Statistical Analyses of Hydrophobic Interactions: A ... - ACS Publications

Jun 3, 2016 - Biography. Lawrence Pratt has been the Herman and George R. Brown Chair in Chemical Engineering at Tulane University since 2008. He rece...
1 downloads 13 Views 18MB Size
Subscriber access provided by UNIV TORONTO

Review Article

Statistical Analyses of Hydrophobic Interactions: A Mini-Review Lawrence R. Pratt, Mangesh I. Chaudhari, and Susan B. Rempe J. Phys. Chem. B, Just Accepted Manuscript • DOI: 10.1021/acs.jpcb.6b04082 • Publication Date (Web): 03 Jun 2016 Downloaded from http://pubs.acs.org on June 5, 2016

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

The Journal of Physical Chemistry B is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 23

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

Page 2 of 23

Page 3 of 23

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

Page 4 of 23

Page 5 of 23

Multi-Solute/Water Simulations to Assess Hydrophobic Interactions

virial coefficient B2 ≈ −60 cm3 /mol (attractive). In addition to the quasi-chemical theory thermodynamic analysis, the observed Kr-Kr distributions were also analyzed with the extrapolation procedure of Kr¨ uger, et al. 57,58 This approach provides a convenient, theoretically neutral route to the evaluations of B2 noted below. The consistency of the two separate analyses provides additional support for their results. Though we do not address a coexisting phase for the Kr solutes, the multi-Kr simulation would be supersaturated at this (T, p) for many cases. It is interesting to ask whether the high Kr concentration has any complicating consequences. The most important answer is pro(ex) vided by Figure 6: the free energies µKr differ slightly. Those differences are the challenging goal of this study and lead to the evaluation of B2 . A second answer comes from direct inspection of the hydration characteristic gKrO (r): 40 those differences between single-Kr and multi-Kr are extremely small on a pointwise basis, not readily apparent on the traditional presentation scale of molecular simulation results. This answer exemplifies the differences in sensitivity between hydrophobic hydration and hydrophobic interactions. Some thirty years ago, a focused moleculardynamics study 59 estimated B2 for Kr(aq) to be repulsive (positive). Differences of the models treated and computational resources available probably explain the difference of that previous evaluation with the present work.

Here we discuss results from another assessment of hydrophobic interactions, namely, simulation of water with multiple hydrophobic solutes sufficiently aggressive that they encounter each other enough to permit thermodynamic analysis of their interactions. 40 2.0 1.8

(ex)

µKr (kcal/mol)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

1.6 1 Kr 16 Kr

1.4 1.2 1.0

0.32

0.33 0.34 λ (nm)

0.35

0.36

Figure 6: Evaluations of hydration free energies on the basis of quasi-chemical theory for a range of inner-shell boundaries (0.31 nm < λ < 0.36 nm) for two Kr concentrations. (ex) µKr becomes insensitive in the range 0.34 nm < λ < 0.36 nm. The experimental value is 1.66 kcal/mol. 56 Adapted with permission from Ref. 40 (Chaudhari, M. I.; Sabo, D.; Pratt, L. R.; Rempe, S. B. Hydration of Kr(aq) in Dilute and Concentrated Solutions. J. Phys. Chem. B 2015, 119, 9098-9102). Copyright 2015 American Chemical Society.

EXP Theory for Inclusion of Solute Dispersion Interactions for Ar Pair Hydrophobic Interactions

We will use molecular quasi-chemical theory (QCT) as our thermodynamic analysis tool. 30 Results for two simulations, single Kr and multi-Kr, show that the multi-Kr results for hy(ex) dration free energy, µKr , are distinctly lower (Figure 6). This already indicates that the hydrophobic interactions are attractive, i.e., favorable. The significant difference derives from slight reduction of the unfavorable packing contribution identified by quasi-chemical theory. Two distinct further analyses then arrive at concordant estimates of the osmotic second

With the hard-sphere results of Figures 1 and 5, we proceed further to discuss hydrophobic interactions involving further realistic interactions. Interactions uAO and uAA are presented for analysis with A=Ar in the example above, and here we consider solute interactions of Lennard-Jones type. As usual, 60 these interactions are separated into a reference part that

ACS Paragon Plus Environment

6

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

Page 6 of 23

Page 7 of 23

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 8 of 23

(3) Tucker, E. E.; Christian, S. D. A Prototype Hydrophobic Interaction. The Dimerization of Benzene in Water. J. Phys. Chem. 1979, 83, 426–427.

