25 Reinforcing Degraded Textiles: Effect of Deacidification 1
Downloaded via YORK UNIV on December 23, 2018 at 09:10:30 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
on Fabric Deterioration
N. KERR, S. P. HERSH, P. A. TUCKER, and G. M. BERRY School of Textiles, North Carolina State University, Raleigh, NC 27650
Textiles which have deteriorated with age are frequently weak, brittle and powdery and often require treatment to prevent further damage. However, there is a lack of understanding of both the mechanisms of degradation and techniques for preserving historic textiles. For these reasons studies were initiated about three years ago to examine new approaches to textile conservation. Part of this program involved the characterization of naturally degraded historic textiles and the development of model degraded fabrics by means of artificial aging (1) and the use of textile finishing resins as consolidants (2). The naturally degraded archaeological fabrics examined were obtained from two locations in Peru. The first group of samples dated from about 1200 A.D. and came from a Chancay Valley grave site. The others dated from about 1000 B.C. and were obtained from the Gramalote site in northern Peru. The model degraded fabrics were prepared from a contemporary cotton print cloth by irradiation with high voltage electrons, exposure to dry heat and hydrolysis with mineral acids. The fabrics were characterized by measuring their tensile and tear strengths, extent of oxidation via Turnbull's blue test and infrared spectroscopy, infrared crystallinity index and molecular weight. A comparison of the properties of the artificially degraded fabrics with those of the Pre-Columbian cottons indicated that none of the artificially degraded fabrics duplicated the ancient samples in all properties. For example, none of the aging techniques produced the severe powdering evident in naturally degraded samples. The strength levels of laboratory degraded samples, however, could be controlled to match those of the archaeological cottons. Both types of samples, whatever the degradation process, showed a sharp drop in DP and an lr
Project supported by the National Museum Act, vrtiich is administered by the Smithsonian Institution. 0-8412-0485-3/79/47-095-357$05.00/0 ©
1979 A m e r i c a n C h e m i c a l Society
Eby; Durability of Macromolecular Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
DURABILITY O F MACROMOLECULAR
358
MATERIALS
accompanying s t r e n g t h l o s s . However, t h e degree o f c r y s t a l l i n i t y , a c t u a l DP a n d e x t e n t o f o x i d a t i o n d e p e n d e d o n t h e mode o f d e g r a d a t i o n . The r e s e a r c h t o be r e p o r t e d h e r e c o n c e r n s e f f o r t s t o p r e v e n t o r r e t a r d degradation o f c o t t o n t e x t i l e s by a p p l y i n g v a r i o u s deacidifying agents. Prevention of
Deterioration
T h e d e t e r i o r a t i o n o f p a p e r i n books and documents h a s been a c o n c e r n f o r many y e a r s . Research by paper conservators i n d i c a t e s t h a t b o o k s and m a n u s c r i p t s may b e p r o t e c t e d f r o m a g i n g by treatment w i t h a l k a l i n e agents which n e u t r a l i z e the a c i d i t y o f the paper as i t develops ( 3 A , S , 6 , J ) . The d e a c i d i f i c a t i o n process not o n l y n e u t r a l i z e s the a c i d i t y o f the o x i d i z e d c e l l u l o s e , b u t a l s o l e a v e s an " a l k a l i n e r e s e r v e " i n the paper t o retard future deterioration. T e x t i l e s made f r o m c e l l u l o s e f i b e r s s u c h a s c o t t o n , f l a x and r a y o n a r e s u b j e c t t o t e n d e r i n g w i t h a g e j u s t a s p a p e r weakens a n d y e l l o w s w i t h a g e . A s a c o n s e