Size exclusion chromatography - ACS Publications - American

(A308) Dixon, W. C. ACS Symp. Ser 1980, 120, 13. (A309) Haartz, J. C.; Lange, B. A.;Draftz, R. G.;Scholl, R. F. NBS Spec. Publ. (U.S.) 1978, No. 506, ...
0 downloads 0 Views 3MB Size
Anal. Chem. 1982, 5 4 , 265 R-276 R (2204) Ahlen, S. P.; Salamon, M. H. Phys. Rev. A 1979, 19, 1084.

MISCELLANEOUS

ASBESTOS

(8301) Su, S. C. Ti Ch’iu Hua Hsueh 1978, No. 4 , 303 [Ch]; CA09020154789C. (8302) Plermarlni, G. J.; Mauer, F. A.; Block, S.; Jayaraman, A,; Geballe, T. H.; Hull, G. W., Jr. High Pressure Sci. Techno/., Proc. 7th Int. AIRAPT Conf. 1980, 1 , 395. (8303) Pozdnyak, N. I.; Myl’nlkov, V. S. Zh. Tekh. Fiz. 1978, 4 8 , 838 [Russ]; CA08826201161U. (8304) Dmitruk, 6. F.; Orel, V. P.; Gribkova, L. V.; Antishko, A. N. Zh. Neorg. Khlm. 1981, 268, 1759 [Russ]; CA09512107813R. (€3305) Deryagln, 8. V ; Dukhin, S. S.; Ul’berg, 2 . R.; Kuznetsova, T. V. Kolloidn. Zh. 1980, 42, 464 [Russ]; CA09308080985H. (€3308) Shugurova, N. A.; Shokhonova, L. A.; Grishina, S. N. Teor. Prakt. Termobarogeokhim., (Dokl. Vses. Soveshch), 5th 1978, 237 [Russ]; CA09106048899F. (8307) Daume, E.; Fluscklger, R.; Rochat, E. Int. Jahrestag.-lnst. Chem. Treib-Explosivst., Mod. Techno/. Treib-Explosivst. 1978, 213 [Ger]; CA0911209383ON. (8308) Geldur, S. A.; Prokopenko, V. T.; Rondarev, V. S.; Yas’kov, A. D. Zavod. Lab. 1978, 4 4 , 546 [Russ]; CA08912099123Q. (8309) Matyslk, J.; Chmlel, J.; Cleszczyk-Chmlel, A. J. Nectroanal. Chem. Interfacial Electrochem. 1981, 124, 297. (8310) Suzuki, T. Jitsumu Hyomen Gyutsu 1978, 25, 537 [Japan]; CA09024190756E. (8311) Klyukln, L. M.; Namlot, V. A. Pis’ma Zh. Tekh. Fiz. 1979, 5 , 52 [Russ]; CA0902217730lH. (8312) Smith, T.; Smith, P. Polym. Sci. Techno/. 1980, 12A, 123. (8313) Klrov, G. DOH. Bob. Akad. Nauk 1980, 3 3 , 1659. (8314) Suga, S. Saibo 1978, 1 7 , 407 [Japan]; CA09209072126T. (8315) Bergner, J. Micfoscope 1978, 2 6 , 73.

(A301) McCrone, W. C. “The Asbestos Particle Atlas”; Ann Arbor Science: . Ann Arbor, MI, 1980. (A302) McCrone, W. C. Microscope 1977, 2 5 , 251. (A303) McCrone, W. C.; MoCrone, L. DHEW Pub/. (FDA) ( U S . ) , FDA-771033 1977, 37. (A304) McCrone. W. C., /WS Spec. Pub/. (US.)1978, No. 5 0 6 , 235. (A305) Gonzaiez Villar, F. ‘Temas Hig. Ind., ist Congr. Hig. Ind. 1978, 43 [Span]; CA09308078752M. (A306) Matsuno, T.; Inoko, M.; Nagano, E. Yokoham Kokurltsu Daigaku Kankyo Kagaki Kenkyu Senta K/yo 1980, 6 , 45 [Japan]; CA09406040733P. (A307) Monkman, L. J. Ann. Occup. Hyg. 1979, 2 2 , 127. (A308) Dlxon, W. C. ACS Symp. Ser W80, 120, 13. (A309) Haartz, J. C.; Langis, B. A.; Draftz, R. G.; Scholl, R. F. NBS Spec. Pub/. (US.)1978, No. 506,295. (A310) Dunn, H. W.; Stewart, J. H.,Jr. Microscope 1981, 2 9 , 39. (A311) Sperduto, B.; Burragato, F.; Altlerl, A.; Gasperettl, M. Ann. 1st. Super. Sanita 1977, 13, 127 [Ital]; CA09018141550Z. (A312) Taylor. D. H.; Bloom, J. S. Microscope 1980, 2 8 , 47. (A313) Stroszein-Mrowca, G.; Wiecek, E. Med. Pr. 1979, 3 0 , 293 [Pol]; . CA09226220209Q. (A314) Heldermanns, G. Staub-Relnhalt. Luft 1978, 3 8 , 423 [Ger]; CA09010075985K. (A315) Burdett, 0.; Le Gum, J. M.; Rood, A. P.; Rooker, S . J. Stud. Environ. Sci. 1980. 8 . 323. (A316) Duggan,’M. J.; Culley, E. W. Ann. Occup. Hyg. 1978, 2 1 , 85. (A317) Dixon, W. Microscope 1978, 2 6 , 183.

Size Exclusion Chromatography Gary L. Hagnauer Army Materials and Mechanics Research Center, Polymer Research Division, Watertown, Massachusetts 02 172

INlTRODUCTION This review covers the published literature from December 1977 to November 19811. The title has been changed from “Gel Permeation Chromatography” used in the previous review (2IA) because “Size Exclusion Chromatography” is more descriptive of the analytical technique and is the term recommended by the American Society of Testing and Methods (2A,8A). Size exclusion chromatography (SEC) is a type of liquid chromatography that involves the separation of molecules according to their size in solution. The size separation takes place within the pores of the column packing material by a physical sorting process. Liquid size exclusion, steric exclusion, gel permeation, and el filtration chromatography are synonymous terms for SE8 and are frequently encountered in literature due to convention or personal preference. Owing to the large number of publications in the area of size exclusion chromatography, only selected articles concerning significant developments in instrumentation, methodology, theory, and applications are reviewed. The literature survey was aided by computer searches of the Chemical Abstracts data base, the Engineering Index (COMPENDEX) data base, and the National Technical Information Service (NTIS) data base. Relevant journals and the bimonthly CA Selects-Gel Permealtion Chromatography and High Performance Liquid Chromatography-published by the Chemical Abstracts Service, Columbus, OH, were relied upon to maintain an awareneeis of the current literature. Citations of SEC literature from the Engineering Index, the NTIS, and the Food Science and Technology Abstracts data bases have been published (31A, 32A, 33A).

JOURNALS, BOOKS, AND REVIEWS In 1978 two new journals (7A,IOA) were introduced for the monthly publication of research in the development and application of chromatoigraphic techniques such as SEC. An authoritative and comprehensive book “Modern SizeExclusion Liquid Chrlomatography” was published by Yau,

Kirkland, and Bly (46A). Fischer (20A) published the book “Gel Filtration Chromatography’’ on the biomedical applications of SEC. Introductory texts (27A, 41A, 47A) on liquid chromatography with sections on SEC and a number of symposium editions (11A, 12A, 13A, 23A, 26A, 29A, 38A),on SEC were also published. Moore (35A) reviews the early years of SEC. Recent developments in detectors (34A, 40A) and data acquisition systems (22A, 39A) are reviewed. Methods for correcting imperfect resolution in the SEC of polymers are reviewed by Hamielec (24A),and Audebert (5A) surveys the literature on nonexclusion effects in SEC. The application of SEC for analyzing polymerH is reviewed by Ambler ( I A ) ,Brzezinski (9A),Cobler (I4A, 15A), Dawkins (17A),Hatt (25A),Ouano (36A),and Pollock (37A). Drott ( M A )reviews the use of SEC to determine long-chain branching in polymers. Aqueous SEC techniques are reviewed by Barth (6A) and Cooper (16A). SEC applications in the analysis of elastomers (30A, 43A), coatings (3A,4A, IYA), oligosaccharides (28A),carbohydrates (45A),fossil fuels (42A),and low molecular weight compounds (44A) are also reviewed.

COLUMNS AND COLUMN PACKING MATERIALS Perhaps the most significant advances in SEC analysis have been in the development and commercialization of highperformance columns. Typically, high-performance columns have porous packings with smaller particle sizes (5-30 p M ) and narrower particle size distributions than those originally developed for SEC. High-performance SEC columns generally have smaller dimensions, require less time per analysis, and provide higher plate counts and better resolution than the conventional columns. Microparticulate semirigid organic gel and rigid packings are now available in spherical or irregular shapes with narrow particle size distributions and a range of pore sizes and surface modifications. Dawkins and Yeadon (4B,5B, 6B)evaluate the performance of microparticulate SEC

This article not subject to US. Copyright. Published 1982 by the American Chemical Society

265 R

SIZE EXCLUSION CHROMATOGRAPHY

packings and compare columns containing different types of packing materials. Both Hintzsche et al. (11B)and Watters and Smith (32B) describe the preparation and characterization of macroporous styrene-divinylbenzene gels for SEC. “Bimodal” high-performance SEC columns which are commercially available with either untreated or silanized microporous silica packing and yield a linear calibration plot over a broad molecular weight range are described by Yau and co-workers (33B). New high-performance polystyrene gel and surface modified silica based packing materials are compared by Vivilecchia et al. (31B). The microparticulate porous silica packings are modified by reacting surface silanol groups with organosilanes having alkyl (32B) and alkyl ether (31B) functional groups. Ohsawa et al. (27B) review the process for manufacturing porous silica particles for SEC packing. Unger (30B) has a treatise on porous silica and on the packing and performance of columns with silica particles. Unique double layer gel particles consisting of an outer layer of cross-linked polymer and an inner layer of lightly cross-linked or non-cross-linked polymer are prepared and evaluated as column packing for aqueous and nonaqueous SEC by Hirayama (12B) and Motozato et al. (26B). Barth (6A) and Cooper and Van Derveer (16A) document commercially available packings for aqueous SEC along with descriptions of recently developed packing materials. Pfannkoch et al. (28B)describe test procedures for evaluating columns used for aqueous SEC and report performance data to aid users in selecting commercial columns. Klein and Westerkamp (19B) test a variety of commercially available stationary phases to evaluate their effectiveness for aqueous SEC. Commercial columns packed with sulfonated polystyrene gel are evaluated for aqueous SEC by Miller and Vandemark (23B). Cooper and Matzinger (2B) evaluate a commercial poly(ethy1ene glycol dimethacrylate) acking. The efficiencies of commercial TSK-GEL PW and W packings are compared by Kat0 et al. (14B). Dawkins and Gabboth (7B)describe procedures for packing and testing columns with macroporous polyacrylamide gel particles. New cellulose gel particles prepared by Kuga (21B) have high porosities and better mechanical strength than conventional macroporous, aqueous SEC gels such as agarose and cross-linked dextran. Mizutani (24B) prevents the adsorption of proteins on controlled-pore glass packing by coating the beads with silicone oil. Letot et al. (22B) show that coating porous silica packing with poly(viny1 pyrrolidone) prevents adsorption of water souble polymers during aqueous SEC. To reduce adsorptive effects Dawidowicz et al. (3B) use chemical and thermal treatments to modify the surfaces of packings obtained by crushing coarse fractions of porous glass. Herman et al. (1OB)report the preparation of high-performance packings for aqueous SEC consisting of both monomeric and polymeric diol phases bonded to porous silica. Fukano et al. (8B) describe techniques to obtain maximum coverage of microparticulate bonded silica packings. To obtain packing with variable pore sizes, Monrabal (25B) chemically bonds polystyrene to the surface of porous silica. By bonding a quaternary ammonium to the surface of porous silica, Talley and Bowman (29B) develop a novel packing for the SEC analysis of neutral and cationic water-soluble polymers. The effects of slurry reservoir size on the gravitational packing of soft gels is investigated by Kat0 et al. (15B). Jinno and Nishihara (13B) develop a miniaturized column using poly(tetrafluoroethy1ene) tubing (1.0 X 301 mm) with TSK Gel G3000 H10 packing. They compare the column’s performance with that of a commercial high-performance SEC column and evaluate the effects of column temperature and of varying the column inner diameter on the resolution. Kever et al. (16B, 17B, 18B) develop high-resolution microcolumns (0.6 X 300 mm) with a mixed silica bed. Heitz (9B)obtains high resolution in the SEC analysis of oligomers using a coiled column of poly(tetrafluoroethy1ene) tubing and a “soft” poly(viny1 acetate) gel packing. Chow and Long ( I B )design and evaluate a coiled microcolumn with silica packing for fast SEC. A method of measuring the exclusion volumes of packed columns by electrokinetic detection is developed by Krejci et al. (20B). 266R

ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982

INSTRUMENTATION Many advances in SEC instrumentation have occurred over the past 4 years. A variety of bench-top, high-pressure liquid chromatographs designed to operate with the newly developed high-performance SEC columns are now commercially available. The chromatographs have sophisticated, electronically controlled, high-pressure pumping systems for accurate flow rate control; specially designed, low dead-volume injectors and connections; and highly sensitive detectors with low volume, flow-through cells (36A,17C). Microprocessorbased systems have been developed for automatic sample injection, detection, and data handling. The trend is toward the total automation of SEC analysis and chromatograph operation through the use of laboratory automation systems (3C). A microprocessor-controlled, high-performance SEC instrument, the Waters Associates ALC/GPC 150C, has recently become available (21C,48C). The instrument is fully automated and is designed to operate a t temperatures up to 150 “C. It interfaces with a data system and features a sample processor for automatically mixing, filtering, and injecting sample solutions. It includes many safety devices for working with hazardous solvents and has a self-zeroingrefractive index detector. Snyder and Breder (77C) report on another hightemperature, high-performance liquid chromatograph which has an infrared detector and a computerized data reduction system for SEC analysis. The design and amlication of a custom-built SEC instrument with &fferent(d refractometer and evaporative analyzer detectors is described by Grabovac and Morris (28C, S I C ) . The evaporative analyzer consists of an atomizing head, a heated detector column to remove solvent, and a light scattering photometer to measure the concentration of solute in the atomized mist. The performance of the evaporative analyzer is reported to be comparable to that of a differential refractometer. Moebus (59C) designs and tests an automatic balance for the continuous determination of the weight, and therefore, the elution volume for SEC. A number of on-line minicomputer systems have been developed for collecting and processing SEC data (26C, 40C,56C, 57C, 62C, 67C, 84C). In general, the data systems are designed for handling high-performance SEC data and include an A/D converter, computer hardware for data acquisition and handling, and computer software for data reduction. SEC data are plotted, calculations are performed, and the results are reported. George and Baker (26C) make suggestions to help users in selecting a data system for SEC. Mukherji and Ishler (62C) describe an inexpensive, on-line data processing system for the Waters 200 SEC instrument. Differential refractive index detectors are still the most universal and widely used detector for SEC analysis. A unique, highly sensitive, differential refractometer was designed for high-temperature operation (48C). The optical and temperature control systems of another differential refractometer, the RI-8, has been improved for more stable operation (4C). A resoonse correction for differential refractometers is suggesteh by Mori (60C). New variable wavelength UV-visible absorbance detectors that interface with data svstems and operate in both fixedwavelength and automatcc scanning wavelength modes are available commercially (19C, 71C). Double-beam UV-visible detectors are described for the simultaneous monitoring of multiwavelengths (38C) and of high and low concentrations of SEC eluates (63C). Malczewski and Grusha (51C) use a rapid scanning multiwavelength diode array UV detector and describe fast Fourier transform techniques to determine the number of components under overlapping peaks. Klotter (43C) discusses the advantages of using fixedwavelength, UV-filter detectors with deuterium lamp sources. McDowell et al. (53C)find that nonlinearity in UV absorbance detectors affect peak area and width more strongly than peak height and symmetry. Standard ASTM procedures are described for testing fixed-waveleneth Dhotometric detectors used in liquid chromatography (TC, h8C). The use of multiple detectors for SEC analysis has become popular (79C). Differential refractometers are frequently used in series with UV-visible absorbance detectors (58C). Many of the special types of detectors mentioned in this review are

SIZE EXCLUSION CHROMATOORAPHY

m.HIs speciality Is the application dl I& uid chomatogaphy. i&+M scanering. 0%meby, and o h dilute solUtbn techniqws lo detamine the composbns and c h a r a M z a the srmCtures of p o l y m a and re$ted materials. His research interests lnduje study@ the p 4 y m r i l a mn and &gmdatbn b e h a v l ~of new polymsr matarlais and devebping new amhmcal techniques and memods. AS princlpi investigstor fafundamental research and MatarWiaIs Testing T e c h n o b PrObCtS. he has devebped liquid mamatography ten memods Which are CWentlv k i n g impbmented in mil& taw standards and llpeCifkatb"S far manutacturing and pracurement. He ls the Internammi Secretary lm me n C P technical subgroup panel on the development of wgaM materiai~and is a member 01 the American CkmC a i society. sigma xi. and me ASTM Section ~20.70.04on liquid size exciu&n chomatography.