Brinker, C. J.; Majewski, J. Corrosion Inhibition Using Superhydrophobic Films. Corrosion Science 2008, 50, 897–902.

(4) Rossky, P. J.; Friedman, H. L. BenzeneBenzene Interaction in Aqueous Solution. J. Phys. Chem. 1980, 84, 587–589.

(14) Clawson, J. S.; Cygan, R. T.; Alam, T. M.; Leung, K.; Rempe, S. B. Ab Initio Study of Hydrogen Storage in Water Clathrates. J. Comput. Theor. Nanosci. 2010, 7, 2602–2606.

(5) Pratt, L. R. Theory of Hydrophobic Effects. Ann. Rev. Phys. Chem. 1985, 36, 433–449.

(15) Aman, A. M.; Koh, C. A. Interfacial Phenomena in Gas Hydrate Systems. Chem. Soc. Rev. 2016, 45, 1678–1690.

(6) Pratt, L. Molecular Theory of Hydrophobic Effects: “She is too mean to have her name repeated”. Ann. Rev. Phys. Chem. 2002, 53, 409–436.

(16) Richards, F. M. Areas, Volumes, Packing, and Protein Structure. Ann. Rev. Biophys. Bioeng. 1977, 6, 151–176.

(7) Berne, B. J.; Weeks, J. D.; Zhou, R. Dewetting and Hydrophobic Interaction in Physical and Biological Systems. Ann. Rev. Phys. Chem. 2009, 60, 85–103.

(17) Richards, F. M. The Protein Folding Problem. Scientific American 1991, 264, 54.

(8) Kumar, A.; Biebuyck, H. A.; Whitesides, G. M. Patterning Self-Assembled Monolayers: Applications in Materials Science. Langmuir 1994, 10, 1498–1511.

(18) Tanford, C. The Hydrophobic Effect and the Organization of Living Matter. Science 1978, 200, 1012–1018. (19) Pohorille, A.; Pratt, L. R. Is Water the Universal Solvent for Life? Origins of Life and Evolution of Biospheres 2012, 42, 405–409.

(9) De Vos, R. M.; Maier, W. F.; Verweij, H. Hydrophobic Silica Membranes for Gas Separation. J. Membr. Sci. 1999, 158, 277–288.

(20) Chaudhari, M. I.; Rempe, S. B.; Asthagiri, D.; Tan, L.; Pratt, L. R. Molecular Theory and the Effects of Solute Attractive Forces on Hydrophobic Interactions. J. Phys. Chem. B 2016, 120, 1864–1870.

(10) Giessler, S.; Diniz da Costa, J.; Lu, M. Hydrophobic Microporous Silica Membranes for Gas Separation and Membrane Reactors, 4th ed.; Imperial College Press, 2004; pp 237–262.

(21) Asthagiri, D.; Merchant, S.; Pratt, L. R. Role of Attractive Methane-Water Interactions in the Potential of Mean Force between Methane Molecules in Water. J. Chem. Phys. 2008, 128, 244512.

(11) Guo, Z.; Zhou, F.; Hao, J.; Liu, W. Stable Biomimetic Super-Hydrophobic Engineering Materials. J. Am. Chem. Soc. 2005, 127, 15670–15671. (12) Cygan, R.; Brinker, C.; Nyman, M.; Leung, K.; Rempe, S. B. A Molecular Basis for Advanced Materials in Water Treatment. MRS Bulletin 2008, 33, 42–47.

(22) Chaudhari, M. I.; Holleran, S. A.; Ashbaugh, H. S.; Pratt, L. R. Molecular-scale Hydrophobic Interactions between HardSphere Reference Solutes are Attractive and Endothermic. Proc. Natl. Acad. Sci. USA 2013, 110, 20557–20562.

