Rhodium(I) and rhodium(III) phosphine complexes with nonbridging

May 1, 1993 - Jeremy M. Praetorius, Daryl P. Allen, Ruiyao Wang, Jonathan D. Webb, ... Kevin A. Bunten, David H. Farrar, Anthony J. Poë, and Alan Lou...
0 downloads 0 Views 739KB Size
2360

Inorg. Chem. 1993, 32, 2360-2365

Rhodium(1) and Rhodium(II1) Phosphine Complexes with Nonbridging Benzenethiolato Ligands: Preparation, Structures, and Chemical Properties Kohtaro Osakada,,’Kouji Hataya, and Takakazu Yamamoto,’ Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 227, Japan Received September 4, I992 Reactions of NaSPh with [Rh(PMe3)JC1 and with RhCl(PMe3)3 give Rh(SPh)(PMe3)3 (l), whose X-ray crystallography shows a square-planar coordination. Temperature-dependent NMR (IH and 31P{’H))spectra of 1 show fluxionality of the molecule due to intramolecular exchange of the ligands in the solution. Complex 1 reacts smoothly with air to give the dioxygen-coordinated complex Rh(SPh)(Oz)(PMe3)3 (2). X-ray crystallography shows a distorted trigonal bipyramidal coordinationaround the metal center having a dioxygen ligand with the 0-0 bond distance of 1.456(6) A. Addition of air to the reaction mixture of [Rh(PMe3)4]C1with NaSC6H4-p-OMe gives the analogous dioxygen-coordinated complex Rh(SCsH4-p-OMe)(Oz)(PMe3)3 (3). Reaction of complex 1 with HSPh in hexane causes oxidative addition of the S-H bond to the metal center to give the Rh(II1) complex cis,mer-RhH(SPh)z(PMe& ( 4 4 as the initial product. Further stirring of the reaction mixture at room temperature causes isomerization of 4a into tr~nr,mer-RhH(SPh)~(PMe3)3 (4b). NMR (IH and 31P)spectra of the complexes 4a and 4b as well as X-ray crystallography of 4b indicate their respective structures unambiguously. Reaction of DSPh (65% D) with 4a gives truns,mer-RhD(SPh)~(PMe3)3 (4b-dI) in 55% isotopic purity, while similar reaction with 4b causes deuteration in 18%. Reaction of phenyl acetylene with complex 1 gives mer-RhH(C=CPh)(SPh)(PMe3)3 (5) with the acetylide and the thiolato ligands at mutually trans positions.