r v a t i o n m e a s u r e , t e x t i l e s may b e washed and r i n s e d t h o r o u g h l y t o remove o x i d a t i o n b y p r o d u c t s and n e u t r a l i z e the f a b r i c . Yet historic textiles are rarely t r e a t e d w i t h a l k a l i n e a g e n t s t o n e u t r a l i z e them and r e d u c e t h e rate of degradation. T h e r e i s a r e l u c t a n c e among c o n s e r v a t o r s t o l e a v e o n a f a b r i c a n y s u b s t a n c e w h i c h was n o t o r i g i n a l l y p r e s e n t i n the f a b r i c . H o w e v e r , i f a f a b r i c i s l i k e l y t o become a c i d i c from o x i d a t i o n o r exposure t o atmospheric p o l l u t a n t s , t h e p r e s e n c e o f a n a l k a l i n e b u f f e r w o u l d be e x p e c t e d t o r e d u c e f u t u r e tendering o f the f a b r i c . T h e r e m i g h t b e some h i s t o r i c t e x t i l e s which would b e n e f i t from the p r e s e n c e o f an a l k a l i n e r e s e r v e , p r o v i d e d t h e b u f f e r h a d no d e l e t e r i o u s e f f e c t o n t h e p h y s i c a l p r o p e r t i e s o f the t e x t i l e . I f a f a b r i c c o u l d n o t be n e u t r a l i z e d by wet c l e a n i n g , a v a p o r phase t r e a t m e n t might s e r v e t o remove t h e a c i d i t y o f t h e t e x t i l e . T h e o b j e c t i v e o f t h e p r e s e n t s t u d y was t o d e t e r m i n e w h e t h e r c o t t o n f a b r i c s t r e a t e d w i t h a l k a l i n e a g e n t s c a n be p r o t e c t e d from d e g r a d a t i o n during a c c e l e r a t e d oven a g i n g . The b u f f e r s s e l e c t e d were ones which have been used i n p a p e r c o n s e r v a t i o n . M o r p h o l i n e was o f p a r t i c u l a r i n t e r e s t b e c a u s e i t c a n be a p p l i e d from the vapor phase. Experimental Fabric. T h e f a b r i c u s e d for t h e a c c e l e r a t e d a g i n g t e s t s was a 78 x 76 c o u n t 3 . 5 o z / y d u n b l e a c h e d s c o u r e d p r i n t c l o t h . B e f o r e u s e , i t was m a c h i n e washed t w i c e , o n c e i n T r i t o n ® X - 1 0 0 n o n i o n i c d e t e r g e n t and o n c e i n h o t w a t e r . 2
Reagents. agents,
Cotton
Ca(0H)2,
fabrics
were t r e a t e d w i t h t h r e e
MgCe>3 a n d m o r p h o l i n e ,
alkaline
before
Eby; Durability of Macromolecular Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
25.
KERR E T A L .
Fabric
Deterioration
359
a r t i f i c i a l l y aging i n an o v e n . S o l u t i o n s o f Ca(0H)2 and MgCX>3 p r e p a r e d f o r wet t r e a t i n g t h e c o t t o n by s h a k i n g o n e gram o f r e a g e n t i n 500 m l d i s t i l l e d w a t e r f o r two m i n u t e s . T h e m i x t u r e was t h e n a l l o w e d t o s e t t l e f o r 24 h o u r s b e f o r e d e c a n t i n g the c l e a r supernatant l i q u i d . T h e c o t t o n was e x p o s e d t o m o r p h o l i n e v a p o r f r o m a s o l u t i o n p r e p a r e d b y c o m b i n i n g 50 m l m o r p h o l i n e w i t h 50 m l d i s t i l l e d w a t e r . w
e
r
e
Application Procedures. A l l f a b r i c s a m p l e s were c u t t o 4 x 6 i n c h (W x F ) r e c t a n g l e s . T h r e e r e p l i c a t e s p e c i m e n s were p r o c e s s e d f o r e a c h t r e a t m e n t t o be s u b j e c t e d t o e a c h o f t h e a r t i f i c i a l aging experiments d e s c r i b e d below. For the c o m p a r i s o n s a m p l e s w h i c h were n o t t o be* a r t i f i c i a l l y a g e d , s i x r e p l i c a t e s p e c i m e n s were t r e a t e d e i t h e r w i t h w a t e r o r o n e o f the a l k a l i n e agents. T h e c o n t r o l f a b r i c was w e t o u t f o r 10 m i n u t e s w i t h d i s t i l l e d w a t e r a t 2 4 ° C , d r a i n e d f o r 10 s e c o n d s , t h e n d r i e d f l a t o n g l a s s . T o t r e a t s a m p l e s w i t h M3CO3 a n d C a ( O H ) 2 , t h e s a m p l e s w e r e immersed i n t h e s o l u t i o n a t 24 °C f o r 10 m i n u t e s ( l i q u o r t o f a b r i c r a t i o o f . 