(13) Barkhudarov, P. M.; Shah, P. B.; Watkins, E. B.; Doshi, D. A.;

ACS Paragon Plus Environment

9

Page 9 of 23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

(23) Pratt, L. R.; Pohorille, A. In Proceedings of the EBSA 1992 International Workshop on Water-Biomolecule Interactions; Palma, M. U., Palma-Vittorelli, M. B., Parak, F., Eds.; Societ´a Italiana de Fisica: Bologna, 1993; pp 261–268.

(32) Pratt, L. R.; Garde, S.; Hummer, G. Theories of Hydrophobic Effects and the Description of Free Volume in Complex Liquids. NATO Advanced Science Institutes Series, Series C, Mathematical and Physical Sciences 1999, 529, 407–420.

(24) Chaudhari, M. I. Molecular Simulations to Study Thermodynamics of Polyethylene Oxide Solutions. Ph.D. thesis, Department of Chemical & Biomolecular Engineering, Tulane University, 2013.

(33) Chaudhari, M. I.; Pratt, L. R.; Paulaitis, M. E. Communication: Direct Observation of a Hydrophobic Bond in Loop Closure of a Capped (–OCH[2]CH[2]–)[n] Oligomer in Water. J. Chem. Phys. 2010, 133, 231102.

(25) Kirchner, B.; Hutter, J.; Kuo, I.-F. W.; Mundy, C. J. Hydrophobic Hydration from Carr-Parrinello Simulations. Int. J. Mod. Phys. B 2004, 18, 1951.

(34) Chaudhari, M. I.; Pratt, L. R. In Oil Spill Remediation: Colloid Chemistrybased Principles and Solutions; Somasundaran, P., Farinato, R., Patra, P., Papadopoulos, K. D., Eds.; John Wiley and Sons, Inc., 2014.

(26) Sabo, D.; Rempe, S. B.; Greathouse, J. A.; Martin, M. G. Molecular Studies of the Structural Properties of Hydrogen Gas in Bulk Water. Mol. Simul. 2006, 32, 269– 278. (27) Sabo, D.; Varma, S.; Martin, M. G.; Rempe, S. B. Studies of the Thermodynamic Properties of Hydrogen Gas in Bulk Water. J. Phys. Chem. B 2008, 112, 867– 876.

(35) Tsige, M.; Soddemann, T.; Rempe, S. B.; Grest, G. S.; Kress, J. D.; Robbins, M. O.; Sides, S. W.; Stevens, M. J.; Webb, E. Interactions and Structure of Poly(dimethylsiloxane) at Silicon Dioxide Surfaces: Electronic Structure and Molecular Dynamics Studies. J. Chem. Phys. 2003, 118, 5132.

´ (28) Smiechowski, M. Molecular Hydrogen Solvated in Water – A Computational Study. J. Chem. Phys. 2015, 143, 244505.

(36) Weikl, T. R. Loop-Closure Principles in Protein Folding. Arch. Biochem. Biophys. 2008, 469, 67–75.

(29) Jiao, D.; Rempe, S. B. CO2 Solvation Free Energy Using Quasi-Chemical Theory. J. Chem. Phys. 2011, 134, 224506.

(37) Chaudhari, M.; Pratt, L.; Paulaitis, M. E. Loop-Closure and Gaussian Models of Collective Structural Characteristics of Capped PEO Oligomers in Water. J. Phys. Chem. B 2014, 119, 8863–8867.

(30) Rogers, D. M.; Jiao, D.; Pratt, L. R.; Rempe, S. B. Structural Models and Molecular Thermodynamics of Hydration of Ions and Small Molecules. Ann. Rep. Comp. Chem. 2012, 8, 71–127.

(38) Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swedsen, R. H.; Kollman, P. A. The Weighted Histogram Analysis Method for Free-Energy Calculation on Biomolecules. I. The Method. J. Comp. Chem. 1992, 13, 1011–1021.

(31) Ashbaugh, H. S.; Pratt, L. R. Contrasting Nonaqueous against Aqueous Solvation on the Basis of Scaled-Particle Theory. J. Phys. Chem. B 2007, 111, 9330– 9336.

(39) Koga, K. Osmotic Second Virial Coefficient of Methane in Water. J. Phys. Chem. B 2013, 117, 12619–12624.

ACS Paragon Plus Environment

10

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 10 of 23

(40) Chaudhari, M. I.; Sabo, D.; Pratt, L. R.; Rempe, S. B. Hydration of Kr(aq) in Dilute and Concentrated Solutions. J. Phys. Chem. B 2015, 119, 9098–9102.

