Selection between separation alternatives: Membrane Flash Index

Aug 1, 2018 - To easily compare the efficiencies of continuous pervaporation and flash distillation, we propose a new and simple method, the so called...
0 downloads 0 Views 2MB Size
Article Cite This: Ind. Eng. Chem. Res. 2018, 57, 11366−11373

pubs.acs.org/IECR

Selection between Separation Alternatives: Membrane Flash Index (MFLI) Andras Jozsef Toth,*,† Eniko Haaz,† Nora Valentinyi,† Tibor Nagy,† Ariella Janka Tarjani,† Daniel Fozer,† Anita Andre,† Selim Asmaa Khaled Mohamed,† Szabolcs Solti,§ and Peter Mizsey†,‡

Downloaded via UNIV OF SOUTH DAKOTA on September 10, 2018 at 07:10:52 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.



Environmental and Process Engineering Research Group, Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Budafoki Street 8, H-1111 Budapest, Hungary ‡ Institute of Chemistry, Faculty of Material Science and Engineering, Department of Fine Chemicals and Environmental Technology, University of Miskolc, Egyetemvaros C/1 108, H-3515 Miskolc, Hungary § Szelence Kamionmoso, Ipartelep, H-2431 Szabadegyhaza, Hungary S Supporting Information *

ABSTRACT: Chemical process design is a creative step of engineers that should be supported by different computer-aided design tools. Such tools should be simple and easy to use because process synthesis often means the investigation of a huge number of alternatives. During the design of the separation of liquid mixtures, among many others, distillation and pervaporation are usually simultaneously considered because pervaporation is frequently considered as an alternative to distillation. To easily compare the efficiencies of continuous pervaporation and flash distillation, we propose a new and simple method, the so-called membrane flash index (MFLI). The comparison is based upon vapor−liquid equilibrium data and the permeation data of a pervaporation membrane and therefore can be plotted on a common chart in the case of binary mixtures. The permeation values of organophilic and hydrophilic pervaporations can be calculated with the help of known separation factors and feed concentrations. The MFLI is dimensionless and can be determined by dividing the permeate concentration by the corresponding vapor equilibrium data obtained from a simple flash distillation. Only the feed concentration, separation factor, and refereed equilibrium data are necessary for the calculations. If the MFLI is 1, then the separation efficiency of pervaporation is better than that of flash distillation. An example calculation is available in Part I of the Supporting Information. 2.1. Examined Mixtures and Membranes. Three binary alcohol/water mixtures have been chosen to illustrate the comparison (see Table 1). Table 1. Examined Mixtures (0.1 MPa)61

Gijxj

methanol/ water

(7)

where Gij = exp( −αijτij) Bij

+ Cij × ln(T ) + Dij × T (9) T The most common usage of the NRTL equation is the three-parameter equation. The NRTL equation are be used as a three-parameter equation (Bij, Bji, and αij) during the regression of binary interaction parameters (BIPs) in the ChemCAD flowsheet simulator. Generally, the vapor equilibrium value can be obtained accurately from the appropriate equation of a state like the NRTL model. D Finally, the ratio of yPV i and yi [VLE] can give a novel evaluation index for the comparison of pervaporation with flash distillation that is the membrane flash index (MFLI): MFLI =

pure compound boiling point (°C) azeotropic temperature (°C) azeotropic composition (wf) Bij NRTL parameter Bji NRTL parameter αij NRTL parameter

64.7

−95.52773 397.4858 0.295307

isobutanol/ water

minimal boiling point homogeneous azeotropic 78.4

heterogeneous

78.3

89.6

95.7

67.7

670.441 −55.1681 0.3031

1068.12 95.5182 0.3291

azeotropic 107.5

In this text, the alcohol/water separation membranes are distributed into two main categories: I organophilic pervaporation (OPV) • PDMS membranes • other polymeric membranes • hydrophobic zeolite membranes • silicalite−silicone rubber mixed matrix membranes

yiPV yiD [VLE]

zeotropic

(8)

and τij = Aij +

VLE type

ethanol/water

(10) 11369

DOI: 10.1021/acs.iecr.8b00430 Ind. Eng. Chem. Res. 2018, 57, 11366−11373

Article

Industrial & Engineering Chemistry Research II hydrophilic pervaporation (HPV) • poly(vinyl alcohol) (PVA) membranes • chitosan-based membranes • membranes containing charged groups • membranes formed from polysalts • other hydrophilic membranes These membrane types are the most suitable solution for organophilic and hydrophilic separation. The NRTL thermodynamic model is applied in the VLE database.

