21 Relaxation Effects Associated with Magnetic
Downloaded by UNIV OF MICHIGAN ANN ARBOR on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch021
Phase Transitions G . R . HOY Physics Department, Old D o m i n i o n University, Norfolk, VA 23508 M . R. C O R S O N Physics Department, B o w d o i n College, Brunswick, ME 04011
Mössbauer spectra of substances that magnetically order often show a central peak with prominent wings in the region of the ordering temperature. We show that such spectra can arise from the critical slowing down of the Mössbauer ions spin fluctuation rate. Using a dynamic model, detailed calculations are presented for Kramers (S = 1/2) and non-Kramers (S = 1) salts. The spin Hamiltonian parameters, the reduced magnetization, the form and strength of the hyperfine interaction, and the spin fluctuation rate can be determined. Our results showing the critical slowing down of spinfluctuationsin K FeO are presented. 2
4
We also give a qualitative discussion of how these microscopic results for the spin dynamics may fit into the framework of critical fluctuations.
T n t h e r e g i o n of m a g n e t i c phase transitions, so-called anomalous M o s s b a u e r spectra a r e often o b s e r v e d ( J ) , c o n s i s t i n g of s m a l l b r o a d e n e d peaks o n t h e w i n g s of a large c e n t r a l peak. S u c h spectra are n o t c h a r a c t e r i s t i c of s i n g l e - v a l u e d , static h y p e r f i n e fields. B e c a u s e of t h e difficulty i n t h e o r e t i c a l l y fitting s u c h spectra, these strange features are c o m m o n l y a t t r i b u t e d t o effects a r i s i n g f r o m s a m p l e t e m p e r a t u r e i n h o m o geneities, a d i s t r i b u t i o n of C u r i e o r N e e l temperatures i n t h e s a m p l e , o r c r i t i c a l s u p e r p a r a m a g n e t i s m . W h i l e these m a y b e t h e correct i n t e r p r e t a t i o n i n some i n d i v i d u a l cases, these anomalous spectra h a v e b e e n o b s e r v e d i n m a n y n o n m e t a l l i c systems i n v e s t i g a t e d b y m a n y different researchers. H e n c e , i t seems reasonable to search f o r a n u n d e r l y i n g
©
0065-2393/81 /0194-0463$05.00/0 1981 American Chemical Society
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
464
M O S S B A U E R S P E C T R O S C O P Y A N D ITS
p h y s i c a l reason f o r t h e i r o c c u r r e n c e .
C H E M I C A L APPLICATIONS
I n a d d i t i o n to p r o v i d i n g a q u a l i t a
t i v e i n t e r p r e t a t i o n of these spectra, w e also p r o p o s e to f o r m u l a t e the p r o b l e m i n s u c h a m a n n e r t h a t some q u a n t i t a t i v e progress c a n b e m a d e in understanding such phenomena. V e r y p o w e r f u l and general theoretical techniques
for calculating
M o s s b a u e r effect l i n e shapes i n the presence of r e l a x a t i o n n o w exist
(2-
B y p a r t i c u l a r i z i n g this g e n e r a l theory, i t is p o s s i b l e to f o r m u l a t e t h e
20).
p r o b l e m i n s u c h a w a y t h a t m a n y i n t e r e s t i n g p h y s i c a l parameters c a n b e
Downloaded by UNIV OF MICHIGAN ANN ARBOR on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch021
d e t e r m i n e d u s i n g M o s s b a u e r spectroscopy.
I n p a r t i c u l a r , one c a n observe
a n d also c l a r i f y the m e a n i n g of the " c r i t i c a l s l o w i n g d o w n " of a n
(21)
ion's s p i n
fluctuation
rate n e a r the c r i t i c a l t e m p e r a t u r e .
Furthermore, it
m a y be possible to b e g i n to c o n n e c t the results of these Mossbauer
measurements
with
microscopic
the u s u a l c r i t i c a l p h e n o m e n a
picture
c o n s i s t i n g of clusters of c o r r e l a t e d a t o m i c spins.