coupled with refractive index or W detectors. For example, in an effort to broaden the application of SEC, Gallot (250 has constructed a multidetector system consisting of an automatic vimmeter, a UV absorbance detector, an automatic densimeter, and a li h t scattering photometer. In a study of prohlems aeaociatediwith multiple detection, Bressau (9C) finds that the ea illary tubing which connects the detectors shifts peaks a n f a l t e r s the shapes of elution curves. He recommends the use of columns with lar e diameters to minimize errors in SEC analysis. Berger (88)haa developed a compensation method for calculating molecular weight distributions and axial dispersion effects when multiple detectors are used. Francois et al. ( 2 3 0 adapt an automatic digital densimeter as a detector for SEC and comnare its nerformance with that of a differential refradometer.'The dehsimeter measures the density of liquids and detection is based upon the measurement of the vibration of a glass tube filled with the eluate. Leopold and T r a t h n i i (&C, 80C, 8ZC, 82C) show that density is a valid detection variable for concentration and that the densimeter is a universal detector for SEC with a detection limit comparable to that of a differential refractometer. By using an additional thermostatically controlled density measuring cell as a reference, Tratbnigg and Leopold (83C) are able to compensate for temperature fluctuations and improve the performance of the density detector. Benningfield, Mowery, and Bade (ZC, 7C) evaluate a commercial dielectric constant detector and find that i t is particularly useful in the SEC analysis of polymers. In many polar solute/nonpolar solvent combinations, the dielectric constant detector is more sensitive than a differential refractometer and responds equally to the concentrations of high and low molecular weight homologues of polymers. T o gain selectivity io SEC analysis, conventional infrared and Fourier transform infrared (FTIR) spectrometers have been employed as detecton (11C, 120. With the development of practical flow cells, FTIR detectors allow the simultaneous monitoring of multiple functionalities and the identification of components (12C, 27C. 85C). Vidrine (86C) applies ahsorbance subtraction techniques to interpret the on-line FTIR spectra of SEC eluate. Bartick ( 5 0 compares on-line infrared detection with a stop-flow, multiple internal reflectance infrared method for the SEC analysis of copolymer frations. Kuehl and Griffitha (44C)discuss problems involved with the use of flow cells for on-line lTIR-SEC detection and consider several approaches for eliminating solvent prior to infrared detection. They design a microcomputer-controlled interface between the SEC instrument and a diffuse-reflectance FTIR spectrometer (44C. 45C). The interface concentrates and deposits the sample eluate into cups of KCI powder, removes the solvent, and runs the infrared spectra. Methods me described for using Raman spectrometers with microcells as selective detectors ( 1 5 0 . On-line flow-through and stop-flow techniques are used with resonance Raman

spectrometers (mC,74C) and a coherent anti-Stokes Reman spectrometer (14C) as detectors for liquid chromatography. SEC applications for the detectors are promising. DiCesare (18C) considers the advantages of using a commercially available fluorescence detector to obtain the excitation and emission spectra of compounds in liquid chmmatography. New instrumentation employing laser excitation for fluorescence detection ( 7 6 0 , a cutoff filter to reduce interference effects in emission fluorescence detection (65C). and real-time fluorescence monitoring at multiple wavelengths (36C) may be applied in SEC analysis. Parks and Brinckman (IOC, 68C, 69C, 70C) use a metals ecific graphite furnace atomic absorption spectrometric etector coupled to a high-performance SEC instrument for the analysis of a wide range of metal-containing species. The atomic absorption detector offers advantages in selectivity. sensitivity, and freedom from solvent effects over conventional refractive index and W detecton. Renoe et al. ( 7 2 0 interface a liquid chromatograph to an atomic absorption spectrometer with a flow-injection sample manipulator for the SEC analysis of compounds containing Ca and Mg. In analyzing metalloproteins, Suzuki (78C)connects the outlet of an SEC column directly to the nebulizer tube of a flame atomic absorption spectrometer. Hausler and Taylor (3ZC, 32C) describe an inductively coupled plasma atomic emission spectrometric detector for the on-line simultaneous determination of metals in SEC analysis. A spray chamber is designed to interface the detector and to facilitate analyses using nonaqueous, highly volatile solvents. The design and performance of a continuous flow probe insert for a high-resolution 'H NMR detector directly coupled to a liquid chromatograph are described by Haw et al. (33C, 3 4 0 . The detector allows the structural identification of resolved components and has a sensitivity close to that of a refractive index detector. An example of its application for SEC analysis is given (35C). Bauer et al. (6C) apply a mathematical resolution enhancement method to improve on-line NMR spectra. With the commercial development of continuous moving belt and direct injection interfaces, m m spectrometers are becoming more frequently used as on-line detectors in liquid chromatographic analyses. The merits and the practical problems associated with the desi and operation of mass spectrometric detectors are consi ered (29C, 5 4 0 . Linder et al. (49C) use a magnetic circular dichroism spectrometer as an SEC detector for biological studies. Recently developed chlorine-selective (22C) and phosphorus-selective (55C) flame emission detectors and a laser-induced photoacoustic detector (64C)for liquid Chromatography may find uses in SEC analyses. Letot et al. (47C) describe the design and performance of a continuous viscometric detector for high-performance SEC. The detector consists of a thermostated capillary tube and piezo-resistive transducer inserted between the column outlet and a refractive index detector. With calibration the detector functions simultaneously as a continuous viscometer and a very accurate flow meter. Hulme and Thihcdeau (37C)design an automatic analyzer for measuring the polymerization yield and dilute solution viscosity of solution polymerized rubber. The instrument is computer controlled and consists of a high-performance SEC system linked through an injector to an automated Ubbelohde viscometer. There are a number of Dublications descrihine the oneration of a commercial low a n d e laser light scatteriig instrument as a molecular weight detector in the SEC analysis of polymers (13C,16C, 24C, 30C, 39C, 4ZC, 50C, 66C, 73C, 75C.870. The theory,,design, performance, and applications of the detector are rewewed by Jordan ( 4 2 0 and McConnell(52C). Jordan describes a new, on-line light-scattering detector, the Chromatix LSD-100, developed specifically for SEC.

z

r

TECHNIQUES Micro-h h performance SEC techniques are reported by Ishii et d.1$3;D). A new thin-layer SEC technique is developed for andyzing polymers on a siliconized porous glass bead support (63D). Majors ( 4 0 0 ) applies the term 'multidimensional chromatography" to techniques where fractions from one ANALYTICAL CHEMISTRY. VOL. 54, NO. 5, APRIL 1982

M7R

S I Z E EXCLUSION CHROMATOGRAPHY

chromatographic column are transferred to another type of column. He discusses the advantages and disadvantages of off-line and on-line multidimensional techniques and suggests liquid and gas chromatographic modes which are readily coupled on-line with SEC. A number of off-line ( 1 8 0 , 3 9 0 , 4 1 0 ) and on-line ( 3 0 , 4 0 ,5 0 , 1 5 0 , 3 4 0 , 3 6 0 ) applications are reported. The techniques are especially useful for cleaning up and concentrating samples, improving resolution, confirming peaks and determining peak heterogeneity. Miller et al. (450)suggest automated switching and on-line coupling techniques for fraction cutting and injecting fractions into a second chromatographic system. Column coupling, recycle, back-flushing and on-line extraction techniques are considered for column switching. Harvey and Stearns ( 2 5 0 ) show that both sample injections and column switching operations can be accomplished by using a single, low dead volume 10-port valve. Snyder et al. ( 5 9 0 ) discuss the advantages of a column-switching technique called “boxcar Chromatography” which is generally applicable to all forms of liquid chromatography. Freeman ( 1 6 0 ) reviews recent advances in column switching techniques and comments on the versatility and ultraselectivity of the technique. Balke and Pate1 ( 3 0 , 4 0 , 5 0 ) apply a technique termed “orthogonal chromatography” to the analysis of copolymers. The technique involves the coupling of two SEC instruments such that, at any time, the eluent from one instrument can be injected into the other. The mobile phase in the second instrument is a solvent/nonsolvent mixture to facilitate separation according to differences in copolymer composition. Sources of error and corrections for axial dispersion are discussed ( 3 0 , 4 0 ) . Johnson et al. (340) use a similar technique where the second SEC is replaced by a reversed-phase liquid chromatograph for the analysis of small molecules. Katz and Ogan ( 3 6 0 ) couple a partition chromatography column with an SEC column to analyze petroleum and liquid coal samples. In their application, the partition column retains particular components allowing the other components to be analyzed by SEC. Poile ( 4 9 0 ) shows that the column switching technique is more efficient than through-the-pump methods for recycling samples through SEC columns. Recycle techniques are applied to evaluate dispersion effects in the SEC analysis of polymers ( 2 0 0 ) and the effects of instrumental spreading on the polydispersity measurements of narrow molecular weight distribution polymers ( 4 2 0 , 4 3 0 ) . Using a high-performance SEC system, Lesec and Quivoron ( 3 8 0 )evaluate a recycle technique for the preparative separation of small molecules with very similar structures. Wang ( 6 4 0 )describes preparatory scale recycle techniques for the SEC fractionation of polymers. Basedow et al. ( 8 0 ) consider the theory and describe an experimental technique for the preparative SEC fractionation of polymers. In an attempt to reduce concentration effects in the preparative SEC of polymers, Albrecht and Gloeckner (ID,2 0 ) arrange the column packing such that the pore sizes of the polystyrene gel particles decrease downward from the column head. Preparative SEC techniques are used to fractionate poly(propy1ene terephthalate) prepolymers (9D),01igonaphthylenes (60D),and proteins ( 5 0 0 ) . Preparative SEC techniques are frequently applied to cleanup or concentrate sample components for other types of analyses (190,2 7 0 , 2 8 0 , 5 2 0 , 5 7 0 ) . Veith and Kuehl(620) describe an automated SEC technique for the preparative scale removal of lipids from fatty tissues. Hamielec and Singh ( 2 4 0 , 5 8 0 ) lay the theoretical and experimental foundations of a new SEC technique for the analysis of dilute suspensions of submicron particles. They establish a universal calibration relationship between the particle diameter and retention volume of standard latexes and describe an absolute particle size detector based on turbidity-spectra analysis ( 2 3 0 ) . Husain et al. propose methods of correcting for axial dispersion and imperfect resolution ( 2 9 0 , 3 2 0 ) and of estimating parameters for the instrumental spreading function ( 3 0 0 ) in the calculation of average particle diameters. They evaluate the particle size analysis technique in a detailed experimental investigation (310). In a study of chromatographic methods for particle size analysis, McHugh et al. ( 4 4 0 )investigate the SEC separation of different types of latexes using porous glass packing and 268R

ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982

aqueous eluents. They obtain a universal calibration curve and find that pore diameters must be two to three times larger than the latex particles for the SEC separation mechanism to be operative. Coll and Fague ( 1 2 0 ) use SEC to monitor the particle sizes and to detect cluster formation of latexes and colloidal SiOz dispersions. They find it essential to add electrolyte and surfactant to the aqueous eluent. Johnston et al. ( 3 5 0 )study the effects of electrolyte concentration in the mobile phase and the packing and of pore sizes in the stationary phase. Nagy et al. ( 4 6 0 , 4 7 0 )discuss the effects of eluent ionic strength, flow rate, axial dispersion, and resolution on the analysis of latex particle size by SEC and compare analyses obtained with porous and nonporous packings. Techniques are described for the SEC analysis of insoluble gel particles ( 6 7 0 )and soluble microgel ( 1 0 0 ) . A laser light scattering detector is used with SEC to analyze for microgel in polymers (530). Hellman et al. (260)use an SEC technique to determine indirectly the gel content in radiation cured coatings. In a preliminary study, Dubin ( 1 3 0 ) finds that SEC is a fast and versatile technique for investigating the size and stability of reversed micelles. Inverse SEC is described as a rapid and simple technique for determining the average pore diameters and pore size distributions of solids ( 2 2 0 ) . I t is the only technique for characterizing the pore structures of swollen gels. Halasz et al. ( 2 1 0 , 4 8 0 , 6 7 0 )use inverse SEC to investigate the effects that in situ coatings and chemical modifications of the surfaces of silica gels have on gel pore diameters and pore size distributions. The technique is also used to determine the relationship between pore size distribution and relative peak broadening of SEC stationary phases (660). Differences are observed between the interstitial porosities of spherical and irregular shaped silica particles ( 4 8 0 ) . Freeman and Schram use inverse SEC to characterize the pore structures of porous particulate packings used as stationary phases in liquid chromatography ( 5 5 0 ) and of microporous polystyrene-divinylbenzene copolymer gels ( 17 0 ) . The pore structures of macronet isoporous polystyrene ( 6 1 0 ) and three-dimensional polyelectrolytes ( 6 9 0 )are also evaluated. Schou and Larsen (540)comment on errors which may arise in using inverse SEC to determine pore sizes and suggest correction procedures. Kuga ( 3 7 0 ) evaluates the inverse SEC technique and suggests a mixed solute exclusion method for analyzing the pore size dist,ributions of gels. Bartick and Johnson (60, 7 0 ) describe a differential SEC technique to measure the hydrodynamic dimensions of polymers at finite concentrations. New derivatization techniques are described to facilitate the SEC analysis of silicate anions (560)and of cement pastes ( 5 1 0 ) . Carver ( 1ID) develops procedures for derivatizing hydroxyl functionalities to aid in the SEC analysis of hydroxy-terminated polymers. Warner et al. ( 6 5 0 ) report a postcolumn complexation technique for the spectrophotometric detection of poly(ethy1ene glycol) oligomers in SEC.

CALIBRATION AND DATA TREATMENT Novel and improved approaches are reported for the calibration of SEC columns to correct for dispersion effects and to overcome the problem of not having suitable standards available for different types of polymers. Janca (41E)reviews calibration methods for the SEC analysis of polymers. Gilding et al. (27E) compare several methods of calibration for different polymer and solvent systems. A standard method (7E) is now available for the SEC analysis of the average molecular weights and molecular weight distributions of polymers using a universal calibration procedure based upon hydrodynamic volume. The applicability of the universal calibration method is demonstrated for POlyisobutylene (57E),polyisoprene (62E),poly(viny1 acetate) (8E),poly(dimethylsi1oxane) (49E),polyesters (66E),sulfonated polystyrene (13E),poly(viny1 alcohol) (9E),poly(acry1ic acid) (13E),dextran (13E),and cellulose (14E). Hamielec and Ouano (33E)show that the number-average molecular weight M,,, rather than the weight-average molecular weight M,, is the correct parameter to use in the universal calibration equation for hydrodynamic volume. In a study of the SEC analysis of cellulose nitrate and poly(oxy-

