Solid-State Plasmonic Solar Cells - Chemical ... - ACS Publications

Jul 24, 2017 - Phone: +81-11-706-9358. ... We review the related studies from the viewpoint of these mechanisms rather than material science. View: AC...
3 downloads 4 Views 24MB Size
Review pubs.acs.org/CR

Solid-State Plasmonic Solar Cells Kosei Ueno,†,‡ Tomoya Oshikiri,†,‡ Quan Sun,† Xu Shi,† and Hiroaki Misawa*,†,§ †

Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan

§

ABSTRACT: Metallic nanoparticles such as silver and gold show localized surface plasmon resonances (LSPRs), which are associated with near-field enhancement effects in the vicinity of nanoparticles. Therefore, strong light−matter interaction is induced by the near-field enhancement effects of LSPRs. Because the resonant wavelength of LSPRs can be easily controlled by the size and shape of the metallic nanoparticles in the visible and near-infrared wavelength range, LSPRs have received considerable attention as optical antennae for light energy conversion systems such as solar cells. LSPRs decay very quickly as a result of light scattering and excitation of electron−hole pairs in the metal itself. However, in addition to the near-field enhancement effect, this light scattering and electron−hole pair excitation, which are known to cause loss of LSPRs, can be utilized as a solar cell enhancement mechanism. Here, we focus on plasmonic solid-state solar cells. The mechanisms of the light scattering by LSPRs, near-field enhancement, and plasmoninduced charge separation based on electron−hole pair excitations can be clarified. We review the related studies from the viewpoint of these mechanisms rather than material science.

CONTENTS 1. Introduction 2. Photocurrent Enhancement via Light Scattering by LSPRs 2.1. Forward Scattering for Efficient Light Trapping 2.1.1. Light Scattering: Principle and Computational Studies 2.1.2. Effect of Different Kinds of Plasmonic Metal Nanoparticles on Light Scattering 2.1.3. Light Scatterers Embedded in Solar Cells 2.1.4. Other Applications of Light Scattering for Plasmonic Solar Cells 2.2. Back Reflectors Based on LSPR 2.2.1. Fabrication Methodologies of Typical Plasmonic Back Reflectors 2.2.2. Plasmonic Back Reflector Designs for Efficient Light Trapping 2.3. Contribution of Waveguide Modes in Plasmonic Solar Cells 3. Near-Field Enhanced Plasmonic Solar Cells 3.1. Concept: Theoretical Calculation and Optical Properties 3.2. Enhancement via LSPR 3.2.1. Time-Resolved Spectroscopy 3.2.2. Metallic Nanostructures in Active Layer 3.2.3. Metallic Nanostructures on ETL 3.2.4. Metallic Nanostructures on HTL 3.2.5. Core−Shell Structures 3.2.6. Configurations of Metallic Nanostructures

© 2017 American Chemical Society

3.2.7. Methodologies for High-Efficiency Solar Cells via Near-Field Enhancement 3.3. Scattering and Near-Field Enhancement 3.4. Enhancement via Propagating Surface Plasmons 4. Plasmon-Induced Charge Separation 4.1. Plasmon-Induced Charge Separation Using Organic HTL 4.2. Plasmon-Induced Charge Separation Using Inorganic HTL 4.3. Combination with Other Charge Separation Effects 5. Conclusion and Outlook Author Information Corresponding Author ORCID Author Contributions Notes Biographies Acknowledgments References

2955 2956 2957 2959 2959 2961 2961 2962 2962 2963 2964 2967

2977 2978 2979 2980 2981 2982 2983 2984 2985 2985 2985 2985 2985 2985 2986 2986

2968 2969 2970 2972 2973 2974 2974

1. INTRODUCTION Metallic nanoparticles (NPs) such as silver (Ag) and gold (Au) show very intense colors, which are derived from localized surface plasmon resonances (LSPRs).1 Plasmon resonances, which are the collective oscillations of conduction electrons,

2975

Received: May 1, 2017 Published: July 24, 2017

Special Issue: Plasmonics in Chemistry

2955

DOI: 10.1021/acs.chemrev.7b00235 Chem. Rev. 2018, 118, 2955−2993

Chemical Reviews

Review

enhance an electromagnetic field in the vicinity of metallic NPs.2 On the basis of the near-field enhancement effect, the excitation of molecules or substances close to the metallic NPs is promoted.3−6 As a characteristic feature of LSPRs, the resonant wavelength can easily be controlled by changing the size and shape of the NPs.7−9 Therefore, metallic NPs showing LSPRs have received considerable attention as an optical antenna for light energy conversion systems such as solar cells because an efficient excitation of the active layer of the solar cell is expected based on the near-field enhancement effect on metallic NPs, which is known as the plasmon resonant energy transfer mechanism.10−14 A schematic illustration of the radiative (left) and nonradiative (right) decay of LSPRs in metallic NPs is shown in Figure 1.15 The radiative decay corresponds to light scattering,

conversion systems such as solar cells and artificial photosynthesis devices.26−30 Studies have shown that the hot electron transfer occurs when an n-type semiconductor such as titanium dioxide (TiO2) is attached to the metallic NPs to form a Schottky barrier. This produces a charge separation between the metal and the conduction band of the semiconductor, which works as a trigger for light energy conversion based on plasmon-induced charge separation.18,19 It is considered that the charge separation is induced as a result of the primary electron−hole generation via Landau damping as well as the secondary electron−hole generation via e−e scattering.23 When a hole transport layer (HTL), which is sometimes called an anode buffer layer, is deposited on the metallic NP-loaded ntype semiconductor, a plasmon-induced solar cell based on the mechanism of plasmon-induced charge separation is constructed. We have introduced three kinds of operational mechanisms for plasmonic solar cells on the basis of (1) light scattering, (2) near-field enhancement, and (3) plasmon-induced charge separation. These schemes are summarized as a function of time in Figure 2. The light scattering and near-field enhancement are induced until the LSPRs are totally dephased (several to 20 fs).15,31−34 On the other hand, plasmon-induced charge separation is a relatively longer process compared to light scattering and near-field enhancement because of the secondary electron−hole pair generation. In this review, we focus on plasmonic solid-state solar cells. Plasmon-induced light energy conversion systems, including liquid systems, were discussed in a previous review article.35 This review describes plasmonic solar cells from the viewpoint of their mechanisms rather than material science. Studies on plasmonic solid-state solar cells are introduced for each mechanism.

Figure 1. Schematic illustration of radiative (left) and nonradiative (right) decay of LSPRs in metallic NPs. Reprinted with permission from ref 15. Copyright 2002 American Physical Society.

which is a complete loss in LSPRs. However, the light scattering of LSPRs also plays an important role in enhancing the light energy conversion efficiency of plasmonic solar cells based on forward scattering and back reflectors (BRs) as a classical regime of optics. On the other hand, the nonradiative decay is induced through excitations of the electron−hole pairs of the metal itself, not only within the conduction band (intraband transition) but also between the d bands and the sp conduction band (interband transition) via Landau damping, which transfers the energy to the primary hot electrons and holes (∼10 fs).16−20 The hot electrons can successively be multiplied based on an electron−electron (e−e) scattering event on a time scale of a few hundred femtoseconds (secondary hot electrons), which redistribute their energy in the form of a Fermi−Dirac distribution on a time scale ranging from ∼100 fs to approximately picoseconds.21−25 The excitations of electron−hole pairs can be also utilized as a mechanism to construct plasmon-induced light energy

2. PHOTOCURRENT ENHANCEMENT VIA LIGHT SCATTERING BY LSPRS The purpose of using the mechanism of light scattering by LSPRs to enhance the photocurrent in solar cells is light trapping based on the known forward scattering and backscattering characteristics of metallic NPs. These mechanisms were originally used to improve the efficiency of a silicon solar cell. Light trapping typically relies on light scattering from the surface texture into the solar cell over a large angular range, thereby increasing the effective optical path length in the solar

Figure 2. Time domains in which LSPRs and each mechanism in a plasmonic solar cell work shown by color bars: LSPRs (green), near-field enhancement (blue), light scattering (yellow), and primary and secondary electron−hole pair generations (red and orange), which correspond to LSPR dephasing, e−e scattering, electron−phonon (e−ph) scattering, hot electron generation, and hot electron distribution, respectively. 2956

DOI: 10.1021/acs.chemrev.7b00235 Chem. Rev. 2018, 118, 2955−2993

Chemical Reviews

Review

Figure 3. (a) Schematic illustration of a-Si:H p-i-n solar cell structure with Au NPs. (b) SEM image of 100 nm diameter Au NPs deposited on solar cell. (c) J−V and power output curves with and without Au NPs. (d) Simulated particle density dependence of enhancement ratio on electromagnetic field intensity at 600 nm wavelength integrated over the a-Si:H layer with and without Au NPs. Reprinted with permission from ref 41. Copyright 2006 AIP Publishing.

cell.36−38 The forward scattering also leads to the suppression of reflection loss based on the light in-coupling regime. On the other hand, the backscattering is used for BRs to achieve efficient light trapping in solar cells. The most important point is whether light scattering from the LSPR has advantages compared to a rough and textured surface. It is known that the light-scattering cross-section of metallic NPs is large compared to that of dielectric materials, especially relatively larger NPs such as those of ∼100 nm. Metallic NPs can be deposited on the flat surface of a solar cell. Therefore, it is not necessary to prepare a rough or textured surface, which sometimes works as a recombination center based on defect states. As a result, thin film semiconductors with high crystallinity can be used in a plasmonic solar cell.39 Furthermore, the near-field enhancement effect can also be simultaneously utilized, although it depends on the cell design, as described in detail in section 3. In this section, plasmonic solar cells utilizing the principle of light scattering are introduced based on forward scattering40 and BRs, including studies that used a unique excitation regime for the active layer in the solar cell utilizing a waveguide mode triggered by the light scattering of a plasmonic metal grating in a solar cell.

versus voltage (J−V) characteristics and the corresponding power output obtained by multiplying J by V with and without Au NPs are shown in Figure 3c. There was an 8.1% increase in the short-circuit current (JSC) density (V = 0), from 6.66 to 7.20 mA/cm2, and an 8.3% increase in the power output, from 2.77 to 3.00 mW/cm2. It is noteworthy that the study used relatively larger Au NPs (∼100 nm). In the case of smaller Au NPs such as those with a diameter of ∼10 nm, the total extinction cross section consists of a relatively larger absorption cross section and a small scattering cross section. On the other hand, in the case of larger Au NPs, the scattering cross section becomes much larger than the absorption cross section. Importantly, the scattering from large particles at and above the Au NP plasmon resonant wavelength is predominantly in the forward direction because a stronger near-field enhancement is induced at the Au NP and substrate interface. Therefore, it was concluded that the photocurrent enhancement originated from the forward scattering from the Au NPs. Yu et al. also explored electromagnetic simulations using finite element methods (FEMs) to investigate the optimized particle density because it was considered that particle−particle, particle−substrate, and particle−substrate−particle electromagnetic interactions interfere with the propagation of the scattered field into the substrate.41 Figure 3d shows the simulated particle density dependence of the enhancement ratio on the electromagnetic field intensity at a wavelength of 600 nm integrated over the a-Si:H layer with and without Au NPs. The particle density was clearly estimated, and a particle density of ∼2.5 × 109 cm−2 was optimized. The authors also found that the scattering originated from the LSPR of the Au NPs, not only in electromagnetic simulations but also in comparison experiments with Au and silica NPs based on action spectrum measurements because the wavelength region of the LSPRs,

2.1. Forward Scattering for Efficient Light Trapping

Yu et al. reported an improvement in the performance of amorphous silicon (a-Si:H) solar cells via forward scattering from the LSPRs of Au NPs in 2006.41 In this study, 240 nm aSi:H p-i-n structures were prepared on a stainless-steel substrate, and Au NPs with a diameter of 100 nm were dispersed via a 20 nm thick indium tin oxide (ITO) contact layer, as shown in Figure 3a. A scanning electron microscope (SEM) image of the 100 nm diameter Au NPs is shown in Figure 3b. The interparticle distance was sufficiently large to not induce a near-field interaction between particles, and the density was estimated to be 3.7 × 108 cm−2. Current density 2957

DOI: 10.1021/acs.chemrev.7b00235 Chem. Rev. 2018, 118, 2955−2993

Chemical Reviews

Review

Figure 4. SEM images of 110 nm diameter Ag NPs: (a−c) dense and (d−f) sparse arrays. Insets of a and d show the corresponding AAO masks. Array density and NP average height are (a) 3.3 × 109 cm−2 density/55 nm height (DL), (c) 3.3 × 109 cm−2 density/220 nm height (DH), (e) 1.8 × 109 cm−2 density/55 nm height (SL), and (f) 1.8 × 109 cm−2 density/220 nm height (SH); images were taken from an angle of 75°. (g) Transmission spectra of Ag NPs on glass substrates before (dot lines) and after annealing (solid lines). Red, orange, blue, and light blue lines show DL, SL, DH, and SH, respectively. (h) Schematic illustration of Ag NP-loaded GaAs solar cell. EQE action spectra (i) and J−V curve (j) measured using a GaAs solar cell with and without Ag NPs. Reprinted with permission from ref 44. Copyright 2008 AIP Publishing.

