Chapter 15
Soilborne Fungi for Biological Control of Weeds
Downloaded by EAST CAROLINA UNIV on March 8, 2017 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch015
Richard W. Jones and Joseph G. Hancock Department of Plant Pathology, 147 Hilgard Hall, University of California—Berkeley, Berkeley, CA 94720
Current methods of biological weed control with plant pathogens rely mainly upon foliar application of host -specific pathogens which infect an established weed population. This contrasts with chemical weed control where application can provide broad-spectrum pre planting, pre-emergence or post-emergence control of potential weed populations. This limitation to the value of mycoherbicides, relative to chemical herbicides, could be overcome with the finding that the saprophytic, soilborne fungus Gliocladium virens Miller, Giddens & Foster can provide the needed broad -spectrum pre-emergence control of weeds. Application of G. virens, cultured on peat moss amended with sucrose and ammonium nitrate, reduced a broad range of weeds by at least 90 percent. Those seedlings which did emerge were severely stunted. Herbicidal activity was correlated with production of the steroidal phytotoxin viridiol. Viridiol caused a severe necrosis of roots but did not affect other tissues. Crop toxicity was avoided by directed application of the mycoherbicide above the root zone of crop seedlings. The use of G. virens and other soilborne fungi for weed control is discussed.
Soilborne fungi remain the l e a s t s t u d i e d organisms f o r the b i o l o g i c a l c o n t r o l o f weeds. T h i s i s s u r p r i s i n g when one c o n s i d e r s that the f i r s t f u l l y registered commercially available microbial h e r b i c i d e w a s t h e s o i l b o r n e f u n g u s Phytophthora palmivora Butl. (1,2). M a r k e t e d a s D e V i n e ( A b b o t t L a b o r a t o r i e s , C h i c a g o I L ) , P . palmivora i s a p p l i e d t o s o i l a r o u n d c i t r u s t r e e s f o r t h e c o n t r o l o f s t r a n g l e r v i n e (Morrenia odorata L i n d l . ) . I t has proven h i g h l y 0097-6156790A)439-0276$06.00A) © 1990 American Chemical Society
Hoagland; Microbes and Microbial Products as Herbicides ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Downloaded by EAST CAROLINA UNIV on March 8, 2017 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch015
15. JONES* HANCOCK
SoUbome FungiforBiological Control of Weeds
e f f e c t i v e i n c o n t r o l o f both s e e d l i n g s and mature v i n e s . P e r s i s t e n c e o f t h i s m y c o h e r b i c i d e i s h i g h l i g h t e d b y t h e 95 t o 100 % v i n e c o n t r o l r e p o r t e d 6 years a f t e r a p p l i c a t i o n o f t h e fungus Q ) . S o i l b o r n e f u n g i r e d u c e weed p o p u l a t i o n s t h r o u g h t h e d e c a y o f seeds b e f o r e emergence o r b y c a u s i n g t h e d e a t h o f s e e d l i n g s s h o r t l y a f t e r emergence. S o i l b o r n e f u n g i c a n a l s o cause severe r o o t decay, g i r d l i n g s o i l - l i n e l e s i o n s and i n t e r n a l stem n e c r o s i s , each r e s u l t i n g i n reduced competitive a b i l i t y and decreased reproductive c a p a c i t y o f i n f e c t e d weeds. W h i l e t h i s damage may b e o v e r l o o k e d o n a w e e d , i t i s r e a d i l y d o c u m e n t e d w h e n i t c a u s e s s i m i l a r damage t o a crop. P l a n t p a t h o l o g i s t s a r e w e l l a w a r e o f t h e damage c a u s e d t o crops b y s o i l b o r n e f u n g i , however t h e i r main i n t e r e s t i s p r o t e c t i o n o f t h e c r o p , n o t t h e p o t e n t i a l t o i n f l i c t t h e same t y p e o f damage t o weed s p e c i e s . A w e a l t h o f i n f o r m a t i o n e x i s t s o n t h e e c o l o g y a n d physiology of soilborne phytopathogenic f u n g i . This information can provide a valuable resource f o r s e l e c t i o n and o p t i m i z a t i o n of s o i l b o r n e phytopathogenic f u n g i as mycoherbicides. Weed h o s t s a r e a n i m p o r t a n t r e s e r v o i r f o r p a t h o g e n s o f c u l t i v a t e d p l a n t s p e c i e s , t h u s t h e y a r e l i s t e d i n many s t u d i e s o f s o i l b o r n e crop pathogens. T h i s documentation c a n be a v a l u a b l e s o u r c e o f new m y c o h e r b i c i d e s . I t s h o u l d b e p o s s i b l e t o e m p l o y a c r o p p a t h o g e n f o r c o n t r o l o f a c l o s e l y r e l a t e d weed s p e c i e s as l o n g as t h e crop s p e c i e s i s n o t p r e s e n t . One o f t h e v e r y f e w r e p o r t e d e x a m p l e s where t h i s s t r a t e g y h a s b e e n a p p l i e d was t h e a t t e m p t t o
control yellow starthistle
{Centaurea s o l s t i t i a l is L . ) w i t h