Formulation of the Problem I t is c o m m o n i n M o s s b a u e r spectroscopy to c o n s i d e r the M o s s b a u e r n u c l e u s to b e i n a n "effective m a g n e t i c field" p r o d u c e d b y t h e electrons i n the i o n . I n g e n e r a l it is n o t t r u e t h a t one c a n treat the p r o b l e m i n this way.
A m o r e g e n e r a l t y p e of i n t e r a c t i o n w o u l d b e a h y p e r f i n e t e r m
conventionally written f • A • tains o n l y a n A
zz
A SI, ZZ
Z
Z
If the h y p e r f i n e i n t e r a c t i o n tensor c o n
c o m p o n e n t , t h e n the h y p e r f i n e i n t e r a c t i o n c a n b e w r i t t e n
w h i c h c l e a r l y gives the effective m a g n e t i c field result.
T h e electrons t h a t interact w i t h the n u c l e u s are m o v i n g i n a c o m p l i c a t e d f a s h i o n . I n a d d i t i o n , t h e ions c a n i n t e r a c t w i t h e a c h o t h e r a n d / o r w i t h the l a t t i c e v i b r a t i o n s of the s o l i d . U n d e r c e r t a i n c o n d i t i o n s
these
d y n a m i c effects c a n be o b s e r v e d , a n d the correct i n t e r p r e t a t i o n of these effects contains r e m a r k a b l y d e t a i l e d i n f o r m a t i o n . B e c a u s e of the d i f f i c u l t y i n v i s u a l i z i n g the most g e n e r a l f o r m u l a t i o n of t h e t i m e - d e p e n d e n t
prob
l e m , i t is v e r y u s e f u l to g a i n some p h y s i c a l i n s i g h t b y c o n s i d e r i n g a less g e n e r a l case.
T o d o this, c o n s i d e r a
momentum, and total ionic spin S =
5 7
F e ion having no orbital angular 1/2.
I n the absence of a r e a l or
effective m a g n e t i c field, this K r a m e r s i o n w i l l h a v e a d o u b l y
degenerate
g r o u n d state i n d e p e n d e n t of the degree of a s y m m e t r y of the c r y s t a l l i n e environment
(Kramers
Theorem).
Assume,
for
simplicity, that
? • X • S h y p e r f i n e i n t e r a c t i o n c a n be r e p r e s e n t e d b y the effective netic field a p p r o x i m a t i o n . U n d e r these c o n d i t i o n s t h e
5 7
a n effective m a g n e t i c field e q u a l to — H or H w h e n S* = respectively.
F e n u c l e u s is i n 1/2 a n d — 1 / 2 ,
I f t h e s p i n system m a g n e t i c a l l y orders b e l o w some c r i t i c a l
t e m p e r a t u r e , the ground-state d e g e n e r a c y is r e m o v e d a n d the |S = Sz =
l/2>
the mag
and | l / 2 , — 1 / 2 >
I f the i o n undergoes
1/2,
eigenstates b e c o m e u n e q u a l l y p o p u l a t e d .
transitions b e t w e e n
these eigenstates
because of
some r e l a x a t i o n m e c h a n i s m i n the s o l i d , w e m u s t d e t e r m i n e the effective m a g n e t i c field at the n u c l e u s .
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
21.
H O Y A N D CORSON
Magnetic
Phase
465
Transitions
C o n s i d e r t h e cases of s l o w , fast, a n d i n t e r m e d i a t e , r e l a x a t i o n s h o w n i n F i g u r e 1. B y t h e t i m e - e n e r g y u n c e r t a i n t y p r i n c i p l e , t h e t i m e r e q u i r e d for a n u c l e u s t o " m e a s u r e " a n effective m a g n e t i c field is a p p r o x i m a t e l y t h e L a r m o r p e r i o d of the n u c l e u s i n t h a t field, w h i c h f o r
5 7
F e is t y p i c a l l y
10" s. I f t h e i o n i c s p i n fluctuation rate is s l o w , a n d a n i o n spends m a n y 9
L a r m o r p e r i o d s i n e a c h eigenstate, t h e n a M o s s b a u e r n u c l e u s experiences a m a g n e t i c field — i f or -\-H d e p e n d i n g o n t h e state o f t h e a t o m c o n t a i n i n g the n u c l e u s .