4d. Figure 4b, 4e, 4c, and 4f shows SEM images measured using an oblique angle to determine the difference in thickness at 50 and 220 nm for dense and sparse arrays. The Ag NP morphology was also controlled by thermal annealing at temperatures well below the melting point of Ag (200 °C).45 The transmission spectra of Ag NPs fabricated on a glass substrate are shown in Figure 4g. The relatively sharp absorption at 360 nm is related to interband transitions of Ag. Annealing the Ag NPs and increasing the particle density, especially with thicker Ag NPs, led to a blue shift in the LSPR band. The authors believed that the spectrum shift was induced by an improvement in the symmetry of the NP shapes,46 as well as electromagnetic interactions to a certain extent. Furthermore, the broadening of the LSPR band was also observed in the dense NPs. A schematic illustration of a Ag NP-loaded GaAs solar cell is shown in Figure 4h. Ag NPs were deposited directly on the cell. Figure 4i indicates the action spectra of the external quantum efficiency (EQE). Although the EQE value decreases as a result of the interband transition of Ag in a wavelength region that is shorter than the LSPR band, the EQE value is clearly improved in the relatively longer wavelength region of the LSPR peak, especially with dense and thick Ag NPs. Here, most importantly, VOC and FF also increase, as shown in the J−V curve measurement of Figure 4j under an illumination of AM 1.5 G, which results in an approximately 26% enhancement in power conversion efficiency (PCE) by the dense and thick Ag NPs. The authors believed that VOC and FF were improved because the Ag NP array sheet conductivity also reduced the cell surface sheet resistance.47 Therefore, there was a difference between the direct deposition of metallic NPs on solar cells and the pitching of dielectric materials under metallic NPs. Beginning with the next subsection, the principle and computational studies of forward scattering, different effects

with relatively longer wavelengths, was enhanced in the case of scattering from the LSPR.42 Chang et al. utilized forward scattering to enhance the photocurrent generation in an organic solar cell (OSC) composed of conventional P3HT:PCBM (poly(3-hexylthiophene)):phenyl-C61-butyric acid methyl ester) and PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrenesulfonate) as a HTL using Ag nanostructures, which were fabricated using nanosphere (colloid) lithography.43 In this cell, the Ag nanostructures were separated from the OSC by a glass substrate to elucidate the scattering effect. The authors compared the photocurrent generation efficiency of plasmonic Ag and nonresonant titanium (Ti). A significant LSPR scattering effect could be observed because the JSC of the Ag nanostructures was about 1.5 times larger than that of the Ti nanostructures. It is noteworthy that the open-circuit voltage (VOC) at J = 0 and the fill factor (FF, the ratio of maximum obtainable power to the product of VOC and JSC) of the abovementioned studies using forward scattering as the principle of plasmonic solar cells did not change because only the lighttrapping effect was obtained as a result of the forward scattering of the LSPR by the metallic nanostructures. On the other hand, Nakayama et al. elucidated the plasmonic light-scattering effect in gallium arsenide (GaAs) solar cells using plasmonic Ag NPs.44 In this study, Ag NPs were deposited through anodic aluminum oxide (AAO) nanopatterns used as a metal deposition mask. Therefore, the NP density and thickness were controlled by the voltage applied for the fabrication of the AAO masks and the vapor deposition time of the Ag, respectively. Figure 4a−f shows representative SEM images of 110 nm diameter Ag NPs. Figure 4a−c indicates relatively high density patterns (3.3 × 109 cm−2), and Figure 4d−f indicates lower density patterns (1.8 × 109 cm−2), whose AAO masks are also shown in the insets of Figure 4a and 2958

DOI: 10.1021/acs.chemrev.7b00235 Chem. Rev. 2018, 118, 2955−2993

Chemical Reviews

Review

words, the radiation from a dipole is preferably directional to a higher refractive index substrate.51 Figure 5b shows the radiation patterns of dipoles placed 60 nm from the substrate and 20 nm away as a reference. It was confirmed that the light radiated into the Si decreased to 84%, even though the light was slightly directional. Polman et al. elucidated the shape effect on the forward scattering into a Si substrate via a 10 nm thick SiO2 spacer layer.52 Compared to a spherical Ag particle, the scattering cross section is larger in hemispherical and cylinder shapes like a disk. Beck et al. demonstrated the SiO2 space layer dependence of light scattering for light-trapping applications in solar cells and successfully elucidated that a very thin SiO2 spacer layer ( CuSCN > NPD > PVK > TPD, which relates to the hole mobility in these HTLs. Inorganic HTL materials show advantages in photovoltaic performance and greater durability.

Three widely proposed mechanisms for plasmon-enhanced solar cells, including far-field scattering, near-field enhancement, and plasmon-induced charge transfer, have been extensively investigated to improve the solar energy conversion efficiency of solar cells. Although careful reviews of each of these mechanisms permit deeper understanding and the possibility to build plasmonic photovoltaic devices more feasibly, we note that cooperative plasmonic effects will always occur. In addition to the plasmonic effects of metallic NPs, the photoelectrical effect of metallic NP-decorated semiconductors was also reported to affect the charge mobility of the semiconductors.251 Very small Au NPs (2−4 nm in diameter) on ZnO film were used to enhance the existing O2-related depletion layer, resulting in the reduction of the dark current, enhancement of the sensitivity, and improvement of the response speed in ZnO-based thin film photoconductors.252 Au NPs were reported to increase the electrical conductivity of mesoporous TiO2 composite thin films from the downward band bending in the energy band structure induced by the Au NPs incorporated in the TiO2.253 Notably, multiple plasmonic effects and/or electrical effects occur in metallic NPs simultaneously rather than operating alone. The synergistic effects in metallic NPs can therefore be proposed to further enhance the photon conversion efficiency. Combinations of plasmon-induced charge separation effects with the far-field scattering and/or near-field enhancement, as well as the other photoelectrical effects, have been investigated in PSCs and OSCs.254−257 Hong et al. reported on a plasmonic PSC using Au NPs embedded in TiO2 nanofibers as an ETL and a SpiroOMeTAD HTL, as shown in Figure 39a.254 The Au-embedded TiO2 nanofibers were fabricated by an in situ synthesis method using electrospinning. Figure 39b shows the cooperation of effects suggested to explain the Au NP-assisted solar energy conversion enhancement: (1) electrons are transferred from the 2983

DOI: 10.1021/acs.chemrev.7b00235 Chem. Rev. 2018, 118, 2955−2993

Chemical Reviews

Review

Figure 40. (a) Device structure of OSCs using Au NP/TiO2 composite ETL. (b) Schematic of plasmonic-induced charge injection process. (c) IPCE spectra of pristine TiO2 and Au NP/TiO2 composite OSCs before and after illumination of 600 nm light. (d) TPV measured by 532 nm laser pulse irradiation before and after plasmonic excitation of monochromatic light at 600 nm. Reprinted with permission from ref 255. Copyright 2013 WILEY-VCH Verlag GmbH & Co. KGaA.

plasmonic excitation of the Au NP/TiO2 composite at 600 nm, as shown in Figure 40d. The enhanced charge extraction under plasmonic illumination is attributed to the strong charge injection of plasmonically excited electrons from the NPs into the conduction band of TiO2 to fill the electron traps with enhanced photoconductivity, as shown in Figure 40b. By optimizing the concentration of the Au NPs in the Au NP/ TiO2 composite, the performances of OSCs with various polymer active layers are enhanced and a maximum efficiency of 8.74% is observed. Qu et al. demonstrated hybrid plasmonic polymer solar cells that combined plasmonic Ag NP-decorated TiO2 nanorods as the ETL, P3HT:PCNBM as the active layer, and PEDOT:PSS as the HTL.256 The plasmonic Ag NPs (3−5 nm in size) and one-dimensional TiO2 nanorods were used to enhance the photocurrent of the device through a plasmon-induced strong localized electric field and a plasmon-enhanced charge transport channel. The PL spectra of the TiO2 nanorod and Ag−TiO2 nanorod-doped P3HT:PCBM proved that the PL intensity of the Ag-NPs/TiO2 nanorod-doped samples decreased, which indicated more nonradiative recombination that would lead to device performance improvement. The photovoltaic performance was characterized by current enhancement. Despite a small drop in the VOC, the JSC was increased from 6.51 to 14.15 mA/cm2, demonstrating an enhancement reaching 120%. The photon conversion efficiency increased from 2.57% to 4.87%, representing an enhancement reaching 89%.

lowest unoccupied molecular orbital (LUMO) of perovskite to the conduction band of TiO2; (2) excited electrons from the perovskite are injected into Au NPs, leading to electron accumulation in the Au NPs; (3) LSPR-enhanced electron− hole pair generation occurs at the Au/TiO2 interface via electron transfer from Au NPs to the conduction band of TiO2. In addition to the plasmon-induced charge transfer effects, the Au-embedded TiO2 nanofibers support enhanced charge-carrier separation by reducing the grain boundaries between TiO2 and perovskite and by the defect-free interface between the Au NPs/TiO2 nanofibers and perovskite, as revealed by the timeresolved PL spectroscopy and solid-state impedance spectroscopy. On the basis of the synergistic effects, the optimized plasmonic PSCs based on 0.3 wt % Au@TiO2 exhibit a PCE of 14.92% ± 0.33% under standard AM 1.5 conditions, as shown in Figure 39c, reaching a PCE enhancement of 33.7% compared to the PSCs based on TiO2 fiber without Au NPs. The Au NPembedded TiO2 nanofibers are thereby suggested to be a promising ETL layer to improve the photovoltaic efficiency further. Choy et al. reported the plasmonic functionalization of TiO2 in an OSC using an Au NP/TiO2 composite as the ETL, a polymer active layer as the photon absorber, and MoO2 as the HTL, as shown in Figure 40a.255 The Au NP/TiO2 composite was fabricated by mixing TiO2 nanocrystals synthesized by a nonaqueous method with Au NPs (15 nm in size) synthesized by the reduction of HAuCl4 by sodium citrate. Plasmonically induced carrier generation and enhanced carrier extraction of the carrier transport layer in the metallic NP-incorporating TiO2 on the OSCs were utilized to enhance the photovoltaic device performance. In comparing the solar energy conversion efficiencies of OSCs with and without Au NPs, highly efficient OSCs can operate using the optically activated ETL of Au NPs/ TiO2 excited at the plasmonic wavelength of 600 nm. Figure 40c shows an IPCE enhancement of approximately 75% reached in the polymer photoactive wavelength range from 400 to 600 nm. The transient photogenerated voltage (TPV) reveals an increase from less than 0.1 to 0.56 V after the

5. CONCLUSION AND OUTLOOK In this review, studies related to plasmon-based solid-state solar cells constituted from pn junction or electron and hole transport layers were reviewed on the basis of each working mechanism: light scattering by LSPRs, near-field enhancement, and plasmon-induced charge separation. Most importantly, scattering and excitations of electron−hole pairs which are loss of LSPRs are also used for the mechanism of solar cell enhancement. As for light scattering from LSPRs, there are three principles: forward scattering from metallic nanoparticles 2984

DOI: 10.1021/acs.chemrev.7b00235 Chem. Rev. 2018, 118, 2955−2993

Chemical Reviews

Review

utilizing strong coupling between LSPR and waveguide mode in order to interact with light in a wide wavelength range.258 Plasmonic broad-band absorber can be also available to confine the light in the active layer.259 To utilize the near-field enhancement effect effectively, core−shell Ag nanoparticles with a silica thickness of several nanometers might be placed in the active layer near the HTL side preventing quenching and promoting a charge separation between ETL and HTL to overcome low hole mobility. As for plasmon-induced charge separation, on the other hand, combination of semiconductor materials that realize highly efficient charge separation, design of plasmon antenna with long phase relaxation time such as quadrupole mode, and coupling systems between LSPRs and materials promoting electron transfer and expanding the responding wavelength might be constructed although it is urgent to understand the mechanism at first.