p a t h o g e n s o f t h e c l o s e l y r e l a t e d c r o p s a f f l o w e r (Carthamus tinctorius L.) (4). The u s e o f p h y t o p a t h o g e n i c s o i l b o r n e f u n g i i s o b v i o u s l y l i m i t e d by the p o t e n t i a l f o r exposure o f s u s c e p t i b l e crop species. T h i s l i m i t a t i o n c a n be reduced i f t h e fungus h a s a v e r y l i m i t e d host range, although t h i s l i m i t s i t s value as a broads p e c t r u m weed c o n t r o l . E x p o s u r e c a n o c c u r t h r o u g h t h e s u b s e q u e n t p l a n t i n g o f susceptible crops into mycoherbicide i n f e s t e d s o i l , or by d i s p e r s a l i n t o s u r r o u n d i n g f i e l d s c o n t a i n i n g s u s c e p t i b l e c r o p s . I f crop r o t a t i o n s are p r a c t i c e d over a s u f f i c i e n t l e n g t h o f time i t may b e p o s s i b l e t o p l a n t s u s c e p t i b l e c r o p s , b u t o n l y f o r t h o s e c a s e s where t h e s o i l b o r n e fungus i s known t o be g r e a t l y r e d u c e d i n p o p u l a t i o n i n t h e absence o f a h o s t . The p o s s i b i l i t y t h a t a s o i l b o r n e fungus would be d i s p e r s e d t o s u r r o u n d i n g f i e l d s , w h i l e possible, i s less l i k e l y than the possible d i s p e r s a l of a f o l i a r p a t h o g e n whose p r o p a g u l e s w o u l d b e a v a i l a b l e f o r w i n d a n d w a t e r dispersal. T h e r e a r e numerous a d d i t i o n a l a d v a n t a g e s i n t h e u s e o f s o i l b o r n e f u n g i f o r w e e d c o n t r o l . One a d v a n t a g e o f s o i l b o r n e f u n g i i s t h e i r g r e a t e r independence from e n v i r o n m e n t a l c o n d i t i o n s ( m o i s t u r e , t e m p . ) w h i c h l i m i t t h e u s e o f f o l i a r m y c o h e r b i c i d e s . The extended periods of h i g h r e l a t i v e humidity r e q u i r e d f o r germination and i n f e c t i o n by f o l i a r mycoherbicides s e v e r e l y r e s t r i c t s the p e r i o d o f a p p l i c a t i o n . S o i l b o r n e f u n g i c a n be a p p l i e d a t t h e c o n v e n i e n c e o f t h e grower when weed c o n t r o l i s d e s i r e d . S o i l b o r n e f u n g i c a n a l s o be a p p l i e d i n v a r i o u s g r a n u l a r f o r m u l a t i o n s w h i c h p r o v i d e a s u b s t r a t e w h i c h f a v o r s p r o l i f e r a t i o n o f t h e added mycoherbicide.
Hoagland; Microbes and Microbial Products as Herbicides ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
111
278
MICROBES AND MICROBIAL PRODUCTS AS HERBICIDES
F u s a r i a as
Mycoherbicides
A l i s t o f s o i l b o r n e p h y t o p a t h o g e n s w h i c h have been s t u d i e d as m y c o h e r b i c i d e s i s f o u n d i n T a b l e I. With the exception of Sclerotinia sclerotiorum ( L i b . ) de B a r y , t e s t e d f o r c o n t r o l o f C a n a d a t h i s t l e [Cirsium arvense ( L . ) S c o p . ] ( 5 ) , a n d P . palmivora, the only s o i l b o r n e p l a n t pathogenic fungi c u r r e n t l y being s t u d i e d as m y c o h e r b i c i d e s i n c r o p s b e l o n g t o t h e genus F u s a r i u m .
Downloaded by EAST CAROLINA UNIV on March 8, 2017 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch015
Table
I.
Soilborne Phytopathogenic as M y c o h e r b i c i d e s
Fungus
Fusarium
Target
lateritLum
Fusarium oxysporum f . s p . cannabis Fusarium oxysporum f . s p . carthami Fusarium roseum Fusarium solani f . s p . cucurbitae Phytophthora palmivora Rhizoctonia solani Sclerotinia sclerotiorum
Fungi
Studied
Weed
Reference
prickly sida s p u r r e d anoda velvetleaf hemp
(8)
yellow
(4)
starthistle
(2)
hydrilla Texas gourd
(9) (6)
stranglervine water hyacinth Canada t h i s t l e
(1) (10) Q)
Fusarium i s found i n v i r t u a l l y a l l s o i l s on a worldwide b a s i s . S u r v i v a l i n s o i l i s g e n e r a l l y achieved by p r o d u c t i o n of chlamydospores which a r i s e through the t h i c k e n i n g of hyphal or conidial cell walls. S p e c i e s o f F u s a r i u m have b e e n r e p o r t e d as p a r a s i t e s on v i r t u a l l y a l l c u l t i v a t e d crop s p e c i e s . Many f u s a r i a a r e q u i t e h o s t s p e c i f i c , and a r e c l a s s i f i e d i n formae s p e c i a l i s according to t h e i r s p e c i f i c i t y . F o r e x a m p l e , Fusarium solani ( M a r t . ) A p p e l . & W r . f o r m a e s p e c i a l i s ( f . s p . ) cucurbitae, applied f o r c o n t r o l o f T e x a s g o u r d (Cucurbita texana G r a y ) ( 6 ) , i s l i m i t e d to i n f e c t i o n of cucurbits. This specialization provides a p r e d i c t a b l e host range, thus reducing the r i s k of i n f e c t i n g a p l a n t s p e c i e s absent from h o s t - r a n g e s c r e e n i n g . I n the absence of a h o s t , t h e s e s p e c i a l i z e d p a t h o g e n s do n o t s u r v i v e b e y o n d a f e w s e a s o n s so t h e y s h o u l d n o t pose a t h r e a t t o f u t u r e p l a n t i n g s o f susceptible crops. An a d d i t i o n a l b e n e f i t of t h i s s p e c i a l i z a t i o n i s t h a t r e s i s t a n c e g e n e s a r e a v a i l a b l e i n some c r o p s , t h u s a l l o w i n g use of the fungus w i t h otherwise s u s c e p t i b l e c r o p s . The p r e s e n c e o f r e s i s t a n c e i n t h e c r o p s u g g e s t s t h a t r e s i s t a n c e may b e selected f o r i n t h e weed p o p u l a t i o n a f t e r r e p e a t e d a p p l i c a t i o n o f h o s t specific fusarium-based mycoherbicides. F u s a r i u m r e s i s t a n c e was f o u n d d u r i n g i n i t i a l a p p l i c a t i o n o f F. oxysporum S c h l e c h t . f . sp. cannabis N o v i e l l o & S n y d e r f o r c o n t r o l o f i l l i c i t hemp (Cannabis
sativa
L.) (2).