Table 3. Summary and Evaluation of MFLIs in EtOH/Water Separation membrane type organophilic

3. RESULTS AND DISCUSSION Nine to 15 selected membranes with the highest MFLIs are examined in every type of membrane group. To determine the MFLI, tables contain feed, calculated permeate, and regressed vapor equilibrium weight fractions. The MFLIs are presented in decreasing order in the tables, and these ranking numbers are used for permeate weight fractions of research papers on the y−x equilibrium diagram, as a figure rating method. In every type of membrane group, one data table and one VLE diagram are determined for the evaluation of separation efficiency. First, the results for methanol/water, ethanol/water, and isobutanol/water mixtures are presented. Calculated MFLIs and VLE diagrams are available in Parts II−IV of the Supporting Information. 3.1. Separation of Methanol and Water. Table 2 summarizes the MFLIs of membranes in the pervaporation of methanol/water mixtures.

hydrophilic

organophilic

hydrophilic

PDMS membranes hydrophobic zeolite membranes all types polyvinyl alcohol (PVA) membranes other hydrophilic membranes all types

average deviation

organophilic membranes hydrophilic membranes

0.52 0.73

2.60 3.58

1.76 14.46

0.84 9.19

3.58 24.17

15.69

6.41

24.96

15.07

7.74

24.96

0.29 0.22

1.89 2.67

3.23

0.71

4.52

2.01

0.64

3.10

2.21 13.01

0.85 5.14

4.52 20.17

15.51

6.08

25.02

16.52

7.16

33.19

10.99

4.50

20.56

14.36

6.20

33.19

average

deviation

maximum

7.22 7.97

2.76 7.71

9.75 21.70

are above the equilibrium vapor concentration. It can be concluded that both OPV and HPV can be over the flash distillation; however, the hydrophilic membranes show performances that are better than those of the organophilic membranes because of their higher selectivity.

maximum

1.21 2.32

maximum

1.38 2.16

Table 4. Summary and Evaluation of MFLIs in Isobutanol/ Water Separation

Table 2. Summary and Evaluation of MFLIs in MeOH/ Water Separation membrane type

average deviation

PDMS membranes other polymeric membranes hydrophobic zeolite membranes silicalite−silicone rubber mixed matrix membranes all types polyvinyl alcohol (PVA) membranes chitosan-based membranes membranes containing charged groups membranes formed from polysalts all types

4. CONCLUSIONS In this work, a new and simple tool is proposed to help process design activities. The MFLI can compare the separation features of pervaporation and flash distillation, over a range where the mixtures show zeotropic behavior. It shows the ratio of the separation capability of pervaporation to that of flash distillation, and therefore, the efficiencies of pervaporation and distillation can be compared at first glance. If the MFLI is ∼1, the membrane can complete a similar separation as a simple flash distillation. The application of such a membrane type should be critically considered. However, if the MFLI is ≫1, the pervaporation shows good separation features compared to those of distillation. As our comprehensive study of the examples of alcohols and water shows, the separation features of organophilic membranes described with our membrane flash index are modest, that is, MFLI ≤ 1, indicating that the organophilic membranes studied still do not have separation capabilities that are better than that of simple flash distillation. On the other hand, in the case of hydrophilic membranes, the MFLI is ≫1, so these kinds of membranes have separation features that are better than those of flash distillation. If the MFLI is ≲1, flash distillation should be considered, because the membrane separation usually has a high capital cost. If the MFLI is high, pervaporation should be favored. In the definition of the MFLI, flash distillation is deliberately selected as this is the simplest type of distillation. Therefore, the MFLI can help at process design in determining the suitable separation method. It is important to emphasize, however, that the MFLI can provide initial information about the selection capacity of

In conclusion, it can be said that poly(vinyl alcohol) and zeolite membranes are outstanding in the rankings; however, the application of organophilic membranes for methanol removal is not effective because the MFLI clearly shows that the separation efficiency is worse or just better than that of flash distillation (see Table 2). 3.2. Separation of Ethanol and Water. Table 3 summarizes the MFLIs of membranes in the pervaporation of ethanol/water mixtures. In conclusion, it can be said that hydrophilic membranes are outstanding in the rankings; however, the MFLI clearly shows that the application of organophilic membranes for ethanol removal is not effective because the separation efficiency is just better in many cases than that of flash distillation (see Table 3). 3.3. Separation of Isobutanol and Water. There are significantly fewer membrane types for separation of isobutanol from water with OPV and HPV. Table 4 summarizes the MFLIs of membranes in the pervaporation of isobutanol/water mixtures. It can be seen that all the calculated IBU permeate weight fractions of different organophilic and hydrophilic membranes 11370

DOI: 10.1021/acs.iecr.8b00430 Ind. Eng. Chem. Res. 2018, 57, 11366−11373

Article

Industrial & Engineering Chemistry Research Abbreviations

methods; in many cases, consideration of multiple parameters is necessary for the final consideration in terms of cost, environmental impact, etc.