to high refractive index layers, backscattering from metallic nanoparticles used for BRs, and waveguide modes induced by light scattering of metallic nanostructures applied to efficient excitation of active layer of the solar cell. As for the forward scattering, Ag or Au NPs with a diameter of ∼100 nm are useful because the scattering cross-section of relatively larger nanoparticles is dominant in the total extinction. On the other hand, Al NPs can be also used for the light scatter because parasitic absorption loss is small in the visible wavelength range, namely, interband transition of Al is around 800 nm (1.55 eV) and LSPR exists in the UV wavelength region depending on the size. Therefore, Al NPs are suitable for the light scatter of a-Si:H solar cell whose band gap is about 1.75 eV. However, these are a trade-off because the scattering coefficient of Ag and Au is higher than Al. In the light-scattering principle, the plasmonic BR is also very important because the effect is almost comparative to the forward scattering effect. However, in the case of plasmonic BR, parasitic absorption loss can be ignored because the metallic nanoparticles are located on the backside of solar cells. Therefore, even the chemically stable Au NPs with a high scattering efficiency can be used for efficient plasmonic BRs. Waveguide mode excited by light scattering from metallic nanostructures is a similar mechanism to the forward scattering. However, the origin of forward scattering is that even oblique incident light is introduced into the active layer. On the contrary, the waveguide mode is to confine the incident light as a waveguide mode in the active layer of solar cells. Therefore, the wavelength range which can be confined is restricted based on the waveguide mode with a high quality factor. As for near-field enhancement, excitation of molecules or substances near metallic nanoparticles is promoted by the nearfield enhancement effect of LSPRs. Therefore, metallic nanoparticles should be placed in the active layer of the solar cell. However, such a metallic nanoparticle not only shows near-field enhancement but also works as a recombination center of electrons. Therefore, metallic nanoparticles are sometimes incorporated in HTL or ETL to prevent the quenching. Core−shell metallic nanoparticles covered with a dielectric layer can be incorporated in the active layer of solar cells. In particular, some researchers suggested that the metallic nanoparticles should be placed near HTL because of slower hole mobility as compared to that of electron. As for plasmon-induced charge separation, excitation of electron−hole pairs via Landau damping leads to the hot electron and hole generation. It is known that hot electron transfer occurs when metallic nanoparticles are attached to ntype semiconductor such as TiO2. The plasmonic solar cell can be formed when HTL is deposited on the metallic nanoparticles-loaded n-type semiconductor electrode. Although the stability was improved by constructing all solid-state inorganic solar cells, the efficiency is still low. It is necessary to understand the detailed mechanism completely. Because the research has just begun especially in plasmonic solar cells with HTL, the future development of this research field can be expected. To improve the efficiency of solid-state plasmonic solar cells, some solar cell designs can be considered. As one of possibility, Al nanostructures can be used as antireflection films on the dielectric layer above solar cells and silver nanoparticles with a diameter of ∼100 nm are placed inside the dielectric layer. Even in the waveguide mode, it is also conceivable to split the spectrum into two bands of bonding and antibonding states by

AUTHOR INFORMATION Corresponding Author

*E-mail: [email protected]. Phone: +81-11-706-9358. Fax: +81-11-706-9359. ORCID

Kosei Ueno: 0000-0002-4882-7854 Tomoya Oshikiri: 0000-0002-1268-0256 Quan Sun: 0000-0001-5413-8038 Xu Shi: 0000-0002-6353-5470 Hiroaki Misawa: 0000-0003-1070-387X Author Contributions ‡

K.U. and T.O.: These authors contribute equally.

Notes

The authors declare no competing financial interest. Biographies Kosei Ueno is an associate professor at the Research Institute for Electronic Science at Hokkaido University, Japan. He received his Ph.D. degree in Chemistry from Hokkaido University in 2004. From 2004 to 2006 he worked in Professor Hiroaki Misawa’s laboratory as a JSPS research fellow. He became an assistant professor at Hokkaido University in 2006 and was promoted to associate professor in 2008. His recent research interest is controlling of light and matter interaction using dark plasmon modes induced by metal/insulator/ metal nanostructures. Tomoya Oshikiri is an assistant professor at the Research Institute for Electronic Science at Hokkaido University, Japan. He received his Ph.D. degree in Chemistry from Osaka University in 2008. From 2008 to 2012 he worked at Mitsubishi Rayon Co., Ltd. He became an assistant professor at Hokkaido University in 2012. He studies energy conversion via localized surface plasmon. Quan Sun is an assistant professor at the Research Institute for Electronic Science at Hokkaido University, Japan. He received his Ph.D. degree in Optics from Peking University, China, in 2006. Prior to working at Hokkaido University, he worked at Laval University, Canada, as a postdoctoral researcher. His main research interests include near-field properties of plasmonic structures and femtosecond laser micro/nanofabrication. Xu Shi is an assistant professor at the Research Institute for Electronic Science at Hokkaido University, Japan. He received his Ph.D. degree from Hokkaido University in 2014 with Professor Hiroaki Misawa. From 2014 to 2016 he worked as a postdoctoral researcher at the Research Institute for Electronic Science. He became an assistant 2985

DOI: 10.1021/acs.chemrev.7b00235 Chem. Rev. 2018, 118, 2955−2993

Chemical Reviews

Review

(14) Carretero-Palacios, S.; Jiménez-Solano, A.; Míguez, H. Plasmonic Nanoparticles as Light-Harvesting Enhancers in Perovskite Solar Cells: A User’s Guide. ACS Energy Lett. 2016, 1, 323−331. (15) Sönnichsen, C.; Franzl, T.; Wilk, T.; von Plessen, G.; Feldmann, J.; Wilson, O.; Mulvaney, P. Drastic Reduction of Plasmon Damping in Gold Nanorods. Phys. Rev. Lett. 2002, 88, 077402. (16) Link, S.; El-Sayed, M. A. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. J. Phys. Chem. B 1999, 103, 4212−4217. (17) Sundararaman, R.; Narang, P.; Jermyn, A. S.; Goddard, W. A., III; Atwater, H. A. Theoretical Predictions for Hot-Carrier Generation from Surface Plasmon Decay. Nat. Commun. 2014, 5, 5788. (18) Brongersma, M. L.; Halas, N. J.; Nordlander, P. PlasmonInduced Hot Carrier Science and Technology. Nat. Nanotechnol. 2015, 10, 25−34. (19) Clavero, C. Plasmon-Induced Hot-Electron Generation at Nanoparticle/Metal-Oxide Interfaces for Photovoltaic and Photocatalytic Devices. Nat. Photonics 2014, 8, 95−103. (20) Saavedra, J. R. M.; Asenjo-Garcia, A.; García de Abajo, F. J. HotElectron Dynamics and Thermalization in Small Metallic Nanoparticles. ACS Photonics 2016, 3, 1637−1646. (21) Knoesel, E.; Hotzel, A.; Hertel, T.; Wolf, M.; Ertl, G. Dynamics of Photoexcited Electrons in Metals Studied with Time-Resolved TwoPhoton Photoemission. Surf. Sci. 1996, 368, 76−81. (22) Knoesel, E.; Hotzel, A.; Wolf, M. Ultrafast Dynamics of Hot Electrons and Holes in Copper: Excitation, Energy Relaxation, and Transport Effects. Phys. Rev. B: Condens. Matter Mater. Phys. 1998, 57, 12812−12824. (23) Lee, Y. K.; Lee, H.; Lee, C.; Hwang, E.; Park, J. Y. Hot-ElectronBased Solar Energy Conversion with Metal-Semiconductor Nanodiodes. J. Phys.: Condens. Matter 2016, 28, 254006. (24) Hartland, G. V. Optical Studies of Dynamics in Noble Metal Nanostructures. Chem. Rev. 2011, 111, 3858−3887. (25) Allen, P. B. Theory of Thermal Relaxation of Electrons in Metals. Phys. Rev. Lett. 1987, 59, 1460−1463. (26) Zhao, G.; Kozuka, H.; Yoko, T. Sol-Gel Preparation and Photoelectrochemical Properties of TiO2 Films Containing Au and Ag Metal Particles. Thin Solid Films 1996, 277, 147−154. (27) Tian, Y.; Tatsuma, T. Mechanisms and Applications of PlasmonInduced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles. J. Am. Chem. Soc. 2005, 127, 7632−7637. (28) Nishijima, Y.; Ueno, K.; Yokota, Y.; Murakoshi, K.; Misawa, H. Plasmon-Assisted Photocurrent Generation from Visible to NearInfrared Wavelength Using a Au-Nanorods/TiO2 Electrode. J. Phys. Chem. Lett. 2010, 1, 2031−2036. (29) Mubeen, S.; Lee, J.; Singh, N.; Kramer, S.; Stucky, G. D.; Moskovits, M. An Autonomous Photosynthetic Device in which All Charge Carriers Derive from Surface Plasmons. Nat. Nanotechnol. 2013, 8, 247−251. (30) Zhong, Y. Q.; Ueno, K.; Mori, Y.; Shi, X.; Oshikiri, T.; Murakoshi, K.; Inoue, H.; Misawa, H. Plasmon-Assisted Water Splitting Using Two Sides of the Same SrTiO3 Single-Crystal Substrate: Conversion of Visible Light to Chemical Energy. Angew. Chem., Int. Ed. 2014, 53, 10350−10354. (31) Lamprecht, B.; Leitner, A.; Aussenegg, F. R. SHG Studies of Plasmon Dephasing in Nanoparticles. Appl. Phys. B: Lasers Opt. 1999, 68, 419−423. (32) Bosbach, J.; Hendrich, C.; Stietz, F.; Vartanyan, T.; Trager, F. Ultrafast Dephasing of Surface Plasmon Excitation in Silver Nanoparticles: Influence of Particle Size, Shape, and Chemical Surrounding. Phys. Rev. Lett. 2002, 89, 257404. (33) Anderson, A.; Deryckx, K. S.; Xu, X. J. G.; Steinmeyer, G.; Raschke, M. B. Few-Femtosecond Plasmon Dephasing of a Single Metallic Nanostructure from Optical Response Function Reconstruction by Interferometric Frequency Resolved Optical Gating. Nano Lett. 2010, 10, 2519−2524. (34) Sun, Q.; Yu, H.; Ueno, K.; Kubo, A.; Matsuo, Y.; Misawa, H. Dissecting the Few-Femtosecond Dephasing Time of Dipole and

professor at Hokkaido University in 2016. His research interests include novel plasmonic structure fabrication and their applications in solar energy conversion. Hiroaki Misawa is a professor at the Research Institute for Electronic Science at Hokkaido University, Japan. He received his Ph.D. degree in Chemistry from the University of Tsukuba in 1984. After an assistant professorship at the University of Tsukuba, he joined the Microphotoconversion project (ERATO) of JST. He became an associate professor at the University of Tokushima in 1993 and was promoted to full professor in 1995. He moved to Hokkaido University as full professor in 2003. Since 2015 he has held an additional post as a chair professor at National Chiao Tung University, Taiwan. His research interest is plasmonic chemistry especially in the plasmon-induced artificial photosynthesis.

ACKNOWLEDGMENTS We gratefully acknowledge financial support from JSPS KAKENHI (Grant Nos. JP17H01041, JP17H05245 JP17H05459, and JP15K04589), the Nanotechnology Platform (Hokkaido University), and Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials (Five-Star Alliance) of MEXT. REFERENCES (1) Link, S.; El-Sayed, M. A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B 1999, 103, 8410− 8426. (2) Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668−677. (3) Lakowicz, J. R. Plasmonics in Biology and Plasmon-Controlled Fluorescence. Plasmonics 2006, 1, 5−33. (4) Chen, Y.; Munechika, K.; Ginger, D. S. Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles. Nano Lett. 2007, 7, 690−696. (5) Willets, K. A.; Van Duyne, R. P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267−297. (6) Ueno, K.; Misawa, H. Surface Plasmon-Enhanced Photochemical Reactions. J. Photochem. Photobiol., C 2013, 15, 31−52. (7) Lee, K. S.; El-Sayed, M. A. Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal composition. J. Phys. Chem. B 2006, 110, 19220−19225. (8) Ueno, K.; Mizeikis, V.; Juodkazis, S.; Sasaki, K.; Misawa, H. Optical Properties of Nanoengineered Gold Blocks. Opt. Lett. 2005, 30, 2158−2160. (9) Amendola, V.; Bakr, O. M.; Stellacci, F. A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly. Plasmonics 2010, 5, 85−97. (10) Cushing, S. K.; Li, J.; Meng, F.; Senty, T. R.; Suri, S.; Zhi, M.; Li, M.; Bristow, A. D.; Wu, N. Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor. J. Am. Chem. Soc. 2012, 134, 15033−15041. (11) Stratakis, E.; Kymakis, E. Nanoparticle-Based Plasmonic Organic Photovoltaic Devices. Mater. Today 2013, 16, 133−146. (12) Li, J. T.; Cushing, S. K.; Meng, F. K.; Senty, T. R.; Bristow, A. D.; Wu, N. Q. Plasmon-Induced Resonance Energy Transfer for Solar Energy Conversion. Nat. Photonics 2015, 9, 601−607. (13) Erwin, W. R.; Zarick, H. F.; Talbert, E. M.; Bardhan, R. Light Trapping in Mesoporous Solar Cells with Plasmonic Nanostructures. Energy Environ. Sci. 2016, 9, 1577−1601. 2986