SIZE EXCLUSION CHROMATOGRAPHY

propylene), French and Nauflett (24E) examine the averaging process used in universal calibration and conclude that a dispersivity correction is necessary when the calibration is based on M,,, Samay 01, al. (65E) investigate the reliability of universal calibration for calculating molecular weights. Lesec et al. (46E, 47E) consider problems in using universal calibration with dual refractive index-viscosity detectors and propose ways to avoid and to correct systematic errors. Investigators (16E, 60E) find that the universal calibration method is not valid in Tow molecular weight regions where extended chain effects become important. A combination of the universal method and direct calibration with oligomers is successful in polycarbonate studies (26E). Broad molecular weight distribution polymer standards are sometimes used to obtain linear calibration curves (32E,48E, 54E, 55E, 76E, 78E). Pollock et al. (63E) report a statistical evaluation of two methods for determining calibration curves using broad distribution standards. Molecular weights determined by the universal method with broad distribution standards are more accurate than when quadratic equations based directly on the standards are used for calibration (17E, 18E). Hester and Mitchell (37E,38E, 52E) describe a new universal calibration methodl based on the probability that polymer molecules will enter into pores of the packing material. Andersson (2E) proposes EL general method for calibration based on a least-squares approximation by cubic splines and using broad distribution Standards. For defining an ideal calibration curve, Vander Linden (74E)suggests the linear extrapolation of mean elution volumes to infinite dilution. Szewczyk (71E, 72E) calculates average retention volumes corresponding to the molecular weight averages of unimodal polymer standards to obtain an absolute calibration curve. Bareiss (1OE)applies the Flory-Fox equation and measures intrinsic viscosities to calculate average molecular weights. Other methods for calculating molecular weight averages also are proposed (50E, 69E, 70E). Using the universal method or empirical approaches for calibration, intrinsic viscosities (35E,58E, 81E), Mark-Houwink constants (5E,22E, 35E, 54E, 73E, 79E, 80E, 81E), and other hydrodynamic parameters (68E) are calculated for various polymers from SEC data. In an experimental evaluation of the precision of time-based high-performance SEC, Andersson (3E) concludes that the random errors in SEC measurements can be neglected in the calibration procedure. A number of investigators (19E, 23E, 29E, 42E, 55E) discuss, the reliability of SEC data and how reliability depends upon the calibration technique. Ivory and Bratzler (40E)estimate the error caused by using peak elution volumes rather than mean elution volumes in calibration. Fuzes (26E) finds that errors introduced in the calculation of average molecular weights increase with increasing polydispersity of the sample but decrease as the number of data points increase. Rollinlgs et al. (64E) report on the effect of ionic strength on universal calibration in the aqueous SEC of polyelectrolytes. Mencer and Grubisic-Gallot (51E) show that universal calibration does not apply in systems for which size exclusion is not thie only separation mechanism. Schulz (67E) finds that elemental sulfur is an excellent internal standard for olbtaining precise molecular weights by SEC. In a study to evalluate internal standards, Hellman and Johnson (36E)show that using an internal standard improves both the accuracy and precision of molecular weight analyses. Kohn and Ashcraft (4,3E) show that low molecular weight, polar internal standards are effective in reducing errors caused by flow variations in high performance SEC but do not correct major temperature changes. Hamielec and Omorodian (32E) propose and evaluate a modified universal calibration method which requires the use of multiple broad molecular weight distribution standards and provides estimates of the peak broadening parameter. Also, a generalized analytiaal solution to correct for imperfect resolution in the SEC analysis of polymers is proposed (24A, 31E). Both Hamielec’s method and a method developed by Berger (8C) required thle use of a concentration detector and a light scattering or viscosity detector. Andreetta and Figini (4E) use a least-squares optimization method to simultaneously determine calibration parameters and a dispersion function. Berger (IIE, 22E) describes a method involving the collection and reinjection of polymer fractions to determine

the molecular weight dependence of the axial dispersion function and to correct for dispersion. Dawkins et al. (6B, ZOE, 21E) suggest a procedure using experimental peak height data to correct for dispersion. Other methods to correct for dispersion effects also are proposed (210,30E,59E, 75E, 77E). A new method of measuring resolution in SEC, which corrects for sample heterogeneity and elution time, is proposed and compared with other methods by Gloeckner (28E). Hirsch et al. (39E;)derive SEC parameters based on calculated molecular volumeretention volume relationships for the analysis of low molecular weight petroleum distillates. However, Mori and Yamakawa (56E)find that it is difficult to use molar volume! or effective chain lengths as calibration parameters since low molecular weight compounds and oligomers of polymers often behave differently in different eluents. They suggest molecular weight conversion equations using digostyrenes or hydrocarbons as standards for particular types of oligomers. Conversion equations derived from peak elution volumes and molecular weights of oligomer fractions are applied (44E,45E,56E). Ambler and Mate (1E)fiid that, in the absence of adsorption, the universal calibration relationship for hydrodynamic volume applies in the low molecular weight region provided appropriate Mark-Houwink parameters are used. Mori (53E) proposes a new universal calibration method based upon calculations of projected areas and volumes for phthalate ester isomers and other low molecular weight compounds. A general function which describes a polymer as a blend of components is proposed and evaluated by Broyer (15E)to mathematically define molecular weight distributions as measured by SEC. Ashcraft (6E) has a computer program for the deconvolution of SEC chromatograms by nonlinear regression of the distribution to a summation of Gaussian components. Statistical methods for comparing (25E) and far subtracting (34E) the SEC chromatograms of different polymers are suggested. Pearce et al. (61E)describe a laboratory experiment for the SEC analysis of polymers.

SEPARATION MECHANISM Klein and Grueneberg (24F, 37F, 38F) examine the diffusional and convective transport of polymers in the pores of SEC packing materials and the effect of interstitial volume on polymer retention. They find that the hindrance to diffusion is much greater than expected and that, under certain conditions, the Separation mechanism changes due to convective transport. Also, they show that external exclusion, deformation, and degradation of polymers occur in the interstitial volume and that these effects become more pronounced as the particle diameter of the SEC packing material is decreased. Basedow et al. ( 8 0 )propose an improved stochastic model which is a function of pore diameter and describes separation as occurring in matrices with cylindrical pores. They discuss the distribution and transport of polymer molecules between the mobile phase and the stationary phase within the pores of the packing and investigate the effect of experimental variables on the shape of elution peaks (8F). Yau and Bly (64F) combine theory and experiment to provide a better understanding of the effects of solute shape and size on the SEC separation of polymers. Using a simple model of spherical molecules in cylindrical pores, Kubin and Vozka (42F)show that peak elution volumes are insensitive to the width of the pore size distribution of the packing. Kok and Rudin (40F) modify existing theory to predict the elution behavior of polymer mixtures. Applying the theory of statistical moments, Janca (27F) defines parameters which describe the shapes of polymer elution curves and permit the correlation of changes in experimental conditions to the generation of asymmetrical peak shapes. Knox and McLennan ( 3 9 0 investigate the effects of flow rate, column length, and sample loading on band dispersion in high-performance SEC. Tymczynski and Turska (61F) report on an SEC optimization approach to minimize band broadening effects which allows them to obtain more accurate results without resorting to complex mathematical methods for data correction. In studying the effects of column combinations, Mori (45F) concludes that ideally the exclusion limit of a column set should be about 10 times greater than the weight-average molecular weight of the polymer sample and that a column combination having a broad range of ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982

269 R

S I Z E EXCLUSION CHROMATOGRAPHY

particulate pore sizes is preferable. Janca et al. investigate the effects of concentration (28F, 30F, 31F, 33F, 34F, 35F), injection volume (32F), viscosity (29F, 34F, 36F), and column geometry (36F) on the SEC separation of polymers. Other investigations of the effects of sample concentration on elution behavior are also reported (18F,25F, 48F, 57F). Some studies provide information on the concentration dependence of the hydrodynamic volumes of solvated polymer molecules (43F,62F). Bleha et al. ( 1 0 9 describe a theoretical model for the dependence of elution volume on the concentration of injected polymer. A nonogram method is proposed to correct molecular weight distributions for concentration effects (52F). The effects of column temperature (46F), solvent (12F), particle size (16F),and non-steady-state flow (41F) on column efficiency and on the SEC analysis of olymers are reported. Aubert and Terrell(2F) find that the iffusion of polystyrene into the SEC stationary phase is influenced strongly by flow rate, by polymer size, and by the pore size of the packing. They propose theoretical models based on the flow of polymer molecules through narrow channels and next to walls and describe a flow rate dependent equilibrium coefficient to explain the flow rate dependence of the elution volume (IF, 3F, 4F). In a study of the effect of flow rate on polymer degradation, Rooney and Ver Strate (73C) find that polymer degradation occurs at flow rates as low as 0.3 cm3/min for polymers above a certain molecular wei h t with high-performance column packing. Huber and Leferer (26F) observe degradation of high molecular weight polyisobutylene at even lower flow rates. Moore (44F)discusses the use of frontal analysis techniques to study two types of overloading effeds; i.e., viscous fingering and macromolecular compression. Viscous fingering is caused by a lower viscosity fluid pushing unevenly into a high viscosity zone, and macromolecular compression occurs when polymers shrink each others domain rather than interpenetrating. He finds that the compression effect is easily corrected but that it is not simple to correct for viscous fingering. In comparing the lon term reproducibility of SEC using polystyrene gel packing, amay and Fuzes (56F)observe major changes in the peak elution volumes of calibration standards for a system operated a t 130 "C but essentially no changes in the volumes for a system operated at ambient temperature. Methods are suggested to reduce errors in the high-temperature SEC analysis of polyolefins (59F). Dawkins (14F, 1 5 9 discusses the influence of solute-stationary phase interactions on the separation mechanism and on the displacement of calibration curves for polymers. The universal calibration concept does not apply when adsorption and partition phenomena due to interactions between the solute and the stationary phase affect the separation mechanism. Figueruelo et al. ( I l F , 19F, 20F, 21F) study the polymer separation mechanism on active gels with pure and mixed solvents and consider adsorptive and partition effects. Other studies of nonexclusion effects are also reported (5F, 47F, 60F). Theoretical models are designed to treat nonexclusion effects in SEC (22F). Nakamura and Endo (49F) observed a decrease in the adsorption of polymer on orous glass packing as the temperature is raised. In a stu y with mixed eluents, Bleha and Berek (9F)evaluate the partition of solute due to preferential solvation of the gel stationary phase. In the SEC analysis of cyclic hydrocarbons, Groh and Halasz (23F) observe a negative adsorptive effect. They recommend the use of an isotopically labeled eluent to measure the effective pore volume. Size exclusion problems associated with aqueous column packings are reported. Both surface-modified and untreated silica gel are found to dissolve in water (6F, 7F, 63F) and polyacrylamide is adsorbed onto silica gel (63F). Shibukwa et al. (58F) propose a mechanism to account for the effects of counterions and coions in the SEC separation of inorganic solutes in aqueous media. Rinaudo et al. (53F, 54F, 55F) discuss the effects of injection volume, solute concentration and eluent ionic strength on the aqueous SEC of polyelectrolytes. They propose methods for optimizing SEC analysis and for universal calibration. In evaluating the effect of eluent ionic strength, Cooper and Matzinger (13F) observe an ion exclusion mechanism in low ionic strength, buffered solvents. Omorodion et al. describe methods to optimize peak separation and minimize peak broadening effects in the SEC analysis of

8

B

270 R

ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982

dextrans (51F) and polyacrylamides (50F). Dubin (17F) uses 0.01 M LiBr in dimethylformamide as the mobile phase to inhibit the aggregation of polar polymers. There are strong ion-dipole interactions between polar polymers and LiBr in dimethylformamide solutions.

APPLICATIONS Because of the broad range of application areas and the widespread use of SEC, only a fraction of the published literature involving the use of SEC can be mentioned. An effort has been made to select references of general interest where SEC is the central technique and where original or advanced SEC methods are employed. A bibliography of references in selected application areas is given below. Branching Studies: MA, 30C, 41C. 1G-15G. Copolymek and mixed polymer system: 5C, 28C, 66C, 69C, 3D. 4D. 10D. 51E. 5F. 11F. 40F. 48F. 1H-15H. Solution thermodynamic studies: '15-55. Polymer degradation studies: 1K-1OK. Polymerization studies: 3D, 1L-7L. Quality control, process control, and forensic analysis: 1M-7M. Polystyrene: 44E, 62F, 15G, l K , 4K, 8K-10K, 1N-6N. Polycarbonates: 16E, 36E, 5G, 11G, 2K, 7N, 8N. Polyolefins: 50C, 73C, 77C, 53D, 33E, 53E, 59F, 2G, 7G, 10G. 7L. 9N-15N. Poly(&yl chloride) and other vinyl polymers: 8E, 33E, 51E, 7F, 3G, 4G, 5H, 6H, lJ, 6L, 16N, 17N. Methacrylate polymers: 39C,66C, 22E, 65E, 21F, lL, 18N0 1 hT

LILY.

Polyesters and polyamides: lE, 45E, 66E, 79E, 17F, 22N30N. Natural and synthetic rubber: 30A, 43A, 37C, 57E, 62E, 26F, lG, 3H, 7K, 2M, 31N-34N. Polyurethanes: 35N, 36N. Poly(dimethylsi1oxane): 49E, 21F, 37N. Polyphosphazenes: 3K, 3L, 38N-41N. Epoxy resins: 9B, 33D, 56E, 1P-18P. Phenolic resins: 87C, 19P-24P. Poly(ethy1ene glycol) and other poly(alky1 oxides): 7B, 60C, 24E. 44E. 56E. 25P-28P. Oligomers: 9B, 9D, 11D, 33D, 60D, 65D, lE, 45E, 53E, 56E, 62E. - -- 29P-32P. --7

Additives, residual monomers, and low molecular weight compounds: 44A, 41D, 53E, 33P-37P. Waxes: 38P-40P. Coatings: 3A, 4A, 19A, 26D, 41P-44P. Coal derived products, asphaltenes, and pitches: 11C, 12C, 32C, 35C, 76C, 36D, 39D, 52D, 39E, 45P-64P. Fuels, lubricants, and fluids: 42A, 33C, 34C, 39D, 39E, R5P-71 P ""_ .--.

Silicates and organosilicones: 84C, 57D, 4L, 72P-74P. Dextrans: 13E. 52E. 64E. 68E, 6F. 51F. Cellulose and lignins: 13C, 14E, 24E, 1Q-14Q. Saccharides, starches and carbohydrates: 28A, 45A, 15Q21Q. Polyacrylamides: 19B, 50F, 63F, 22Q-25Q. Proteins, peptides, and other biological materials: 14B, 24B, 27B. 28B. 6C. 49C. 63C. 78C, 19D, 27D, 28D, 50D, 62D, 5E, 26Ql46Q: ' Humic and fulvic acids: 47Q-526. Polyelectrolytes and other water-soluble polymers: 6A, 16A, 10B, 24C, 66C, 9E, 13E, 52E, 64E, 13F, 53F-55F, 536-6OQ. Latexes: 12D. 29D-32D. 46D-48D. 68D. ~. . Colloids, micedes, and microgels: lOD, 12D, 13D, 46D, 53D, 61Q, 62Q. Inorganic and organometallic compounds: 31C, 32C, 68C70C, 72C, 78C, 30D, 51D, 56D, 58F, 63Q-66Q. LITERATURE CITED INTRODUCTION-JOURNALS,

BOOKS, AND REVIEWS

(IA) Ambler, M. R. Am. Lab. (Falrfleld, Conn.) 1979, 1 1 . 16-28. (2A) ANSI/ASTM 03016-79 "Standard Recommended Practice for Use of GPC Definitions and Relationshlps"; 1980 Annual Book of ASTM Standards; ASTM: Phlladelphia, PA, 1980; PI 35, pp 785-792. (3A) Anderson, D. G.; Vandeberg, J. T. Anal. Chem. 1979, 5 1 , 80R-9OR. (4A) Anderson, D. G.; Vandeberg, T. T. Anal. Chem. 1981, 5 3 , 13R-28R. (5A) Audebert, R. Po/ymer 1979, 20, 1561-1566. (6A) Earth, H. G. J . Chromatogr. Scl. 1980, IS, 409-429. (7A) Bertsch, W., Grob, K., Jennings, W. G., Kaiser, R. E., Pretorius, V., Roeraade, J., Eds. "Journal of High Resolution Chromatography and Chro-

S I Z E EXCLUSION CHROMATOGRAPHY matography Communications”; Verlag: Heidelberg, 1978. (8A) Bly, D. D. J. Llq. Chromatog. 1980, 3 , 465-470. (9A) Brzezinski, J. Polimery, 1979, 2 4 , 145-150; Chem. Abstr. 1979, 9 1 , 141256d. (IOA) Cazes, J., Ed. “Journal of Liquld Chromatography”; Marcel Dekker: New York, 1978. (1 1A) Cazes, J., Ed. “Liquid Chromatography of Polymers and Related Materials”; Marcel Dekker: New York, 1977; Chromatographic Science Series 8. (12A) Cazes, J., Deiamore, X., Eds. “Liquid Chromatography of Polymers and Related Materlals 2”; Marcel Dekker: New York, 1979; Chromatogr. Sci. Series 13. (13A) Cazes, J., Ed. “Liquid (Chromatography of Polymers and Related Materials 3”; Marcel Dekker: New York, 1981; Chromatographlc Science Series 19. (14A) Cobler, J. G.; Chow, C. D. Anal. Chem. 1979, 51, 287R-303R. (15A) Cobler, J. G.; Chow, C. D. Anal. Chem. 1981, 5 3 , 273R-283R. (16A) Cooper, A. R.; Van Derveer, D. S. J . Liq. Chromatogr. 1978, 1 , 693-726. (17A) Dawkins, J. V.; Yeadon, G,, “Developments in Polymer Characterization”; Dawkins, J. V.. Ed.; Appl. Sci. Publ.: London, 1978; pp 71-97. (18A) Drott, E. E. Chromatogr. Scl. 1977, 8(Liq. Chromatogr. Polym. Relat. Mater.), 161-166. (19A) Ellis, R. A. Pigm. Resln Technol. 1979, 8 , 10-14. (20A) Fischer, L. “Gel Filtration Chromatography”, 2nd ed.; EisevierlNorthHolland Biomedlcal Press: Amsterdam, 1980. (21A) Gaylor, V. F.; James, H. L. Anal. Chem. 1978. 5 0 , 29R-36R. (22A) George, S. A.; Baker, D. R. Ind. Res. Dev. 1980, 2 2 , 113-117. (23A) Glddings, J. C., Keller, R. A., Gruskha, E., Cazes, J., Eds. “Advances I n Chromatography“; Marcel Dekker: New York, 1977; No. 15. (24A) Hamlelec, A. E. J . LIT. Chromatogr. 1980, 3 , 381-392. (25A) Hatt, 8. W. “Deveiopments in Chromatography”; Knapman, C. E. H., Ed.; Appl. Sci. Publ.: Lonidon, 1978; Vol. 1, pp 157-199. (26A) Hawk, G. L., Ed. “Bioiogical/Biomedical Applications of Liquid Chromatography 3”; Marcel Dekker: New York, 1981; Chromatographic Science Series 18. (27A) Johnson, E.; Stevenson, B. “Basic Liquid Chromatography“; Varian Associates: Palo Alto, CA, 1979. (28A) Kennedy, J. F.; Fox, J. E. Methods Carhohydr. Chem. 1980, 8 , 13-19. (29A) Knapman, C. E. H., Ed. “Developments lri Chromatography”; Appl. Sci. Pubi.: London, 1978; Voi. 1. (30A) Krishen, A. Anal. [email protected], 5 3 , 159R-162R. (31A) Marcus, L. H., Ed. “Gel Permeatlon Chromatography. February 1974June 1980” (Citations from the Engineering Index Data Base); National Technical Information Service: Springfield, VA; June 1980; 212 pp. (32A) Marcus, L. H., Ed. “(kil Permeatlon Chromatography. June 1970-June 1980” (Citations from the1 NTIS Data Base); Natlonal Technlcal Information Servlce: Sprlngfield, VA, June 1980; 62 pp. (33A) Marcus, L. H., Ed. “Gel Permeatlon Chromatography. January 1972May 1980” (Cltations froirn the Food Science and Technology Abstracts Data Base); National Technical Information Service: Springfield, VA, June 1980; 66 pp. (34A) McKinley, W. A.; Popovich, D. J.; Layne, T. Am. Lab. (Fairfleld, Conn.) 1980, 72. 37-47 (35A) Moore. J. C. Chromiitoar. Sci. 1981, 19. (Lla. Chromatoar. - Polvm. . Relat. Mater. 3), 1-12. (36A) Ouano, A. C. Rubber Chem. Technol. 1981, 5 4 , 535-575. (37A) Pollock, D. J.; Kratz, R. F. Methods Exp. Phys. 1980, 18, 13-72. (38A) Provder, T., Ed. “Size1 Exclusion Chromatography”; Amercian Chemical Society: Washington, DC, 1980; ACS Symp. Ser., No. 138. (39A) Reese, C. E. J. Chromatogr. Sci. 1980, 18, 249-257. (40A) Smythe, L. E. Chem. Aust. 1981, 48, 249-251. (41A) Snyder, L. R.; Kirkland, J. J. ”Introduction to Modern Liquid Chromatography”. 2nd ed.; Wiley: New York, 1979, (42A) Vavrecka, P.; Sebor, G.; Lang, I.; Pecka, K. Chem. Listy 1981, 75, 498-511; Chem. Abstr. 1981, 9 5 , 45526d. (43A) Wadelin, C. W.; Morris, M. C. Anal. Chem. 1979, 5 1 , 303R-308R. (44A) Walter, R. B.; Johnson, J. F. J. Liq. Chromatogr. 1980, 3 , 315-327. (45A) Whistler, R. L.; Anisuzzaman, A. K. M. Methods Carbohydr. Chem. 1980, 8 . 45-53. (46A) Yau, W. W.; Kirkland, J. J.; Bly, D. D. “Modern Size-Exclusion Llquld Chromatography”; Wlley: New York, 1979. (47A) Yost, R. W.; Ettire, L. S.; Conion, R. D. “Practical Liquid Chromatography”; Perkin-Elmer Corp.: Norwalk, CT, 1980. COLUMNS AND COLUMN PACKINQ MATERIALS