5 0 : 1 ) , d r a i n e d 10 s e c o n d s t h e n l a i d f l a t o n g l a s s t o d r y . Ca(OH)2 t r e a t m e n t g a v e a w e i g h t g a i n o f a p p r o x i m a t e l y 2%. F o r t h e 360 and 600 h o u r a g i n g e x p e r i m e n t s , t h e s a m p l e s t o be t r e a t e d w i t h M3CO3 w e r e i m m e r s e d , d r i e d and t h e n immersed and d r i e d a s e c o n d t i m e t o o b t a i n a n a d d - o n o f a p p r o x i m a t e l y 2%. S a m p l e s were e x p o s e d t o m o r p h o l i n e v a p o r b y h a n g i n g f o r 1 h o u r a t 2 4 °C f r o m a r a c k i n a d e s i c c a t o r c o n t a i n i n g 100 m l o f t h e a q u e o u s m o r p h o l i n e s o l u t i o n . A p a r t i a l vacuum was drawn t o e n c o u r a g e t h e p e n e t r a t i o n o f morpholine vapor i n t o the c o t t o n f a b r i c . Other conditions f o r e x p o s i n g t o m o r p h o l i n e were i n v e s t i g a t e d . A r t i f i c i a l Aging. S a m p l e s were a r t i f i c i a l l y a g e d b y e x p o s u r e e i t h e r t o d r y o r n o i s t h e a t i n an o v e n . A l l except the 600 h o u r e x p o s u r e s were c o n d u c t e d i n a F i s h e r I s o temp f o r c e d d r a f t oven. T h e 600 h o u r e x p o s u r e was c a r r i e d o u t i n a G r i e v e I n d u s t r i a l forced d r a f t o v e n . D r y a g i n g was a c c o m p l i s h e d b y h a n g i n g s a m p l e s i n t h e o v e n and h e a t i n g a t 100°C o r 170°C f o r 5 0 , 1 1 6 , 120 o r 600 h o u r s . A r e l a t i v e humidity o f approximately 50% was a c h i e v e d b y p l a c i n g t h e s a m p l e s i n d e s i c c a t o r s c o n t a i n i n g s u f f i c i e n t water t o h a l f s a t u r a t e the atmosphere w i t h i n the c o n t a i n e r . An e a r l i e r a t t e m p t t o o b t a i n a c l o s e d s y s t e m w i t h a r e l a t i v e h u m i d i t y o f 50% u s i n g a s a t u r a t e d s o l u t i o n o f N a l was n o t s u c c e s s f u l . A saturated solution of Nal s h o u l d m a i n t a i n a r e l a t i v e h u m i d i t y o f 50.4% a t 100°C i n a c l o s e d c o n t a i n e r (8). VJhen a d e s i c c a t o r c o n t a i n i n g 145 m l o f s a t u r a t e d N a l s o l u t i o n was h e a t e d i n t h e o v e n a t 1 0 0 ° C , t h e c o l o r l e s s s o l u t i o n g r a d u a l l y t u r n e d d a r k brown a s i o d i n e was released. I n a d d i t i o n , a l a y e r o f c r y s t a l s formed o n t h e s u r f a c e o f the s a l t s o l u t i o n thus preventing the evaporation o f w a t e r and c o n t r o l o f r e l a t i v e h u m i d i t y .
Eby; Durability of Macromolecular Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
DURABILITY
360 To o b t a i n a r e l a t i v e
humidity o f
w a t e r was a d d e d t o e a c h d e s i c c a t o r . approximately within glass the
the rod
in
times
was p l a c e d
360 and 600
in
saturate
treated
a partial
100°C,
atmosphere a
then
Samples were h e a t e d
Fabric Tensile
Strength:
a t 21 + 2 ° C a n d 65 + 2% r e l a t i v e
ASTM m e t h o d D-1628 test)
the
vacuum was d r a w n ,
the o v e n .
of
w a t e r was
s a m p l e s was hung o n
Samples
for
(Breaking
load
were
humidity.
s t r e n g t h was m e a s u r e d o n an I n s t r o n CRE m a c h i n e grab
10 m l
quantity of
hours.
T e s t Methods. conditioned
100% a t This
t h a t needed t o
Each s e t o f
the d e s i c c a t o r ,
container
120,
three
container.
O F MACROMOLECULAR MATERIALS
Tensile
according
and e l o n g a t i o n o f
to
textiles
-
(9).