Hoagland; Microbes and Microbial Products as Herbicides ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
15. JONES & HANCOCK
Sodbome Fungifor Biological Control of Wads
One l i m i t a t i o n i n t h e u s e o f F u s a r i a a s m y c o h e r b i c i d e s h a s b e e n t h e i n a b i l i t y t o c o n t r o l more t h a n one weed s p e c i e s . Unless the t a r g e t weed i s t h e m a j o r component o f t h e c o m p e t i t i v e weed p o p u l a t i o n i t i s uneconomical to apply the mycoherbicide. This l i m i t a t i o n h a s b e e n r e d u c e d s o m e w h a t t h r o u g h u s e o f Fusarium lateritium Nees ex F r . , w h i c h i s e f f e c t i v e a g a i n s t s p u r r e d anoda
Downloaded by EAST CAROLINA UNIV on March 8, 2017 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch015
[Anoda cristata
( L . ) S c h l e c h t ] , v e l v e t l e a f (Abutilon
theophrasti
M e d i c . ) a n d p r i c k l y s i d a (Sida spinosa L . ) ( £ ) . These weeds a r e , h o w e v e r , a l l members o f t h e M a l v a c a e , t h u s c o n t r o l r e m a i n s c o n f i n e d to c l o s e l y r e l a t e d weeds. I t may b e p o s s i b l e t o c o m b i n e v a r i o u s F u s a r i a t o o b t a i n a b r o a d e r range o f weed c o n t r o l . W h i l e t h e r e i s some p r o m i s e i n t h e u s e o f F u s a r i a a s m y c o h e r b i c i d e s , t h e r e may b e d i f f i c u l t i e s i n r e g i s t r a t i o n a n d c o m m e r c i a l i z a t i o n o f a c r o p p a t h o g e n f o r weed c o n t r o l . Growers, c o n c e r n e d a b o u t t h e p o t e n t i a l f o r damage t o t h e i r own a n d n e i g h b o r i n g f i e l d s may b e w a r y o f m y c o h e r b i c i d e s c l a s s i f i e d a s p l a n t pathogens. Another type of mycoherbicide, employing nonphytopathogenic s o i l b o r n e f u n g i , can provide an a l t e r n a t i v e to the r i s k s o f a p p l y i n g p a t h o g e n i c f u n g i f o r weed c o n t r o l . The n o n p h y t o p a t h o g e n i c f u n g i a c t b y p r o d u c i n g p h y t o t o x i c compounds u n d e r c e r t a i n n u t r i e n t regimes. T h u s , w h i l e t h e y do n o t i n f e c t p l a n t s t h e i r p h y t o t o x i c m e t a b o l i t e s r e s u l t i n s t u n t i n g and death of nearby plants. As p h y t o t o x i c l e v e l s o f s y n t h e s i s occur o n l y w i t h the a d d i t i o n of h i g h l e v e l s of s p e c i f i c n u t r i e n t s the d u r a t i o n of h e r b i c i d a l a c t i v i t y c a n be r e g u l a t e d . I n the absence of the added s u b s t r a t e the fungus e x i s t s i n the s o i l s i m p l y as a s a p r o p h y t e , c a u s i n g no p o t e n t i a l d i s e a s e t h r e a t .
P h v t o t o x i n P r o d u c t i o n b v Gliocladium
virens
B r o a d - s p e c t r u m weed c o n t r o l h a s r e c e n t l y b e e n a c h i e v e d u s i n g t h e n o n - p h y t o p a t h o g e n i c s o i l b o r n e f u n g u s Gliocladium virens (11.12). A p p l i c a t i o n o f the fungus a f t e r c u l t u r i n g on n u t r i e n t - a m e n d e d p e a t r e s u l t e d i n d r a m a t i c r e d u c t i o n s i n s e e d l i n g emergence and d r y w e i g h t s as shown i n T a b l e I I . A l l t e s t seeds were f i r s t p l a n t e d i n s o i l i n w h i c h 16% o f t h e t o t a l s o i l v o l u m e was t h e f u n g u s - p e a t mixture. The m a j o r i t y o f t e s t weed s p e c i e s f a i l e d t o emerge a t t h i s l e v e l , t h e few w h i c h d i d were s e v e r e l y s t u n t e d . Those s p e c i e s w h i c h f a i l e d t o e m e r g e a t t h e 16% c o n c e n t r a t i o n w e r e p l a n t e d i n s o i l i n w h i c h 8.7% o f t h e t o t a l s o i l v o l u m e was t h e f u n g u s - p e a t m i x t u r e . Those f a i l i n g t o emerge a t t h i s c o n c e n t r a t i o n were p l a n t e d a t l o w e r c o n c e n t r a t i o n s u n t i l e m e r g e n c e l e v e l s a t l e a s t 10% t h a t o f the c o n t r o l were a c h i e v e d . An i m p o r t a n t aspect i n a d d i t i o n to the b r o a d - s p e c t r u m n a t u r e o f t h i s mycoherbicide i s t h a t i s posseses pre-emergence a c t i v i t y . The s y s t e m i s s i m i l a r i n many w a y s t o w e e d c o n t r o l p r o v i d e d b y p r e emergence c h e m i c a l h e r b i c i d e s , w h i c h a c c o u n t f o r t h e m a j o r i t y o f herbicide applications. W h i l e most m y c o h e r b i c i d e s cause v a r i o u s degrees o f p h y s i o l o g i c a l s t r e s s to t a r g e t weeds, i t i s o f t e n o n l y a f t e r t h e y h a v e become e s t a b l i s h e d i n t h e c r o p . As the e f f e c t s o f weed c o m p e t i t i o n a r e g e n e r a l l y g r e a t e s t e a r l y i n c r o p s t a n d e s t a b l i s h m e n t , t h i s i s the most e f f e c t i v e t i m e f o r c h e m i c a l o r mycoherbicide a c t i v i t y ( U ) · T h e a c t i v i t y o f G. virens a s a m y c o h e r b i c i d e i s a c h i e v e d t h r o u g h p r o d u c t i o n o f t h e s t e r o i d - l i k e p h y t o t o x i n v i r i d i o l whose s t r u c t u r e i s s h o w n i n F i g u r e 1. V i r i d i o l p r o d u c t i o n i n s o i l was
Hoagland; Microbes and Microbial Products as Herbicides ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
279
Hoagland; Microbes and Microbial Products as Herbicides ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
8.7
16.0
« )
Application
II.