( l e ) Chow, C. D.; Long, M. IN. Chromatogr. Scl. 1981, 19 (Liq. Chromatogr. Polym. Reiat. Mater. 3), ‘127-136. (28) Cooper, A. R.; Matzingor, D. P. J. Liq. Chromatogr. 1978, 1 , 745-759. (38) Dawidowicz, A.; Waksmundzkl, A.; Derylo, A. Chem. Anal. (Warsaw) 1979, 2 4 , 965-970. (48) Dawkins, J. V.; Yeadon, G. Polymer 1979, 20, 981-989. (5B) Dawkins, J. V. Chromatogr. Sci. 1980, 19 (Liq. Chromatogr. Polym. Relat. Mater.) 19-39. (6B) Dawkins, J. V.; Yeadon, G. J. Chromatogr. 1980, 188, 333-345. (78) Dawkins, J. V.; Gabbott, N. P. Polymer 1981, 22, 291-292. (8B) Fukano, K.; Komiya, K.; Sasaki, H.; Hashimoto, J. J . Chromatogr. 1978, 766, 47-54. (9B) Heitz, W. Chromatogr. Scl. 1981, 79 (Llq. Chromatogr. Polym. M a t . Mater. 3), 137-156. (106) Herman, D. P.; Field, IL. R.; Abbott, S.J . Chromatogr. Sci. 1981, 19, 470-476. (1 IB) Hintzsche, W.; Haeupke, K.; Popov, G.; Schweiger, M.; Schwachula, G. Plaste Kautsch. 1981, 2 8 , 248-253; Chem. Abstr. 1981, 95, 44000r.

(128) Hirayama, C.; Motozato, Y. Polym. Prep., Am. Chem. SOC., Dlv. Polvm. Chem. 1979. 20. 628-629. (13B)-Jinno, K.; Nishihara, M. Anal. Lett. 1980, 13, 673-681. (14B) Kato, Y.; Komiya, Y.; Sasaki, H.; Hashimoto, T. J. Chromatogr. 1980, 193, 311-315. (158) Kato, Y.; Komlya, K.; Iwaeda, T.; Sasaki, H.; Hashimoto, T. J. Chromatogr. 1881, 211, 383-387. (16s) Kever, E. E.; Belen’kll, 6 . G.; Gankina, E. S.;Vilenchik, L. 2.; Kurenbin, 0. I.; Zhmakina, T. P. J. High Resolut. Chromatogr. Commun. 1981, 4 , 425-426. (178) Kever, E. E.; Gankina, E. S.; Beien’kil, B. G. Vysokomol. Soedin., Ser. A 1981, 2 3 , 234-236; Chem. Abstr. 1981, 9 4 , 175710~. (I8B) Kever, E. E.; Beien’kil, B. G.; Gankina, E. S.;Vilenchik, L. 2.; Kurenbin, 0. I.; Zhmakina, T. P J. Chromatogr. 1981, 207, 145-147. (19B) Klein, J.; Westerkamp, A. J. Polym. Scl., Polym. Chem. 1981, 19, 707-718. (208) KreJcl,M.; Kourilova, D.; Vespalec, R.; Slais, K. J . Chromatogr. 1980, 191, 3-7. (218) Kuga, S.J. Chromatogr. 1980, 195, 221-230. (228) Letot, L.; Lesec, J.; Quivoron, C. J . Liq. Chromatogr. 1981, 4 , 1311-1322. (238) Mlller, R. L.; Vandemark, F. L. Chromatogr. Newsl. 1980, 8 , 69-72. (248) Mizutani, T., J. Chromatogr. 1980, 196, 485-488. (258) Monrabal, B. Chromatogr. Sci. 1981, 19 (Llq. Chromatogr. Polym. Relat. Mater. 3), 79-98. (268) Motozato, Y.; Hirayama, C.; Suga, M.; Iwamoto, T. Polymer 1979, 2 0 , 84-88. (278) Ohsawa, K.; Hoshi, T.; Murakami, Y. Maku 1979, 4, 221-227; Chem. Abstr. 1980, 9 2 , 54330a. (288) Pfannkoch, E.; Lu, K. C.; Regnler, F. E.; Barth, H. G. J. Chromatogr. Scl. 1980, 18, 430-441. (298) Talley, C. P.; Bowman, L. M. Anal. Chem. 1979, 5 1 , 2239-2242. (308) Unger, K. K. “Porous Slllca-Its Properties and Uses as Support in Column Liquid Chromatography”; Elsevler: Amsterdam, 1979. (318) Vivllecchia, R.; Lightbody. B.; Thimot, N.; Quinn, H. Chromatogr. Sci. 1977, 8 (Llq. Chromatog. Polym. Relat. Mater.) 11-27. (328) Watters, J. C.; Smith, T. G. Ind. Eng. Chem. Process Res. Dev. 1979, 18, 591-594. (338) Yau, W. W.; Ginnard, G. R.; Kirkland, J. J. J . Chromatogr. 1978, 149. 465-487. INSTRUMENTATION

(1C) American Society for Testing and Materials, “1980 Annual Book of ASTM Standards”, Part 42, Method E685; ASTM: Philadelphia, PA, 1980; p 560-569. (PC) Bade, R. K.; Benningfiekl, L. V.; Mowery, R. A., Jr. Am. Lab. (Fairfleld, Conn.) 1981, 13 (IO), 130-137. (3C) Baker, D. R.; George, S.A. Am. Lab. (falrfleld, Conn.) 1980, 12(1), 41-46. (4C) Bamba, N.; Aiura, M.; Hashimoto, T. Soda Kenkyu Hokoku 1979, 2 4 , 139-155; Chem. Abstr. 1980, 9 3 , 2401968. (5C) Bartick, E. G. J. Chromatogr. Scl. 1979, 17, 336-339. (6C) Bayer, E.; Albert, K.; Nieder, M.; Grom, E.; An, 2. fresenius’ Z . Anal. Chem. 1980, 304, 111-116; Chem. Abstr. 1981, 9 4 , 95411n. (7C) Bennlngfield; L. V.; Mowery, R. A. J . Chromatogr. Scl. 1981, 19, 115-123. (8C) Berger, K. C. Prog. Collold Polym. Sci. 1979, 66, 159-168. (9C) Bressau, R. Chromtogr. Scl. 1980, 13 (Liq. Chromatogr. Polym. Relat. Mater. 2)’ 73-93. (1OC) Brlnckman, F. E.; Jewett, K. L.; Iverson, W. P.; Irgolic, K. J.; Erhardt, K. C.; Stockton, R. A. J. Chromatogr. 1980, 191, 31-46. (11C) Brown, R. S.; Hausler, D. W.; Taylor, L. T. Anal. Chem. 1980, 5 2 , 1511-1515. (12C) Brown, R. S.;Hausler, D. W.; Taylor, L. T.; Carter, R. C. Anal. Chem. 1981, 53, 197-201. (13C) Cad, J. J.; Cannon, R. E.; Diggs, A. 0. ACS Symp. Ser. 1981, No. 150 (Solutlon Prop. Polysaccharides), 43-59. (14C) Carrelra, L. A.; Rogers, L. B.; Goss, L. P.; Martin, G. W.; Irwin, R. M.; Von Wundruszka, R.; Berkowitz, D. A. Chem. Biomed. Environ . Instrum. 1980, 10, 249-271. (15C) Chapput, A.; Roussel, B.; Montastler, J. J. Raman Spectrosc. 1980, 9 , 193-197. (IC)Cunningham, A. F.; Heathcote, C.; Hillman, D. E.; Paul, J. I.Chromatogr. Sci., 1980, 13 (Llq. Chromatogr. Poly,m. Relat. Mater. 2), 173-1913, (17C) Dawkins, J. V.; Yeadon, G. Deveiopments in Polymer Characterization”; Dawkins, J. V., Ed.; Appl. Sci. Publ.: London, 1978; Chap. 3. (18C) DlCesare, J. L. Chromatogr. Newsl. 1978, 8 , 25-29. (d9C) DiCesare, J. L.; Vandemark, F. L. Chromatogr. Newsl. 1980, 8 , 62-64. (2OC) D’Orazio, M.; Schimpf, U. Anal. Chem. 1981, 5 3 , 809-812. (21C)Fernandez, E. Quim. Ind. (Madrld) 1980, 28, 345-351; Chem. Abstr. 1981, 9 4 , 4389x. (22C) Folestad, S.;Josefsson, B. J. Chromatogr. 1981, 203, 173-178. (23C) Francois, J.; Jacob, M.; Grubisic-Galiot, 2.; Benolt, H. J. Appl. Polym. Sci. 1978, 22, 1159-1162. (24C) Fukutomi, M.; Fukuda, M.; Hashimoto, T. Toyo Soda Kenkyu Hokoku 1980, 24, 33-41; Chem. Abstr. 1980, 9 2 , 164464e. (25C) Gallot, 2. Chromatogr. Scl. 1980, 13 (Liq. Chromatog. Polym. Relat. Mater. 2), 113-122. (26C) George, S. A.; Baker, D. R. Ind. Res. Dev. 1980, 22 (4), 113-117. (27C) Gomez-Taylor, M. M.; Kuehl, D.; Griffith, P. R. Int. J. Environ. Anal. Chem. 1978, 5 , 103, 117. (28C) Grabovac, 1.; Morris, C. E. M. Rep-Mat. Res. Lab. (Aust.) 1979, MRL-R-725, 28 pp; Chem. Abstr. 1980, 9 2 , 23331~. (29C) Guiochon, G.; Arpino, P. J. Anal. Chem. 1979, 51, 682 A-701 A. ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982

271 R

SIZE EXCLUSION CHROMATOGRAPHY (30C) Hamlelec, A. E.; Ouano, A. C.; Nebenzahl, L. L. J. Liq. Chromatogr. 1978. 1 , 527-554. (31'2) Hausler, D. W.; Taylor, L. T. Anal. Chem. 1981,53, 1223-1227. (32C) Hausler, D. W.; Taylor, L. T. Anal. Chem. 1981,53, 1227-1231. (33C) Haw, J. F.; Glass, T. E.; Hausler, D. W.; Motell, E.; Dorn, H. C. Anal. Chem. 1980,52, 1135-1140. (34C) Haw, J. F.; Glass, T. E.; Dorn, H. C. Anal. Chem. 1981, 53, 2327-2332. (35C) Haw, J. F.; Glass, T. E.; Dorn, H. C. Anal. Chem. 1981, 53, 2332-2336. (36C) Hershberger, L. W.; Callis, J. 8.; Christian, G. D. Anal. Chem. 1981, 53,971-975. (37C) Hulme, J. M.; Thibcdeau, W. E. Anal. Instrum. 1980, 18, 39-46. (38C) James, G. E. Can. Res. 1981, 13,39-43. (39C) Jenkins, R.; Porter, R. S. J. Polym. Scl., Polym. Lett. Ed. 1980, 18, 743-750. (40C) Jordan, R. C. Am. Lab. (Falrfield, Conn.) 1979, 11 (9), 71-81. (41C) Jordan, R. C.; McConnell, M. L. ACS Symp. Ser. 1980,No. 138 (Slze Exclusion Chromatogr.), 107-129. (42C) Jordan, R. C. J. Liq. Chromatogr. 1980,3,439-463. (43C) Klotter, K. A. Am. Lab. (Fairfleld, Conn.) 1981, 13, 126-134. (44C) Kuehl, D. T.; Grlfflths, P. R. J. Chromafogr. Sci. 1979, 17. 471-476. (45C) Kuehl, D. T.; Griffiths, P. R. Anal. Chem. 1980,52, 1394-1399. (46'2) Leopold, H.; Trathnlgg, B. Angew. Makromol. Chem. 1978, 68, 165- 197. (47C) Letot, L.; Lesec, J.; Quivoron, C. J. Liq. Chromatogr. 1980, 3, 427-438. (48C) Limpert, R. J.; Nelson, J. R.; Dark, D. A. Am. Lab. (Fairfleld, Conn.) 1978. 10. 43-49, (49C) Llnder, R. E.; Records, R.; Barth, G.; Bunnenberg, E.; Djerassl, C.; Hedlung, B. E.; Rosenberg, A.; Benson, E. S.; Seamans, L.; Moscowitz, A. Anal. Blochem. 1978,90,474-480. (50C) MacRury, T. B.; McConnell, M. L. J. Appl. Polym. Scl. 1979,24, 651-662. (51C) Malczewski, M. L.; Grushka, E. J. Chromatogr. Sci. 1981, 79, 187-1 94. (52C) McConnell, M. L. Am. Lab. (Falrfleld, Conn.) 1978, 10 (5), 63-75. (53C) McDowell, L. M.; Barber, W. E.; Carr, P. W. Anal. Chem. 1981,53, 1373-1376. (54C) McFadden, W. H.; Bradford, D. C.; Eglinton, 0.; Hajibrahim, S. K.; Nicolaides, N. J. Chromatogr. Sci. 1979, 17, 518-22. (55C) McGuffin, V. L.; Novotny, M. Anal. Chem. 1981,53,946-951. (56C) Melra, G. R.; Johnson, A. F. Polym. Eng. Sci. 1981. 21, 57-63. (57C) Miller, R. L. Am. Lab. (Falrfleld, Conn.) 1981, 13 (I I), 78-88. 158'2) Mlller. R. L. Chromatoar. News/. 1981.9. 13-15. $9Cj Moebus. G. A.; Growth&, J. A.; Bartick,'E. G.;Johnston, J. F. J. Appi. Polvm. Sci. 1979.23. 3501-3504. (60C) *Mori, S. Anal.'Chem. 1978,50, 1639-1643. (61C) Morrls, C. E. M.; Grabovac. I. J. Chromatogr. 1980, 189, 259-262. (62C) Mukherji, A. K.; Ishler, J. M. J. Liq. Chromatogr. 1981,4, 71-84. (63C) Munktell, G. Profldes Blol. Fluids . 1979 1980,27th, 735-737; Chem. Abstr. 1980,92,211105a. (64C) Oda, S.; Sawada, T. Anal. Chem. 1981,53,471-474. (65C) Ogan, K.; Katz, E.; Porro, T. J. J. Chromatogr. Scl. 1979, 17, 597-600. (66C) Ouano, A. C.; Dawson, 6. L.; Johnson, D. E. Chromatogr. Scl. 1977, 8 (Liq. Chromatogr. Polym. Relat. Mater.), 1-9. (67C) Ouchl, 0.; Flarlty, C. Am. Lab. (Fairfield, Conn.) 1981,13 (2), 71-75. (68C) Parks, E. J.; Brlnckman, F. E.; Blair, W. R. J. Chromatogr. 1979,185, 563-572. (69C) Parks, E. J.; Brinckman, F. E.; Mullln, C. E.; Andersen, D. M.; Castelll, V. J. J. Appl. Polym. Sci. 1981,26, 2967-2974. (70C) Parks, E. J.; Brinckman, F. E. "Controlled Release Pestic. Pharm."; Lewis, D. M., Ed.; Plenum: New York, 1981; pp 219-238. (71C) Poile, A. F.; Conlon, R. D.; Ettre, L. S. Ind. Res. Dev. 1981,23 (2), 147- 153. (72C) Renoe, B. W.; Shideler, C. E.; Savory, J. Clin. Chem. (Wlnston-Sa/em, NC) 1981,27, 1546-1550. (73C) Rooney. J. G.; Ver Strate, 0. Chromafogr. Sci. 1981, 19 (Llq. Chromatogr. Polym. Relat. Mater. 3). 207-235. (74C) Saito, S.; Teramae. N.; Tanaka, S. Nippon Kagaku Kaishi 1980,(9), 1363-1366; Chem. Abstr. 1980,93,2303022. (75C) Scholtens, 8. J. R.; Welzen, T. L. Makromol. Chem. 1981, 182, 269-272. (76C) Sepaniak, M. J. Report, 1981, IS-T-933, 155 p; Energy Res. Abstr. 1981,6(16).23962; Chem. Abstr. 1981,95, 183302d. (77C) Snyder, R. C.; Breder, C. V. J. Assoc. Off. Anal. Chem. 1981,64, 999-1007. (76C) Suzuki, K. T. J. Pharmacobio-Dyn. 1980, 3, S-16,S-32; Chem. Abstr. 1980,93, 128204g. (79C) Takahashi, A.; Kato, T. Kobunshi 1981,30. 424-425; Chem. Abstr. 1981,95,43687h. (8OC) Trathnlgg. B. Monatsh. Chem. 1978. 109,467-475. (81C) Trathnigg, B. Angew. Makromol. Chem. 1980,89,85-72. (82C) Trathnigg, 6. Angew. Makromol. Chem. 1980,89,73-79. (83C) Trathnlgg. B.; Leopold, H. Makromol. Chem., Rapid Commun. 1980, 1, 569-571. (84C) Vandemark, F. L.; Attebery, J. M. Chromafogr. News/. 1979, 7 , 34-37. (85C) Vidrine, D. W.; Mattson, D. R. Appl. Spectrosc. 1978,32,502. (86C) Vldrine, D. W. J. Chromatogr. Scl. 1979, 17,477-482. (87C) Wellons, J. D.; Gollob, L. Wood Sci. 1980, 13, 68-74.