BIPs EtOH HPV IBU MeOH MFLI NRTL OPV PDMS PSI PVA PV VLE wf

ASSOCIATED CONTENT

* Supporting Information S

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.iecr.8b00430. Example calculation for the MFLI, separation of methanol and water, organophilic pervaporation, hydrophilic pervaporation, separation of ethanol and water, organophilic pervaporation, hydrophilic pervaporation, separation of isobutanol and water, nomenclature, and references (PDF)



AUTHOR INFORMATION

binary interaction parameter ethanol hydrophilic pervaporation isobutanol methanol membrane flash index nonrandom two-liquid organophilic pervaporation polydimethylsiloxane pervaporation separation index (kg m−2 h−1) poly(vinyl alcohol) pervaporation vapor−liquid equilibrium weight fraction

Greek letters

Corresponding Author

α αij β γi1 δ

*E-mail: [email protected]. Telephone: +36 1 463 1490. Fax: +36 1 463 3197. ORCID

Andras Jozsef Toth: 0000-0002-5787-8557 Ariella Janka Tarjani: 0000-0002-4107-1935



Notes

The authors declare no competing financial interest.



separation factor NRTL parameter selectivity activity coefficient of component i in the feed membrane thickness (μm)

REFERENCES

(1) Favre, E. Temperature polarization in pervaporation. Desalination 2003, 154 (2), 129−138. (2) Hasanoǧlu, A.; Salt, Y.; Keleşer, S.; Ö zkan, S.; Dinçer, S. Pervaporation separation of ethyl acetate-ethanol binary mixtures using polydimethylsiloxane membranes. Chem. Eng. Process. 2005, 44 (3), 375−381. (3) Toth, A. J.; Andre, A.; Haaz, E.; Mizsey, P. New horizon for the membrane separation: Combination of organophilic and hydrophilic pervaporations. Sep. Purif. Technol. 2015, 156 (2), 432−443. (4) Feng, X.; Huang, R. Y. M. Liquid Separation by Membrane Pervaporation: A Review. Ind. Eng. Chem. Res. 1997, 36 (4), 1048− 1066. (5) Baker, R. W. Membrane Technology and Applications, 3rd ed.; Wiley, 2012. (6) Hsueh, C. L.; Kuo, J. F.; Huang, Y. H.; Wang, C. C.; Chen, C. Y. Separation of ethanol−water solution by poly(acrylonitrile-co-acrylic acid) membranes. Sep. Purif. Technol. 2005, 41 (1), 39−47. (7) Koczka, K.; Manczinger, J.; Mizsey, P.; Fonyo, Z. Novel hybrid separation processes based on pervaporation for THF recovery. Chem. Eng. Process. 2007, 46 (3), 239−246. (8) Lipnizki, F.; Field, R. W.; Ten, P.-K. Pervaporation-based hybrid process: a review of process design, applications and economics. J. Membr. Sci. 1999, 153 (2), 183−210. (9) Van Baelen, D.; Van der Bruggen, B.; Van den Dungen, K.; Degreve, J.; Vandecasteele, C. Pervaporation of water−alcohol mixtures and acetic acid−water mixtures. Chem. Eng. Sci. 2005, 60 (6), 1583−1590. (10) Van Hoof, V.; Van den Abeele, L.; Buekenhoudt, A.; Dotremont, C.; Leysen, R. Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol. Sep. Purif. Technol. 2004, 37 (1), 33−49. (11) Nik, O. G.; Moheb, A.; Mohammadi, T. Separation of ethylene glycol/water mixtures using NaA zeolite membranes. Chem. Eng. Technol. 2006, 29 (11), 1340−1346. (12) Rhim, J. W.; Park, H. B.; Lee, C. S.; Jun, J. H.; Kim, D. S.; Lee, Y. M. Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: Proton and methanol transport through membranes. J. Membr. Sci. 2004, 238 (1−2), 143−151. (13) Konieczny, K.; Bodzek, M.; Panek, D. Removal of volatile compounds from the wastewaters by use of pervaporation. Desalination 2008, 223 (1−3), 344−348.