F a b r i c pH: H i e pH o f o n e o r two s a m p l e s f r o m e a c h t r e a t m e n t a n d a g i n g p e r i o d was m e a s u r e d u s i n g t h e f o l l o w i n g a d a p t a t i o n o f t h e B a r r o w m e t h o d (6): t e n s q u a r e i n c h e s o f f a b r i c ( 0 . 9 g ) was c u t i n t o 1/8 i n c h s q u a r e s , a d d e d t o 50 m l w a t e r a t 4 7 ° C a n d s t i r r e d v i g o r o u s l y to f a c i l i t a t e w e t t i n g out o f the f a b r i c . A f t e r s t e e p i n g f o r o n e h o u r a t room t e m p e r a t u r e , t h e f a b r i c was r e m o v e d , a n d t h e pH o f t h e l i q u i d was m e a s u r e d . The pH o f f i v e samples o f the o r i g i n a l u n t r e a t e d f a b r i c as w e l l as the C a ( O H ) 2 a n d MgOCVj b u f f e r s o l u t i o n s were a l s o m e a s u r e d . I n o r d e r t o determine whether the a l k a l i n e t r e a t m e n t s would e f f e c t i v e l y n e u t r a l i z e a c i d i c c o t t o n , f a b r i c e x p o s e d t o 50 M r a d s o f i o n i z i n g r a d i a t i o n was t r e a t e d i n t h e f o l l o w i n g manner b e f o r e measuring pH: (a)
Two 2 g r a m s a m p l e s o f 50 M r a d o o t o n were immersed i n 400 m l d i s t i l l e d w a t e r a t 2 5 ° C f o r 15 m i n u t e s , t h e p r o c e s s was r e p e a t e d and t h e n t h e s a m p l e s were d r i e d f l a t on g l a s s .
(b)
A f t e r r i n s i n g and d r y i n g a d d i t i o n a l s a m p l e s a s d e s c r i b e d a b o v e , two s a m p l e s were immersed i n e i t h e r MgC03 o r C a ( O H ) 2 s o l u t i o n ( l i q u o r t o f a b r i c r a t i o o f 9 0 : 1 ) f o r 10 m i n u t e s a t 2 4 ° C a n d t h e n d r i e d
f l a t on g l a s s . The a l k a l i n e l i q u o r s w e r e p r e p a r e d a s described previously. F a b r i c C o l o r Change: T h e c o l o r o f t h e a g e d s a m p l e s was assessed with a General E l e c t r i c Recording Spectrophotometer w h i c h m e a s u r e s t r i s t i m u l u s v a l u e s X , Y a n d Z and r e f l e c t a n c e . Color using
d i f f e r e n c e AE i n NBS u n i t s (AN 40 u n i t s ) was the Adams-Nickerson c o l o r d i f f e r e n c e formula
AE = 40 The
{(0.23AV ) y
terms V , x
and Z v a l u e s
V y and V
2
z
+ [A(V
x
-
V )] y
2
+ [0.4A(V
are modified Munsell X,
y
calculated (10, 1 1 ) : - V
)] } 2
z
Y
(11).
Eby; Durability of Macromolecular Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
1 / 2
25.
kerr
et
al.
Fabric
361
Deterioration
R e s u l t s and D i s c u s s i o n F a b r i c Properties a f t e r Treatment. None o f t h e t r e a t m e n t s a l t e r e d f a b r i c c o l o r , and o n l y C a ( 0 H ) 2 h a r s h e n e d t h e f a b r i c hand. T h e s a m p l e s e x p o s e d t o m o r p h o l i n e v a p o r were s i g n i f i c a n t l y w e a k e r (87% o f t h e o r i g i n a l s t r e n g t h ) t h a n f a b r i c treated with water. Fabric Strength. The s t r e n g t h r e t e n t i o n o f t r e a t e d c o t t o n aged under v a r i o u s c o n d i t i o n s i s g i v e n i n T a b l e 1. The v a l u e s r e p o r t e d a r e an a v e r a g e o f s i x b r e a k s f o r imaged samples ( 5 b r e a k s f o r water t r e a t e d ) and a t l e a s t t h r e e breaks f o r a r t i f