272R

ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982

(88C) Wolf, T.; Fritz, G. T.; Palmer, L. R. J. Chromatogr. Sci. 1981, 19, 387-391. TECHNIQUES

(1D) Albrecht, W.; Gloeckner, G. Acta Polym. 1980,31, 149-154; Chem. Abstr. 1980,92,215921m. (2D) Albrecht, W.; Gloeckner, G. Acta Polym. 1980,31, 155-61; Chem. Abstr. 1980,92,215922n. (3D) Balke, S. T.; Patel, R. D. ACS Symp. Ser. 1980,No. 138 (Size Exclusion Chromatogr.), 149-182. (4D) Balke, S. T.; Patel, R. D. J. Polym. Scl., PolymerLett. Ed. 1980, 18, 453-456. (5D) Balke, S. T.; Patel, R. D. Polym. Prepr., Am. Chem. SOC. Div. Polym. Chem. 1981,21 (I), 290-291. (6D) Bartick, E. G. Diss. Abstr., Int. 6 1979,39 (12, Pt. I), 5955. (7D) Bartick, E. G.; Johnson, J. F. Polym. Prepr., Am. Chem. SOC., Div. Polym. Chem. 1980,21 (2), 208-209. (8D) Basedow, A. M.; Ebert, K. H.; Ederer, H. J.; Fosshag, E. J. Chromatogr. 1980, 192,259-274. (9D) Blrley. A. W.; Dawkins, J. V.; Kyrlacos, D. Po/ymer 1980,21,632-638. (10D) Booth, C.; Forget, J. L.; Georgll, I.; LI, W. S.; Price, C. Eur. Polym. J. 1980, 16, 255-259. (11D) Carver, J. G. Report, 1981, DRSMI/RK-81-5-TR, 43 pp; NTIS No. AD-AI03 086/5. (120) Coll, H.; Fague, G. R. J. Colloid Interface Scl. 1980, 76,116-123. (13D) Dubin, P. L. ACS Symp. Ser. 1980,No. 738 (Size Exclusion Chromatogr.), 225-238. (14D) Ernl, F.; Frei, R. W. J. Chromatogr. 1978, 149,501-569. (15D) Ernl, F.; Keller, H. P.; Morin, C.; Schmltt, M. J. Chromatogr. 1981, 204,65-76. (16D) Freeman, D. H. Anal. Chem. 1981,53,2-5. (17D) Freeman, D. H.; Schram, S. B. Anal. Chem. 1981,53,1235-1238. (18D) Fuchsblchler, G., Landwifisch, Forsch. 1979,32,341-354; Chem. Abstr. 1980,92,4768d. (19D) Galpin, I. J.; Handa, 8. K.; Kenner, G. W.; Moore, S.; Ramage, R. Chromatogr. Synth. Blol. Polym. 1978, 1 , 331-338. (20D) Gruneberg, M.; Klein, J. J. Llq. Chromatogr. 1980,3, 1593-1615. (21D) Halasz, I.; Martln, K. Angew. Chem., Inf. Ed. Engl. 1978, 17, 901-908. (22D) Halasz, I.; Vogtel, P. Angew. Chem., I n t . Ed. Engl. 1980, 79, 24-28. (23D) Hamlelec, A. E. J. Llq. Chromatogr. 1978, 1, 555-558. (24D) Hamielec, A. E.; Singh, S. J. Liq. Chromatogr. 1978, 1, 187-214. (25D) Harvey, M. C.; Stearns, S. D. Am. Lab. (Fairfield, Conn.) 1981, 13 (2), 151-157. (26D) Hellman, M. Y.; Bowmer, T.; Taylor, G. N. Org. Coat. Plast. Prepr., Am. Chem. Soc., Dlv. Org. Coat. Plast. Chem. 1981,45, 126-132. (27D) Himmel, M. E.; Squire, P. G. J. Chromatogr. 1981,210, 443-452. (28D) Hubbell, C. J.; Stoops, J. K. Arch. Biochem. Blophys. 1981,209, 81-84.

(296) Husain, A,; Hamlelec, A. E.; Vlachopoulos, J. J. Liq. Chromatogr. 1981.4. 425-458. (30D) Husaln, A.; Hamielec, A. E.; Vlachopoulos, J. J. Liq. Chromatogr. 1981,4, 459-482. (31D) Husain, A.; Hamielec, A. E.; Vlachopoulos, J. ACS Symp. Ser. 1980, No. 138 (Size Exclusion Chromatogr.), 47-75. (32D) Husaln, A.; Vlachopoulos, J.; Hamielec, A. E. J. Llq. Chromatogr. 1979,2 , 193-203. (33D) Ish4 D.; Hlbl, K.; Asai, K.; Jonokuchl, T. J. Chromatogr. 1978, 151, 147-154. (34D) Johnson, E. L.; Gloor, R.; Majors, R. E. J . Chromatogr. 1978, 149, 57 1-585. (35D) Johnston, J. E.; Cowherd, C. L.; MacRury, T. B. ACS Symp. Ser 1980, No. 738 (Size Exclusion Chromatogr.), 27-45. (36D) Katz, E.; Ogan, K. "Chem. Anal. and Blol. Fate: Polynucl. Aromat. Hydrocarbons, Int. Symp., 5th 1980"; Cook, M., Dennis, A. J., Eds.; Battelle Press: Columbus, OH, 1981; pp 169-178. (37D) Kuga, S. J. Chromatogr. 1981,206,449-461. (36D) Lesec, J.; Qulvoron, C. J. L i q . Chromatogr. 1979,2,467-484. (39D) Llao, J. C.; Browner, R. R. Anal. Chem. 1978,50, 1683-1686. (40D) Majors, R. E. J. Chromatogr. Sci. 1980, 18,571-579. (41D) Majors, R. E.; Johnson, E. L. J. Chromatogr. 1978, 167, 17-30. (42D) McCrackin, F. L.; Wagner, H. L. Polym. Prepr., Am. Chem. SOC., Dlv. Polym. Chem. 1978, 19 (2), 753-756. (43D) McCrackin, F. L.; Wagner, H. L. Macromolecules 1980,13, 685-690. (44D) McHugh, A. J.; Nagy, D. J.; Silebi, C. A. ACS Symp. Ser. 1980,No. 138 (Size Exclusion Chromatogr .), 1-25. 1450) Mlller. R. L.: Oaan, K.: Polle, A. F. Am. Lab. (Fairfleld, Conn.) 1981, 13 (7), 52-62. (46D) Nagy, D. J.; Silebi, C. A,; McHugh, A. J., "Polym. Collolds 2, Proc. Symp. Phys. Prop. Colloidal Part. 1978"; Fltch, R. M., Ed.; Plenum: New York, 1980; pp 121-137. (47D) Nagy, D. J.; Silebi, C. A,; McHugh, A. J. J. Appl. Polym. Sci. 1981, 26, 1567-1576. (48D) Nikolov, R.; Werner, W.; Halasz, I. J. Chromatogr. Sci. 1980, 18, 207-2 16. (49D) Poile, A. Chromatogr. News/. 1980,8, 65-68. (50D) Roumellotis, P.; Unger, K. K. J. Chromatogr. 1979, 185, 445-452. (51D) Sarkar, A. K.; Roy, D. M. Cem. Concr. Res. 1979, 9 , 343-352. (520) Schanne, L.; Haenel, M. W. Fuel 1981,60, 556-558. (53D) Scholtens, B. J. R.; Welzen, T. L. Makromol. Chem. 1981, 782, 269-272. (54D) Schou, 0.: Larsen. P. J. Hloh Resolut. Chromatogr. Chromatogr. . common. 1981,4 , 515-518. (55D) Schram, S. B.; Freeman, D. H. J. Liq. Chromatogr. 1980, 3, 403-41 7.

SIZE EXCLUSION (56D) Shimono, T.; Takagi, H.; Isobe, T.; Tarutani, T. J. Chromatogr. 1980, 797,59-70. f57D) Shoemaker. R. A. J. ADD/. . . Polvm. Sci. 1978. 34 (ADDL . . Polym. ’ Symp.), 139-143. (58D) Singh, S.; Hamielec, A. E. J. Appl. Polym. Sci. 1978, 22, 577-584. 69D) Snyder, L. R.; Dolan, J. W.; Van der Wal, Sj. J . Chromatog. 1981, ‘ 203,3-17. (60D) Springer, J.; Schmelzor, J.; Zeplichal, T. Chromatographia 1980, 13, 164-162. (61D) Tsyurupa, M. P.; Davankov, V. A. J. Polym. Sci., Chem. Ed. 1980, 78. 1399-1406. (62D) ‘Veith, G. D.; Kuehl, D. W. Anal. Chem. 1981, 53, 1132-1133. f63D) Waksmundzki. A.; Pryke, P.; Dawidowicz, A. J . ChromatoQr. 1979, 768, 234-240. (64D) Wang, P. J-S. Diss. Pibstr. I n t . B 1980, 41 (2), 587. (65D) Warner, C. R.; Selim, S.;Daniels, D. H. J. Chromatogr. 1979, 773, 357-363. (66D) Werner, W.; Halasz. I. Chromatographia 1980, 73, 271-272. (67D) Werner, W.; Halasz, I . J. Chromatogr. Sci. 1980, 78, 277-283. (68D) Williamson, T. J.; Gaylor, V. F. ACS Symp. Ser. 1980, No. 738 (Size Excluslon Chromatogr.), 77-90. (69D) Yurchenko, V. S.;Pasechnik, V. A,; Kuznetsova, N. N.; Rozhetskaya, K. M.; Solov’yeva, L. Y.; Samsonov, G. V. Polym. Sci., USSR 1979, 27, 198-208. CALIBRATION AND DATA TllEATMENT

(1E) Ambler, M. R.; Mate, R. D. Chromatogr. Sci. 1977, 8(Liq. Chromatogr. Polym. Relat. Mater.), 93-103. (2E) Andersson, L. J. Chrornatogr. 1981, 276,23-34. (3E) Andersson, L. J. Chrornatogr. 1981, 276,35-41. (4E) Andreetta, H. A,; Figini, R. V. Angew. Makromoi. Chem. 1981, 93, 143-1 57. (5E) Antoni, G.; Presentini, R.; Neri, P. Farmaco, Ed. Pract. 1980, 35,575560; Chem. Abstr. 1981, 94,71325m. (6E) Ashcraft, R. W. Report, 1979, MHSMP-79-56; Energy Res Abstr., 1980, 5(4), Abstr. No. 6132; Cliem. Abstr. 1980, 92,2 2 1 4 3 4 ~ . (7E) ANSVASTM D3593-77 “Standard Test Method for Molecular Weight Averages and Molecular Weight Distribution of Certain Polymers by Llquld Size-Excluslon Chromatography Uslng Universal Calibratlon”; 1980 Annual Book of ASTM Standards; ASTM: Phlladelphia, PA, 1980; Pt 35, pp 875-891. (8E) Atkinson, C. M. L.; Dlelz, R. Eur. Polym. J. 1979, 75,21-26. (9E) Atkinson, C. M. L.; i3letz. R.; Francis, M. A. Polymer 1980, 27, 89 1-894. (IO€) Bareiss, R. E. Makroniol. Chem. 1981, 782, 1761-1774. (11E) Berger, K. C. Makromol. Chem. 1979, 180, 1257-1275. (12E) Berger, K. C. Makromol. Chem. 1979, 780,2567-2580. (13E) Beyer, G. L.; Suarez, S. S.; Contestable, El. A. Polym. Prepr., Am. Chem. SOC., Dlv. Polym. Chem. 1979, 20(1), 20-23. (14E) Bose, A. Diss. Abstr. Int. B 1981, 47 (8),3111. (15E) Broyer, E. Org. Coat. Plast. Prepr., Am. Chem. SOC., Div. Org. Coat. Plast. Chem. 1981, 45, 213-219. (16E) Brzezinski, J.: Dobkowski, 2. Eur. Polym. S. 1980, 76, 85-87. (17E) Chaplin, R. P.; Haken, J. K.; Paddon, J. J. J. Chromatogr. 1979, 777, 55-61. (18E) Chaplin, R. P.; Ching, W. J. Macromol. Sci., Chem. 1980, A 1 4 , 257-263. (19E) Cooper, A. R.; Matzinger, D. P. J . Li9. Chromatogr. 1979, 2, 67-76. (20E) Dawkins, J. V.; Yeadon, G. Polym. Prepr., Am. Chem. SOC., Div. Polym. Chem. 1980, 27 1(2),89-91. (21E) Dawkins, J. V.; Yeadon, G. J. Chromatogr. 1981, 206, 215-221. (22E) Dobbin, C. J. B.; Rudrin, A.; Tchir, M. F. J. Appl. Polym. Sci. 1980, 25, 2985-2992. (23E) Figini, R. V. Polym. Bull. (Berlin) 1979, 7, 619-623. (24E) French, D. M.; Nauflett, G. W. J. Li9. Chromatogr. 1981, 4, 197-226. (25E) Fuzes, L. J. Appl. Polym. Sci. 1979, 24, 405-416. (26E) Fuzes, L. J. Li9. Chromatogr. 1980, 3,615-621. (27E) Gilding, D. K.; Reed, A. M.; Asklll, I . N. Polymer 1981, 22, 505-512. (28E) Gloeckner, G. J . Chrcimatogr. 1980, 797,279-286. (29E) Goedhart, D. J. J. Lip. Chromatogr. 1979, 2, 1255-1259. (30E) Groh, R.; Halasz, I. Anal. Chem. 1981, 53, 1325-1335. (31E) Hamielec, A. E. J. Liq. Chromatogr. 1981, 4, 1697-1707. (32E) Hamielec, A. E.; Omorodion, S.N. E. ACS Symp. Ser. 1980, No. 738 (Size Exclusion Chromatogr.), 183-196. (33E) Hamielec, A. E.; Ouano, A. C. J. Li9. Chromatogr. 1978, 7, 111-120. (34E) Hassell, J. A.; Sliemers, F. A.; Drauglis, E.; Nance, G. P. J. Polym. Sci.. Polym. Lett. Ed. 1979, 77,111-113. (35E) Hellman, M. Y. Chromatogr. Sci. 1977, 8 (Llq. Chromatogr. Polym. Relat. Mater.), 29-39. (36E) Hellman, M. Y.; Johnson, G. E. Chromatogr. Scl. 1981, 79 (Llq. Chromatogr. Polym. Relat. Mater. 3), 115-126. (37E) Hester, R. D.; Mitchell, P. H. Polym. Prepr , Am. Chem. SOC., Div. Polym. Chem. 1980, 27 1(1),173-174. (38E) Hester, R. D.; Mltchell, P. H. J. Polym. Sci., Polym. Chem. Ed. 1980, 18.1727-1738. (39E) Hirsch, D. E.; Coleman, H. J.; Dooley, J. E.; Thompson, C. J., Report, BERC/RI-76/14 ERDA Technical Information Center, 1977; Chem. Abstr. 1978, 88, 138954a. (40E) Ivory, C. F.; Bratzler, R. L. J. Chromatogr. 1980, 798,354-358. (41E) Janca, J. Adv. Chromatogr. 1981, 79,37-90. (42E) Janca, J.; Mrkvickova, L. Polymer 1979, 20, 288-289. (43E) Kohn, E.; Ashcraft, R. W. Chromatogr. Sci. 1977, 8 (Liq. Chromatogr. Polym. Relat. Mater.), 105-120. (44E) Kuzayev, A. I. Vysokomol. Soedin., Ser. A 1980, 22, 1146-1152; Chem. Abstr. 1980, 93,95762g. (45E) Lee, W. Y. J. Appl. F’olym. Sci. 1978, 22, 3343-3344.