DOI: 10.1021/acs.chemrev.7b00235 Chem. Rev. 2018, 118, 2955−2993

Chemical Reviews

Review

Quadrupole Modes in Gold Nanoparticles Using Polarized Photoemission Electron Microscopy. ACS Nano 2016, 10, 3835−3842. (35) Jang, Y. H.; Jang, Y. J.; Kim, S.; Quan, L. N.; Chung, K.; Kim, D. H. Plasmonic Solar Cells: From Rational Design to Mechanism Overview. Chem. Rev. 2016, 116, 14982−15034. (36) Yablonovitch, E.; Cody, G. D. Intensity Enhancement in Textured Optical Sheets for Solar-Cells. IEEE Trans. Electron Devices 1982, 29, 300−305. (37) Deckman, H. W.; Roxlo, C. B.; Yablonovitch, E. Maximum Statistical Increase of Optical-Absorption in Textured SemiconductorFilm. Opt. Lett. 1983, 8, 491−493. (38) Atwater, H. A.; Polman, A. Plasmonics for Improved Photovoltaic Devices. Nat. Mater. 2010, 9, 205−213. (39) Zhang, Y.; Stokes, N.; Jia, B.; Fan, S.; Gu, M. Towards UltraThin Plasmonic Silicon Wafer Solar Cells with Minimized Efficiency Loss. Sci. Rep. 2015, 4, 4939. (40) Pryce, I. M.; Koleske, D. D.; Fischer, A. J.; Atwater, H. A. Plasmonic Nanoparticle Enhanced Photocurrent in GaN/InGaN/GaN Quantum Well Solar Cells. Appl. Phys. Lett. 2010, 96, 153501. (41) Derkacs, D.; Lim, S. H.; Matheu, P.; Mar, W.; Yu, E. T. Improved Performance of Amorphous Silicon Solar Cells via Scattering from Surface Plasmon Polaritons in Nearby Metallic Nanoparticles. Appl. Phys. Lett. 2006, 89, 093103. (42) Matheu, P.; Lim, S. H.; Derkacs, D.; McPheeters, C.; Yu, E. T. Metal and Dielectric Nanoparticle Scattering for Improved Optical Absorption in Photovoltaic Devices. Appl. Phys. Lett. 2008, 93, 113108. (43) Chang, Y. C.; Chou, F. Y.; Yeh, P. H.; Chen, H. W.; Chang, S. H.; Lan, Y. C.; Guo, T. F.; Tsai, T. C.; Lee, C. T. Effects of Surface Plasmon Resonant Scattering on the Power Conversion Efficiency of Organic Thin-Film Solar Cells. J. Vac. Sci. Technol., B 2007, 25, 1899− 1902. (44) Nakayama, K.; Tanabe, K.; Atwater, H. A. Plasmonic Nanoparticle Enhanced Light Absorption in GaAs Solar Cells. Appl. Phys. Lett. 2008, 93, 121904. (45) Royer, P.; Goudonnet, J. P.; Warmack, R. J.; Ferrell, T. L. Substrate Effects on Surface-Plasmon Spectra in Metal-Island Films. Phys. Rev. B: Condens. Matter Mater. Phys. 1987, 35, 3753−3759. (46) Biteen, J. S.; Lewis, N. S.; Atwater, H. A.; Mertens, H.; Polman, A. Spectral Tuning of Plasmon-Enhanced Silicon Quantum Dot Luminescence. Appl. Phys. Lett. 2006, 88, 131109. (47) Chen, X.; Jia, B.; Zhang, Y.; Gu, M. Exceeding the Limit of Plasmonic Light Trapping in Textured Screen-Printed Solar Cells Using Al Nanoparticles and Wrinkle-Like Graphene Sheets. Light: Sci. Appl. 2013, 2, e92. (48) Catchpole, K. R.; Polman, A. Plasmonic Solar Cells. Opt. Express 2008, 16, 21793−21800. (49) Payne, E. K.; Shuford, K. L.; Park, S.; Schatz, G. C.; Mirkin, C. A. Multipole Plasmon Resonances in Gold Nanorods. J. Phys. Chem. B 2006, 110, 2150−2154. (50) Pitarke, J. M.; Silkin, V. M.; Chulkov, E. V.; Echenique, P. M. Theory of Surface Plasmons and Surface-Plasmon Polaritons. Rep. Prog. Phys. 2007, 70, 1−87. (51) Soller, B. J.; Stuart, H. R.; Hall, D. G. Energy Transfer at Optical Frequencies to Silicon-on-Insulator Structures. Opt. Lett. 2001, 26, 1421−1423. (52) Catchpole, K. R.; Polman, A. Design Principles for Particle Plasmon Enhanced Solar Cells. Appl. Phys. Lett. 2008, 93, 191113. (53) Beck, F. J.; Mokkapati, S.; Polman, A.; Catchpole, K. R. Asymmetry in Photocurrent Enhancement by Plasmonic Nanoparticle Arrays Located on the Front or on the Rear of Solar Cells. Appl. Phys. Lett. 2010, 96, 033113. (54) Li, X. F.; Hylton, N. P.; Giannini, V.; Lee, K. H.; Ekins-Daukes, N. J.; Maier, S. A. Bridging Electromagnetic and Carrier Transport Calculations for Three-Dimensional Modelling of Plasmonic Solar Cells. Opt. Express 2011, 19, A888−A896. (55) Wu, J.; Mangham, S. C.; Reddy, V. R.; Manasreh, M. O.; Weaver, B. D. Surface Plasmon Enhanced Intermediate Band Based Quantum Dots Solar Cell. Sol. Energy Mater. Sol. Cells 2012, 102, 44− 49.

(56) Yokota, Y.; Ueno, K.; Mizeikis, V.; Juodkazis, S.; Sasaki, K.; Misawa, H. Optical Characterization of Plasmonic Metallic Nanostructures Fabricated by High-Resolution Lithography. J. Nanophotonics 2007, 1, 011594. (57) Akimov, Y. A.; Koh, W. S. Resonant and Nonresonant Plasmonic Nanoparticle Enhancement for Thin-Film Silicon Solar Cells. Nanotechnology 2010, 21, 235201. (58) Akimov, Y. A.; Koh, W. S. Design of Plasmonic Nanoparticles for Efficient Subwavelength Light Trapping in Thin-Film Solar Cells. Plasmonics 2011, 6, 155−161. (59) Hylton, N. P.; Li, X. F.; Giannini, V.; Lee, K. H.; Ekins-Daukes, N. J.; Loo, J.; Vercruysse, D.; Van Dorpe, P.; Sodabanlu, H.; Sugiyama, M.; et al. Loss Mitigation in Plasmonic Solar Cells: Aluminium Nanoparticles for Broadband Photocurrent Enhancements in GaAs Photodiodes. Sci. Rep. 2013, 3, 2874. (60) Yang, L.; Pillai, S.; Green, M. A. Can Plasmonic Al Nanoparticles Improve Absorption in Triple Junction Solar Cells? Sci. Rep. 2015, 5, 11852. (61) Baek, S.-W.; Noh, J.; Lee, C.-H.; Kim, B.; Seo, M.-K.; Lee, J.-Y. Plasmonic Forward Scattering Effect in Organic Solar Cells: A Powerful Optical Engineering Method. Sci. Rep. 2013, 3, 1726. (62) Wang, D. H.; Kim, D. Y.; Choi, K. W.; Seo, J. H.; Im, S. H.; Park, J. H.; Park, O. O.; Heeger, A. J. Enhancement of Donor-Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au Nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5519−5523. (63) Qu, D.; Liu, F.; Yu, J. F.; Xie, W. L.; Xu, Q.; Li, X. D.; Huang, Y. D. Plasmonic Core-Shell Gold Nanoparticle Enhanced Optical Absorption in Photovoltaic Devices. Appl. Phys. Lett. 2011, 98, 113119. (64) Tang, M.; Zhou, L.; Gu, S.; Zhu, W.; Wang, Y.; Xu, J.; Deng, Z.; Yu, T.; Lu, Z.; Zhu, J. Fine-Tuning the Metallic Core-Shell Nanostructures for Plasmonic Perovskite Solar Cells. Appl. Phys. Lett. 2016, 109, 183901. (65) Lee, D. H.; Kwon, J. Y.; Maldonado, S.; Tuteja, A.; Boukai, A. Extreme Light Absorption by Multiple Plasmonic Layers on Upgraded Metallurgical Grade Silicon Solar Cells. Nano Lett. 2014, 14, 1961− 1967. (66) Sardana, S. K.; Chava, V. S. N.; Thouti, E.; Chander, N.; Kumar, S.; Reddy, S. R.; Komarala, V. K. Influence of Surface Plasmon Resonances of Silver Nanoparticles on Optical and Electrical Properties of Textured Silicon Solar Cell. Appl. Phys. Lett. 2014, 104, 073903. (67) Jeong, J.-A.; Kim, H.-K. Low Resistance and Highly Transparent ITO−Ag−ITO Multilayer Electrode Using Surface Plasmon Resonance of Ag Layer for Bulk-Heterojunction Organic Solar Cells. Sol. Energy Mater. Sol. Cells 2009, 93, 1801−1809. (68) An, C. J.; Yoo, H.-W.; Cho, C.; Park, J.-M.; Choi, J. K.; Jin, M. L.; Lee, J.-Y.; Jung, H.-T. Surface Plasmon Assisted High Performance Top-Illuminated Polymer Solar Cells with Nanostructured Ag Rear Electrodes. J. Mater. Chem. A 2014, 2, 2915−2921. (69) Kang, M. G.; Xu, T.; Park, H. J.; Luo, X.; Guo, L. J. Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes. Adv. Mater. 2010, 22, 4378−4383. (70) Luo, L.-B.; Xie, C.; Wang, X.-H.; Yu, Y.-Q.; Wu, C.-Y.; Hu, H.; Zhou, K.-Y.; Zhang, X.-W.; Jie, J.-S. Surface Plasmon Resonance Enhanced Highly Efficient Planar Silicon Solar Cell. Nano Energy 2014, 9, 112−120. (71) Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays. Nature 1998, 391, 667−669. (72) Martin-Moreno, L.; Garcia-Vidal, F. J.; Lezec, H. J.; Pellerin, K. M.; Thio, T.; Pendry, J. B.; Ebbesen, T. W. Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays. Phys. Rev. Lett. 2001, 86, 1114−1117. (73) Koerkamp, K. J. K.; Enoch, S.; Segerink, F. B.; van Hulst, N. F.; Kuipers, L. Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes. Phys. Rev. Lett. 2004, 92, 183901. 2987

DOI: 10.1021/acs.chemrev.7b00235 Chem. Rev. 2018, 118, 2955−2993

Chemical Reviews

Review

(74) Reilly, T. H.; van de Lagemaat, J.; Tenent, R. C.; Morfa, A. J.; Rowlen, K. L. Surface-Plasmon Enhanced Transparent Electrodes in Organic Photovoltaics. Appl. Phys. Lett. 2008, 92, 243304. (75) Feng Lu, H.; Mokkapati, S.; Fu, L.; Jolley, G.; Hoe Tan, H.; Jagadish, C. Plasmonic Quantum Dot Solar Cells for Enhanced Infrared Response. Appl. Phys. Lett. 2012, 100, 103505. (76) Tan, H.; Sivec, L.; Yan, B.; Santbergen, R.; Zeman, M.; Smets, A. H. M. Improved Light Trapping in Microcrystalline Silicon Solar Cells by Plasmonic Back Reflector with Broad Angular Scattering and Low Parasitic Absorption. Appl. Phys. Lett. 2013, 102, 153902. (77) Mendes, M. J.; Morawiec, S.; Simone, F.; Priolo, F.; Crupi, I. Colloidal Plasmonic Back Reflectors for Light Trapping in Solar Cells. Nanoscale 2014, 6, 4796−4805. (78) Sharma, M.; Pudasaini, P. R.; Ruiz-Zepeda, F.; Vinogradova, E.; Ayon, A. A. Plasmonic Effects of Au/Ag Bimetallic Multispiked Nanoparticles for Photovoltaic Applications. ACS Appl. Mater. Interfaces 2014, 6, 15472−15479. (79) Mendes, M. J.; Morawiec, S.; Mateus, T.; Lyubchyk, A.; Aguas, H.; Ferreira, I.; Fortunato, E.; Martins, R.; Priolo, F.; Crupi, I. Broadband Light Trapping in Thin Film Solar Cells with SelfOrganized Plasmonic Nano-Colloids. Nanotechnology 2015, 26, 135202. (80) Cheng, P.-P.; Ma, G.-F.; Li, J.; Xiao, Y.; Xu, Z.-Q.; Fan, G.-Q.; Li, Y.-Q.; Lee, S.-T.; Tang, J.-X. Plasmonic Backscattering Enhancement for Inverted Polymer Solar Cells. J. Mater. Chem. 2012, 22, 22781. (81) Beck, F. J.; Polman, A.; Catchpole, K. R. Tunable Light Trapping for Solar Cells Using Localized Surface Plasmons. J. Appl. Phys. 2009, 105, 114310. (82) Pillai, S.; Beck, F. J.; Catchpole, K. R.; Ouyang, Z.; Green, M. A. The Effect of Dielectric Spacer Thickness on Surface Plasmon Enhanced Solar Cells for Front and Rear Side Depositions. J. Appl. Phys. 2011, 109, 073105. (83) Palanchoke, U.; Jovanov, V.; Kurz, H.; Dewan, R.; Magnus, P.; Stiebig, H.; Knipp, D. Influence of Back Contact Roughness on Light Trapping and Plasmonic Losses of Randomly Textured Amorphous Silicon Thin Film Solar Cells. Appl. Phys. Lett. 2013, 102, 083501. (84) Paetzold, U. W.; Moulin, E.; Pieters, B. E.; Carius, R.; Rau, U. Design of Nanostructured Plasmonic Back Contacts for Thin-Film Silicon Solar Cells. Opt. Express 2011, 19, A1219−A1230. (85) Ferry, V. E.; Verschuuren, M. A.; Li, H. B. T.; Schropp, R. E. I.; Atwater, H. A.; Polman, A. Improved Red-Response in Thin Film aSi:H Solar Cells with Soft-Imprinted Plasmonic Back Reflectors. Appl. Phys. Lett. 2009, 95, 183503. (86) Ding, I. K.; Zhu, J.; Cai, W.; Moon, S.-J.; Cai, N.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M.; Brongersma, M. L.; Cui, Y.; et al. Plasmonic Dye-Sensitized Solar Cells. Adv. Energy Mater. 2011, 1, 52− 57. (87) Paetzold, U. W.; Moulin, E.; Michaelis, D.; Böttler, W.; Wächter, C.; Hagemann, V.; Meier, M.; Carius, R.; Rau, U. Plasmonic Reflection Grating Back Contacts for Microcrystalline Silicon Solar Cells. Appl. Phys. Lett. 2011, 99, 181105. (88) Bhattacharya, J.; Chakravarty, N.; Pattnaik, S.; Dennis Slafer, W.; Biswas, R.; Dalal, V. L. A Photonic-Plasmonic Structure for Enhancing Light Absorption in Thin Film Solar Cells. Appl. Phys. Lett. 2011, 99, 131114. (89) Beck, F. J.; Mokkapati, S.; Catchpole, K. R. Plasmonic LightTrapping for Si Solar Cells Using Self-Assembled, Ag Nanoparticles. Prog. Photovoltaics 2010, 18, 500−504. (90) Tan, H.; Santbergen, R.; Smets, A. H.; Zeman, M. Plasmonic Light Trapping in Thin-Film Silicon Solar Cells with Improved SelfAssembled Silver Nanoparticles. Nano Lett. 2012, 12, 4070−4076. (91) Basch, A.; Beck, F. J.; Söderström, T.; Varlamov, S.; Catchpole, K. R. Combined Plasmonic and Dielectric Rear Reflectors for Enhanced Photocurrent in Solar Cells. Appl. Phys. Lett. 2012, 100, 243903. (92) Ho, C.-I.; Yeh, D.-J.; Su, V.-C.; Yang, C.-H.; Yang, P.-C.; Pu, M.Y.; Kuan, C.-H.; Cheng, I. C.; Lee, S.-C. Plasmonic Multilayer