i c i a l l y aged s a m p l e s . T h e s t a n d a r d d e v i a t i o n and t h e c o e f f i c i e n t o f v a r i a t i o n f o r e a c h t r e a t m e n t and a g i n g p e r i o d was calculated. A p o o l e d s t a n d a r d d e v i a t i o n , T h e s t r e n g t h l o s s o f f a b r i c s h e a t e d a t 100°C a n d 100% R . H . a s a f u n c t i o n o f t i m e a r e shown i n F i g u r e s 1 , 2 , and 3 f o r C a ( O H ) 2 , M3CO3 a n d m o r p h o l i n e , r e s p e c t i v e l y . Crily Ca(OH)2 s i g n i f i c a n t l y d e c r e a s e s t h e r a t e o f d e g r a d a t i o n . A f t e r 600 h o u r s h e a t i n g , t h e f a b r i c t r e a t e d w i t h Ca(OH)2 r e t a i n e d 49% o f i t s o r i g i n a l s t r e n g t h w h i l e a l l o t h e r s a m p l e s r e t a i n e d o n l y a p p r o x i m a t e l y 10% o f t h e i r o r i g i n a l s t r e n g t h . H i g h h u m i d i t y a p p e a r s t o be n e c e s s a r y t o e n a b l e t h e a n i o n s t o d i f f u s e i n t o t h e c o t t o n f i b e r s and r e d u c e f a b r i c a c i d i t y , aging a t 50% r e l a t i v e h u m i d i t y d i d n o t a p p e a r t o p r o v i d e s u f f i c i e n t
Eby; Durability of Macromolecular Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Eby; Durability of Macromolecular Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
170°C,
Dry,
360
600
100% R H , 1 0 0 ° C ,
100% R H , 1 0 0 ° C ,
hours
hours
hours
hours
10
42
75
84
97
20
84
b
b
3
9
49*
79
71*
93
19
91
93
102
101
MgC0
49*
69*
93*
84
93
18
87
96
100
102
Treatment Ca(OH)
(%) o f T r e a t e d F a b r i c s A f t e r
n
Heating
8
38
77
75*
94
18
85
85*
94
87*
Morpholine
D
f k v e r a g e o f s i x b r e a k s f o r u n h e a t e d s a m p l e s and t h r e e b r e a k s f o r h e a t e d s a m p l e s ( e x c e p t a s n o t e d ) . Average of 7 breaks * S i g n i f i c a n t l y d i f f e r e n t a t t h e 95% c o n f i d e n c e l e v e l f r o m a g e d w a t e r - t r e a t e d s a m p l e s b a s e d o n p o o l e d s t a n d a r d d e v i a t i o n a = 4.7%.
120
120
50% R H , 1 0 0 ° C ,
hours
100% R H , 1 0 0 ° C ,
50
hours
hours
50% R H , 1 0 0 ° C ,
116
600
93
100°C,
hours
Dry,
120
100°C,
f
Dry
hours 96
50
100°C,
Dry,
Water
Strength Retention
100
Conditions
I.
None
Heating
Table
25.
KERR
Fabric
E T A L .
Deterioration
lOO^C j
IOO°/o R . H .
IOO
z §
Ik
O
x
8 0
60
4
0
I-
o z
III
2 0
_
QC
O
WATER
&
Co(OH) I
(0
O
120
2
JL 360
AGING TIME Figure 1.
600
(HOURS)
Strength of cotton print cloth pretreated with Ca(OH) or water as a function of time of heating at 100°C and 100% R.H. 2
IOO»C
IOO*/* R . H .
IOO
< Z SO
c o
ft.
o
X
60
40
I© z
III c
H 01
20
O
WATER
#
MgCO,
-L
L. ISO AGING
360 TIME
600
(HOURS)
Figure 3. Strength of cotton print cloth pretreated with morpholine vapor or water as a function of time of heating at 100°C and 100% R.H.
Eby; Durability of Macromolecular Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
364
DURABILITY O F M A C R O M O L E C U L A R M A T E R I A L S
J O
I
120 AGING
Figure 2.
I
I
360 TIME
L 600
(HOURS)
Strength of cotton print cloth pretreated with MgCO or water as a function of time of heating at 100° C and 100% R.H. s
Eby; Durability of Macromolecular Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
25.
KERR E T A L .