Introduction

cleavage and formation,l”ZZ and preparation of transition metal sulfides through degradation of the thiolato ligands.23-z6 PrepProperties of transition metal thiolato comple~esl-~ have aration of simple rhodium(1) thiolato complexes having tertiary attracted increasing attention in view of the important roles which phosphine as the auxiliary ligands, Rh(SR)(PR’3),(n = 3 or 4), these compounds are believed to play as intermediates in various and investigation of their chemical properties seems to be reactions such as desulfurizationof organosulfurcompounds,l@l5 intriguing because some of the above reactions involve rhodium metal-catalyzed synthetic organic reactions involving C-S bond thiolato phosphine complexes as the intermediates. Actually Rh(II1)-triphos complexes having Rh-S bonds were reported to (1) DuBois, M. R. Chem. Reu. 1989, 89, 1 and references therein. show remarkable reactivity toward organic and inorganic re(2) Tatsumi, K.; Sekiguchi, Y.; Nakamura, A,; Cramer, R. E.; Rupp, J. J. agents.2’ On the other hand, there have been few reports J . Am. Chem. Soc. 1986, 108, 1358. (3) (a)Osakada,K.;Maeda,M.;Nakamura,Y.;Yamamoto,T.;Yamamoto,concerning mononuclear Rh(1) thiolato complexes whose metal A. J . Chem. Soc., Chem. Commun. 1986,442. (b) Osakada,K.; Chiba, center and thiolato ligands would show higher reactivity toward T.; Nakamura, Y .; Yamamoto, T.; Yamamoto, A. Ibid. 1986,1589. (c) electrophilic compounds than those of already known dinuclear Kim, Y.-J.; Osakada, K.; Sugita, K.; Yamamoto, T.; Yamamoto, A. Rh(I)-diene or Rh(I)-PPh3 complexes with bridging thiolato Organometallics 1988,7,2182. (d) Osakada, K.; Chiba,T.; Yamamoto, T.; Yamamoto, A. Ibid. 1989, 8, 2602. (e) Osakada, K.; Ozawa, Y.; ligand^.^*-^^ Reaction of RhH(PPh3)4 with thiophenol gave Yamamoto, A. J . Chem. Soc., Dalton Trans. 1991, 759. [Rh(fi-SPh)(PPh3)~] z through initial formation of Rh(SPh)(P(4) Bulman Page, P. C.; Klair, S.S.; Brown, M. P.; Harding, M. M.; Smith, C. S.; Maginn, S. J.; Mulley, S. Tetrahedron Lett. 1988, 29, 4477. ( 5 ) (a) Amarasekera, J.; Rauchfuss, T. B.; Wilson, S . R. J. Chem. Soc.. Chem. Commun.1989,14. (b) Amarasekera, J.; Rauchfuss, T. B. Inorg. Chem. 1989, 28, 3875. (6) (a) Dev, S.; Imagawa, K.; Mizobe, Y.; Cheng, G.; Wakatsuki, Y.; Yamazaki, H.; Hidai, M. Organometallics 1989, 8, 1232. (b) Dev, S.; Mizobe, Y.; Hidai, M. Inorg. Chem. 1990,29,4797. (c) Matsuzaka, H.; Mizobe, Y.; Nishio, M.; Hidai, M. J . Chem. Soc., Chem. Commun. 1991, 1011. (7) Liaw, W.-F.; Kim, C.; Darensbourg, M. Y.; Rheingold, A. L. J. Am. Chem. SOC.1989, 111, 3591. (8) (a) Klein, D. P.; Kloster, G. M.; Bergman, R. G. J. Am. Chem. Soc. 1990,112, 2022. (b) Carney, M. J.; Walsh, P. J.; Bergman, R. G. Ibid. 1990, 112, 6426. (c) Michelman, R. I.; Anderson, R. A.; Bergman, R. G. Ibid. 1991, 113, 5100. (9) (a) Jones, W. D.;Dong,L. J.Am. Chem.Soc. 1991,113,559. (b)Dong, L.;Duckett, S. 8.; Ohman, K. F.; Jones, W. D. Ibid. 1992, 114, 151. (10) Kwart, H.; Schuit, G. C. A.; Gates, B. C. J. Carol. 1980, 61, 128. (11) Zaera, F.; Kollin. E. B.; Gland, J. L. Surj Sci. 1987, 184, 75. (1 2) Eisch, J. J.; Hallenbeck, L.E.; Han, K. I. J. Org. Chem. 1983,48,2963. (13) (a) Alper, H.; Blais,C. J . Chem. Soc., Chem. Commun. 1980,169. (b) Antebi, S.; Alper, H. Organometallics 1986, 5, 596. (14) (a) Angelici, R. J. Acc. Chem. Res. 1988, 21, 387. (b) Coord. Chem. Reu. 1990,105, 61. (c) Chen, J.; Angelici, R. J. Organometallics 1992, 11, 992. (15) (a) Rauchfuss, T.B. Prog. Inorg. Chem. 1991, 39, 259. (b) Luo, S.; Skaugset, A. E.; Rauchfuss, T.B.; Wilson, S.R. J . Am. Chem. Soc. 1992,-114, 1732. (16) (a) Okamura, H.; Miura. M.; Takei, H. Tetrahedron Left.1979,43. (b) Okamura, H.; Takei, H. Ibid. 1979, 3425.

(17) Murahashi, S.; Yamamura, M.; Yanagisawa, K.; Mita, N.; Kondo, K. J. Org. Chem. 1979,44, 2408. (18) (a)Kosugi,M.;Shimizu,T.;Migita,T.Chem.Lett. 1978,13. (b)Migita, T.; Shimizu, T.;Asami, Y.; Shiobara, J.; Kato, Y.; Kosugi, M. Bull. Chem. SOC.Jpn. 1980.53, 1385. (19) Hutchins, R. 0.;Learn, K. J. Org. Chem. 1982, 48, 4380. (20) (a) Wenkert, E.; Ferreira, T.W.; Michelotti, E. L. J . Chem.Soc., Chem. Commun. 1979,637. (b) Wenkert, E.; Leftin, M. H.; Michelotti, E. L. Ibid. 1984, 617. (c) Wenkert, E.; Hanna, J. M., Jr.; Leftin, M. H.; Michelotti, E. L.; Potts, K. T.; Usifer, D. J . Org. Chem. 1985,50, 1125. (21) Tiecco, M.; Testaferri, L.;Tingoli, M.; Chianelli, P.; Wenkert, E. Tetrahedron Lett. 1982, 23, 4629. (22) Osakada, K.; Yamamoto, T.;Yamamoto, A. Tetrahedron Lett. 1987, 27, 6321. (23) (a) Osakada, K.; Yamamoto, T. J. Chem. Soc., Chem. Commun. 1987, 1117. (b) Idem. Inorg. Chem. 1991, 30, 2328. (24) Bochmann, M.; Hawkins, I.; Wilson, L. M. J. Chem. SOC.,Chem. Commun. 1988, 344. (25) Brennan, J. G.; Siegrist, T.; Carroll, R. J.; Stuczynski, S. M.; Brus, L. E.; Steigerwald, M. L. J. Am. Chem. Soc. 1989, 111, 4141. (26) (a) Nomura,R.;Konishi,K.; Futenma,S.;Matsuda,H. Appl. Organomet. Chem. 1990,4,607. (b) Nomura, R.; Fujii, S.; Kanaya, K.;Matsuda, H. Polyhedron 1990,9,361. (c) Nomura, R.; Konishi, K.; Matsuda, H. Thin Solid Films 1991, 198, 339. (27) (a) Bianchini, C.; Mealli, C.; Meli, A.; Sabat, M. Inorg. Chem. 1986, 25,4617. (b) Bianchini, C.; Meli, A.; Dapporto, P.; Tofanari, A.; Zanello, P. Ibid. 1987,26,3677. (c) Bianchini, C.; Meli, A. Ibid. 1987,26,4268. (28) Cruz-Gavitz, D.; Garcia-Alejandre, J.; Torrens, H.; Alvarez, C.;Toscano, R. A.; Poilblanc, R.; Thorez, A. Transition Mer. Chem. 1991, 16, 130.