rate
Table
of
Safflower Bean Alfalfa Sugarbeet Spinach Black nightshade F i e l d bindweed Annual bluegrass Yellow f o x t a i l Canarygrass C u r l y dock Buckhorn p l a n t a i n
(Z o f
100 100 75 100 79 23 67 40 53 29 20 46
75 69 32 41 44 25 83 71 33 52 89
control)
30.8 189.6 6.3 8.5 8.1 0.9 12.0 1.3 6.8 1.8 0.6 0.9
44.1 31.6 1.4 59.0 16.5 13.9 103.6 15.5 2.2 2.7 30.7
Control
after
16.3 143.1 2.1 1.6 2.3 0.9* 3.7 0.5 1.5 1.2 0.2 0.5
3.4 15.4 0.2 34.6 3.5 0.6 64.1 3.7 0.3 0.1 17.8
Treated
f V
14
77.7 423.3 17.6 25.2 19.5 2.9 27.7 2.2 15.6 2.1 2.3 1.5
150.1 105.4 5.6 176.7 66.7 61.7 92.6 32.8 11.9 12.4 13.7
31.8 257.1 3.2 3.5 4.3 1.3 9.5 0.4 2.5 1.9* 0.9 0.8
41.1 48.4 0.4 86.7 11.4 1.6 36.0 5.4 0.9 0.5 6.8
Shoot Treated
days
Control
Dry weight
species
Root
m i x t u r e on c r o p and weed
Seedling emergence
G. v i r e n s - p e a t
Cotton Sunflower Lettuce Soybean Cucumber Cantaloupe Com Sudangraes Mustard Tomato W i l d Oat
Plant
Effect
Downloaded by EAST CAROLINA UNIV on March 8, 2017 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch015
Hoagland; Microbes and Microbial Products as Herbicides ACS Symposium Series; American Chemical Society: Washington, DC, 1990. 1.9 1.8 0.5 1.0
0.9 1.0 0.3 0.6
0.1 0.1 0.1 0.6 0.1 2.6 4.1 1.8 3.1
2.7 5.7 2.5 5.3 0.7 1.2 2.4 1.1 1.0
0.7 0.1 0.2 1.7 0.4
(Reproduced
Figure
1.
12.
Society
of
by G l i o c l a d i u m v i r e n s .
1988 Weed S c i e n c e
Viridiol
Copyright
S t e r o i d a l p h y t o t o x i n produced
w i t h p e r m i s s i o n from Ref.
for
dry America.)
t r e a t m e n t means asterisk.
weight
F u n g u e - p e a t m i x t u r e as percentage of t o t a l s o i l volume. V a l u e s r e p r e s e n t t r e a t m e n t l e v e l s at w h i c h a t l e a s t 10% o f s e e d l i n g s e m e r g e d r e l a t i v e t o t h e c o n t r o l . S p e c i e s t h a t f a i l e d t o e m e r g e t o t h i s l e v e l w e r e s e e d e d a t t h e n e x t l o w e r c o n c e n t r a t i o n u n t i l e m e r g e n c e e x c e e d e d 10Z o f c o n t r o l s .
60 62 96 58
Dandelion Bristly oxtongue Groundsel Annual s o w t h i s t l e
2.3
1.6 1.5 1.0 0.9 0.2
^ V a l u e s r e p r e s e n t mean o f i n d i v i d u a l s e e d l i n g s . D i f f e r e n c e s b e t w e e n were a l l s i g n i f i c a n t ( P - 0 . 0 5 ) u s i n g ANOVA-1, e x c e p t where n o t e d by
a
58 71 67 57 69
Spotted catsear Redroot pigweed Common p u r s l a n e Common f i d d l e n e c k Lambsquarter
4.5
Downloaded by EAST CAROLINA UNIV on March 8, 2017 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch015
282
MICROBES AND MICROBIAL PRODUCTS AS HERBICIDES
Downloaded by EAST CAROLINA UNIV on March 8, 2017 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch015
c l o s e l y r e l a t e d w i t h c o n t r o l o f weed emergence, b o t h l a s t i n g a b o u t two w e e k s . Production of phytotoxic l e v e l s of v i r i d i o l is dependent upon t h e h i g h n u t r i e n t s u b s t r a t e on which t h e fungus is cultured. W h i l e numerous c a r b o n a n d n i t r o g e n s o u r c e s support v i r i d i o l production, optimal l e v e l s are produced w i t h h i g h carbon:nitrogen ratios (14). I t i s i m p o r t a n t t h a t t h e s u b s t r a t e be below pH 7.0 as v i r i d i o l i s u n s t a b l e i n a l k a l i n e c o n d i t i o n s . A p p l i c a t i o n f o r m u l a t i o n s a r e p r e p a r e d b y c u l t u r i n g G. virens o n n u t r i e n t - a m e n d e d peat i n s h a l l o w t r a y s f o r s i x days u n t i l t h e fungus has c o l o n i z e d the p e a t . The f u n g u s - p e a t m i x t u r e i s a i r d r i e d then s t o r e d u n t i l needed. F o r a p p l i c a t i o n the d r i e d mixture i s i n c o r p o r a t e d i n a band t o t h e s o i l between the top o f the crop seed and the s o i l s u r f a c e . Exposure to v i r i d i o l r e s u l t s i n n e c r o s i s and death o f emerging radicles. R o o t t i p s a r e a f f e c t e d i n t h e same m a n n e r , w h e r e a s hypocotyls and f o l i a g e are unaffected. The o r g a n s p e c i f i c i t y o f v i r i d i o l a l l o w s i t t o be a p p l i e d i n t h e presence o f s e n s i t i v e crop species. A p p l i c a t i o n i s s i m p l y d i r e c t e d t o t h e s o i l above t h e crop seed. As the crop seed germinates the emerging r a d i c l e and subsequent roots extend i n t o the s o i l below the r e g i o n o