I n this case, t h e M o s s b a u e r s p e c t r u m is t h e B o l t z m a n n -
Downloaded by UNIV OF MICHIGAN ANN ARBOR on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch021
w e i g h t e d s u m of t w o spectra c h a r a c t e r i s t i c of these t w o fields. S i n c e — H a n d + H p r o d u c e t h e same M o s s b a u e r p a t t e r n , t h e r e s u l t i n g s p e c t r u m is as s h o w n i n the u p p e r c u r v e i n F i g u r e 1. If the ionic spin
fluctuation
r a t e is fast c o m p a r e d t o t h e L a r m o r
f r e q u e n c y , t h e n t h e n u c l e u s c a n n o t r e s p o n d t o the i n d i v i d u a l fields H and
— H, a n d a l l n u c l e i experience t h e same, s i n g l e - v a l u e d
effective
m a g n e t i c field w h i c h is t h e B o l t z m a n n - w e i g h t e d average of these t w o IONIC STATE S = 1/2
HYPERFINE EFFECTIVE MAGNETIC FIELD AT NUCLEUS
S,= 1/2
-H
S =-l/2 2
CASE I: SLOW RELAXATION (Relaxation frequency much lower than the nuclear Larmor frequency in the magnetic field H.) CASE 2= FAST RELAXATION (Relaxation frequency much higher than the nuclear Larmor frequency in the magnetic field H.)
CASE 3:
INTERMEDIATE RELAXATION
(Relaxation frequency comparable to the nuclear Larmor frequency in the magnetic field H.)
Figure 1. Calculated Mossbauer transmission spectra, including the effects of relaxation, for an S = V2 Kramers ion having eigenstates |S,M > of \V2, V2> and \V2, — V2>. In these spectra, the hyperfine interaction is assumed to be an effective magnetic field. S
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
466
M O S S B A U E R S P E C T R O S C O P Y A N D ITS
C H E M I C A L APPLICATIONS
values. F o r a system w i t h some m a g n e t i c o r d e r , a p o s s i b l e s p e c t r u m is s h o w n as the m i d d l e c u r v e i n F i g u r e 1. N o t e t h a t t h e o v e r a l l w i d t h of t h e fast r e l a x a t i o n s p e c t r u m is less t h a n t h a t of the s l o w r e l a x a t i o n spectrum. If the i o n i c s p i n fluctuation rate is c o m p a r a b l e to the n u c l e a r L a r m o r f r e q u e n c y , t h e n the effective m a g n e t i c field e x p e r i e n c e d b y t h e n u c l e u s is not w e l l defined. T h i s gives rise to a " r e l a x a t i o n - b r o a d e n e d " s p e c t r u m . T h e lowest c u r v e i n F i g u r e 1 shows s u c h a n e x a m p l e f o r a system h a v i n g
Downloaded by UNIV OF MICHIGAN ANN ARBOR on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch021
zero m a g n e t i c order. Next consider a ionic spin S =
5 7
F e ion w i t h no orbital angular momentum, total
1, a n d nondegenerate i o n i c eigenstates S* =
1,0, a n d — 1.
A g a i n assume the effective m a g n e t i c field a p p r o x i m a t i o n for t h e h y p e r f i n e i n t e r a c t i o n . T h i s effective m a g n e t i c field takes o n the values — H, 0, a n d +H
when S = z
1,0, a n d — 1 , r e s p e c t i v e l y . I n the p r e s e n c e of r e l a x a t i o n
effects, w e m u s t a g a i n d e t e r m i n e the r e s u l t i n g M o s s b a u e r spectra. F i g u r e 2 shows results s i m i l a r t o those i n F i g u r e 1 for t h i s n o n - K r a m e r s i o n . T h e r e are s e v e r a l i m p o r t a n t differences b e t w e e n these t w o sets of results. T h e i o n i c state |S = nucleus.