Nanoparticles Enhanced Photocurrent in Thin Film Hydrogenated Amorphous Silicon Solar Cells. J. Appl. Phys. 2012, 112, 023113. (93) Spinelli, P.; Ferry, V. E.; van de Groep, J.; van Lare, M.; Verschuuren, M. A.; Schropp, R. E. I.; Atwater, H. A.; Polman, A. Plasmonic Light Trapping in Thin-Film Si Solar Cells. J. Opt. 2012, 14, 024002. (94) Redfield, D. Multiple-Pass Thin-Film Silicon Solar Cell. Appl. Phys. Lett. 1974, 25, 647−648. (95) Campbell, P.; Green, M. A. Light Trapping Properties of Pyramidally Textured Surfaces. J. Appl. Phys. 1987, 62, 243−249. (96) Stuart, H. R.; Hall, D. G. Absorption Enhancement in Siliconon-Insulator Waveguides Using Metal Island Films. Appl. Phys. Lett. 1996, 69, 2327−2329. (97) Pillai, S.; Catchpole, K. R.; Trupke, T.; Green, M. A. Surface Plasmon Enhanced Silicon Solar Cells. J. Appl. Phys. 2007, 101, 093105. (98) Mokkapati, S.; Beck, F. J.; Polman, A.; Catchpole, K. R. Designing Periodic Arrays of Metal Nanoparticles for Light-Trapping Applications in Solar Cells. Appl. Phys. Lett. 2009, 95, 053115. (99) Ferry, V. E.; Sweatlock, L. A.; Pacifici, D.; Atwater, H. A. Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells. Nano Lett. 2008, 8, 4391−4397. (100) Pala, R. A.; White, J.; Barnard, E.; Liu, J.; Brongersma, M. L. Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements. Adv. Mater. 2009, 21, 3504−3509. (101) Ferry, V. E.; Verschuuren, M. A.; Li, H. B. T.; Verhagen, E.; Walters, R. J.; Schropp, R. E. I.; Atwater, H. A.; Polman, A. Light Trapping in Ultrathin Plasmonic Solar Cells. Opt. Express 2010, 18, A237−A245. (102) Munday, J. N.; Atwater, H. A. Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings. Nano Lett. 2011, 11, 2195− 2201. (103) Lindquist, N. C.; Luhman, W. A.; Oh, S.-H.; Holmes, R. J. Plasmonic Nanocavity Arrays for Enhanced Efficiency in Organic Photovoltaic Cells. Appl. Phys. Lett. 2008, 93, 123308. (104) You, J. B.; Li, X. H.; Xie, F. X.; Sha, W. E. I.; Kwong, J. H. W.; Li, G.; Choy, W. C. H.; Yang, Y. Surface Plasmon and ScatteringEnhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode. Adv. Energy Mater. 2012, 2, 1203−1207. (105) Sha, W. E. I.; Choy, W. C. H.; Chew, W. C. Angular Response of Thin-Film Organic Solar Cells with Periodic Metal Back Nanostrips. Opt. Lett. 2011, 36, 478−480. (106) Sefunc, M. A.; Okyay, A. K.; Demir, H. V. Plasmonic Backcontact Grating for P3HT:PCBM Organic Solar Cells Enabling Strong Optical Absorption Increased in All Polarizations. Opt. Express 2011, 19, 14200−14209. (107) Pala, R. A.; Liu, J. S.; Barnard, E. S.; Askarov, D.; Garnett, E. C.; Fan, S.; Brongersma, M. L. Optimization of Non-Periodic Plasmonic Light-Trapping Layers for Thin-Film Solar Cells. Nat. Commun. 2013, 4, 2095. (108) Huang, H.; Lu, L.; Wang, J.; Yang, J.; Leung, S.-F.; Wang, Y.; Chen, D.; Chen, X.; Shen, G.; Li, D.; et al. Performance Enhancement of Thin-Film Amorphous Silicon Solar Cells with Low Cost Nanodent Plasmonic Substrates. Energy Environ. Sci. 2013, 6, 2965−2971. (109) Long, M.; Chen, Z.; Zhang, T.; Xiao, Y.; Zeng, X.; Chen, J.; Yan, K.; Xu, J. Ultrathin Efficient Perovskite Solar Cells Employing a Periodic Structure of a Composite Hole Conductor for Elevated Plasmonic Light Harvesting and Hole Collection. Nanoscale 2016, 8, 6290−6299. (110) Ferry, V. E.; Polman, A.; Atwater, H. A. Modeling Light Trapping in Nanostructured Solar Cells. ACS Nano 2011, 5, 10055− 10064. (111) Lim, S. H.; Derkacs, D.; Yu, E. T. Light Scattering into Siliconon-Insulator Waveguide Modes by Random and Periodic Gold Nanodot Arrays. J. Appl. Phys. 2009, 105, 073101. (112) Hayashi, S.; Kozaru, K.; Yamamoto, K. Enhancement of Photoelectric Conversion Efficiency by Surface Plasmon Excitation: A 2988

DOI: 10.1021/acs.chemrev.7b00235 Chem. Rev. 2018, 118, 2955−2993

Chemical Reviews

Review

Test with an Organic Solar Cell. Solid State Commun. 1991, 79, 763− 767. (113) Kume, T.; Hayashi, S.; Yamamoto, K. Enhancement of Photoelectric Conversion Efficiency in Copper Phthalocyanine Solar Cell by Surface Plasmon Excitation. Jpn. J. Appl. Phys. 1993, 32, 3486− 3492. (114) Kume, T.; Hayashi, S.; HiroshiOhkuma; Yamamoto, K. Enhancement of Photoelectric Conversion Efficiency in Copper Phthalocyanine Solar Cell: White Light Excitation of Surface Plasmon Polaritons. Jpn. J. Appl. Phys. 1995, 34, 6448−6451. (115) Wakamatsu, T.; Saito, K.; Sakakibara, Y.; Yokoyama, H. Surface Plasmon-Enhanced Photocurrent in Organic Photoelectric Cells. Jpn. J. Appl. Phys. 1997, 36, 155−158. (116) Min, C.; Li, J.; Veronis, G.; Lee, J.-Y.; Fan, S.; Peumans, P. Enhancement of Optical Absorption in Thin-Film Organic Solar Cells Through the Excitation of Plasmonic Modes in Metallic Gratings. Appl. Phys. Lett. 2010, 96, 133302. (117) Le, K. Q.; Abass, A.; Maes, B.; Bienstman, P.; Alù, A. Comparing Plasmonic and Dielectric Gratings for Absorption Enhancement in Thin-Film Organic Solar Cells. Opt. Express 2012, 20, A39−A50. (118) Sha, W. E. I.; Choy, W. C. H.; Liu, Y. G.; Cho Chew, W. NearField Multiple Scattering Effects of Plasmonic Nanospheres Embedded into Thin-Film Organic Solar Cells. Appl. Phys. Lett. 2011, 99, 113304. (119) Zhu, J.; Xue, M.; Shen, H.; Wu, Z.; Kim, S.; Ho, J.-J.; HassaniAfshar, A.; Zeng, B.; Wang, K. L. Plasmonic Effects for Light Concentration in Organic Photovoltaic Thin Films Induced by Hexagonal Periodic Metallic Nanospheres. Appl. Phys. Lett. 2011, 98, 151110. (120) Kochergin, V.; Neely, L.; Jao, C.-Y.; Robinson, H. D. Aluminum Plasmonic Nanostructures for Improved Absorption in Organic Photovoltaic Devices. Appl. Phys. Lett. 2011, 98, 133305. (121) Stavytska-Barba, M.; Salvador, M.; Kulkarni, A.; Ginger, D. S.; Kelley, A. M. Plasmonic Enhancement of Raman Scattering from the Organic Solar Cell Material P3HT/PCBM by Triangular Silver Nanoprisms. J. Phys. Chem. C 2011, 115, 20788−20794. (122) Lagos, N.; Sigalas, M. M.; Lidorikis, E. Theory of Plasmonic Near-Field Enhanced Absorption in Solar Cells. Appl. Phys. Lett. 2011, 99, 063304. (123) Shen, H.; Bienstman, P.; Maes, B. Plasmonic Absorption Enhancement in Organic Solar Cells with Thin Active Layers. J. Appl. Phys. 2009, 106, 073109. (124) Meng, L.; Yam, C.; Zhang, Y.; Wang, R.; Chen, G. Multiscale Modeling of Plasmon-Enhanced Power Conversion Efficiency in Nanostructured Solar Cells. J. Phys. Chem. Lett. 2015, 6, 4410−4416. (125) Wang, J. Y.; Tsai, F. J.; Huang, J. J.; Chen, C. Y.; Li, N.; Kiang, Y. W.; Yang, C. C. Enhancing InGaN-Based Solar Cell Efficiency Through Localized Surface Plasmon Interaction by Embedding Ag Nanoparticles in the Absorbing Layer. Opt. Express 2010, 18, 2682− 2694. (126) Mendes, M. J.; Hernandez, E.; Lopez, E.; Garcia-Linares, P.; Ramiro, I.; Artacho, I.; Antolin, E.; Tobias, I.; Marti, A.; Luque, A. SelfOrganized Colloidal Quantum Dots and Metal Nanoparticles for Plasmon-Enhanced Intermediate-Band Dolar Cells. Nanotechnology 2013, 24, 345402. (127) Cai, B.; Peng, Y.; Cheng, Y. B.; Gu, M. 4-fold Photocurrent Enhancement in Ultrathin Nanoplasmonic Perovskite Solar Cells. Opt. Express 2015, 23, A1700−A1706. (128) Bai, W.; Gan, Q.; Bartoli, F.; Zhang, J.; Cai, L.; Huang, Y.; Song, G. Design of Plasmonic Back Structures for Efficiency Enhancement of Thin-Film Amorphous Si Solar Cells. Opt. Lett. 2009, 34, 3725−3727. (129) Shen, H.; Maes, B. Combined Plasmonic Gratings in Organic Solar Cells. Opt. Express 2011, 19, A1202−A1210. (130) Wang, Y.; Sun, T.; Paudel, T.; Zhang, Y.; Ren, Z.; Kempa, K. Metamaterial-Plasmonic Absorber Structure for High Efficiency Amorphous Silicon Solar Cells. Nano Lett. 2012, 12, 440−445. (131) Konda, R. B.; Mundle, R.; Mustafa, H.; Bamiduro, O.; Pradhan, A. K.; Roy, U. N.; Cui, Y.; Burger, A. Surface Plasmon Excitation via