f v i r i d i o l production. V i r i d i o l production occurs only on the peat substrate, i n c o n t a c t w i t h t h e added n u t r i e n t s , thus s y n t h e s i s does n o t occur b e y o n d t h e s u b s t r a t e . We h a v e f o u n d n o e v i d e n c e f o r movement o f v i r i d i o l into the v i r i d i o l - s e n s i t i v e root region of test crop s e e d l i n g s . The r e g i o n between t h e c r o p seed a n d t h e s o i l s u r f a c e i s where weed c o n t r o l c a n be s e e n . A weed s e e d w h i c h g e r m i n a t e s a t a depth greater than that which the fungus-peat mixture i s a p p l i e d w i l l be u n a f f e c t e d . However, t h e m a j o r i t y o f weed s e e d s g e r m i n a t e w i t h i n t h e top few c e n t i m e t e r s o f s o i l t h e r e f o r e a h i g h degree o f weed c o n t r o l c a n be e x p e c t e d . N u m e r o u s a t t r i b u t e s make G. virens a n i d e a l f u n g u s f o r mycoherbicide formulations. I t i s r e a d i l y c u l t u r e d , grows r a p i d l y a n d i s l o n g - l i v e d i n d r i e d p r e p a r a t i o n s . A u n i q u e f e a t u r e o f G. virens i s t h e p r o d u c t i o n o f c h e m i c a l c o m p o u n d s i n a d d i t i o n t o t h e p h y t o t o x i n v i r i d i o l . The two m a i n compounds a r e t h e epipolythiodiketopiperazines g l i o t o x i n and g l i o v i r i n (15,16). T h e s e c o m p o u n d s a r e s t r o n g l y i n h i b i t o r y t o w a r d s Pythium ultimum T r o w a n d Rhizoctonia solani K u h n , t w o s o i l b o r n e f u n g i r e s p o n s i b l e f o r t h e m a j o r i t y o f crop seed and s e e d l i n g decay. A c l o s e r e x a m i n a t i o n o f o t h e r p h y t o t o x i n - p r o d u c i n g s o i l b o r n e f u n g i may y i e l d a d d i t i o n a l m y c o h e r b i c i d e c a n d i d a t e s a s e f f e c t i v e a s G. virens.
Screening for Phytotoxin-producing Soilborne
Fungi
V a r i o u s s o i l b o r n e f u n g i have been r e p o r t e d t o produce p h y t o t o x i n s , some o f w h i c h a r e l i s t e d i n T a b l e I I I . C e r t a i n p h y t o t o x i c compounds a r e known t o h a v e p r o n o u n c e d m y c o t o x i c a c t i v i t y ( e g . moniliformin). We h a v e e x c l u d e d t h o s e f u n g i w h i c h h a v e t h e p o t e n t i a l to c o l o n i z e e d i b l e p a r t s o f crops and produce mycotoxic
Hoagland; Microbes and Microbial Products as Herbicides ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
15. JONES A HANCOCK
Soilborne Fungifor Biological Control of Weeds
compounds a s t h e y w o u l d o b v i o u s l y b e u n s u i t a b l e f o r a p p l i c a t i o n . V e r y few p h y t o p a t h o g e n i c f u n g i a r e known t o p r o d u c e p h y t o t o x i n s . The m a j o r i t y o f p h y t o t o x i n - p r o d u c i n g s o i l b o r n e f u n g i a r e saprophytes.
Table
Downloaded by EAST CAROLINA UNIV on March 8, 2017 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch015
Fungus
I I I . Phytotoxin-producing Soilborne
Fungi
Phytotoxin
uncharacterized Actinomycete s p p . desmethoxyviridiol Gliocladium delLquescens viridiol Gliocladium virens phaseolinone Macrophomina phaseolina desmethoxyviridiol Nodulisporium hinnuleum citreoviridin Pénicillium charlesii PC t o x i n Periconia circinata Streptomyces s p . anisomycin h e r b i m y c i n s A,Β Streptomyces saganonensis Streptomyces νiridochromogenes b i a l o p h o s c y c l o c a r b i m i d e A,Β Streptoverticillium sp. p e n t y l pyrones Trichoderma harzianum p e n t y l pyrones Trichoderma viride
Reference
(18,12) (14) (11.12) (24) (21) (26) (22) (28) (2i) (30) (26) (11) (32)
Few s t u d i e s h a v e c e n t e r e d o n t h e i s o l a t i o n o f p h y t o t o x i n producing soilborne fungi. The p h y t o t o x i c a c t i v i t y o f f u n g a l metabolites i s g e n e r a l l y found d u r i n g r o u t i n e screening o f m e t a b o l i t e s f o r o v e r a l l b i o l o g i c a l a c t i v i t y (1Z). Screening of soilborne fungi s p e c i f i c a l l y for the production of phytotoxins s h o u l d y i e l d numerous p r o m i s i n g c a n d i d a t e s f o r u s e a s mycoherbicides. To d a t e , e f f o r t s t o i d e n t i f y p h y t o t o x i n - p r o d u c i n g s t r a i n s h a v e b e e n l a r g e l y l i m i t e d t o Streptomyces a n d Actinomycete
s p p . (18,19).