Fabric
Deterioration
365
m o i s t u r e t o m o b i l i z e t h e a n i o n s a s t r e a t e d s a m p l e s were n o t s i g n i f i c a n t l y s t r o n g e r than the water t r e a t e d c o n t r o l s . F a b r i c p H . T h e pH o f s a m p l e s t r e a t e d w i t h v a r i o u s a l k a l i n e a g e n t s and t h e n aged i s r e p o r t e d i n T a b l e I I . Both exposure to h i g h h e a t ( 1 7 0 ° C ) a n d l o n g t e r m h e a t i n g a t 100°C c a u s e c o t t o n t o become a c i d i c . The p r e s e n c e o f an a l k a l i n e b u f f e r such a s C a ( 0 H ) 2 o r M3CO3 o n t h e c o t t o n w h i l e i t a g e s a s s i s t s i n r e d u c i n g the development o f a c i d i t y . The Ca(0H)2 t r e a t m e n t was m o s t e f f e c t i v e i n m a i n t a i n i n g a n a l k a l i n e p H . Samples t r e a t e d w i t h t h i s agent remained a l k a l i n e during, a l l o f the a g i n g e x p e r i m e n t s , and t h e s e s a m p l e s e x h i b i t e d t h e l e a s t l o s s i n strength. T h e pH o f 50 M r a d c o t t o n t r e a t e d w i t h d i s t i l l e d w a t e r , Mg3 a n d Ca(OH)2 i s r e p o r t e d i n T a b l e I I . Simply r i n s i n g t h e 50 M r a d c o t t o n w i t h d i s t i l l e d w a t e r f o r 30 m i n u t e s r a i s e d t h e pH f r o m 4 . 3 t o 5 . 5 . R i n s i n g w i t h w a t e r and t h e n t r e a t i n g w i t h M3CO3 d i d n o t n e u t r a l i z e t h e f a b r i c . Because o f t h e l o w s o l u b i l i t y o f M3CO3 i n w a t e r and t h e f a c t t h a t t h i s b u f f e r s o l u t i o n h a d a pH o f 8 . 5 c o m p a r e d w i t h 1 2 . 4 f o r t h e Ca(OH>2 s o l u t i o n , i t i s l i k e l y t h a t r e p e a t e d a p p l i c a t i o n o f MgC03 w o u l d be n e c e s s a r y t o n e u t r a l i z e a n a c i d i c f a b r i c . T h e Ca(OH)2 t r e a t m e n t r a i s e d t h e f a b r i c pH t o 9 . 0 b u t a l s o y e l l o w e d t h e 50 M r a d d e g r a d e d f a b r i c . Hey (_3) r e p o r t s t h a t p a p e r i s o c c a s i o n a l l y y e l l o w e d b y i m m e r s i o n i n Ca(OH)2r and t h e y e l l o w c o l o r d e v e l o p e d d u r i n g e x t r a c t i o n i n sodium b i c a r b o n a t e h a s b e e n u s e d t o d e t e r m i n e t h e C\ a l d e h y d e content i n oxidized cotton (14). Fabric Yellowing. T h e c o l o r c h a n g e ( i n NBS H u t s ) o f f a b r i c s t r e a t e d w i t h a l k a l i n e a g e n t s and e x p o s e d t o h e a t i s r e p o r t e d i n T a b l e I I I . A c o l o r c h a n g e o f 4 NBS u n i t s r e p r e s e n t s a " s l i g h t c h a n g e " i n c o l o r o r a r a t i n g o f 4 o n t h e AATCC G r e y S c a l e for E v a l u a t i n g C o l o r C h a n g e , w h i l e a d i f f e r e n c e o f 12 NBS u n i t s i s equivalent to a Grey Scale rating of 2 (10). Exposure o f c o t t o n t o h e a t c a u s e s i t t o change from a creamy w h i t e t o a y e l l o w brown c o l o r . The c o l o r which d e v e l o p s depends on the a l k a l i n e t r e a t m e n t and t h e c o n d i t i o n s o f a g i n g i n c l u d i n g t e m p e r a t u r e , h u m i d i t y and t i m e . B o t h h i g h t e m p e r a t u r e s (>100°C) and h i g h h u m i d i t y a c c e l e r a t e t h e y e l l o w i n g o f c e l l u l o s e . These f i n d i n g s a g r e e w i t h t h e work o f o t h e r r e s e a r c h e r s ( 1 3 ) . However, i t i s i n t e r e s t i n g t o note t h a t l e s s y e l l o w i n g o c c u r s d u r i n g m o i s t a g i n g when s a m p l e s a r e p r e t r e a t e d w i t h Ca(OH)2 t h a n when p r e t r e a t e d w i t h MgCC>3, m o r p h o l i n e o r w a t e r . In f a c t , pretreatment with morpholine accelerates yellowing during e x p o s u r e t o h e a t a l t h o u g h no c o l o r c h a n g e o c c u r r e d when t h e s e s a m p l e s were f i r s t t r e a t e d w i t h m o r p h o l i n e v a p o r . Walker r e p o r t s t h a t f e w e r t h a n o n e p e r c e n t o f t h e 3000 b o o k s t r e a t e d w i t h m o r p h o l i n e a t t h e B a r r o w l a b o r a t o r y showed a n i n i t i a l c o l o r c h a n g e []_). He made no comments c o n c e r n i n g c o l o r c h a n g e s
Eby; Durability of Macromolecular Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Eby; Durability of Macromolecular Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1979. 3
7.4 5.3 7.1 6.7 5.4 4.2
-
8.5 7.4 8.4 8.0 8.2 7.7 9.0
7.8 5.7 7.6 6.8 6.3 4.5 6.5
6.0 5.4 7.1 6.7 5.7 4.3
100°C,
170°C,
Dry,
Dry,
Cotton
600
100% R H , 1 0 0 ° C ,
50 M r a d
360
120
50% R H , 1 0 0 ° C ,
hours
hours
tours
hours
100% R H , 1 0 0 ° C ,
50
hours
hours
hours
50% R H , 1 0 0 ° C ,
116
600
120
5.5
7.8
8.4
7.8
7.2
100°C,
Dry,
4.3
8.0
8.7
8.0
hours
7.0
50
100°C,
Morpholine
Dry,
2
7.3
Treatment Ca(OH) MgC0
Heating
9.1
Water
Treated Fabrics After
7.1
None
pH o f
6.8
Conditions
II.