1, S — 0 > does n o t p r o d u c e a m a g n e t i c field at the z
T h u s , i n the s l o w r e l a x a t i o n l i m i t this state p r o d u c e s a single
p e a k at the c e n t e r of the p a t t e r n as s h o w n i n the u p p e r c u r v e i n F i g u r e 2. T h e t w o m i s s i n g peaks of the a c c o m p a n y i n g s i x - l i n e p a t t e r n f r o m states |1,1> a n d |1, — 1 > are h i d d e n b y the c e n t r a l peak. I n the fast r e l a x a t i o n l i m i t , as i n t h e m i d d l e c u r v e of F i g u r e 2, a l l n u c l e i e x p e r i e n c e the same s i n g l e - v a l u e d effective m a g n e t i c field w h i c h is the B o l t z m a n n - w e i g h t e d average of t h e three v a l u e s — H, 0, a n d + H . T h e m e a n i n g of this is t h a t t h e three fields — H, 0, a n d + H
h a v e lost
t h e i r i n d i v i d u a l i d e n t i t i e s . A s a c o n s e q u e n c e , the c e n t r a l p e a k i n t h e s l o w r e l a x a t i o n s p e c t r u m of F i g u r e 2 a t t r i b u t a b l e to the m a g n e t i c field of 0 is c o m p l e t e l y absent i n this fast r e l a x a t i o n l i m i t . A
more
complete
analysis a p p l i c a b l e to M o s s b a u e r e x p e r i m e n t a l
results i n c l u d i n g t i m e - d e p e n d e n t effects r e c e n t l y has b e e n f o r m u l a t e d i n a very useful a n d general w a y
(12),
a n d this m e t h o d is u s e d i n the
d e v e l o p m e n t p r e s e n t e d here. T h e details of the f o r m u l a t i o n c a n be f o u n d i n the o r i g i n a l reference, so w e w i l l o n l y g i v e a s u m m a r y . We
w i l l assume t h a t the
5 7
F e n u c l e u s is c o u p l e d
to its
atomic
electrons t h r o u g h the h y p e r f i n e i n t e r a c t i o n , a n d t h a t i n the i o n i c system some r a n d o m process i n d u c e s transitions b e t w e e n t h e eigenstates of the i o n . T h i s " r e l a x a t i o n " process is a s s u m e d to b e s t a t i o n a r y M a r k o f f i a n , so t h a t i t is p o s s i b l e to o b t a i n c l o s e d - f o r m m a t h e m a t i c a l expressions f o r the r e s u l t i n g l i n e s h a p e u s i n g t h e s o - c a l l e d super o p e r a t o r f o r m a l i s m . essential result f o r fLis
the l i n e shape
as a f u n c t i o n of
emitted
The
energy
(12), FM—
£
6,(/*v|u(p)| iV) +
f
/
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
(1)
21.
HOY
A N D
Magnetic
CORSON
Phase
IONIC STATE S = I
HYPERFINE EFFECTIVE MAGNETIC FIELD AT NUCLEUS
•to
S = 0
s Downloaded by UNIV OF MICHIGAN ANN ARBOR on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch021
467
Transitions
= -I
CASE 1= SLOW RELAXATION (Relaxation frequency much lower than the nuclear Larmor frequency in the magnetic field H.) CASE 2
FAST RELAXATION
(Relaxation frequency much higher than the nuclear Larmor frequency in the magnetic field H.)
CASE 3= INTERMEDIATE RELAXATION (Relaxation frequency comparable to the nuclear Larmor frequency in the magnetic field H.)