V a r i o u s methods a r e a v a i l a b l e t o r a p i d l y s c r e e n s o i l b o r n e f u n g i for production of phytotoxic metabolites. One o f t h e s i m p l e s t i n v o l v e s p l a c i n g a f u n g a l c u l t u r e on a n agar p l a t e c o n t a i n i n g seeds o f t h e t a r g e t weed. T h i s i s l i m i t e d t o f u n g a l i s o l a t e s w h i c h do not r a p i d l y colonize the agar p l a t e . Rapid c o l o n i z a t i o n would obscure phytotoxin production. For those fungi o f r e s t r i c t e d c o l o n y s i z e , one r e l i e s o n t h e a b i l i t y o f t h e p h y t o t o x i n t o d i f f u s e from the c o l o n y t o the s u s c e p t i b l e t a r g e t t i s s u e . While t h i s i s a d e q u a t e f o r some c o m p o u n d s , i t may l i m i t t h e d e t e c t i o n o f h y d r o p h o b i c compounds w h i c h d i f f u s e l e s s r e a d i l y t h r o u g h t h e a g a r . An a l t e r n a t i v e t o d i r e c t s c r e e n i n g o f p o t e n t i a l p h y t o t o x i n producing f u n g i i s the t e s t i n g o f crude metabolites produced i n l i q u i d c u l t u r e by the fungi. The m e t a b o l i t e s c a n be p l a c e d i n w e l l s c u t i n t o t h e a g a r n e x t t o t h e t e s t w e e d s e e d o r i t may b e incorporated d i r e c t l y into the agar. T h e m e t a b o l i t e s may a l s o b e a p p l i e d d i r e c t l y t o s e e d s , c a l l i o r s h o o t c u l t u r e s (22) t o t e s t f o r metabolite t o x i c i t y . A l g a e have been used as i n d i c a t o r s o f metabolite phytotoxicity. Chlorella i s often used and i s e f f e c t i v e f o r d e t e c t i o n o f p h o t o s y n t h e t i c i n h i b i t o r s (21)· Chlamydomonas may a l s o prove a u s e f u l a l g a l model f o r d e t e c t i o n o f f u n g a l
Hoagland; Microbes and Microbial Products as Herbicides ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
283
Downloaded by EAST CAROLINA UNIV on March 8, 2017 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch015
284
MICROBES AND MICROBIAL PRODUCTS AS HERBICIDES
phytotoxins. Chlamydomonas i s s e n s i t i v e t o i n h i b i t o r s o f c e l l d i v i s i o n and enlargement ( 2 2 ) , thus i t c o u l d provide a s e n s i t i v e i n d i c a t o r o f compounds i n h i b i t o r y t o s e e d g e r m i n a t i o n a n d s e e d l i n g growth where r a p i d c e l l d i v i s i o n a n d e n l a r g e m e n t i s o c c u r i n g . I n h i b i t o r s o f seed g e r m i n a t i o n and s e e d l i n g growth would be p a r t i c u l a r i l y desirable a c t i v i t i e s f o r a mycoherbicide as they c o u l d e l i m i n a t e weed c o m p e t i t i o n a t a v e r y e a r l y s t a g e . Cell c u l t u r e s , c a l l u s a n d s h o o t c u l t u r e s may b e u s e d i n m e t a b o l i t e s c r e e n i n g , however most c u l t u r e s a r e c u r r e n t l y d e r i v e d from t o b a c c o a n d i t i s n o t known how d i f f i c u l t i t w o u l d b e t o c u l t u r e c e l l s f r o m v a r i o u s weeds. Another i n t e r e s t i n g source o f t i s s u e f o r p h y t o t o x i c i t y s t u d i e s w o u l d b e Agrobacterium rhizogenes-transformed root c u l t u r e s ( 2 3 ) , as they maintain the c e l l u l a r s t r u c t u r e o f intact roots. F o r b o t h t h e a l g a l a n d t i s s u e c u l t u r e systems i t i s n o t w e l l known i f t h e y a d e q u a t e l y r e p r e s e n t t h e r e s p o n s e o f a c t u a l plants. W h i l e each o f t h e p r e v i o u s l y m e n t i o n e d methods f o r d e t e c t i n g p h y t o t o x i c m e t a b o l i t e s may p r o v e u s e f u l t h e y s h o u l d n o t r e p l a c e t e s t i n g o f t h e a c t u a l seed o r s e e d l i n g o f t h e t a r g e t weed in soil. They may, however, p r o v i d e a u s e f u l system f o r t h e i n i t i a l s c r e e n i n g o f v e r y l a r g e numbers o f f u n g a l i s o l a t e s . Factors Affecting Phytotoxin Production S c r e e n i n g f o r p h y t o t o x i n p r o d u c t i o n s h o u l d be c a r r i e d o u t w i t h as many d i f f e r e n t m e d i a c o m p o s i t i o n s a s p o s s i b l e d u e t o t h e v a r i a b l e l e v e l o f metabolite synthesis on d i f f e r e n t media. The c o m p o s i t i o n of t h e media s i g n i f i c a n t l y a f f e c t s p r o d u c t i o n o f t h e p h y t o t o x i n v i r i d i o l b y G. virens. I n t h i s c a s e , i t was n o t t h e p r e s e n c e o f a s p e c i f i c c a r b o n o r n i t r o g e n source b u t t h e i r r e l a t i v e r a t i o . The pH w a s a l s o c r i t i c a l b e c a u s e v i r i d i o l w a s n o t s t a b l e i n a l k a l i n e solution. Large s c a l e s c r e e n i n g o f l i q u i d media c a n be performed i n disposable microfuge tubes. We h a v e s c r e e n e d n u m e r o u s m e d i a b y i n o c u l a t i n g G. virens c o n i d i a i n t o 1 . 5 m i l l i l i t e r m i c r o f u g e tubes c o n t a i n i n g one m i l l i l i t e r o f medium. Following a five-day i n c u b a t i o n , t h e fungal mycelium i s p e l l e t e d by c e n t r i f u g a t i o n and the supernatant t r a n s f e r r e d t o another tube. Both t h e mycelium and the c u l t u r e f l u i d c a n then be e x t r a c t e d and f r a c t i o n a t e d t o i s o l a t e phytotoxic metabolites. P r o d u c t i o n o f p h y t o t o x i n s s h o u l d be m o n i t o r e d o v e r a n e x t e n d e d t i m e p e r i o d s i n c e m e t a b o l i t e s may b e p r o d u c e d a n d t h e n c o n v e r t e d t o a n o t h e r compound w i t h a d i f f e r e n t l e v e l o r spectrum o f a c t i v i t y . T h i s was t h e c a s e f o r v i r i d i o l production. V i r i d i o l was shown t o b e t h e p r o d u c t o f a C - 3 k e t o r e d u c t i o n o f t h e a n t i b i o t i c compound v i r i d i n , w h i c h i s p r o d u c e d b y G. virens s h o r t l y b e f o r e c o n v e r s i o n t o v i r i d i o l . I t i s p o s s i b l e that a metabolite produced n o t b e p r o d u c e d a t t h e same l e v e l o n a s o l i d f o r m e t a b o l i t e p r o d u c t i o n o n s o l i d medium i s a p p l i c a t i o n o f t h e n u t r i e n t s from t h e l i q u i d s o l i d , p r e f e r a b l y one w h i c h c o u l d be used a s application.