Au Nanoparticles in n-CdSe/p-Si Heterojunction Diodes. Appl. Phys. Lett. 2007, 91, 191111. (132) Schaadt, D. M.; Feng, B.; Yu, E. T. Enhanced Semiconductor Optical Absorption via Surface Plasmon Excitation in Metal Nanoparticles. Appl. Phys. Lett. 2005, 86, 063106. (133) Rand, B. P.; Peumans, P.; Forrest, S. R. Long-Range Absorption Enhancement in Organic Tandem Thin-Film Solar Cells Containing Silver Nanoclusters. J. Appl. Phys. 2004, 96, 7519−7526. (134) Lee, J. H.; Park, J. H.; Kim, J. S.; Lee, D. Y.; Cho, K. High Efficiency Polymer Solar Cells with Wet Deposited Plasmonic Gold Nanodots. Org. Electron. 2009, 10, 416−420. (135) Chen, X.; Zhao, C.; Rothberg, L.; Ng, M.-K. Plasmon Enhancement of Bulk Heterojunction Organic Photovoltaic Devices by Electrode Modification. Appl. Phys. Lett. 2008, 93, 123302. (136) Kawawaki, T.; Wang, H.; Kubo, T.; Saito, K.; Nakazaki, J.; Segawa, H.; Tatsuma, T. Efficiency Enhancement of PbS Quantum Dot/ZnO Nanowire Bulk-Heterojunction Solar Cells by Plasmonic Silver Nanocubes. ACS Nano 2015, 9, 4165−4172. (137) Zhu, J.; Xue, M.; Hoekstra, R.; Xiu, F.; Zeng, B.; Wang, K. L. Light Concentration and Redistribution in Polymer Solar Cells by Plasmonic Nanoparticles. Nanoscale 2012, 4, 1978−1981. (138) Ho, Y. C.; Kao, S. H.; Lee, H. C.; Chang, S. K.; Lee, C. C.; Lin, C. F. Investigation of the Localized Surface Plasmon Effect from Au Nanoparticles in ZnO Nanorods for Enhancing the Performance of Polymer Solar Cells. Nanoscale 2015, 7, 776−783. (139) Liu, C.; Zhao, C.; Zhang, X.; Guo, W.; Liu, K.; Ruan, S. Unique Gold Nanorods Embedded Active Layer Enabling Strong Plasmonic Effect to Improve the Performance of Polymer Photovoltaic Devices. J. Phys. Chem. C 2016, 120, 6198−6205. (140) Kim, S.-S.; Na, S.-I.; Jo, J.; Kim, D.-Y.; Nah, Y.-C. Plasmon Enhanced Performance of Organic Solar Cells Using Electrodeposited Ag Nanoparticles. Appl. Phys. Lett. 2008, 93, 073307. (141) Qiao, L.; Wang, D.; Zuo, L.; Ye, Y.; Qian, J.; Chen, H.; He, S. Localized Surface Plasmon Resonance Enhanced Organic Solar Cell with Gold Nanospheres. Appl. Energy 2011, 88, 848−852. (142) Kirkeminde, A.; Retsch, M.; Wang, Q.; Xu, G.; Hui, R.; Wu, J.; Ren, S. Surface-Passivated Plasmonic Nano-Pyramids for Bulk Heterojunction Solar Cell Photocurrent Enhancement. Nanoscale 2012, 4, 4421−4425. (143) Gao, H. L.; Zhang, X. W.; Yin, Z. G.; Tan, H. R.; Zhang, S. G.; Meng, J. H.; Liu, X. Plasmon Enhanced Polymer Solar Cells by SpinCoating Au Nanoparticles on Indium-Tin-Oxide Substrate. Appl. Phys. Lett. 2012, 101, 133903. (144) Chen, M. C.; Yang, Y. L.; Chen, S. W.; Li, J. H.; Aklilu, M.; Tai, Y. Self-Assembled Monolayer Immobilized Gold Nanoparticles for Plasmonic Effects in Small Molecule Organic Photovoltaic. ACS Appl. Mater. Interfaces 2013, 5, 511−517. (145) Shen, P.; Liu, Y.; Long, Y.; Shen, L.; Kang, B. HighPerformance Polymer Solar Cells Enabled by Copper NanoparticlesInduced Plasmon Resonance Enhancement. J. Phys. Chem. C 2016, 120, 8900−8906. (146) Morfa, A. J.; Rowlen, K. L.; Reilly, T. H.; Romero, M. J.; van de Lagemaat, J. Plasmon-Enhanced Solar Energy Conversion in Organic Bulk Heterojunction Photovoltaics. Appl. Phys. Lett. 2008, 92, 013504. (147) Yan, H.; Tian, X.; Pang, Y.; Feng, B.; Duan, K.; Zhou, Z.; Weng, J.; Wang, J. Heterostructured g-C3N4/Ag/TiO2 Nanocomposites for Enhancing the Photoelectric Conversion Efficiency of SpiroOMeTAD-Based Solid-State Dye-Sensitized Solar Cells. RSC Adv. 2016, 6, 102444−102452. (148) Chuang, M. K.; Lin, S. W.; Chen, F. C.; Chu, C. W.; Hsu, C. S. Gold Nanoparticle-Decorated Graphene Oxides for PlasmonicEnhanced Polymer Photovoltaic Devices. Nanoscale 2014, 6, 1573− 1579. (149) Lee, S. J.; Kim, J.-Y.; Mohd Yusoff, A. R. b.; Jang, J. Plasmonic Organic Solar Cell Employing Au NP:PEDOT:PSS Doped rGO. RSC Adv. 2015, 5, 23892−23899. (150) Parvathy Devi, B.; Wu, K.-C.; Pei, Z. Gold Nanomesh Induced Surface Plasmon for Photocurrent Enhancement in a Polymer Solar Cell. Sol. Energy Mater. Sol. Cells 2011, 95, 2102−2106. 2989

DOI: 10.1021/acs.chemrev.7b00235 Chem. Rev. 2018, 118, 2955−2993

Chemical Reviews

Review

(151) Cui, Y.; Huang, D.; Li, Y.; Huang, W.; Liang, Z.; Xu, Z.; Zhao, S. Aluminium Nanoparticles Synthesized by a Novel Wet Chemical Method and Used to Enhance the Performance of Polymer Solar Cells by the Plasmonic Effect. J. Mater. Chem. C 2015, 3, 4099−4103. (152) Angulo, A. M.; Noguez, C.; Schatz, G. C. Electromagnetic Field Enhancement for Wedge-Shaped Metal Nanostructures. J. Phys. Chem. Lett. 2011, 2, 1978−1983. (153) Brown, M. D.; Suteewong, T.; Kumar, R. S.; D’Innocenzo, V.; Petrozza, A.; Lee, M. M.; Wiesner, U.; Snaith, H. J. Plasmonic DyeSensitized Solar Cells Using Core-Shell Metal-Insulator Nanoparticles. Nano Lett. 2011, 11, 438−445. (154) Du, P.; Jing, P.; Li, D.; Cao, Y.; Liu, Z.; Sun, Z. Plasmonic Ag@ Oxide Nanoprisms for Enhanced Performance of Organic Solar Cells. Small 2015, 11, 2454−2462. (155) Kholmicheva, N.; Moroz, P.; Rijal, U.; Bastola, E.; Uprety, P.; Liyanage, G.; Razgoniaev, A.; Ostrowski, A. D.; Zamkov, M. Plasmonic Nanocrystal Solar Cells Utilizing Strongly Confined Radiation. ACS Nano 2014, 8, 12549−12559. (156) Liu, X. F.; Wu, B.; Zhang, Q.; Yip, J. N.; Yu, G. N.; Xiong, Q. H.; Mathews, N.; Sum, T. C. Elucidating the Localized Plasmonic Enhancement Effects from a Single Ag Nanowire in Organic Solar Cells. ACS Nano 2014, 8, 10101−10110. (157) Wu, B.; Wu, X.; Guan, C.; Fai Tai, K.; Yeow, E. K.; Jin Fan, H.; Mathews, N.; Sum, T. C. Uncovering Loss Mechanisms in Silver Nanoparticle-Blended Plasmonic Organic Solar Cells. Nat. Commun. 2013, 4, 2004. (158) Wu, J. L.; Chen, F. C.; Hsiao, Y. S.; Chien, F. C.; Chen, P. L.; Kuo, C. H.; Huang, M. H.; Hsu, C. S. Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells. ACS Nano 2011, 5, 959−967. (159) Zarick, H. F.; Erwin, W. R.; Boulesbaa, A.; Hurd, O. K.; Webb, J. A.; Puretzky, A. A.; Geohegan, D. B.; Bardhan, R. Improving Light Harvesting in Dye-Sensitized Solar Cells Using Hybrid Bimetallic Nanostructures. ACS Photonics 2016, 3, 385−394. (160) Xue, M.; Li, L.; Tremolet de Villers, B. J.; Shen, H.; Zhu, J.; Yu, Z.; Stieg, A. Z.; Pei, Q.; Schwartz, B. J.; Wang, K. L. Charge-Carrier Dynamics in Hybrid Plasmonic Organic Solar Cells with Ag Nanoparticles. Appl. Phys. Lett. 2011, 98, 253302. (161) Wang, J.; Lee, Y.-J.; Chadha, A. S.; Yi, J.; Jespersen, M. L.; Kelley, J. J.; Nguyen, H. M.; Nimmo, M.; Malko, A. V.; Vaia, R. A.; et al. Effect of Plasmonic Au Nanoparticles on Inverted Organic Solar Cell Performance. J. Phys. Chem. C 2013, 117, 85−91. (162) Fleetham, T.; Choi, J. Y.; Choi, H. W.; Alford, T.; Jeong, D. S.; Lee, T. S.; Lee, W. S.; Lee, K. S.; Li, J.; Kim, I. Photocurrent Enhancements of Organic Solar Cells by Altering Dewetting of Plasmonic Ag Nanoparticles. Sci. Rep. 2015, 5, 14250. (163) Wang, C. C. D.; Choy, W. C. H.; Duan, C.; Fung, D. D. S.; Sha, W. E. I.; Xie, F.-X.; Huang, F.; Cao, Y. Optical and Electrical Effects of Gold Nanoparticles in the Active Layer of Polymer Solar Cells. J. Mater. Chem. 2012, 22, 1206−1211. (164) Zheng, T.; Choy, W. C. H.; Sun, Y. Hybrid Nanoparticle/ Organic Devices with Strong Resonant Tunneling Behaviors. Adv. Funct. Mater. 2009, 19, 2648−2653. (165) Seo, E.; Ko, S.-J.; Min, S. H.; Kim, J. Y.; Kim, B.-S. Plasmonic Transition via Interparticle Coupling of Au@Ag Core−Shell Nanostructures Sheathed in Double Hydrophilic Block Copolymer for High-Performance Polymer Solar Cell. Chem. Mater. 2015, 27, 4789−4798. (166) Kymakis, E.; Spyropoulos, G. D.; Fernandes, R.; Kakavelakis, G.; Kanaras, A. G.; Stratakis, E. Plasmonic Bulk Heterojunction Solar Cells: The Role of Nanoparticle Ligand Coating. ACS Photonics 2015, 2, 714−723. (167) Saliba, M.; Zhang, W.; Burlakov, V. M.; Stranks, S. D.; Sun, Y.; Ball, J. M.; Johnston, M. B.; Goriely, A.; Wiesner, U.; Snaith, H. J. Plasmonic-Induced Photon Recycling in Metal Halide Perovskite Solar Cells. Adv. Funct. Mater. 2015, 25, 5038−5046. (168) Chen, S. C.; Chen, Y. J.; Chen, W. T.; Yen, Y. T.; Kao, T. S.; Chuang, T. Y.; Liao, Y. K.; Wu, K. H.; Yabushita, A.; Hsieh, T. P.; et al. Toward Omnidirectional Light Absorption by Plasmonic Effect for