CHROMATOGRAPHY

(46E) LeSeC, J. Chromatogr. Scl. 1980, 73 (Lia. Chromatogr. - Polym. . Relat. Mater. 2), 1-17. (47E) Letot, L.; Lesec, J.; Quivoron, C. J. Li9. Chromatogr. 1980, 3, 1637-1655 . - - . .- - - . (48E) Malawer, E. 0.; Montana, A. J. J. Polym. Sci., Polym. Phys. Ed. 1980, 78, 2303-2305’. (49E) Mandik, L.; Foksova, A.; Foltyn, J. J. Appl. Polym. Sci. 1979, 24, 395-404. (50E) McKay, G. Altex Chromatogram (Berkeley, Calif .), 1979, 2 (3),4-5. (51E) Mencer, H. J.; Grublsic-Gallot, 2. J. Li9. Chromatogr. 1979, 2, 649-662. (52E) Mitchell, P. H.; McCormick, C. L.; Hester, R. D. Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 1980, 21 (l), 175-176. (53E) Mori, S. J. Chromatogr. 1080, 792,295-305. (54E) Mori, S. Anal. Chem. 1981, 53, 1813-1818. (55E) Mori, S. Suzuki, T. J. Liq. Chromatogr. 1980, 3 ,343-351. (56E) Morl, S.;Yamakawa, A. J . Li9. Chromatogr. 1980, 3 ,329-342. (57E) Mrkvickova, L.; Lopour, P.; Pokorny, S.:Janca, J. Angew. Makromol. Chem. 1980, 90,217-221. (58E) Mukherji, A. K. J. Ll9. Chromatogr. 1981, 4, 741-748. (59E) Nesterov, V. V.; Chubarova, E. V.; Vilenchik, L. 2. Vysokomoi. Soedln., Ser. A 1981, 23, 463-468; Chem. Abstr. 1981, 94, 140335d. (6QE) Noda, I.; Yamamoto, Y.; Kitano, T.; Nagasawa, M. Macromolecules 1981, 14, 1306-1309. (81E) PearCe, E. M.; Wright, C. E.; Bordolol, B. K. J. Educ. Modules Mater. Sci. Eng. 1981, 3,567-590. (62E) Pokorny, S.;Janca, J.; Mrkvickova, L.; Tureckova, 0.; Trekoval, J. J. Li9. Chromatogr. 1981, 4, 1-12. (63E) Pollock, M. J.; MacGregor, J. F.; Hamielec, A. E. J. Li9. Chromatogr. 1979, 2, 895-917. (64E) Rollings, J. E.;Bose, A.; Caruthers, J. M.; Okos, M. R.; Tsao, G. T. POlym. Prepr., Am. Chem. SOC., Div. Polym. Chem. 1981, 22 (I), 294-295. (65E) Samay, G.; Kubln, M.; Podesva, J. Angew. Makromol. Chem. 1978, 72,185-198. (66E) Samay, G. Acta Chlm. 1979, 702, 157-164; Chem. Abstr. 1980, 92, 147410s. (67E) Schulz, W. W. J. Li9. Chromatogr. 1980, 3,941-952. (68E) Squire, P. G. J. Chromatogr. 1981, 210,433-442. (69E) Stojanov, C.; Shlrazi, 2. H. Fresenius’ 2.Anal. Chem. 1979, 294, 44-45; Chem. Abstr. 1979, 90,104509~. (70E) Sun, S.F.; Wong, E. J. Chromatogr. 1981. 208,253-259. (71E) Szewczyk, P. J. Polym. Sci., Polym. Symp. 1980, 68, 191-197. (72E) Szewczyk, P. J. Appl. Polym. Scl. 1981, 26, 2727-2741. (73E) Taganov, N. G.; Korovina, G. V.; Entelis, S. G. Vysokomol. Soedln., Set‘. A 1980, 22, 2385-2389; Chem. Abstr. 1981, 94,31190g. (74E) Vander Linden, C. Polymer 1980, 27, 171-176. (75E) Vllenchik, L. Z.;Kurenbin, 0. I.; Chubarova, E. V.; Zhmakina, T. P.; Nesterova, V. V.; Belen’kii, B. G. Vysokomol. Soedin., Ser A 1980, 22, 2804-2809; Chem. Abstr. 1981, 94, 104005n. (76E) Vilenchlk, L. 2.; Kurenbin, 0. I.; Zhmakina, T. P.; Belen’kil, 8. G. Vysokomol. Soedin.. SerA 1980, 22, 2801-2804; Chem. Abstr. 1981, 94, 104004m. (77E) Vozka, S.;Kubin, M.; Samay, G. J. Polym. Sci., Polymer Symp. 1980, 68. 199-208. (78E) Vrllbergen, R. R.; Soeteman, A. A.; Smit, J. A. M. J . Appl. Polym. SCl. 1978, 22, 1267-1276. (79E) Wortmann, F. J.; Altenhofen, U.; Zahn, H. Textilveredlung 1980, 75, 120-123; Chem. Abstr. 1980, 93,8890r. (80E) Xu, 2.D.; Song, M. S.;Hadjichristidis, N.; Fetters, L. J. Macromolecules 1981, 74, 1591-1594. (81E) Yau, W. W.; Jones, M. E.; Ginnard. C. R.; Bly, D. D. ACS Symp. Ser. 1980, No. 738 (Slze Exclusion Chromatogr.), 91-105. SEPARATION MECHANISM

(IF) Aubert, J. H.; Tirrell, M. Sep Sci. Techno/. 1980, 15,123-130. (2F) Aubert, J. H.; Tirrell, M. Rheol. Acta 1980, 19,452-481. (3F) Aubert, J. H.; Tirrell, M. Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 1981, 22 (I), 82-83. (4F) Aubert, J. H.; Tirrell, M. “Abstr. 27th Int. Symp. Macromol.”; IUPAC: Strasberg, 1981; Vol. 2, pp 785-788. (5F) Bakos. D.; Bleha, T.; Ozima, A.; Berek, D. J. Appi. Polym. Sci. 1979, 23,2233-2244. (6F) Barker, P. E.; Hatt, B. W.; Holdlng, S.R. J. Chromatogr. 1979, 174, 143-1 5 1. (7F) Barker, P. E.; Hatt, B. W.; Holding, S. R. J. Chromatogr. 1981, 206, 27-34. (8F) Basedow, A. M.; Ebert, K. H. Chromatogr. Sci. 1980, 13 (Liq. Chromatogr. Polym. Relat. Mater. 2), 41-48. (9F) Bleha, T.; Berek, D. Chromatographla 1981, 74, 163-168. (IOF) Bleha, T.; Mlynek, J.; Berek, D. Polymer 1980, 27,798-804. ( 1 W Campos. A.; Soria, V.; Figueruelo, J. E. Makromol. Chem. 1979, 180, 1961-1974. (12F) Cooper, A. R. J. Lis. Chromatog. 1980, 3 , 393-402. (13F) Cooper, A. R.; Matzinger, D. P. J. Appl. Polym. Sci. 1979, 23, 4 19-427. (14F) Dawkins, J. V. J. Ll9. Chromatogr. 1978, 7. 279-289. (15F) Dawkins, J. V. Pure Appl. Chem. 1979, 51, 1473-1481. (16F) Dawkins, J. V.; Stone, T.; Yeadon, G.; Warner, F. P. Polymer 1979, 20, 1164-1166. (17F) Dubin, P. L. J. Li9. Chromatogr. 1980, 3,623-636. (18F) Elsdon, W. L.; Goldwasser, J. M.; Rudln, A. J. Polym. Sci., Polym. Lett. Ed. 1981, 79,483-493. (19F) Figueruelo, J. E.; Soria, V. Chromatogr. Sci. 1980, 73 (Liq. Chromatogr. Poiym. Relat. Mater. 2), 49-71. ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982

273 R

SIZE EXCLUSION CHROMATOGRAPHY (20F) Flgueruelo, J. E.; Soria, V.; Campos, A. J. Llq. Chromatogr. 1980, 3 , 367-380. (21F) Figueruelo, J. E.; Sorla, V.; Campos, A. Makromol. Chem. 1981, 182, 1525-1532. (22F) Gorbunov, A. A.; Skvortsov. A. M. Vysokomol. Soedin., Ser. A 1980, 22, 1137-1145; Chem. Abstr. 1980, 9 3 , 724774. (23F) Groh, R.; Haiasz, I.J. Chromatogr. 1980, 199, 23-34. (24F) Grueneberg, M.; Klein, J. Macromolecules 1981, 14, 1415-1419. (25F) Gurevich, A. L.; Dobrlnskll, Y. K.; Pavlenko, I.V.; Shevkunov, V. V. Vysokomol. Soedln., Ser. A 1981, 2 3 , 708-711; Chem. Abstr. 1981, 9 4 , 140960d. (26F) Huber, C.; Lederer, K. H. J. Polym. Sci., Polym. Lett. Ed. 1980, 18, 535-540. (27F) Janca, J. J. Llq. Chromatogr. 1978, 1 , 731-743. (28F) Janca, J. Anal. Chem. 1979, 51, 637-641. (29F) Janca, J. J. Chromatogr. 1979, 170, 309-318. (30F) Janca, J. J. Chromatogr. 1980, 187, 21-26. (31F) Janca, J. Polym. J. 1980, 12, 405-406. (32F) Janca, J. J. Llq. Chromatogr. 1981, 4 , 181-196. (33F) Janca, J.; Pokorny, S. Makromol. Chem. 1978, 156, 27-33. (34F) Janca, J.; Pokorny, S. J. Chromatogr. 1979, 170, 319-324. (35F) Janca, J.; Pokorny, S.; Bleha, M.; Chiantore, 0. J. Llq. Chromatogr. 1980, 3 , 953-970. (36F) Janca, J.; Pokorny, S.; Viienchik, L. Z.; Belenkii, B. G. J . Chromafogr. 1981,211,39-44. (37F) Klein, J.; Grueneberg, M. Macromolecules 1981, 14, 1411-1415. (38F) Klein, J.; Grueneberg, M. Macrmolecules 1981, 14, 1419-1422. (39F) Knox, J. H.; McLennan, F. J. Chromatogr. 1979, 185, 289-304. (40F) Kok, C. M.; Rudin, A. Makromol. Chem. 1981, 182, 2801-2809. (41F) Kubin, M.; Vozka, S. J. Chromatogr. 1978, 147, 85-98. (42F) Kubln, M.; Vozka, S. J. Polym. Sci., Polym. Symp. 1980. 68, 209-213. (43F) Mahabadi, H. K.; Rudin, A. Polymer J. 1979, 11, 123-131. (44F) Moore, J. C. Chromatogr. Scl. 1981, 19 (Liq. Chromatogr. Polym. Relat. Mater. 3), 13-28. (45F) Mori, S. J. Chromatogr. 1979, 174, 23-33. (46F) Mori, S.; Suzuki, T. Anal. Chem. 1980, 52,1625-1629. (47F) Mori. S.: Yamakawa. A. Anal. Chem. 1979, 51. 362-384. i48Fj Narasimhan, V.; Huang, R. Y. M.; Burns, C.’M. J . Appl. Polym. Scl. 1981. 26. 1295-1300. (49F) Nakamura, K.; Endo, R. J . Appl. Polym. Sci. 1981, 26, 2657-2664. (50F) Omorodion, S. N. E.; Hamielec, A. E.; Brash, J. L. ACS Symp. Ser. 1980, No. 138 (Size Exclusion Chromatogr.), 267-284. (51F) Omorodion, S. N. E.; Hamielac, A. E. J. Liq. Chromatogr. 1981, 4 , 41-50. (52F) Podosenova, N. G.; Rozhkova, V. F. Vysokomol. Soedln., Ser. A 1980, 22, 947-950; Chem. Abstr. 1980, 9 2 , 2 1 5 9 4 4 ~ . (53F) Rinaudo, M.; Desbrieres, J. Eur. Polym. J. 1980, 16, 649-854. (54F) Rinaudo, M.; Desbrieres, J.; Rochas, C. J. Llq. Chromatogr. 1981, 4 , 1297- 1309. (55F) Rochas, C.; Domard, A.; Rinaudo, M. Eur. Polym. J. 1980, 16, 135-140. (56F) Samay, G.; Fuzes, L. J. Polym. Sci., Polym. Symp. 1981, 68, 165-190. (57F) Samay, G.; Kubln, M. J. Appl. Polym. Scl. 1979, 2 3 , 1879-1881. (58F) Shibukawa, M.; Ohta, N.; Kuroda, R. Anal. Chem. 1981, 5 3 , 1620-1627. (59F) Taeratanachl, C.; Crowther, J. A,; Johnson, J. F. Org. Coat. Plast., Prepr., Am. Chem. Soc., Div. Org. Coat. Plast. Chem. 1979, 40, 57-62. (60F) Taylor, G. N.; Hellman, M. Y.; Stillwagon, L. E. Chromatogr. Sci. 1981, 19 (Liq. Chromatogr. Polym. Reiat. Mater. 3), 237-255. (61F) Tymczynski, R.; Turska, E. J. Liq. Chromatogr. 1981, 4 , 1491-1510. (62F) Vander Llnden, C.; Van Leemput, R. Macromolecules 1978, 1 1 , 1237-1 238. (63F) Van Dljk, J. A. P. P.; Roels, J. P. M.; Smlt, J. A. M. Chromatogr. Sci. 1980, 13 (Liq. Chromatogr. Polym. Relat. Mater. 2), 95-1 11. (64F) Yau, W. W.; Bly, D. D. ACS Symp, Ser. 1980, No. 138 (Slze Exciusion Chromatogr.), 197-206. (IG) Angulo-Sanchez, J. L.; Caballero-Mata, P. Rubber Chem. Techno/. 1981, 54, 34-41. (2G) Budtov, V. P.; Ponomareva, E. L.; Beiyaev, V. M. Vysokomol. Soedln ., Ser. A 1980, 2 2 , 2152-2156; Chem. Abstr. 1981, 9 4 , 4321u. (3G) Dletz, R.; Francis, M. A. Polymer 1979, 20, 450-454. (4G) Dietz, R. J. Appl. Polym. Sci. 1980, 25, 951-953. (5G) Dibkowski, 2.; Brzezinski, J. Eur. Polym. J. 1981, 77, 537-540. (6G) Dubln, P. L.; Kronstadt, M.; Read, A. R.; Dale, J. A. Polym. Prepr., Am. Chem. SOC.,Dlv. Polym. Chem. 1978, 19(2), 117-120. (7G) Eckhardt, G.; Brauer, E.; Wuensche, P.; Wiegleb, H.; Voigt, D. Acta Polym. 1980, 3 1 , 382-387; Chem. Abstr. 1980, 93, 221198t. (8G) Fisher, L. W.; Pearson, G. H.; Yacobucci, P. D. J. Polym. Sci., Phys. Ed. 1980, 18, 1455-1466. (9G) Foster, G. N.; MacRury, T. B.; Hamielec, A. E. Chromatogr. Sci. 1980, 13 (Liq. Chromatogr. Poiym. Relat. Mater.), 143-171. (10G) Gianottl, G.; Cicuta. A,; Romaninl, D. Polymer 1980, 21, 1087-1091. (11G) Girard, J. E.; Cietek, D. J.; Gundlach, P. E.; Weissman, S. R. Polym. Prepr.. Am. Chem. SOC..Dlv. Polym. Chem. 1979, 20 (2), 134-138. (12G) Jenkins, R. F. Dlss. Abstr. Int. 6 1981, 41 (8), 3113-3114. (13G) Mrkvickova, L.; Janca, J. Makrotest 1980, 117-119; Chem. Abstr. 1981, 9 4 , 157469~. (14G) Quack, G.; Fetters, L. J.; Hadjichristidis, N.; Young, R. N. Ind. Eng. Chem. Prod. Res. Dev. 1980, 19, 587-592.