i n liquid culture w i l l substrate. Testing best achieved by medium t o a n i n e r t a carrier for field
Hoagland; Microbes and Microbial Products as Herbicides ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
15. JONES & HANCOCK
Downloaded by EAST CAROLINA UNIV on March 8, 2017 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch015
Prospects
Soilborne FungiforBiological Control of Weeds
for Soilborne
Fungi as
Mycoherbicides
To c o m p e t e w i t h t h e c u r r e n t a r s e n a l o f c h e m i c a l h e r b i c i d e s , m y c o h e r b i c i d e s m u s t p r o v i d e a n e f f e c t i v e means f o r c o n t r o l l i n g a b r o a d s p e c t r u m o f weeds, p r e f e r a b l y e a r l y i n weed s e e d l i n g development. Among t h e p h y t o p a t h o g e n i c s o i l b o r n e f u n g i , Fusarium s p p . show t h e g r e a t e s t p r o m i s e , a l t h o u g h t h e i r u s e w i l l r e m a i n l i m i t e d u n l e s s t h e problems p r e v i o u s l y o u t l i n e d c a n be overcome. A m o r e p r o m i s i n g a v e n u e f o r f u t u r e m y c o h e r b i c i d e r e s e a r c h may b e found i n the use of non-phytopathogenic soilborne f u n g i . The n o n p h y t o p a t h o g e n i c f u n g i a c h i e v e weed c o n t r o l t h r o u g h p r o d u c t i o n o f p h y t o t o x i c compounds. P r o d u c t i o n o f t h e s e compounds g e n e r a l l y r e l i e s upon the a v a i l a b i l i t y o f c e r t a i n n u t r i e n t s , thus p h y t o t o x i n s y n t h e s i s c a n be c o n t r o l l e d . P h y t o t o x i c m e t a b o l i t e s o f some s o i l b o r n e f u n g i have a s u f f i c i e n t l y b r o a d spectrum o f a c t i v i t y t o b e e f f e c t i v e i n c o n t r o l o f n u m e r o u s members o f a w e e d c o m m u n i t y . Future progress w i l l b e g i n by s c r e e n i n g a wide range o f s o i l s to i s o l a t e phytotoxin producing f u n g i . S c r e e n i n g methods a r e s i m p l e enough t o accomodate l a r g e s c a l e s c r e e n i n g . Strain s e l e c t i o n a n d i m p r o v e m e n t s h o u l d y i e l d more e f f e c t i v e phytotoxin producers. We h a v e f o u n d t h a t v i r i d i o l p r o d u c t i o n b y G. virens v a r i e d m a n y - f o l d b e t w e e n i s o l a t e s o b t a i n e d f r o m t h e same f i e l d s o i l , t h u s t h e r e i s s t i l l room f o r f u r t h e r enhancement o f t h i s m y c o h e r b i c i d e a f t e r more e x t e n s i v e selections. A f t e r s e l e c t i o n o f o p t i m a l s t r a i n s , f u r t h e r improvements c a n a r i s e through protoplast fusions, genetic crosses or d i r e c t genetic m a n i p u l a t i o n b y gene i n s e r t i o n s . P r o t o p l a s t f u s i o n s may b e t o o unstable f o r general u s e , and genetic crosses are only p o s s i b l e i f the s e x u a l o r teleomorph stage o f the fungus i s a v a i l a b l e . A p p l i c a t i o n o f g e n e t i c e n g i n e e r i n g t e c h n i q u e s may y i e l d t h e b e s t results. While the genetic c o m p o s i t i o n o f s t r a i n s a r i s i n g from p r o t o p l a s t f u s i o n and genetic crosses remain undefined, genetic engineering allows incorporation of defined genetic elements. For t h e m a j o r i t y o f s o i l b o r n e f u n g i , methods f o r d i r e c t g e n e t i c manipulation remain untested. This i s not the case f o r Streptomyces s p p . , i n w h i c h c l o n i n g a n d e x p r e s s i o n t e c h n i q u e s a r e w e l l documented. Gene c l u s t e r s i n v o l v e d i n a n t i b i o t i c s y n t h e s i s and r e s i s t a n c e have been c l o n e d and e x p r e s s e d i n v a r i o u s s p e c i e s o f Streptomyces ( 3 3 , 3 4 ) · I s o l a t i o n o f g e n e c l u s t e r r e s p o n s i b l e f o r p h y t o t o x i n p r o d u c t i o n s h o u l d be no d i f f e r e n t . Multiple phytotoxin s y n t h e s i s g e n e s may b e e x p r e s s e d b y i n s e r t i o n i n t o a s i n g l e species o f Streptomycete t h u s a l l o w i n g a b r o a d e r d e g r e e o f w e e d c o n t r o l . C o n t r o l o f p h y t o t o x i n e x p r e s s i o n might be e n g i n e e r e d by i n s e r t i o n of a promoter responsive to a s p e c i f i c s u b s t r a t e not r e a d i l y a v a i l a b l e i n the s o i l . The a p p l i c a t i o n o f g e n e t i c t e c h n i q u e s t o s t r a i n improvement w i l l r e q u i r e a l o n g - t e r m commitment t o t h e project. For the near term, the p r e v i o u s l y mentioned screening methods s h o u l d p r o v i d e numerous s o i l b o r n e p h y t o t o x i n - p r o d u c i n g f u n g i w h i c h w i l l prove v a l u a b l e as f u t u r e m y c o h e r b i c i d e s a n d be a v a i l a b l e f o r more i m m e d i a t e f i e l d a p p l i c a t i o n .
