h a t s o e v e r has b e e n t a k e n f o r t h e s u l f u r p r o d u c e d , b u t t h e t o t a l o p e r a t i n g cost of t h e C l a u s p l a n t is i n c l u d e d . If o n e evaluates t h e cost effectiveness of s u c h a system b y l o o k i n g at f u e l costs as a f u n c t i o n of s u l f u r content a n d c o m p a r i n g t o t a l o p e r a t i n g Table V I . A n n u a l Operating Cost Estimate ($000) (17.7 tons Sodium Carbonate/hr, 7000 h r / y r ) Regeneration
Total
303 100 268 44
1340 200 364 61
1643 300 632 105
Gas Interface Utilities and materials L a b o r and supervision at $10/hr M a i n t e n a n c e a t 3 % d e p r e c i a t i o n base S u p p l i e s a t 0 . 5 % d e p r e c i a t i o n base P a y r o l l overhead a t 4 0 % l a b o r a n d supervision P l a n t overhead a t 5 0 % l a b o r a n d s u p e r v i s i o n , m a i n t e n a n c e , a n d supplies C a p i t a l charge a t 1 5 %
40
80
120
206 1340
312 1820
518 3160
T o t a l ($000/yr)
2301
4177
6478
Total (mills/kw-hr)
0.99
1.81
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
2.80
178
SULFUR
REMOVAL
AND RECOVERY
costs f o r the A C P system w i t h p o t e n t i a l savings i n f u e l costs, t h e result is q u i t e s u r p r i s i n g . F i g u r e 11 is a c u r v e f r o m Gas Turbine
World
of October
1972 t h a t shows f u e l costs as a f u n c t i o n of s u l f u r i n the f u e l . A l t h o u g h there is a great d e a l of scatter, i t c a n b e seen that F o s t e r - P e g g has p u t i n a c o r r e l a t i o n suggesting a b o u t a 350 p e r m i l l i o n B t u savings b y g o i n g f r o m 0 . 3 % s u l f u r f u e l to 2 %
sulfur fuel.
B e i n g a b l e to b u r n
3 . 5 % s u l f u r c o a l a n d s t i l l meet p o l l u t i o n standards p r o b a b l y w o u l d result i n a n even l a r g e r savings.
Based on a conservative 3 5 0 / m i l l i o n B t u ,
the analysis s h o w n i n T a b l e V I I shows a 6V2 m i l l i o n d o l l a r / y r a n n u a l
Downloaded by NATL UNIV OF SINGAPORE on May 6, 2018 | https://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch014
cost associated w i t h t h e p a r t i c u l a r p l a n t d e s i g n (as p r e s e n t e d i n T a b l e V I ) , a n 8.1 m i l l i o n d o l l a r f u e l savings, a n d a s u l f u r c r e d i t of $630,000.
about
T h e result is a n e t savings of 2.25 m i l l i o n d o l l a r s / y r or 1.0
m i l l / k w - h r , as o p p o s e d to t h e o p e r a t i n g loss u s u a l l y associated w i t h s u l f u r dioxide removal plants. Summary I n c o n c l u s i o n , this s e c o n d - g e n e r a t i o n s u l f u r d i o x i d e r e m o v a l process is n o w r e a d y f o r f u l l - s c a l e i n s t a l l a t i o n . I t promises to solve m a n y of t h e D A T A = FOSTER-PEGG
OCT. 1972 (FOR GAS TURBINE WORLD)
0CRUDE
83 80
60
48
AOél
20i\-
0 PERCENT S U L F U R
Gas Turbine World
Figure 11.
Fuel cost vs. sulfur content
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
14.
BOTTS A N D G E H R I
Regenerative
Table V I I .
Aqueous
Carbonate
Process
A C P C o s t Effectiveness 330 Mw
A n n u a l o p e r a t i n g cost ( $ / y r , 0 0 0 ) A n n u a l o p e r a t i n g cost ( m i l l s / k w - h r ) F u e l savings ( $ 0 0 0 / y r ) S u l f u r v a l u e at $ 2 0 / t o n ( $ 0 0 0 / y r ) T o t a l credit ( $ 0 0 0 / y r ) T o t a l savings ( $ 0 0 0 / y r ) (mills/kw-hr)
Downloaded by NATL UNIV OF SINGAPORE on May 6, 2018 | https://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch014
179
Plant
6480 2.8 8100 630 8730 2250 1.0
p r o b l e m s associated w i t h past s u l f u r d i o x i d e s c r u b b i n g systems.
Spe-
c i f i c a l l y the A C P r e g e n e r a t i v e s y s t e m : 1. P r o v i d e s a n e c o n o m i c a d v a n t a g e b y a l l o w i n g the use of s u l f u r f u e l w h i l e p r o v i d i n g l o w s u l f u r d i o x i d e emissions
high
2 . E l i m i n a t e s s l u d g e p r o d u c t i o n a n d the r e l a t e d d i s p o s a l p r o b l e m 3. Eliminates maintenance plugging
problems
associated
with
scaling and
4. M i n i m i z e s t h e i m p a c t o n p l a n t r e l i a b i l i t y b y u s i n g a s i m p l e s c r u b b i n g scheme s o m e w h a t d e c o u p l e d f r o m the r e g e n e r a t i o n e q u i p m e n t RECEIVED April 4, 1 9 7 4
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.