274R

ANALYTICAL CHEMISTRY, VOL. 54, NO, 5, APRIL 1982

(15G) Roovers, J. Polymer 1979, 20, 843-849. (IH) Ambler, M. R. Chromatogr. Sci. 1981, 19 (Liq. Chromatogr. Polym. Reiat. Mater. 3), 29-77. (2H) Bartlck, E. G. J. Chromatogr. Scl. 1979, 7 7 , 336-339. (3H) De Chlrlco, A.; Arrighetti, S.; Bruzzone, M. Chromatogr. Sci. 1980, 13 (Liq. Chromatogr. Polym. Reiat. Mater. 2), 197-202. (4H) Garcla-Rubio, L. H. Polym. Prepr., Am. Chem. SOC.,Div. Polym. Chem. 1981, 22 (I), 292-293. (5H) Janca, J.; Mrkvickova, L.; Kollnsky, M.; Brar, A. S. J. Appl. Polym . Sci. 1978, 22, 2661-2668. (6H) Janca, J.; Pokorny, S.; Kollnsky, M. J. Appl. Polym. Sci. 1979, 2 3 , 1811-1817. (7H) Lloyd, D. R.; Narasimhan, V.; Burns, C. M. J. Liq. Chromatogr. 1980, 3 , 1111-1128. (8H) Mori, S. J. Chromatogr. 1980, 194, 163-173. (9H) Mori, S.; Suzuki, T. J . Liq. Chromatogr. 1981, 4 , 1685-1696. (10H) Ogawa, T.; Sakai, M.; Ishltobe, W. J. Llq. Chromatogr. 1978, 1 , 151-162. (11H) Ogawa, T. J. Appl. Polym. Sci. 1979, 2 3 , 3515-3523. (12H) Pokorny, J. S.; Kolinsky, M. J . Appl. Polym. Sci. 1979, 2 3 , 1811-1817. (13H) Revillon, A. J. Liq. Chromatogr. 1980, 3 , 1137-1150. (14H) Srinivasan, K. S. V.; Sudhakar, D. Polym. Bull. (Berllfl) 1980, 2 , 321-324. (15H) Tung, L. H. J. Appl. Polym. Scl. 1979, 2 4 , 953-963. (IJ) Chaufer, 8.; Lesec, J.; Quivoron. C. J. L i q . Chromatogr. 1979, 2 , 633-648. (2J) Hashizume, J.; Teramoto, A,; Fujita, H. J. Polym. Sci., Phys. Ed. 1981, 19. 1405-1422. (3J) Lloyd, D. R.; Narasimhan, V.; Burns, C. M. Polym. Prepr., Am. Chem. SOC.,Div. Polym. Chem. 1979, 20(1), 897-900. (4J) Narasimhan, V.; Lloyd, D. R.; Burns, C. M. J. Appl. Polym. Sci. 1979. 2 3 . 749-754. (5J) Spychaj, T. Polymer 1979, 20, 1108-1 114. (1K) Abbas, K. 8. Chromatogr. Scl. 1980, 13 (Liq. Chromatogr.’Poiym. Relat. Mater.) 123-142. (2K) Abbas, K. B. Polymer 1980, 21, 936-940. (3K) Goidfarb, L.; Hann, N. D.; Dieck, R. L.; Messersmlth, D. C. J. Polym. Scl., Chem. Ed. 1978, 16, 1505-1515. (4K) Hunston, D. L.; Zakin, J. L. Polym. Eng. Scl. 1980, 2 0 , 517-523. (5K) Leopairat, P.; Merrlll. E. W. J . Llq. Chromatogr. 1978, 1, 21-32. (6K) Malhatra, S. L.; Lessard, P.; Blanchard, L. P. J . Macromol. Scl., Chem. 1980, A15, 121-141. (7K) Van der Hoff, B. M. E.; Chopra, V. K. J . Appl. Polym. Scl. 1979, 23, 2373-2384. (8K) Vivatpanachart, S . ; Nomura, H.; Mlyahara, Y. J. Appl. Polym. Sci. 1981, 26, 1485-1491. (9K) Wandelt, B.; Brzezlnski, J.; Kryszewskl, M. Eur. Polym. J. 1980, 16, 583-586. (IOK) Yu, J. F. S.; Zakln, J. L.; Patterson, G. K. J. Appl. Polym. Sci. 1979, 2 3 , 2493-2512. (1L) Braks, J. G.; Mayer, G.; Huang, R. Y. M. J. Appl. Polym. Sci. 1980, 2 5 , 449-455. (2L) Budtov, V. P.; Podosenova, N. G. Vysokomol. Soedln. 1977, A 1 9 , 1643-1646. (3L) Hagnauer, G. L.; Koulouris, T. N. Chromatogr. Sci. 1981, 19 (Llq. Chromatogr. Polym. Relat. Mater. 3), 99-114. (4L) Iwasakl, H.; Shimada, K.; Tarutani, T. J. Chromatogr. 1980, 198, 429-434. (5L) Katuscak , S.; Tomas, M.; Schiessl, 0. J . Appl. Polym. Sci. 1981, 26, 381-394. (6L) Klparlssldes, C.; MacGregor, J. F.; Singh, S.; Hamlelec, A. E. Can. J. Chem. Eflg. 1980, 58,65-71. (7L) Yamaguchi, K.; Watanabe, H.; Sugo, T.; Watanabe. T.; Takehisa, M.; Machi, S. J. Appl. Polym. Scl. 1980, 2 5 , 1633-1638. (1M) Dudek, J. A. Plast. Eng. 1980, 3 6 , 32-34. (2M) Fuller, E. N.; Porter, G. T.; Roof, L. B. J. Chromatogr. Sci. 1979, 17, 661-665. (3M) Greenzweig, J., Moulson, T.; Qulck, W. Proc. Annu. Conf. Reinf. PlastlCompos. Inst., SOC. Plast. Ind. 1980, 35th (Rising Challenge OS), 1-100; Chem. Abstr. 1981, 9 4 , 16416~. (4M) Mowery, R. A,, Jr. Chem. Eng. ( N . Y . ) 1981, 88 (lo), 145-152. (5M) Ranger, H. 0. Package Dev. Syst. 1979, 9 , 21-25. (6M) Saha, N. C. Chromatogr. Polym. Pet. Petrochem. (Pap. Symp. Workshop) 1978 1979, 320-341; Chem. Abstr. 1980, 9 2 , 129776m. (7M) Wheals, B. B. J. Liq. Chromatogr. 1979, 2 , 91-110. (1N) Appelt, B.; Meyerhoff, G. Macromolecules 1980, 13, 657-662. (2N) Gelser, D.; Hocker, H. Macromolecules 1980, 73, 653-656. (3N) Eigert, K. F.; Henschel, R.; Schorn, H.; Kosfeld, R. Polym. Bull. (Berlin) 1981, 4, 105-110. (4N) Sato. H.: Saito. K.: Mivashita, K.; Tanaka, Y. Makromol. Chem. 1981, i82, 2259-2266. f5N) Sieboura, W.; Lundberg, R. D.; Lenz, R. W. Macromolecules 1980, 13, ’ 1013-1018. (6N) Soltes, L.; Berek, D.; Mlkuiasova, D. Colloid Polym. Scl. 1980, 258. 702-7 10. (7N) Czlonkowska-Kohutnicka, 2 . ; Dobkowskl, Z. “27th Internat. Symp. of Macromol.”; IUPAC: Strasburg, July 1981; Abstr. Vol 11, pp 572-576. (6N) Pryde, C. A,; Hellman, M. Y. J. Appl. Polym. Sci. 1980, 25, 2573-2587. (9N) . . Caoacclo, G.: Ward, I.M. J. Polym. Scl., Polym. Phys. Ed. 1981, 19, 667-675. (10N) Dark, W. A. Chromatogr. Scl. 1981, 19 (Liq. Chromatogr. POlym. Relat. Mater.), 281-289. ~

SIZE EXCLUSION CHROMATOGRAPHY (11N) Dol, Y.; Nishimura, Y.; Kell, T. Polymer 1981, 2 2 , 469-475. (12N) Maeda, Y.; Kanetsuna, IH. Polym. J. 1981, 13, 357-369. (13N) Maeda, Y.; Kanetsuna, IH. Polym. J. 1981, 13, 371-384. (14N) Snyder, R. C.; Breder, C. V. J. Assoc. Off. Anal. Chem. 1981, 6 4 , 1008-10 13. (15N) Westerman, L. Chromatogr. Scl. 1981, 19 (Liq. Chromatogr. Polym. Relat. Mater. 3), 257-280. (16N) Chartoff, R. P.; Lo, S. K . T. Chromatogr. Sci. 1977, 8 (Liq. Chromatogr. Poiym. Relat. Mater.), 135-148. (17N) Gilbert, J.; Shepherd, 111. J.; Wallwork, M. A. J . Chromatogr. 1980, 9 3 , 235-242. (18N) Kokkiarls, D.; Touioupos, C.; Hadjichristldls, N. Polymer 1980. 2 2 , 63-86. (19N) Reddy, G. 0.; Nagabhushanam, T.; Santappa, M. Indian J. Chem., Sect. A 1980, 19A, 468-469; Chem. Abstr. 1980, 9 3 , 95732~. (20N) Varma, I.K.; Patnalk, S. J. Polym. Sci., Polym. Chem. Ed. 1979, 17, 3279-3289. (21N) Vlcek, P.; Janca, J.; Treikoval, J. Makromol. Chem., Rapid Common. 1980, 1 , 485-488. (22N) Drott, E. E. Chromatogr. Sci. 1977. 8(Liq. Chromatogr. Polym. Relat. Mater.), 41-50. (23N) Goedhart, D. J.; Hussein, J. B.; Smeets, B. P. M. Chromatogr. Sci. 1980, 13 (Liq. Chromatogr. Poiym. Reiat. Mater.), 203-213. (24N) Haken, J. K.; Obita, J. A. J. Chromatogr. 1981, 213, 55-82. (25N) Herold, J.; Meyerhoff, Ci. Makromoi. Chem. ,1980, 181, 2825-2636. (26N) Jacobl, E.; Schuttenberlg, H.; Schulz, R. C. Makromol. Chem., Rapid Commun. 1980, 1 , 397-402. (27N) Ponder, L. H. Polym. Prepr., Am. Chem. SOC., Div. Polym. Chem. 1980, 2 1 , 169-170. (28N) Shlono, S.J. Polym. Scl., Chem. Ed. 1979, 17, 4123-4127. (29N) Shiono, S.Anal. Chem. 1979, 57,2398-2400. (30N) Tymczynskl, R.; Sek. D. Pol. J. Chem. 1980, 5 4 , 1815-1820 Chem. Abstr. 1981, 9 4 , 175725h. (31N) Ambler, M. R. J . Appl. Polym. Sci. 1980, 2.5, 901-920. (32N) Mokhtarl-Nejad, E.; Berger, K. C.; Hammei, R.; Lederer, K. Makromol. Chem. 1978, 179, 159-184. (33N) Swanson, C. L.; Buchanan, R. A.; Otey, F. ti. J. Appl. Polym. Sci. 1979, 2 3 , 743-748. (34N) Williamson, T. J.; Gaylor, V. F.; Piirma, I.ACS Symp. Ser. 1980, No. 138 (Liq. Chromatogr. Polyin. Relat. Mater.), 77-90. (35N) Alfredson, T. Am. Lab. (Fairfieid, Conn.) 1981, 13, 44-51. (36N) Guise, G. B.; Smith, G. C. J. Chromatogr. 1981, 214, 89-82. (37N) Bannister, D. J.; Semlyim, J. A. Polymer 1981, 2 2 , 377-381. (38N) Adams, H. E.; Valaitls, J. K.; Henderson, C. W.; Straus, E. J. ACS Symp. Ser. 1980, No. 138 (Size Exclusion Chromatogr.), 255-266. (39N) Hagnauer, G. L. ACS Symp. Ser. 1980, No. 138 (Size Exclusion Chromatogr.), 239-254. (40N) Hagnauer, G. L. J. Mcicromol. Sci., Chem. 1981, A 1 6 , 385-408. (41N) Hagnauer, G. L.; Singler, R. E. Org. Coat. Plast. Prepr., Am. Chem. Soc., Div. Org. Coat. Plast. 1979, 41, 88-92. (1P) Antal, I.; Fuzes, L.; Samay, G.; Csiilag, L. J. Appl. Polym. Sci. 1981, 2 6 , 2783-2786. (2P) Bauer, P.; Richtex, M. J. Chromatogr. 1981, 206, 343-352. (3P) Charlesworth, J. J. Pdym. Sci., Polym. Phys. Ed. 1979, 77, 1571-1580. (4P) Charlesworth, J. J . Polym. Sci., Polym. Chem. Ed. 1980, 18, 821-628. (5P) Crabtree, D. J.; Hewitt, E). B. Chromatogr. Scl. 1977, 8 (Liq. Chromatogr. Polym. Reiat. Mater.), 63-77. (6P) Crabtree, D. J. Org. Coat. Plast. Chem. Prepr., Am. Chem. SOC. 1979, 40, 929-934. (7P) Crabtree, D. J. ACS Symp. Ser. 1980, No. 132, (Resins Aerosp.), 459-468. (8P) Dobinson, B.; Green, G. E.; Hinton, I. G.; Hope, P.; Martin, R. J.; Stark, B. P.; Waterhouse, J. S.; 'Young, E. W. Makromol. Chem. 1980, 181, 1-17. (9P) Hadad, D. K. Chromatogr Sci. 1981, 19 (Liq. Chromatogr. Poiym. Relat. Mater. 3), 157-167. (1OP) Hagnauer, G. L. Polym. Compos. 1980, 1 , 81-87. (11P) Hagnauer, G. L. Ind. Rss. Dev. 1981, 23 (41, 128-133. (12P) Hagnauer, G. L.; Setton, I . J. Llq. Chromatogr. 1978, 1 , 55-73. (13P) Kowaiska, M.; Wirsen, A. Natl. SAMPE Symp. Exhib. (Proc.) 1980, 2 5 , (1980's - Payoff Decalle Adv. Mater.), 389-402. (14P) Kuzaev, A. I. Vysokcimoi. Soedln., Ser. B 1980, 2 2 , 268-269; Chem. Abstr. 1980, 9 3 , 27162m. (15P) Kuzaev, A. I.Vysokornol. Soedln., Ser. A 1980, 2 2 , 2082-2087; Chem. Abstr. 1981, 9 4 , 3 1 4 0 2 ~ . (16P) Morris, C. E. M.; Moritz, A. 0.; Davidson, FI. G. Org. Coat. Piast. Chem. Prepr., Am. Chem SOC. 1979, 40, 261-265. (17P) Nuss, R. D. Chromatogr. Sci. 1977, 6(Liq. Chromatogr. Polym. Relat. Mater.), 79-91. (18P) Samay, G.; Fuzes, L.; Antai, I.;Csitiag, L.; Bodor, G. Polimery 1980, 2 5 , 241-244; Chem. Abstr. 1981, 9 4 , 849782. (19P) Beimares, H.; Barrera, A. J. Appl. Polym. Sci. 1979, 2 4 , 1531-1537. (20P) Cazes, J.; Martin, N. Chromatogr. Scl. 1977, 8 (Liq. Chromatogr. Polym. Reiat. Mater.), 121-133. (21P) Hemlngway, R. W.; McGraw, G. W. J. Llq. Chromatog. 1978, 1 , 183-179. (22P) Latka, G.; Moebes, W. Plaste Kautsch. 1980, 2 7 , 195-196; Chem. Abstr. 1980. 9 3 . 271440 (23P) Matsuzakl, T.; Inov; Y.; Ookubo, T.; Mori. S. J. Liq. Chromatogr. 1980. 3 , 353-365. (24P) Taylor, R.; Pragneil, R. &I.;McLaren. J. V. J. Chromatogr. 1980, 195, 154- 157.

.