Hoagland; Microbes and Microbial Products as Herbicides ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
285
286
MICROBES AND MICROBIAL PRODUCTS AS HERBICIDES
Literature Cited 1. 2. 3. 4. 5. 6. 7.
Downloaded by EAST CAROLINA UNIV on March 8, 2017 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch015
8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34.
Burnett, H.C.; Tucker, D.P.H.; Ridings,W.H. Plant Dis. Reptr. 1974, 58, 355-7. Ridings, W.H. Weed Sci. 1986, 34 (Suppl. 1), 31-2. Kenney, D.S. Weed Sci. 1986, 34 (Suppl. 1), 15-6. Klisiewicz, J.M. Plant Disease 1986, 70, 295-7. Brosten, B.S.; Sands, D.C. Weed Sci. 1986, 34, 377-80. Weidemann, G.J.; Templeton, G.E. Plant Disease 1988, 72, 36-8. McCain, A.H.; Noviello, C. Proc. VI Int. Symp. Biol. Control Weeds 1985, 635-42. Walker, H.L. Weed Sci. 1981, 29, 629-31. Charudattan, R.; Freeman, T.E.; Cullen, R.E.; Hofmeister, F.M. Proc. V Int. Symp. Biol. Control Weeds 1980, 307-23. Joyner, B.G.; Freeman, T.E. Phytopathology 1973, 63, 681-5. Howell, C.R.; Stipanovic, R.D. Phytopathology 1984, 74, 1346-9. Jones, R.W.; Lanini, W.T.; Hancock, J.G. Weed Sci. 1988, 36, 683-7. Aldrich, R.J. Weed Technol. 1987, 1, 199-206. Jones, R.W.; Hancock, J.G. Can. J. Microbiol. 1987, 33, 963-6. Jones, R.W.; Hancock, J.G. J. Gen. Microbiol. 1988, 134, 2067-75. Howell, C.R.; Stipanovic, R.D. Can. J. Microbiol. 1983, 29, 321-4. Fischer, H-P.; Bellus, D. Pestic. Sci. 1983, 14, 334-46. Heisey, R.M.; DeFrank, J.; Putnam, A.R. Bioregulators: Chemistry and Uses Am. Chem. Soc. Symp. Ser. 268, 1985, 33749. DeFrank, J.; Putnam, A.R. Weed Sci. 1985, 33, 271-4. Zilkah, S.; Gressel, J. Plant Cell Physiol. 1977, 18, 815-20. Kratky, B.A.; Warren, G.F. Weed Res. 1971, 11, 257-62. Hess, F.D. Weed Sci. 1980, 28, 515-20. Tepfer, D. In Molecular Genetics of the Bacteria-Plant Interaction: Springer-Verlag:Berlin, 1983, p.248. Dhar, T.K.; Siddiqui, K.A.I.; Ali, E. Tetrahedron Lett. 1982, 23, 5459-62. Cole, R.J.; Kirksey,J.W.;Springer, J.P.; Clardy, J.; Cutler, H.G.; Garren, K.H. Phytochemistry 1975, 14, 1429-32. Cutler, H.G. Weed Technol. 1988, 2, 525-32. Scheffer, R.P.; Pringle, R.B. Nature 1961, 191, 912-3. Yamada, O.; Ishida, S.; Futatsuya, F.; Ito, K.; Yamamoto, H.; Munakata, K. Agric. Biol. Chem. 1974, 38, 2017-9. Cutler, H.G. Proc. Plant Growth Reg. Soc. Am. 1985, 12, 16074. Duke, S.O. Rev. Weed Sci. 1986, 2, 15-44. Claydon, N.; Allan, M.; Hanson, J.R.; Avent, A.G. Trans Br. Mycol. Soc. 1987, 88, 503-13. Collins, R.P.; Halim, A.F. J. Agric. Food Chem. 1972, 20, 437-8. Bibb, M.J.; Bibb, M.J.; Ward,J.M.;Cohen, S.N. Mol. Gen. Genet. 1985, 199, 26-36. Distler, J.; Braun, C.; Ebert, Α.; Piepersberg, W. Mol. Gen. Genet. 1987, 208, 204-10.
RECEIVED January 25, 1990
Hoagland; Microbes and Microbial Products as Herbicides ACS Symposium Series; American Chemical Society: Washington, DC, 1990.