high-efficiency flexible nonvacuum Cu(In,Ga)Se2 thin film solar cells. ACS Nano 2014, 8, 9341−9348. (169) Yoon, W.-J.; Jung, K.-Y.; Liu, J.; Duraisamy, T.; Revur, R.; Teixeira, F. L.; Sengupta, S.; Berger, P. R. Plasmon-Enhanced Optical Absorption and Photocurrent in Organic Bulk Heterojunction Photovoltaic Devices Using Self-Assembled Layer of Silver Nanoparticles. Sol. Energy Mater. Sol. Cells 2010, 94, 128−132. (170) Sha, W. E.; Li, X.; Choy, W. C. Breaking the Space Charge Limit in Organic Solar Cells by a Novel Plasmonic-Electrical Concept. Sci. Rep. 2015, 4, 6236. (171) Kymakis, E.; Stratakis, E.; Koudoumas, E.; Fotakis, C. Plasmonic Organic Photovoltaic Devices on Transparent Carbon Nanotube Films. IEEE Trans. Electron Devices 2011, 58, 860−864. (172) Ren, X.; Cheng, J.; Zhang, S.; Li, X.; Rao, T.; Huo, L.; Hou, J.; Choy, W. C. High Efficiency Organic Solar Cells Achieved by the Simultaneous Plasmon-Optical and Plasmon-Electrical Effects from Plasmonic Asymmetric Modes of Gold Nanostars. Small 2016, 12, 5200−5207. (173) Shalan, A. E.; Oshikiri, T.; Sawayanagi, H.; Nakamura, K.; Ueno, K.; Sun, Q.; Wu, H. P.; Diau, E. W.; Misawa, H. Versatile Plasmonic-Effects at the Interface of Inverted Perovskite Solar Cells. Nanoscale 2017, 9, 1229−1236. (174) Sheldon, M. T.; van de Groep, J.; Brown, A. M.; Polman, A.; Atwater, H. A. Nanophotonics. Plasmoelectric Potentials in Metal Nanostructures. Science 2014, 346, 828−831. (175) Xu, M. F.; Zhu, X. Z.; Shi, X. B.; Liang, J.; Jin, Y.; Wang, Z. K.; Liao, L. S. Plasmon Resonance Enhanced Optical Absorption in Inverted Polymer/Fullerene Solar Cells with Metal Nanoparticledoped Solution-Processable TiO2 Layer. ACS Appl. Mater. Interfaces 2013, 5, 2935−2542. (176) Kao, C.-S.; Chen, F.-C.; Liao, C.-W.; Huang, M. H.; Hsu, C.-S. Plasmonic-Enhanced Performance for Polymer Solar Cells Prepared with Inverted Structures. Appl. Phys. Lett. 2012, 101, 193902. (177) Yu, H.; Roh, J.; Yun, J.; Jang, J. Synergistic Effects of ThreeDimensional Orchid-Like TiO2 Nanowire Networks and Plasmonic Nanoparticles for Highly Efficient Mesoscopic Perovskite Solar Cells. J. Mater. Chem. A 2016, 4, 7322−7329. (178) Zhang, W.; Saliba, M.; Stranks, S. D.; Sun, Y.; Shi, X.; Wiesner, U.; Snaith, H. J. Enhancement of Perovskite-Based Solar Cells Employing Core-Shell Metal Nanoparticles. Nano Lett. 2013, 13, 4505−4510. (179) Lee, J. M.; Lim, J.; Lee, N.; Park, H. I.; Lee, K. E.; Jeon, T.; Nam, S. A.; Kim, J.; Shin, J.; Kim, S. O. Synergistic Concurrent Enhancement of Charge Generation, Dissociation, and Transport in Organic Solar Cells with Plasmonic Metal-Carbon Nanotube Hybrids. Adv. Mater. 2015, 27, 1519−1525. (180) Chander, N.; Chandrasekhar, P. S.; Komarala, V. K. Solid State Plasmonic Dye Sensitized Solar Cells Based on Solution Processed Perovskite CsSnI3 as the Hole Transporter. RSC Adv. 2014, 4, 55658− 55665. (181) Lu, Z.; Pan, X.; Ma, Y.; Li, Y.; Zheng, L.; Zhang, D.; Xu, Q.; Chen, Z.; Wang, S.; Qu, B.; et al. Plasmonic-Enhanced Perovskite Solar Cells Using Alloy Popcorn Nanoparticles. RSC Adv. 2015, 5, 11175−11179. (182) Chen, F.-C.; Wu, J.-L.; Lee, C.-L.; Hong, Y.; Kuo, C.-H.; Huang, M. H. Plasmonic-Enhanced Polymer Photovoltaic Devices Incorporating Solution-Processable Metal Nanoparticles. Appl. Phys. Lett. 2009, 95, 013305. (183) Stratakis, E.; Stylianakis, M. M.; Koudoumas, E.; Kymakis, E. Plasmonic Organic Photovoltaic Devices with Graphene Based Buffer Layers for Stability and Efficiency Enhancement. Nanoscale 2013, 5, 4144−4150. (184) Fan, G.-Q.; Zhuo, Q.-Q.; Zhu, J.-J.; Xu, Z.-Q.; Cheng, P.-P.; Li, Y.-Q.; Sun, X.-H.; Lee, S.-T.; Tang, J.-X. Plasmonic-Enhanced Polymer Solar Cells Incorporating Solution-Processable Au NanoparticleAdhered Graphene Oxide. J. Mater. Chem. 2012, 22, 15614−15619. (185) Yang, X.; Liu, W.; Xiong, M.; Zhang, Y.; Liang, T.; Yang, J.; Xu, M.; Ye, J.; Chen, H. Au Nanoparticles on Ultrathin MoS2 Sheets for 2990

DOI: 10.1021/acs.chemrev.7b00235 Chem. Rev. 2018, 118, 2955−2993

Chemical Reviews

Review

Plasmonic Organic Solar Cells. J. Mater. Chem. A 2014, 2, 14798− 14806. (186) Fung, D. D. S.; Qiao, L.; Choy, W. C. H.; Wang, C.; Sha, W. E. I.; Xie, F.; He, S. Optical and Electrical Properties of Efficiency Enhanced Polymer Solar Cells with Au Nanoparticles in a PEDOT− PSS layer. J. Mater. Chem. 2011, 21, 16349−16356. (187) Su, Z.; Wang, L.; Li, Y.; Zhang, G.; Zhao, H.; Yang, H.; Ma, Y.; Chu, B.; Li, W. Surface Plasmon Enhanced Organic Solar Cells with a MoO3 Buffer Layer. ACS Appl. Mater. Interfaces 2013, 5, 12847− 12853. (188) Yao, M.; Jia, X.; Liu, Y.; Guo, W.; Shen, L.; Ruan, S. Surface Plasmon Resonance Enhanced Polymer Solar Cells by Thermally Evaporating Au into Buffer Layer. ACS Appl. Mater. Interfaces 2015, 7, 18866−18871. (189) Yao, M.; Shen, P.; Liu, Y.; Chen, B.; Guo, W.; Ruan, S.; Shen, L. Performance Improvement of Polymer Solar Cells by SurfaceEnergy-Induced Dual Plasmon Resonance. ACS Appl. Mater. Interfaces 2016, 8, 6183−6189. (190) Tan, K. S.; Chuang, M. K.; Chen, F. C.; Hsu, C. S. SolutionProcessed Nanocomposites Containing Molybdenum Oxide and Gold Nanoparticles as Anode Buffer Layers in Plasmonic-Enhanced Organic Photovoltaic Devices. ACS Appl. Mater. Interfaces 2013, 5, 12419− 12424. (191) Jørgensen, M.; Norrman, K.; Krebs, F. C. Stability/ Degradation of Polymer Solar Cells. Sol. Energy Mater. Sol. Cells 2008, 92, 686−714. (192) Chen, B.; Zhang, W.; Zhou, X.; Huang, X.; Zhao, X.; Wang, H.; Liu, M.; Lu, Y.; Yang, S. Surface Plasmon Enhancement of Polymer Solar Cells by Penetrating Au/SiO2 Core/Shell Nanoparticles into All Organic Layers. Nano Energy 2013, 2, 906−915. (193) Cui, J.; Chen, C.; Han, J.; Cao, K.; Zhang, W.; Shen, Y.; Wang, M. Surface Plasmon Resonance Effect in Inverted Perovskite Solar Cells. Adv. Sci. 2016, 3, 1500312. (194) Dong, H.; Wu, Z. X.; Lu, F.; Gao, Y. C.; El-Shafei, A.; Jiao, B.; Ning, S. Y.; Hou, X. Optics-Electrics Highways: Plasmonic Silver Nanowires@TiO2 Core-Shell Nanocomposites for Enhanced DyeSensitized Solar Cells Performance. Nano Energy 2014, 10, 181−191. (195) Zhang, R.; Zhou, Y.; Peng, L.; Li, X.; Chen, S.; Feng, X.; Guan, Y.; Huang, W. Influence of SiO2 Shell Thickness on Power Conversion Efficiency in Plasmonic Polymer Solar Cells with Au Nanorod@SiO2 Core-Shell Structures. Sci. Rep. 2016, 6, 25036. (196) Jägeler-Hoheisel, T.; Selzer, F.; Riede, M.; Leo, K. Direct Electrical Evidence of Plasmonic Near-Field Enhancement in Small Molecule Organic Solar Cells. J. Phys. Chem. C 2014, 118, 15128− 15135. (197) Kalfagiannis, N.; Karagiannidis, P. G.; Pitsalidis, C.; Panagiotopoulos, N. T.; Gravalidis, C.; Kassavetis, S.; Patsalas, P.; Logothetidis, S. Plasmonic Silver Nanoparticles for Improved Organic Solar Cells. Sol. Energy Mater. Sol. Cells 2012, 104, 165−174. (198) Beliatis, M. J.; Henley, S. J.; Han, S.; Gandhi, K.; Adikaari, A. A.; Stratakis, E.; Kymakis, E.; Silva, S. R. Organic Solar Cells with Plasmonic Layers Formed by Laser Nanofabrication. Phys. Chem. Chem. Phys. 2013, 15, 8237−8244. (199) Chen, M.; Shao, L.; Kershaw, S. V.; Yu, H.; Wang, J.; Rogach, A. L.; Zhao, N. Photocurrent Enhancement of HgTe Quantum Dot Photodiodes by Plasmonic Gold Nanorod Structures. ACS Nano 2014, 8, 8208−8216. (200) Sha, W. E.; Zhu, H. L.; Chen, L.; Chew, W. C.; Choy, W. C. A General Design Rule to Manipulate Photocarrier Transport Path in Solar Cells and its Realization by the Plasmonic-Electrical Effect. Sci. Rep. 2015, 5, 8525. (201) Chuang, M. K.; Chen, F. C. Synergistic Plasmonic Effects of Metal Nanoparticle-Decorated PEGylated Graphene Oxides in Polymer Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 7397−7405. (202) Liu, S.; Jiang, R.; You, P.; Zhu, X.; Wang, J.; Yan, F. Au/Ag Core−Shell Nanocuboids for High-Efficiency Organic Solar Cells with Broadband Plasmonic Enhancement. Energy Environ. Sci. 2016, 9, 898−905.

(203) Lu, L.; Luo, Z.; Xu, T.; Yu, L. Cooperative Plasmonic Effect of Ag and Au Nanoparticles on Enhancing Performance of Polymer Solar Cells. Nano Lett. 2013, 13, 59−64. (204) Hsiao, Y.-S.; Charan, S.; Wu, F.-Y.; Chien, F.-C.; Chu, C.-W.; Chen, P.; Chen, F.-C. Improving the Light Trapping Efficiency of Plasmonic Polymer Solar Cells through Photon Management. J. Phys. Chem. C 2012, 116, 20731−20737. (205) Gusak, V.; Kasemo, B.; Hagglund, C. Thickness Dependence of Plasmonic Charge Carrier Generation in Ultrathin a-Si:H Layers for Solar Cells. ACS Nano 2011, 5, 6218−6225. (206) Li, X.; Choy, W. C. H.; Lu, H.; Sha, W. E. I.; Ho, A. H. P. Efficiency Enhancement of Organic Solar Cells by Using ShapeDependent Broadband Plasmonic Absorption in Metallic Nanoparticles. Adv. Funct. Mater. 2013, 23, 2728−2735. (207) Yang, J.; You, J.; Chen, C. C.; Hsu, W. C.; Tan, H. R.; Zhang, X. W.; Hong, Z.; Yang, Y. Plasmonic Polymer Tandem Solar Cell. ACS Nano 2011, 5, 6210−6217. (208) Gilot, J.; Wienk, M. M.; Janssen, R. A. J. Measuring the External Quantum Efficiency of Two-Terminal Polymer Tandem Solar Cells. Adv. Funct. Mater. 2010, 20, 3904−3911. (209) Jung, K.; Song, H. J.; Lee, G.; Ko, Y.; Ahn, K.; Choi, H.; Kim, J. Y.; Ha, K.; Song, J.; Lee, J. K.; et al. Plasmonic Organic Solar Cells Employing Nanobump Assembly via Aerosol-Derived Nanoparticles. ACS Nano 2014, 8, 2590−2601. (210) Oh, Y.; Lim, J. W.; Kim, J. G.; Wang, H.; Kang, B. H.; Park, Y. W.; Kim, H.; Jang, Y. J.; Kim, J.; Kim, D. H.; et al. Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with > 10% Efficiency. ACS Nano 2016, 10, 10143− 10151. (211) In, S.; Mason, D. R.; Lee, H.; Jung, M.; Lee, C.; Park, N. Enhanced Light Trapping and Power Conversion Efficiency in Ultrathin Plasmonic Organic Solar Cells: A Coupled Optical-Electrical Multiphysics Study on the Effect of Nanoparticle Geometry. ACS Photonics 2015, 2, 78−85. (212) Paci, B.; Bailo, D.; Albertini, V. R.; Wright, J.; Ferrero, C.; Spyropoulos, G. D.; Stratakis, E.; Kymakis, E. Spatially-Resolved in-situ Structural Study of Organic Electronic Devices with Nanoscale Resolution: the Plasmonic Photovoltaic Case Study. Adv. Mater. 2013, 25, 4760−4765. (213) Kakavelakis, G.; Stratakis, E.; Kymakis, E. Synergetic Plasmonic Effect of Al and Au Nanoparticles for Efficiency Enhancement of Air Processed Organic Photovoltaic Devices. Chem. Commun. 2014, 50, 5285−5287. (214) Gonfa, B. A.; Kim, M. R.; Zheng, P.; Cushing, S.; Qiao, Q.; Wu, N.; El Khakani, M. A.; Ma, D. Investigation of the Plasmonic Effect in Air-Processed PbS/CdS Core−Shell Quantum Dot Based Solar Cells. J. Mater. Chem. A 2016, 4, 13071−13080. (215) Rockstuhl, C.; Fahr, S.; Lederer, F. Absorption Enhancement in Solar Cells by Localized Plasmon Polaritons. J. Appl. Phys. 2008, 104, 123102. (216) Tseng, W.-H.; Chiu, C.-Y.; Chou, S.-W.; Chen, H.-C.; Tsai, M.L.; Kuo, Y.-C.; Lien, D.-H.; Tsao, Y.-C.; Huang, K.-Y.; Yeh, C.-T.; et al. Shape-Dependent Light Harvesting of 3D Gold Nanocrystals on Bulk Heterojunction Solar Cells: Plasmonic or Optical Scattering Effect? J. Phys. Chem. C 2015, 119, 7554−7564. (217) Kulkarni, A. P.; Noone, K. M.; Munechika, K.; Guyer, S. R.; Ginger, D. S. Plasmon-Enhanced Charge Carrier Generation in Organic Photovoltaic Films Using Silver Nanoprisms. Nano Lett. 2010, 10, 1501−1505. (218) Chi, D.; Lu, S.; Xu, R.; Liu, K.; Cao, D.; Wen, L.; Mi, Y.; Wang, Z.; Lei, Y.; Qu, S.; et al. Fully Understanding the Positive Roles of Plasmonic Nanoparticles in Ameliorating the Efficiency of Organic Solar Cells. Nanoscale 2015, 7, 15251−15257. (219) Liu, C.-M.; Chen, C.-M.; Su, Y.-W.; Wang, S.-M.; Wei, K.-H. The Dual Localized Surface Plasmonic Effects of Gold Nanodots and Gold Nanoparticles Enhance the Performance of Bulk Heterojunction Polymer Solar Cells. Org. Electron. 2013, 14, 2476−2483. 2991