(25P) Cunliffe, A. V.; Hartiey, D. B.; Klngston, S.B.; Richards, D. H.; Thompson, D. Polymer 1981, 2 2 , 101-107. (26P) Murphy, R.; SeMen, A. C.; Fisher, M.; Fagan, E. A.; Chadwick, V. S.J . Chromatogr. 1981, 211, 160-185. (27P) Taieb, B. S. A.; Vergnaud, J. M. J. Appi. Polym. Sci. 1980, 2 5 , 499-510. (28P) Urano, K.; Katagiri, IC.; Kawamoto, K. Water Res. 1980, 14, 741-745. (29P) Brydia, L. E.; Garty, 0. M. J. Polym. Sci., Chem. Ed. 1980, 18 1577-1588. (30P) Kuzaev, E. I. Vysokomol. Soedin., Ber. 6 1980, 2 2 , 202-205. (31P) Rentsch, C.; Schuiz, R. C. Makromoi. Chem. 1978, 179, 1403-1407. (32P) Springer, J.; Schmelzer, J.; Zepilchai, T. Chromatographla 1980, 13, 164- 168. (33P) Brydia, L. E.; Garty, 0. M. J. Polym. Scl., Chem. Ed. 1980, 18, 1577-1588. (34P) Dallas, G.; Abbott, S. D. Proc. Symp. Anal. foods Beverages 1979, 2, 509-535; Chem. Abstr. 1980, 9 2 , 22957~. (35P) Pacco, J. M.; Mukherjl, A. K.; Evans, D. L. Sep. Sci. Technoi. 1978, 13, 287-293. (36P) Shepard, M. J.; Gilbert, J. J . Chromatogr. 1979, 178, 435-441. (37P) Waiter, R. B.; Johnson, J. F. J. Polym. Sci., Macromol. Rev. 1980, 15. 29-53. (38P) 'Fisco, W. J.; Haberman, J.; Castorina, T. C. Report, Rept. No. ARLCP TR-78087. NTIS NO. AD-A064 105/0SL. 1978. (39P) Harmon, D. J. J. Liq. Chromatog. 1978, 1 , 231-240. (40P) Wilhelm, J. C.; Bioch, J. M. J. Chromatogr. 1980, 193, 329-332. (41P) Eiils, R. A. Plgm. Resin Technol. 1980, 9 , 11-15. (42P) Kuo, C. Y.; Provder, T. ACS Symp. Ser. 1980, No. 138 (Size Exclusion Chromatogr.), 207--224. (43P) Kuo, C.; Provder, T ; Holsworth, R. M.; Kah, A. F. Chromatogr. Sci. 1981, 19 (Liq. Chromatogr. Poiym. Reiat. Mater. 3), 169-206. (44P) Kuo, C.; Provder, T. J. Coat. Technol. 1981, 53, 69-76. (45P) Aitegeit, K. H. Chromatogr. Sci. 1979, 1 1 . 287-312. (46P) Bartle, K. D.; Collin, G.; Stadelhofer, J. W.; Zander, M. J. Chem. Technol. Biotechnol. 1979, 2 9 , 531-551. (47P) Biuemer, G. P.; Kleffner. H. W.; Leucke, W.; Palm, J., Zander, M. Erdvel Kohie, Erdgas, Petrochem. 1 9 8 t 3 4 , 81; Chem. Abstr. 1981, 9 5 , 27543~. (48P) Bockrath, B. C.; Schroeder, K. T.; Steffgen, F. W. Anal. Chem. 1979, 15, 1168-1172. (49P) Bruie, 8. J. Liq. Chromatogr. 1979, 2 , 185-192. (50P) Bruie, B. Chromatogr. Sci. 1980, 13 (Llq. Chromatog. Poiym. M a t . Mater. 2), 215-248. (51P) Curtis, C. W.; Hathaway, C. D.; Guin, J. A,; Tarrer, A. R. Fuel 1980, 5 9 , 575-583. (52P) Erbatur, G.; Gaines, A. F.; Hoscan, M. A.; Urum, Y.; Icii, S.;Wlrthlln, T. Fuel 1979, 5 8 , 121-131. (53P) Ferguson, D. A.; O'Brien, A. P. J. Chromatogr. 1981, 203, 313-323. (54P) Franz, J. A.; Camaioni, D. M.; Skiens, W. E. Adv. Chem. Ser. 1981, No. 192 (Coal Struct.), 75-93. (55P) Greinke, R. A.; O'Connor, L. H. Anal. Chem. 1980, 5 2 , 1877-1881. (56P) Hathaway, C. D.; Curtls, C. W.; Meng, S.; Tarrer, A. R.; Guin, J. A. Prepr. Pap., Am. Chem. SOC., Dlv. FuelChem. 1978. 23 (4), 185-195. (57P) Hausier, D. W.; Hellgeth, J. W.; McNair, H. M.; Taylor, L. T. J. Chromatogr. Sci. 1979, 17, 817-823. (58P) Lewis, C. Carbon 1980, 18, 191-196. (59P) Perry, G. J. Abstr. Pap.-Aust. Workshop Coal Hydrogenation, 4th 1979, V6-V8; Chem. Abstr. 1980, 93, 170793~. (60P) Philip, C. V.; Anthony, R. G. Prepr. Pap., Am. Chem. SOC., Div. Fuel Chem. 1979, 24 (3), 204-214. (61P) Ruberto, R. G.; Cronauer, D. C.; Gaiya, L. G. Fuel Process. Technoi. 1981, 5 , 103-118. (62P) Such, C.; Brule, B.; Baliya, S . C. J. Liq. Chromatogr. 1979, 2 , 437-453. (63P) Yao, T.; Uchida, T.; Sato, H.; Kamiya, Y. Nippon Kagaku Kaishi 1980, (3) 327-332; Chem. Abstr. 1980, 9 3 , 28920~. (84P) Yokoyama, S.;Bodily, D. M.; Wiser, W. H. Fuel 1979, 5 8 , 162-170. (65P) All. A.; Lockwood, F.; Klaus, E. E.; Duda, J. L.; Tewksbury, F. J. ASLE Trans. 1979, 2 2 , 267-276. (66P) Bicking, M. K.; Kniseiey, R. N. Anal. Chem. 1980, 52, 2164-2168. (87P) Critkovlc, E.; Klaus, E. E.; Lockwood, F. ASLE Trans. 1979, 2 2 , 395-40 1. (68P) Dorn, H. C. Report, NTIS No. AD-A084 169/2, 80 p, 1979. (69P) Hagnauer, G. L.; Bowse, B. M. J . Liq. Chromatogr. 1980, 3 , 1-20. (TOP) Hagnauer, G. L.; Bowse, B. M. Lubr. Eng. 1981, 3 7 , 336-343. (71P) Higashi, K.; Hagiwara, K. Fresenius' Z . Anal. Chem. 1980, 302, 281285; Chem. Abstr. 1981, 94 I 7 0 8 4 7 ~ . (72P) Antipin, L. M.; Gilyazetdlnov, A. L.; Fedotov, N. S.;Ryasin, G. V.; Pryakhina, E. S. Zh. Anal. Khlm. 1980, 35, 2120-2123; Chem. Abstr. 1981, 9 4 , 122352~. (73P) Kohn, E.; Ashcraft, R. W. Report, MHSMP-80-27, Energy Res. Abstr., 1980, 5 (17L Abstr. No. 27549. 1980. (74P) Soboievskii, M. V.; Giiyazetdinov, A. L.; Berezhanova, S.I.; Sobolevskaya, L. V.; Antipin, L. M. Plast. Massy 1981, (9), 59-60; Chem. Abstr. 1981, 9 5 , 2047951. ( l a ) Agg, G.; Yorke, R. W. "Int. Dissolving Pulps 5th Conf."; TAPPI: Atianta, GA, 1980; pp 224-229; Chem. Abstr. 1981, 9 4 , 85967j. (2Q) Bao, Y. T.; Bose, A.; Ladisch, M. R.; Tsao, G. T. J . Appi. Polym. Sci. 1980, 2 5 , 263-275. (30) Barth, H. G.; Regnier, F. E. J. Chromatogr. 1980, 792, 275-293. (4Q) Concin, R.; Burtscher, E.; Bobleter, 0. J. Chromatogr. 1980, 198, 131-141. ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982

275R

Anal. Chem. 1982, 5 4 , 276 R-293 R (5Q) Connors, W. J.; Sarkanen, S.; McCarthy, J. L. Holzforschung 1980, 34, 80-85; Chem. Abstr. 1980, 93, 97090k. (6Q) Cunnlngham, A. F.; Heathcote, C.; Hillman, D. E.; Paul, J. I.Chromatogr. Scl. 1980, 13 (Llq. Chromatogr. Polym. Relat. Mater. 2), 173-196. (7Q) Holt, C.; Mackie, W.; Sellen, D. B. Polymer 1978, 19, 1421-1426. (8Q) Lindstrom, T. Colloid Polym. Scl. 1979, 257, 277-285. (9Q) Lora, J. H.; Wayman, M. J . Appi. Polym. Scl. 1980, 25, 589-596. ( l o a ) Maansson, P. ”Ekman-Days 1981, Int. Symp. Wood Pulping Chem.”; SPCI: Stockholm, 1981; Voi. 5, pp 94-95; Chem. Abstr. 1981, 95, 117308j. (11Q) Minor, J. L. J. Liq. Chromatogr. 1979, 2, 309-318. (12Q) Sjobom, R. A.; Oresten, H. G. Propellants Explos. 1980, 5 , 105-110. (l3Q) Tae, I.M.; Inagakl, H. Polymer 1980, 21. 309-316. (14Q) Vyas, N. G.; Shashikant, S.; Patel, C. K.; Patel, R. D. J. Polym. Sci., Polym. Phys. Ed. 1979, 17, 2021-2029. (150) Dreher, T. W.; Hawthorne, D. B.; Grant, B. R. J. Chromatogr. 1979, 174, 443-446. (16Q) Ekekov, Y. A.; Strakhova, N. M.; Kalal, J.; Peska, J.; Stamberg, J. J. Polym. Sci., Polym. Symp. 1981. 68, 247-251. (l7Q) Lynn, M. M.; Stannett, V. T.; Gilbert, R. D. J . Polym. Sci., Polym. Chem. Ed. 1980, 18, 1967-1977. (180) Meuser, F.; Klingler, R. W.; Niediek, E. A. Ber. Tag. Getreidechem. 1979, 30, 52-60; Chem. Abstr. 1980, 93. 28135s. (l9Q) Papantonakis. M. Coat. Conf. 1980, 81-86; Chem. Abstr. 1980, 93, 48947m. (20Q) Stone, R. G.; Krasowskl, J. A. Anal. Chem. 1981, 53, 736-737. (21Q) Waniska, R. D.; Kinsella, J. E. J . Food Sci. 1980, 45, 1259-1261. (22Q) Hashlmoto, T.; Sasakl, H.; Aiura, M.; Kato, Y. J . Polym. Sci., Polym. Phys. Ed. 1978, 16, 1789. (230) Ibdam, N.; Furusawa, K.; Yamaguchl, N.; Komuro, S. J. Appi. Polym. Sci. 1979, 23, 3631. (24Q) Onda, N.; Furusawa, K.; Yamaguchi, N.; Komuro, S. J . Appi. Polym. SCi. 1979, 23, 3631-3638. (25Q) Onda, N.; Furusawa, K.; Yamaguchi, N.; Tokiwa, M.; Hirai, Y. J. Appl. Polym. Scl. 1980, 25, 2363-2372. (26Q) Alfredson, T.; Wehr, C. T. Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 1980, 21 (2), 103-104. (27Q) Barford, R. A,; Sliwlnski, B. J.; Rothbart, H. L. Chromatographia 1979, 12, 285-288. (28Q) de Ligny, C. L.; Gelsema, W. J.; Roozen, A. M. P. J. Chromatogr. Sci. 1981, 19,477-479. (29Q) Dimenna, G. P.; Segall, H. J. J. Liq. Chromatogr. 1981, 4 , 639-649. (30Q) Gooding, D. L.; Chatfleld, C.; Coffin, 8. Am. Lab. (Fairfield, Conn.) 1980, 72 (E), 48-61. (31Q) Haller, W.; Gschwender, H. G.; Peters, K. R. J . Chromatogr. 1981, 211, 53-59. (320) Imamura, T.; Konishl, K.; Yokoyama, M.; Konishl, K. J . Liq. Chromatogr. 1981, 4, 613-627. (33Q) Leach, B. S.; Collawn, J. F.; Fish, W. W. Biochemistry 1880, 19, 5741-5747. (34Q) Montelaro, R. C.; West, M.; Issel, C. J. Anal. Biochem. 1981, 114, 398-406.

(35Q) Murakami, K.; Ueno, N.; Hirose, S. J . Chromatogr. 1981, 225, 329-334. (38Q) Molko, D.; Derbyshire, R.; Guy, A.; Roget, A.; Teoule, R.; Boucherle, A. J. Chromatogr. 1981, 206, 493-500. (370) Nelson, M. Altex Chromatogram 1980, 3 , 4-5. (38Q) Okazaki, M.; Shlraishi, K.; Ohno, Y.; Hara, I.J . Chromatogr. 1981, 223, 285-293. (39Q) Renck. B.; Einarsson, R. J. Chromatogr. 1980, 797, 278-281. (40Q) Rivier, J. E. J . Chromatogr. 1980, 202, 211-222. (41Q) Shmukler, H. W.; Soffer, E.; Kwong, S. F. Report, Rept. No. NADC79085-60, NTIS NO. AD-A069 626/OSL, 1979. (42Q) Shmukler, H. W.; Kwong, S. F.; Soffer, E., Zawryt, M. G. Report, Rept. NO. NADC-79008-60, NTIS NO. AD-A067 327/7SL, 1979. (43Q) Somack, R.; McKay, V. S.; Giles, J. W. ACS Symp. Ser. 1980, No. 138 (Slze Excluslon Chromatogr.), 285-297. (44Q) UI, N. J . Chromatogr. 1981, 215, 289-294. (45Q) Wehr, C. T.; Abbott, S. R. J . Chromatogr. 1979, 165, 453-462. (46Q) Welinder, B. S. J . Liq. Chromatogr. 1980, 3, 1399-1416. (47Q) Bixby, B. Report, OWRT-A-048-NH, NTIS No. PB81-113896, 102 pp, 1979; Chem. Abstr. 1981, 95, 49082d. (480) Hart, 0. 0. Water Sci. Techno/. 1981, 13, 525-536. (49Q) Jewett, M. A.; O’Brlen, D. J. Proc.-AWWA Annu. Conf. 1979 (Pt,l), 531-538; Chem. Abstr. 1980, 93, 13763211. (50Q) Rodgers, D. H.; Kopfler, F. C.; Bombaugh, K. J.; Ogle, L. D. Prepr. Pap., Am. Chem. SOC., Div. Environ. Chem. 1979, 19, 59-62. (51Q) Thurman, E. M.; Malcolm, R. L. Envlron. Sci. Techno/. 1981, 15, 463-466. (52Q) Toledo, A. P. P.; Jordan, I.; Ferreronl, M. C. An. Acad. Bras. Cienc. 1980, 5 , 31-33; Chem. Abstr. 1980, 93, 135494e. (53Q) Barth, H. G. J . Llq. Chromatogr. 1980, 3 , 1481-1496. (54Q) Barth, H. G.; Smith, D. A. J . Chromatogr. 1981, 206, 410-415. (55Q) Chow, C. D.; Jewett, G. L. J . Llq. Chromatogr. 1980, 3 , 419-426. (56Q) Domard, A.; Rlnaudo, M.; Rochas, C. J . Polym. Sci., Phys. Ed. 1979, 17, 673-681. (57Q) Dubln, P. L.; Levy, I. J. Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 1981, 22 (l), 132-134. (58Q) Hashimoto, T.; Sasaki, H.; Alura, M.; Kato, Y. J . Polym. Sci., Phys. Ed. 1978, 16, 1789-1800. (59Q) Kato, Y.; Sasaki, H.; Aiura, M.;Hashimoto, T. J. Chromatogr. 1978, 153, 546-549. (60Q) McCormick, C. L.; Park, L. S. J. Appi. Polym. Sci. 1981, 26, 1705-1 7 17. (610) Forget, J. L.; Booth, C.; Canham, P. H.; Duggleby, M.; King, T. A. J. Polym. Sci., Phys. Ed. 1979, 17, 1403-1411. (62Q) Sasaki, T.; Kushlma, K.; Matsuda, K.; Susuki, H. Bull. Chem. SOC. Jpn. 1980, 53, 1864-1866. (63Q) Akltt, J. W.; Farthlng, A. J . Chem. Soc., Dalton Trans. 1981, 7, 1606-1 608. (64Q) Messer, B.; Yarnltzky, C.; Schmuckler, G. Anal. Chim. Acta 1981, 126, 229-232. (65Q) Noda, H.; Saitoh, K.; Suzukl, N. Chromatographia 1981, 14, 189-191. (66Q) Parrott, L.; Young, J. F. Cem. Concr. Res. 1981, 11, 11-17.

Atomic Absorption, Atomic Fluorescence, and Flame Spectrometry Gary Horlick Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

The first year covered by this review (1980) saw the celebration of the 25th anniversary of Alan Walsh’s landmark paper entitled “The Application of Atomic Absorption Spectra to Chemical Analysis” published in Spectrochimia Acta (30A). To commemorate the publication of this paper a two-part special issue of Spectrochimica Acta has been published with the general title “Atomic Absorption Spectroscopy, Past, Present and Future” (22A, 23A). The papers in these two issues are highly recommended to all working in the general area of analytical atomic spectroscopy. To highlight a few: In an excellent article Walsh (31A)presented some personal recollections and speculations on atomic absorption spectrometry. He indicated that the conception of atomic absorption was slowed over the decades before 1955 by such factors as a lack of photoelectric detection, a misinterpretation of Kirchoff‘s law, thinking only of continuous sources and a failure to “avoid being stupid”. The key was the hollow 276 R

0003-2700/82/0354-276R$06.00l0

cathode lamp which put the resolution in the source and allowed, although one would not necessarily believe so today when viewing modern commercial instruments, very simple measurement systems to be utilized. Since 1955 essentially only two major advances have occurred, electrothermal atomization and the N20-C2H2flame although the modern microprocessor-based instruments could well be added to this list. What has expanded is the range of applications and it has been a continuing source of amazement and even surprise to Walsh that the method has been so important in the analysis and characterization of the elemental composition of such a wide range and diversity of samples. A companion paper to the introductory comments of Walsh is a reprint of his 1974 A-page article from Analtyical Chemistry entitled “Atomic Absorption Spectrometry-Stagnant or Pregnant” (32A). The issue continues with general interest papers by Willis (34A)on recollections of the early days of atomic ab0 1982 American Chemical Society