ACKNOWLEDGMENTS The authors acknowledge the financial support of a János Bolyai Research Scholarship from the Hungarian Academy of Sciences and the OTKA 112699 project. This research was supported by the European Union and the Hungarian State, co-financed by the European Regional Development Fund in the framework of the GINOP-2.3.4-15-2016-00004 project, which aims to promote cooperation between higher education and industry, and the Ú NKP-17-3-I New National Excellence Program of the Ministry of Human Capacities.



NOMENCLATURE A membrane transfer area (m2) Bij NRTL parameter Bji NRTL parameter F feed i component number j component number Ji flux of component i (kg m−2 h−1) L liquid equilibrium P permeate pi0 pure i component vapor pressure (bar) p3 pressure on the permeate side (bar) Pi/δ permeance of component i (kg m−2 h−1 bar−1) R retentate s support t time (h) T temperature (°C) V vapor equilibrium xFi feed alcohol or water weight fraction (unitless) xi1 concentration of component i in the feed (m/m%) xDi equilibrium liquid alcohol or water weight fraction (unitless) yDi equilibrium vapor alcohol or water weight fraction (unitless) xPV retentate alcohol or water weight fraction (unitless) i yPV permeate alcohol or water weight fraction (unitless) i 11371

DOI: 10.1021/acs.iecr.8b00430 Ind. Eng. Chem. Res. 2018, 57, 11366−11373

Article

Industrial & Engineering Chemistry Research

(34) Neel, J. Introduction to pervaporation. In Pervaporation Membrane Separation Processes; Huang, R. Y. M., Ed.; Elsevier: Amsterdam, 1991; pp 1−109. (35) Manczinger, J. Flash Distillation. In Chemical Unit Operations Laboratory; Budapest University of Technology and Economics: Budapest, 2014; pp 66−74. (36) Xu, Z. K.; Dai, Q. W.; Liu, Z. M.; Kou, R. Q.; Xu, Y. Y. Microporous polypropylene hollow fiber membranes: Part II. Pervaporation separation of water/ethanol mixtures by the poly(acrylic acid) grafted membranes. J. Membr. Sci. 2003, 214 (1), 71− 81. (37) Mohammadi, T.; Aroujalian, A.; Bakhshi, A. Pervaporation of dilute alcoholic mixtures using PDMS membrane. Chem. Eng. Sci. 2005, 60 (7), 1875−1880. (38) Wesslein, M.; Heintz, A.; Lichtenthaler, R. N. Pervaporation of liquid mixtures through poly (vinyl alcohol) (PVA) membranes. I. Study of water containing binary systems with complete and partial miscibility. J. Membr. Sci. 1990, 51 (1−2), 169−179. (39) Toth, A. J.; Andre, A.; Haaz, E.; Mizsey, P. In Modelling of organophilic pervaporation to compete with distillation; 26th European Symposium on Computer Aided Process Engineering-ESCAPE 26, Portoroz, Slovenia, June 12−15, 2016; pp 343−348. (40) Li, S.; Tuan, V. A.; Falconer, J. L.; Noble, R. D. Properties and separation performance of Ge-ZSM-5 membranes. Microporous Mesoporous Mater. 2003, 58 (2), 137−154. (41) Kita, H.; Hori, K.; Tanaka, K.; Okamoto, K. In Pervaporation of water/organic liquid mixtures using a zeolite Na-A membrane; 7th International Conference on Pervaporation Process in the Chemical Industry, Reno, NV, 1995;Bakish, R., Ed.; Bakish Materials Corp.: Reno, NV, 1995; p 364. (42) Kita, H.; Inoue, T.; Asamura, H.; Tanaka, K.; Okamoto, K. NaY zeolite membrane for the pervaporation separation of methanolmethyl tert-butyl ether mixtures. Chem. Commun. 1997, 1, 45−46. (43) Vane, L. M. A review of pervaporation for product recovery from biomass fermentation processes. J. Chem. Technol. Biotechnol. 2005, 80 (6), 603−629. (44) Svang-Ariyaskul, A.; Huang, R. Y. M.; Douglas, P. L.; Pal, R.; Feng, X.; Chen, P.; Liu, L. Blended chitosan and polyvinyl alcohol membranes for the pervaporation dehydration of isopropanol. J. Membr. Sci. 2006, 280 (1−2), 815−823. (45) Dong, Q.; Liu, J.; Yao, C.; Shao, G. Poly(vinyl alcohol)-based polymeric membrane: Preparation and tensile properties. J. Appl. Polym. Sci. 2011, 122 (2), 1350−1357. (46) Jenkins, A. D.; Kratochvíl, P.; Stepto, R. F. T.; Suter, U. W. Glossary of basic terms in polymer science (IUPAC Recommendations 1996). Pure Appl. Chem. 1996, 68, 2287. (47) Bolto, B.; Hoang, M.; Xie, Z. A review of membrane selection for the dehydration of aqueous ethanol by pervaporation. Chem. Eng. Process. 2011, 50 (3), 227−235. (48) Hess, M.; Jones, R. G.; Kahovec, J.; Kitayama, T.; Kratochvíl, P.; Kubisa, P.; Mormann, W.; Stepto, R. F. T.; Tabak, D.; Vohlídal, J.; Wilks, E. S. Terminology of polymers containing ionizable or ionic groups and of polymers containing ions (IUPAC Recommendations 2006). Pure Appl. Chem. 2006, 78, 2067. (49) Huang, B.; Liu, Q.; Caro, J.; Huang, A. Iso-butanol dehydration by pervaporation using zeolite LTA membranes prepared on 3aminopropyltriethoxysilane-modified alumina tubes. J. Membr. Sci. 2014, 455, 200−206. (50) Samanta, H. S.; Ray, S. K. Separation of ethanol from water by pervaporation using mixed matrix copolymer membranes. Sep. Purif. Technol. 2015, 146, 176−186. (51) Crespo, J. G.; Brazinha, C. 1 - Fundamentals of pervaporation. In Pervaporation, Vapour Permeation and Membrane Distillation; Woodhead Publishing: Oxford, U.K., 2015; pp 3−17. (52) Baker, R. W.; Wijmans, J. G.; Huang, Y. Permeability, permeance and selectivity: A preferred way of reporting pervaporation performance data. J. Membr. Sci. 2010, 348 (1−2), 346−352.