Figure 2. Calculated Mossbauer transmission spectra, including the effects of relaxation, for an S = l non-Kramers ion having eigenstates |S,M > of |I,I>, \1,0> and 1>. In these spectra, the hyperfine interaction is assumed to be an effective magnetic field. S
where b
v
is t h e o c c u p a t i o n p r o b a b i l i t y of t h e i n i t i a l state |v>, p =
iT
— ifuo, A is the o p e r a t o r f o r e m i s s i o n ( o r a b s o r p t i o n ) of r a d i a t i o n , a n d u(p)
=
(p
— W
— iH )' . 0
x
1
T h e m a t r i x elements of A are e s s e n t i a l l y
C l e b s c h - G o r d a n coefficients t i m e s v e c t o r s p h e r i c a l h a r m o n i c s . T h e m a t r i x elements of u(p)
are c a l c u l a t e d b y i n v e r t i n g t h e s u p e r m a t r i x
d i m e n s i o n a l i t y is (2S + l ) ( 2 Z i + 1) (21 2
i o n i c s p i n a n d Ii a n d I
0
0
+ 1), w h e r e S is t h e
whose
(effective)
are the spins of the e x c i t e d a n d g r o u n d n u c l e a r
levels. T h e m a t r i x elements of t h e s u p e r H a m i l t o n i a n H
0
X
are g i v e n b y
(12), (2) T h e m a t r i x elements of the s u p e r r e l a x a t i o n m a t r i x W w i l l b e g i v e n later. I n o u r c a l c u l a t i o n w e d o n o t a c t u a l l y c o m p u t e the n e e d e d i n v e r s e f o r e v e r y v a l u e of
-
|
S(S
1) J
+
E(S/
+
-
S) 2
y
+
(4)
yaS
z
w h e r e D a n d E are t h e s p i n H a m i l t o n i a n p a r a m e t e r s , a is t h e
reduced
m a g n e t i z a t i o n of the i o n i c s p i n system i n t h e m e a n field a p p r o x i m a t i o n , a n d S is the s p i n of the i o n . T h u s H
0
(see E q u a t i o n 2 ) c a n b e w r i t t e n ,
Ho == H
ion
(5)
Hhyper
T h e r e l a x a t i o n process associated w i t h H(t)
is t a k e n to consist of
an
i n t e r a c t i o n t h a t causes the i o n to e v o l v e i n t i m e a c c o r d i n g to a s t a t i o n a r y M a r k o f f i a n c h a i n t h r o u g h its i o n i c e n e r g y levels Ei a n d its c o r r e s p o n d i n g eigenstates ^ .
E a n d ^ are d e t e r m i n e d b y o b t a i n i n g the eigenvalues a n d {
eigenvectors of the i o n i c H a m i l t o n i a n H
i o n
.
I n o u r case, b e c a u s e w e are
p r i m a r i l y i n t e r e s t e d i n the l o w - t e m p e r a t u r e r e g i o n , w e h a v e t a k e n t h e r e l a x a t i o n m e c h a n i s m to arise f r o m t h e " f l i p - f l o p " p a r t of t h e
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
dipole-
21.
Magnetic
H O Y A N D CORSON
dipole interaction.
Phase
469
Transitions
W e expect t h i s e n e r g y - c o n s e r v i n g
spin-spin inter
a c t i o n t o b e t h e d o m i n a n t m e c h a n i s m at l o w t e m p e r a t u r e s . completely correct for a n S =
( T h i s is n o t
1/2, d o u b l y degenerate system, w h i c h , i n
a d d i t i o n to t h e C l a u s e r - B l u m e t h e o r y is d i s c u s s e d b y D a t t a g u p t a ( 2 2 ) . A t h i g h t e m p e r a t u r e s , t h e l a r g e n u m b e r of p h o n o n s is e x p e c t e d t o cause s p i n - l a t t i c e r e l a x a t i o n to d o m i n a t e . ) A s s u m i n g t h a t t h e i o n i c system is i n i t i a l l y i n state fa, t h e t r a n s i t i o n
Downloaded by UNIV OF MICHIGAN ANN ARBOR on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch021
p r o b a b i l i t y f o r t h e i o n to flip f r o m state fa to state fa is g i v e n b y Qij =
o | < fa fa | S
+i
X
S.j + S.i S
+j
exp ( - ^ / f c D / E e x p
| fa fa > (6)
(-Et/kT)
i
w h e r e O is t h e r e l a x a t i o n rate p a r a m e t e r , S a n d S. a r e t h e u s u a l r a i s i n g +
and
l o w e r i n g operators,
respectively,
f a c t o r d e t e r m i n e s t h e p r o b a b i l i t y of undergo a spin
flip.
and the normalized Boltzmann finding
a n e i g h b o r w i t h w h i c h to
I t is i m p o r t a n t to r e a l i z e that at sufficiently l o w
temperatures i n a magnetically ordered sample, the transition probabilities for
flipping
c a n n o t o c c u r s i m p l y b e c a u s e t h e n u m b e r of n e i g h b o r s w i t h
w h i c h to e x c h a n g e s p i n has b e e n r e d u c e d
to zero f o r t h e u n f a v o r e d
spin orientation. An
i m p o r t a n t step of this c a l c u l a t i o n is t h e c o n s t r u c t i o n of t h e
s o - c a l l e d super o r L i o u v i l l e H a m i l t o n i a n .