None
Heating
Table
Eby; Durability of Macromolecular Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
600
100% R H , 1 0 0 ° C ,
hours
hours*
hours*
hours
two r e p l i c a t e
360
100% R H , 1 0 0 ° C ,
*A v e r a g e o f
120
120
50% R H , 1 0 0 ° C ,
hours
100% R H , 1 0 0 ° C ,
50
hours
50% R H , 1 0 0 ° C ,
600
experiments
38.7
43.1
24.8
20.4
19.2 31.5
11.6
4.4
10.6
6.0
2.1
100°C,
Dry,
2.2
3.0
3.0
hours
100°C,
Dry,
120
2.1
1.7
hours
0.4
3
33.2
27.4
16.8
10.5
2.9
3.5
2.2
1.5
0.3
2
43.9
34.1
19.2
11.1
8.3
6.0
5.4
3.6
0.2
of Treated Fabrics A f t e r Heating Treatment MgC0 Ca(QH) Morpholine
100°C,
Water
( i n NBS u n i t s )
Dry,
50
C o l o r Change
0.0
Conditions
III.
None
Heating
Table
>
i a
DURABILITY O F M A C R O M O L E C U L A R
368
MATERIALS
during heating. In a r e v i e w a r t i c l e on the y e l l o w i n g o f p a p e r , S p i n n e r (13) r e p o r t s t h a t a number o f r e s e a r c h e r s h a v e a s s o c i a t e d y e l l o w i n g of c e l l u l o s e with the presence o f aldehyde g r o u p s a t c a r b o n s two and t h r e e . L a t e r work b y A l b e c k , B e n - B a s s e t and L e w i n , a t t r i b u t e t h e y e l l o w c o l o r o f h o t a l k a l i n e e x t r a c t s from m o d i f i e d c o t t o n p r i m a r i l y t o the aldehyde c o n t e n t (14). Summary a n d
Conclusions
The a b i l i t y o f t h r e e a l k a l i n e agents t o r e t a r d the d e g r a d a t i o n o f c o t t o n exposed t o h e a t has been i n v e s t i g a t e d . The e f f e c t i v e n e s s o f e a c h a g e n t i s summarized i n T a b l e I V . M e a s u r e m e n t o f pH a f t e r a g i n g i n d i c a t e s t h a t C a ( 0 H ) 2 i s a b l e t o d e p o s i t an a l k a l i n e r e s e r v e o n c o t t o n . This alkalinity w i l l p r o t e c t c o t t o n from s t r e n g t h l o s s i f t h e r e i s s u f f i c i e n t m o i s t u r e p r e s e n t d u r i n g a g i n g t o m o b i l i z e t h e h y d r o x y l i o n s and e n a b l e them t o d i f f u s e i n t o t h e c o t t o n f i b e r s . The d i s a d v a n t a g e s a s s o c i a t e d w i t h t h e use o f Ca(0H)2# n a m e l y a h a r s h e n i n g o f f a b r i c hand and y e l l o w i n g i f u s e d t o d e a c i d i f y d e g r a d e d c o t t o n , m u s t a l s o be c o n s i d e r e d . However, s i n c e t r e a t m e n t w i t h C a ( 0 H ) 2 i s r e v e r s i b l e , t h e o r i g i n a l hand o f a f a b r i c s h o u l d be r e s t o r e d b y w a s h i n g w i t h d i s t i l l e d w a t e r . Table
IV.