(14) Lipnizki, F.; Hausmanns, S.; Ten, P.-K.; Field, R. W.; Laufenberg, G. Organophilic pervaporation: prospects and performance. Chem. Eng. J. 1999, 73 (2), 113−129. (15) Aroujalian, A.; Belkacemi, K.; Davids, S. J.; Turcotte, G.; Pouliot, Y. Effect of Protein on Flux and Selectivity in Pervaporation of Ethanol from a Dilute Solution. Sep. Sci. Technol. 2003, 38 (12− 13), 3239−3247. (16) Ki Hong, Y.; Hi Hong, W. Influence of ceramic support on pervaporation characteristics of IPA/water mixtures using PDMS/ ceramic composite membrane. J. Membr. Sci. 1999, 159 (1−2), 29− 39. (17) Liang, L.; Dickson, J. M.; Jiang, J.; Brook, M. A. Effect of low flow rate on pervaporation of 1,2-dichloroethane with novel polydimethylsiloxane composite membranes. J. Membr. Sci. 2004, 231 (1−2), 71−79. (18) González-Velasco, J. R.; González-Marcos, J. A.; López-Dehesa, C. Pervaporation of ethanol-water mixtures through poly(1trimethylsilyl-1-propyne) (PTMSP) membranes. Desalination 2002, 149 (1−3), 61−65. (19) Oh, H. K.; Song, K. H.; Lee, K. R.; Rim, J. M. Prediction of sorption and flux of solvents through PDMS membrane. Polymer 2001, 42 (14), 6305−6312. (20) Cunha, V. S.; Paredes, M. L. L.; Borges, C. P.; Habert, A. C.; Nobrega, R. Removal of aromatics from multicomponent organic mixtures by pervaporation using polyurethane membranes: experimental and modeling. J. Membr. Sci. 2002, 206 (1−2), 277−290. (21) Ray, S.; Ray, S. K. Separation of organic mixtures by pervaporation using crosslinked and filled rubber membranes. J. Membr. Sci. 2006, 285 (1−2), 108−119. (22) Smitha, B.; Suhanya, D.; Sridhar, S.; Ramakrishna, M. Separation of organic−organic mixtures by pervaporationa review. J. Membr. Sci. 2004, 241 (1), 1−21. (23) Mandal, S.; Pangarkar, V. G. Separation of methanol-benzene and methanol-toluene mixtures by pervaporation: effects of thermodynamics and structural phenomenon. J. Membr. Sci. 2002, 201 (1−2), 175−190. (24) Nguyen, T. Q.; Nobe, K. Extraction of organic contaminants in aqueous solutions by pervaporation. J. Membr. Sci. 1987, 30 (1), 11− 22. (25) Devaine, K. M.; Meier, A. J.; Slater, C. S. In Pervaporation for the recovery of MEK and other solvents using organophilic membranes; 7th International Conference on Pervaporation Process in the Chemical Industry, Reno, NV, 1995; Bakish, R., Ed.; Bakish Materials Corp.: Reno, NV, 1995; p 218. (26) Zhang, S. Q.; Fouda, A. E.; Matsuura, T. A study on pervaporation of aqueous benzyl alcohol solution by polydimethylsiloxane membrane. J. Membr. Sci. 1992, 70 (2−3), 249−255. (27) Toth, A. J. Liquid Waste Treatment with Physicochemical Tools for Environmental Protection. Ph.D. Thesis, Budapest University of Technology and Economics, Budapest, 2015. (28) Kim, H. J.; Nah, S. S.; Min, B. R. A new technique for preparation of PDMS pervaporation membrane for VOC removal. Adv. Environ. Res. 2002, 6 (3), 255−264. (29) Mizsey, P.; Koczka, K.; Tungler, A. Treatment of process wastewaters with physicochemical tools. Hungarian Journal of Chemistry 2008, 114, 107−113. (30) Fleming, H. L.; Slater, C. S. Pervaporation; Springer: New York, 1992. (31) Bowen, T. C.; Kalipcilar, H.; Falconer, J. L.; Noble, R. D. Pervaporation of organic/water mixtures through B-ZSM-5 zeolite membranes on monolith supports. J. Membr. Sci. 2003, 215 (1−2), 235−247. (32) Mizsey, P.; Szanyi, A.; Raab, A.; Manczinger, J.; Fonyo, Z. Intensification of a solvent recovery technology through the use of hybrid equipment. Comput.-Aided Chem. Eng. 2002, 10, 121−126. (33) Szanyi, A. Separation of non-ideal quaternary mixtures with novel hybrid processes based on extractive heterogenous-azeotropic distillation. Ph.D. Thesis, Budapest University of Technology and Economics, Budapest, 2005. 11372