T h i s particular construction i :
i n t e r e s t i n g b e c a u s e the eigenvalues of t h e r e s u l t i n g super m a t r i x g i v e t h e a c t u a l energies o f a l l p o s s i b l e r a d i a t i o n s o f t h e system. I n a d d i t i o n , f r o m a t h e o r e t i c a l p o i n t of v i e w , t h e i n t r o d u c t i o n of this t y p e of results i n s i m p l i f y i n g t h e c o m m u t a t i o n
relations needed
operator
to solve t h e
t i m e - d e p e n d e n t p r o b l e m . T h e s u p e r H a m i l t o n i a n m a t r i x is d e f i n e d b y {fam fam \H *\fa'm 'fa'm ') g
e
0
hj,ilff$m ,m ' e
where m
g
e
g
—
—
e
g
f/
0
0
g
$fafa'$m ,m '
e
g
g
a n d m refer to t h e n u c l e a r g r o u n d a n d e x c i t e d states, r e s p e c e
tively. T h e r e l a x a t i o n super m a t r i x W is d e f i n e d as ( 1 2 ) , (fa m fa m \W\ fa' m ' fa' ra '). g
e
T o s i m p l i f y t h e n o t a t i o n l e t fa =
g
/x a n d fa =
e
v. T h e n , t h e m a t r i x
elements o f W a r e g i v e n b y ,
(7) where
is d e f i n e d i n E q u a t i o n 6.
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
470
M O S S B A U E R S P E C T R O S C O P Y A N D ITS
W h e n c o n s t r u c t i n g the r e l a x a t i o n operator
C H E M I C A L APPLICATIONS
s u p e r m a t r i x W , i t is
i m p o r t a n t to k n o w a r e l a t i o n s h i p i n v o l v i n g t h e d i a g o n a l elements, n a m e l y ,
(i|^|i)--Z(i|^|j), w h e r e this r e l a t i o n s h i p f o l l o w s f r o m the c o n c e p t of d e t a i l e d b a l a n c e .
Downloaded by UNIV OF MICHIGAN ANN ARBOR on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch021
Consideration of Various Cases I n this section w e present m o d e l c a l c u l a t i o n s s h o w i n g t h e o r e t i c a l 5 7
F e M o s s b a u e r spectra as the f o l l o w i n g p a r a m e t e r s are v a r i e d : the s p i n
H a m i l t o n i a n parameters D a n d E , t h e r e d u c e d m a g n e t i z a t i o n a, t h e f o r m a n d s t r e n g t h of the h y p e r f i n e i n t e r a c t i o n A ,A ,A ,(A =A , x
y
z
x
etc.), the
xx
i o n i c s p i n S, a n d r e l a x a t i o n r a t e p a r a m e t e r Q. W e c o n s i d e r three p o s s i b l e cases of the c r y s t a l l i n e field—the h i g h l y s y m m e t r i c a l one i n w h i c h D
=
E =
0,
0, the a x i a l l y s y m m e t r i c c r y s t a l l i n e field w h e r e D ^ O , a n d E =
a n d finally, the r h o m b i c c r y s t a l l i n e field w h e r e D ^
0 and E ^
0.
We
assume t h a t the i o n i c system f o l l o w s a W e i s s m a g n e t i z a t i o n c u r v e as i t m a g n e t i c a l l y orders w h e n the t e m p e r a t u r e is l o w e r e d b e l o w the t r a n s i t i o n t e m p e r a t u r e . W e i n c l u d e t w o forms f o r the h y p e r f i n e i n t e r a c t i o n , n a m e l y , the effective field case A
=
A
=
fine i n t e r a c t i o n A
=
A
=^= 0. W e also c o n s i d e r t w o cases f o r t h e
x
x
ionic spin—the S =
=
A
y
y
z
0 and A
z
^
0, a n d the i s o t r o p i c h y p e r
1 / 2 K r a m e r s system a n d the S =
A s i m i l a r c a l c u l a t i o n for S =
1 non-Kramers ion.