Effect
o f D e a c i d i f y i n g Agents on P r o p e r t i e s Heated C o t t o n F a b r i c s
Characteristic
of
Agent MgCO Morpholine
Ca(QH) z
Reduces s t r e n g t h l o s s , m o i s t h e a t i n g Reduces s t r e n g t h l o s s , d r y h e a t i n g Extent of yellowing, moist heating Extent of yellowing, dry heating M a i n t a i n s pH > 7 . 0
yes no less varies yes
no no varies same no
no no greater greater no
Magnesium c a r b o n a t e i s l e s s e f f e c t i v e than Ca(0H)2 i n preventing strength loss during aging. Because o f i t s low s o l u b i l i t y i n water, i t i s d i f f i c u l t to deposit s u f f i c i e n t Mg(X>3 o n a f a b r i c t o p r o v i d e a g o o d a l k a l i n e r e s e r v e . It i s l i k e l y t h a t more t h a n o n e a p p l i c a t i o n o f a s a t u r a t e d s o l u t i o n w o u l d be n e c e s s a r y t o n e u t r a l i z e a c i d i c c o t t o n . A l t h o u g h morpholine i s f r e q u e n t l y used i n d e a c i d i f y i n g paper and has a d i s t i n c t advantage i n t h a t i t can be a p p l i e d from the v a p o r p h a s e , i t h a s n o t p r o v e n t o be s u i t a b l e f o r use o n c o t t o n fabrics. Even a s h o r t exposure to morpholine enhances y e l l o w i n g d u r i n g a g i n g and a c c e l e r a t e s l o s s i n s t r e n g t h .
Eby; Durability of Macromolecular Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
25.
KERR
E TA L .
Fabric
Deterioration
369
Literature Cited 1. Berry, G. M., Hersh, S. P., TUcker, P. A., Walsh, W. K., "Reinforcing Degraded Textiles Part I: Properties of Naturally and ArtificiallyAgedCotton Textiles," Adv. Chem. (1977) 164, 228-248. 2. Berry, G. M.,Hersh,S. P.,Tucker,P. A., Walsh, W. K., "Reinforcing Degraded Textiles Part II: Properties of Resin Treated ArtificiallyAgedCottonTextiles,"Adv. Chem. (1977) 104, 249-260. 3. Hey, Margaret,"TheDeacidification and Stabilization of Iron Gall Inks - Cellulose Combinations on Paper," a paper delivered at the A.I.C. 5th Annual Meeting, Boston, Mass., May 30 - June 2, 1977. 4. Kelly, George B.,"PracticalAspects of Deacidification," IIC-AG Paper, Conference at the American Philosophical Society, Philadelphia, Penn., 1972. 5. Kusterer, J. K. and Sproull, R. C.,"GaseousDiffusion Paper Deacidification," U.S. Patent 3,771,958, Nov. 13, 1973. 6. Walker, B. P. and Kusterer, J. K.,"Processfor Deacidifying a Book which Has a Pyroxylin-containing Cover," U.S. Patent 3,837,804, Sept. 24, 1974. 7. Walker, B. F.,"MorpholineDeacidification of Whole Books," Adv. Chen. (1977) 164, 72-78. 8. Weast, R. C.,"Handbookof Chemistry andPhysics,"CRC Press, Cleveland, Chio, 1974, E-46. 9. "1977 Annual Book of ASTM Standards, Part24,"American Society for Testing and Materials, Philadelphia, 1977. 10. AATCC Technical Manual, Vol. 53, AATCC, Research Triangle Park, 1977, 103. 11. McLaren, K."Adams-NickersonColor Difference Formula," J . Soc. Dyers and Colorists (1970) 86, 354-366. 12. Morris, M. A. "Effect of Weathering on Cotton Fabrics," California Agricultural Experiment Station Bulletin 823, Davis, 1966. 13. Spinner, I. H.,"BrightnessReversion,"TAPPI (1962) 45, 495-513. 14. Albeck, M., Ben-Bassat, A. and Lewin, M.,"TheYellowing of Cotton Cellulose Part II: The Influence of Functional Groups and the Nature ofYellowing,"Textile Research J. (1965) 35, 935-942. This is the third part of a series. RECEIVED
December 8, 1978.
Eby; Durability of Macromolecular Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1979.