DOI: 10.1021/acs.chemrev.7b00235 Chem. Rev. 2018, 118, 2955−2993

Chemical Reviews

Review

(220) Notarianni, M.; Vernon, K.; Chou, A.; Aljada, M.; Liu, J.; Motta, N. Plasmonic Effect of Gold Nanoparticles in Organic Solar Cells. Sol. Energy 2014, 106, 23−37. (221) Nourolahi, H.; Behjat, A.; Hosseini Zarch, S. M. M.; Bolorizadeh, M. A. Silver Nanoparticle Plasmonic Effects on HoleTransport Material-Free Mesoporous Heterojunction Perovskite Solar Cells. Sol. Energy 2016, 139, 475−483. (222) Vedraine, S.; Torchio, P.; Duché, D.; Flory, F.; Simon, J.-J.; Le Rouzo, J.; Escoubas, L. Intrinsic Absorption of Plasmonic Structures for Organic Solar Cells. Sol. Energy Mater. Sol. Cells 2011, 95, S57− S64. (223) Li, X.; Choy, W. C.; Huo, L.; Xie, F.; Sha, W. E.; Ding, B.; Guo, X.; Li, Y.; Hou, J.; You, J.; et al. Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells. Adv. Mater. 2012, 24, 3046−3052. (224) Tvingstedt, K.; Persson, N.-K.; Inganäs, O.; Rahachou, A.; Zozoulenko, I. V. Surface Plasmon Increase Absorption in Polymer Photovoltaic Cells. Appl. Phys. Lett. 2007, 91, 113514. (225) Mapel, J. K.; Singh, M.; Baldo, M. A.; Celebi, K. Plasmonic Excitation of Organic Double Heterostructure Solar Cells. Appl. Phys. Lett. 2007, 90, 121102. (226) Jin, Y.; Feng, J.; Zhang, X.-L.; Xu, M.; Bi, Y.-G.; Chen, Q.-D.; Wang, H.-Y.; Sun, H.-B. Surface-Plasmon Enhanced Absorption in Organic Solar Cells by Employing a Periodically Corrugated Metallic Electrode. Appl. Phys. Lett. 2012, 101, 163303. (227) Li, X.; Choy, W. C. H.; Ren, X.; Xin, J.; Lin, P.; Leung, D. C. W. Polarization-Independent Efficiency Enhancement of Organic Solar Cells by Using 3-Dimensional Plasmonic Electrode. Appl. Phys. Lett. 2013, 102, 153304. (228) Park, B.; Yun, S. H.; Cho, C. Y.; Kim, Y. C.; Shin, J. C.; Jeon, H. G.; Huh, Y. H.; Hwang, I.; Baik, K. Y.; Lee, Y. I.; et al. Surface Plasmon Excitation in Semitransparent Inverted Polymer Photovoltaic Devices and Their Applications as Label-Free Optical Sensors. Light: Sci. Appl. 2014, 3, e222. (229) Sondergaard, T.; Novikov, S. M.; Holmgaard, T.; Eriksen, R. L.; Beermann, J.; Han, Z.; Pedersen, K.; Bozhevolnyi, S. I. Plasmonic Black Gold by Adiabatic Nanofocusing and Absorption of Light in Ultra-Sharp Convex Grooves. Nat. Commun. 2012, 3, 969. (230) Müller-Meskamp, L.; Kim, Y. H.; Roch, T.; Hofmann, S.; Scholz, R.; Eckardt, S.; Leo, K.; Lasagni, A. F. Efficiency Enhancement of Organic Solar Cells by Fabricating Periodic Surface Textures using Direct Laser Interference Patterning. Adv. Mater. 2012, 24, 906−910. (231) Hobson, P. A.; Wedge, S.; Wasey, J. A. E.; Sage, I.; Barnes, W. L. Surface Plasmon Mediated Emission from Organic Light-Emitting Diodes. Adv. Mater. 2002, 14, 1393−1396. (232) Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-Metal Nanostructures for Efficient Conversion of Solar to Chemical Energy. Nat. Mater. 2011, 10, 911−921. (233) Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J. Photodetection with Active Optical Antennas. Science 2011, 332, 702− 704. (234) Sobhani, A.; Knight, M. W.; Wang, Y.; Zheng, B.; King, N. S.; Brown, L. V.; Fang, Z.; Nordlander, P.; Halas, N. J. Narrowband Photodetection in the Near-Infrared with a Plasmon-Induced Hot Electron Device. Nat. Commun. 2013, 4, 1643. (235) Lee, Y. K.; Jung, C. H.; Park, J.; Seo, H.; Somorjai, G. A.; Park, J. Y. Surface Plasmon-Driven Hot Electron Flow Probed with MetalSemiconductor Nanodiodes. Nano Lett. 2011, 11, 4251−4255. (236) Li, W.; Valentine, J. Metamaterial Perfect Absorber Based Hot Electron Photodetection. Nano Lett. 2014, 14, 3510−3514. (237) McFarland, E. W.; Tang, J. A Photovoltaic Device Structure Based on Internal Electron Emission. Nature 2003, 421, 616−618. (238) Mubeen, S.; Lee, J.; Lee, W. R.; Singh, N.; Stucky, G. D.; Moskovits, M. On the Plasmonic Photovoltaic. ACS Nano 2014, 8, 6066−6073. (239) Warren, S. C.; Thimsen, E. Plasmonic Solar Water Splitting. Energy Environ. Sci. 2012, 5, 5133−5146.

(240) Ueno, K.; Misawa, H. Plasmon-Enhanced Photocurrent Generation and Water Oxidation from Visible to Near-Infrared Wavelengths. NPG Asia Mater. 2013, 5, e61. (241) Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591. (242) Reineck, P.; Lee, G. P.; Brick, D.; Karg, M.; Mulvaney, P.; Bach, U. A Solid-State Plasmonic Solar Cell via Metal Nanoparticle Self-Assembly. Adv. Mater. 2012, 24, 4750−4755. (243) Furube, A.; Du, L.; Hara, K.; Katoh, R.; Tachiya, M. Ultrafast Plasmon-Induced Electron Transfer from Gold Nanodots into TiO2 Nanoparticles. J. Am. Chem. Soc. 2007, 129, 14852−14853. (244) Reineck, P.; Brick, D.; Mulvaney, P.; Bach, U. Plasmonic Hot Electron Solar Cells: The Effect of Nanoparticle Size on Quantum Efficiency. J. Phys. Chem. Lett. 2016, 7, 4137−4141. (245) Lattante, S. Electron and Hole Transport Layers: Their Use in Inverted Bulk Heterojunction Polymer Solar Cells. Electronics 2014, 3, 132−164. (246) Caruge, J. M.; Halpert, J. E.; Bulovic, V.; Bawendi, M. G. NiO as an Inorganic Hole-Transporting Layer in Quantum-Dot LightEmitting Devices. Nano Lett. 2006, 6, 2991−2994. (247) Chatterjee, S.; Pal, A. J. Introducing Cu2O Thin Films as a Hole-Transport Layer in Efficient Planar Perovskite Solar Cell Structures. J. Phys. Chem. C 2016, 120, 1428−1437. (248) Shalan, A. E.; Oshikiri, T.; Narra, S.; Elshanawany, M. M.; Ueno, K.; Wu, H. P.; Nakamura, K.; Shi, X.; Diau, E. W.; Misawa, H. Cobalt Oxide (CoOx) as an Efficient Hole-Extracting Layer for HighPerformance Inverted Planar Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2016, 8, 33592−33600. (249) Nakamura, K.; Oshikiri, T.; Ueno, K.; Wang, Y.; Kamata, Y.; Kotake, Y.; Misawa, H. Properties of Plasmon-Induced Photoelectric Conversion on a TiO2/NiO p-n Junction with Au Nanoparticles. J. Phys. Chem. Lett. 2016, 7, 1004−1009. (250) Yu, K.; Sakai, N.; Tatsuma, T. Plasmon Resonance-Based Solid-State Photovoltaic Devices. Electrochemistry 2008, 76, 161−164. (251) Mubeen, S.; Hernandez-Sosa, G.; Moses, D.; Lee, J.; Moskovits, M. Plasmonic Photosensitization of a Wide Band Gap Semiconductor: Converting Plasmons to Charge Carriers. Nano Lett. 2011, 11, 5548−5552. (252) Jin, Z.; Gao, L.; Zhou, Q.; Wang, J. High-Performance Flexible Ultraviolet Photoconductors Based on Solution-Processed Ultrathin ZnO/Au Nanoparticle Composite Films. Sci. Rep. 2015, 4, 4268. (253) Hong, M.-H.; Park, C.-S.; Park, H.-H. Synthesis of Au Nanoparticle-Incorporated Mesoporous TiO2 Composite Thin Films and Their Electrical Properties. J. Ceram. Soc. Jpn. 2014, 122, 959−962. (254) Mali, S. S.; Shim, C. S.; Kim, H.; Patil, P. S.; Hong, C. K. In Situ Processed Gold Nanoparticle-Embedded TiO2 Nanofibers Enabling Plasmonic Perovskite Solar Cells to Exceed 14% Conversion Efficiency. Nanoscale 2016, 8, 2664−2677. (255) Zhang, D.; Choy, W. C. H.; Xie, F. X.; Sha, W. E. I.; Li, X. C.; Ding, B. F.; Zhang, K.; Huang, F.; Cao, Y. Plasmonic Electrically Functionalized TiO2 for High-Performance Organic Solar Cells. Adv. Funct. Mater. 2013, 23, 4255−4261. (256) Liu, K.; Bi, Y.; Qu, S.; Tan, F.; Chi, D.; Lu, S.; Li, Y.; Kou, Y.; Wang, Z. Efficient Hybrid Plasmonic Polymer Solar Cells with Ag Nanoparticle Decorated TiO2 Nanorods Embedded in the Active Layer. Nanoscale 2014, 6, 6180−6186. (257) Liu, D.; Yang, D.; Gao, Y.; Ma, J.; Long, R.; Wang, C.; Xiong, Y. Flexible Near-Infrared Photovoltaic Devices Based on Plasmonic Hot-Electron Injection into Silicon Nanowire Arrays. Angew. Chem., Int. Ed. 2016, 55, 4577−4581. (258) Zeng, P.; Cadusch, J.; Chakraborty, D.; Smith, T. A.; Roberts, A.; Sader, J. E.; Davis, T. J.; Gomez, D. E. Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide-Plasmon Polaritons. Nano Lett. 2016, 16, 2651−2656. 2992

DOI: 10.1021/acs.chemrev.7b00235 Chem. Rev. 2018, 118, 2955−2993

Chemical Reviews

Review

(259) Ng, C.; Cadusch, J. J.; Dligatch, S.; Roberts, A.; Davis, T. J.; Mulvaney, P.; Gomez, D. E. Hot Carrier Extraction with Plasmonic Broadband Absorbers. ACS Nano 2016, 10, 4704−4711.

2993

DOI: 10.1021/acs.chemrev.7b00235 Chem. Rev. 2018, 118, 2955−2993