3 / 2 has b e e n c o n s i d e r e d p r e v i o u s l y
(23).
H o w e v e r , i n that case, the o f f - d i a g o n a l elements of the e l e c t r o n n u c l e a r magnetic hyperfine interaction were neglected. I n o u r c a l c u l a t i o n s a l l the p a r a m e t e r s D , E , A , x
A, y
A
Zy
a n d O are
expressed i n e n e r g y u n i t s s u c h that the n u m b e r e i g h t corresponds to a t y p i c a l i r o n M o s s b a u e r e x p e r i m e n t a l l i n e w i d t h of 0.30 m m / s .
F o r energy
c o n v e r s i o n purposes note t h a t one of o u r u n i t s e q u a l s : 3.75 X 10"
2
1.8 X 1 0
1
S =
9
e V , 2.09 X 10" K , 2.89 X 1 0 "
1/2
5
K r a m e r s System.
21
mm/s,
e r g , or 1.46 X 10" c m " .
F o r this case t h e
5
spin Hamiltonian
p a r a m e t e r s D a n d E h a v e n o effect, as c a n be seen f r o m the f o r m of H I n F i g u r e 3 w e c o n s i d e r the K r a m e r s i o n system w i t h S =
1/2.
C T
.
T h e first
c o l u m n shows t h e c a l c u l a t e d M o s s b a u e r spectra w h e n the i o n i c system f o l l o w s a W e i s s m o l e c u l a r field m a g n e t i z a t i o n c u r v e as the t e m p e r a t u r e is l o w e r e d , a n d t h e i o n i c r e l a x a t i o n rate O is h e l d constant at a f a i r l y l a r g e v a l u e ( h e r e l a r g e means c o m p a r e d to the v a l u e of the h y p e r f i n e i n t e r a c t i o n c o u p l i n g constant as d i s c u s s e d i n the p r e v i o u s s e c t i o n ) .
The
s e c o n d c o l u m n shows the spectra f o r t h e case of a constant s m a l l v a l u e of r e d u c e d m a g n e t i z a t i o n o-, b u t w i t h t h e r e l a x a t i o n rate O d e c r e a s i n g several orders of m a g n i t u d e . T h e t h i r d c o l u m n is s i m i l a r t o the
by
second
b u t the system is a s s u m e d to b e a b o v e its m a g n e t i c t r a n s i t i o n t e m p e r a t u r e
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
21.
SPIN
Downloaded by UNIV OF MICHIGAN ANN ARBOR on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch021
Magnetic
H O Y A N D CORSON
1/2
Phase
AXG=AYG=0
471
Transitions
AZG=-80
Figure 3. Calculated Mossbauer spectra, including the effects of relaxation, for an S = V2 Kramers ion. The hyperfine interaction is assumed to be an effective magnetic field. a n d t h u s has a zero v a l u e of r e d u c e d m a g n e t i z a t i o n o\ T h e d a s h e d - a r r o w p a t h c o n n e c t i n g t h e S p e c t r a a t o b t o c a n d t h e n d o w n C o l u m n 1 shows a p o s s i b l e sequence of spectra i f t h e r e is a " c r i t i c a l s l o w i n g d o w n " of t h e ions spin
fluctuation
rate i n t h e t r a n s i t i o n r e g i o n as t h e t e m p e r a t u r e is
lowered. F i g u r e 4 shows t h e same c a l c u l a t i o n s as i n F i g u r e 3 except t h a t i n F i g u r e 4, t h e h y p e r f i n e i n t e r a c t i o n is t a k e n to be i s o t r o p i c . t w o i m p o r t a n t n e w features s h o w n i n this
figure.
T h e r e are
First, notice the t w o
u p p e r c u r v e s i n C o l u m n 1. T h e p a t t e r n a c t u a l l y n a r r o w s as t h e t e m p e r a t u r e is l o w e r e d b e l o w t h e t r a n s i t i o n t e m p e r a t u r e . T h e reason f o r this is e x p l a i n e d b y t h e second
i m p o r t a n t feature, seen i n C o l u m n 3, w h i c h
shows t h e spectra r e s u l t i n g f r o m t h e i s o t r o p i c h y p e r f i n e i n t e r a c t i o n w h e n