DOI: 10.1021/acs.iecr.8b00430 Ind. Eng. Chem. Res. 2018, 57, 11366−11373

Article

Industrial & Engineering Chemistry Research (53) Luyben, W. L. Control of a Column/Pervaporation Process for Separating the Ethanol/Water Azeotrope. Ind. Eng. Chem. Res. 2009, 48 (7), 3484−3495. (54) Mizsey, P.; Simandi, B.; Szekely, E. In Distillation; Simandi, B., Ed.; Chemical Unit Operation II, Typotex: Budapest, 2011; Chapter 1.3. (55) Fontalvo, J.; Cuellar, P.; Timmer, J. M. K.; Vorstman, M. A. G.; Wijers, J. G.; Keurentjes, J. T. F. Comparing Pervaporation and Vapor Permeation Hybrid Distillation Processes. Ind. Eng. Chem. Res. 2005, 44 (14), 5259−5266. (56) Van Der Bruggen, B.; Luis, P. Pervaporation as a tool in chemical engineering: A new era? Curr. Opin. Chem. Eng. 2014, 4, 47−53. (57) Luis, P.; Degrève, J.; der Bruggen, B. V. Separation of methanol-n-butyl acetate mixtures by pervaporation: Potential of 10 commercial membranes. J. Membr. Sci. 2013, 429, 1−12. (58) Liu, Q.; Noble, R. D.; Falconer, J. L.; Funke, H. H. Organics/ water separation by pervaporation with a zeolite membrane. J. Membr. Sci. 1996, 117 (1−2), 163−174. (59) Gmehling, J.; Onken, U. Vapor-Liquid Equilibrium Data Collection: Aqueous-Organic Systems; DECHEMA, 1977. (60) Renon, H.; Prausnitz, J. M. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968, 14 (1), 135−144. (61) Marsden, C. Solvents and Allied Substances Manual with Solubility Chart; Cleaver-Hume and Elsevier: London, 1954.

11373

DOI: 10.1021/acs.iecr.8b00430 Ind. Eng. Chem. Res. 2018, 57, 11366−11373