0020-1669/93/1332-2360$04.00/0 0 1993 American Chemical Society

Inorganic Chemistry, Vol. 32, No. 11, 1993 2361

Rhodium(1) and Rhodium(II1) Phosphine Complexes c9

3

Figure 1. Molecular structureof Rh(SPh)(PMe& (1) showing ellipsoidal plotting a t 50% level. The molecule has a crystallographic mirror plane that includes the Rh, S, C 1 4 6 , and C10 atoms. Table I. Selected Bond Distances and Angles of 1 Distances 2.428(2) 2.229(3)

Rh-S Rh-P2 S-Rh-PI PI-Rh-P1 RhS-C 1

(A) Rh-P1

2.292(2) 1.748(9)

s-c 1

Angles (deg) 85.72(5) S-Rh-P2 162.3( 1) P 1-Rh-P2 105.0(3)

'

162.99(9) 96.36(5)

Ph&, which could not be isolated.29J'J This is probably due to facile dissociation of the PPh3 ligand of Rh(SPh)(PPh& to give coordinatively unsaturated intermediates such as [Rh(SPh)(P-

Wzl.

We have investigated the preparation of rhodium complexes with nonbridging thiolato ligands by reaction of [Rh(PMe3)4]C1, having nonlabile PMe3 ligands, with NaSPh. The obtained complex, Rh(SPh)(PMe&, reacted withvarious compounds such as 02, HSPh, and H G C P h to give the correspondingdioxygencoordinated Rh complex and Rh(II1) hydride complexes with thiolato and acetylide ligands, respectively. Here we report the preparation, structure, and chemical properties of these rhodium thiolato complexes.

Results and Discussion heparationaM1CharacterizetionofRh(SPh)(PMe3)3(1). The ionic complex [Rh(PMe3)4]Clreacts with NaSPh in hexane to give Rh(SPh)(PMe3)3(1) as orange red microcrystals. Reaction [Rh(PMe3),] CI

+

NaSPh

-

NaCl

bond angle is 1 0 5 O , which is more acute than in most transition metal benzenethiolato c0mplexes.3~ The IH NMR spectrum of 1 in C6D6 (100 MHz at 25 "C) shows a singlet at 1.15 ppm due to the PMe3 hydrogens and signals at 6.9-8.3 ppm due to the SPh hydrogens. Figure 2 shows the3IP{lH}andIHNMRspectra (200and 500 MHz, respectively) of the complex at 25, -60,and-80 OC in toluene-&. The 1H and 31P{1H} NMR spectra at -80 O C agree with the square-planar coordination of the molecule. On raising of the temperature, the peaks of PMe3 hydrogens in the 'H NMR spectra undergo coalescenceto give a single peak at 25 OC, while similar coalescence of the signals spectra is also observed in the 3rP(lH1NMR. The fluxional behavior is believed due to the intramolecular ligand exchange since the peak width of the 31P{lH} NMR spectra does not change upon addition of PMe3 or by changing the complex concentration. This dynamic behavior may involve mutual exchange of the coordination sites of the ligands through a tetrahedral transition state. The 31P{IH)NMR spectrum at 25 OC shows quite a small doublet signal at ca. -7 ppm (with the asterisk in Figure 2). This can be tentatively assigned to a minor Rh-containing species such as [Rh(PMe&]+SPh-, which is in equilibrium with 1 in the solution although it is not characterized due to the low concentration (