(49) Stillinger, F. H. Structure in Aqueous Solutions of Nonpolar Solutes from the Standpoint of Scaled-Particle Theory. J. Soln. Chem. 1973, 2, 141–158.

(41) Ashbaugh, H. S.; Weiss, K.; Williams, S. M.; Meng, B.; Surampudi, L. N. Temperature and Pressure Dependence of Methane Correlations and Osmotic Second Virial Coefficients in Water. J. Phys. Chem. B 2015, 119, 6280–6294.

(50) Gomez, M. A.; Pratt, L. R.; Hummer, G.; Garde, S. Molecular Realism in Default Models for Information Theories of Hydrophobic Effects. J. Phys. Chem. B 1999, 103, 3520–3523. (51) Ashbaugh, H.; Pratt, L. Colloquium: Scaled Particle Theory and the Length Scales of Hydrophobicity. Rev. Mod. Phys. 2006, 78, 159–178.

(42) Asthagiri, D.; Merchant, S.; Pratt, L. R. Role of Attractive Methane-Water Interactions in the Potential of Mean Force between Methane Molecules in Water. J. Chem. Phys. 2008, 128, 244512.

(52) Hill, T. L. An Introduction to Statistical Thermodynamics; Addison-Wesley: Reading MA USA, 1960.

(43) Pangali, C.; Rao, M.; Berne, B. J. A Monte Carlo Simulation of the Hydrophobic Interaction. J. Chem. Phys. 1979, 71, 2975–2981.

(53) Pratt, L. R.; Chandler, D. Theory of the Hydrophobic Effect. J. Chem. Phys. 1977, 67, 3683–3704. (54) Mancera, R. L.; Buckingham, A. D.; Skipper, N. T. The Aggregation of Methane in Aqueous Solution. J. Chem. Soc. Faraday Trans. 1997, 93, 2263–2267.

(44) Hummer, G.; Garde, S.; Garc´ıa, A. E.; Pohorille, A.; Pratt, L. R. An Information Theory Model of Hydrophobic Interactions. Proc. Natl. Acad. Sci. USA 1996, 93, 8951–8955. (45) Garde, S.; Hummer, G.; Garc´ıa, A. E.; Paulaitis, M. E.; Pratt, L. R. Origin of Entropy Convergence in Hydrophobic Hydration and Protein Folding. Phys. Rev. Letts. 1996, 77, 4966–4968.

(55) Hummer, G.; Garde, S.; Garc´ıa, A. E.; Paulaitis, M. E.; Pratt, L. R. The Pressure Dependence of Hydrophobic Interactions is Consistent with the Observed Pressure Denaturation of Proteins. Proc. Natl. Acad. Sci. USA 1998, 95, 1552– 1555.

(46) Pratt, L. R.; Pohorille, A. Hydrophobic Effects and Modeling of Biophysical Aqueous Solution Interfaces. Chem. Rev. 2002, 102, 2671–2692.

(56) Young, C. Hydrogen and Deuterium (Solubility Data Series); Pergamon Press, 1981. (57) Kr¨ uger, P.; Schnell, S. K.; Bedeaux, D.; Kjelstrup, S.; Vlugt, T. J.; Simon, J.-M. Kirkwood–Buff Integrals for Finite Volumes. J. Phys. Chem. Lett. 2012, 4, 235– 238.

(47) Pratt, L. R.; Pohorille, A.; Asthagiri, D. What Is Special About Water as a Matrix Of Life? 2007, arXiv:physics/0701282. arXiv.org e–Print archive. http://arxiv.org/abs/physics/0701282 (accessed Jan 24, 2007).

(58) Schnell, S. K.; Englebienne, P.; Simon, J.M.; Kr¨ uger, P.; Balaji, S. P.; Kjelstrup, S.; Bedeaux, D.; Bardow, A.; Vlugt, T. J. How to apply the Kirkwood–Buff Theory to Individual Species in Salt Solutions. Chem. Phys. Lett. 2013, 582, 154–157.

(48) Pierotti, R. A. A Scaled Particle Theory of Aqueous and Nonaqueous Solutions. Chem. Rev. 1976, 76, 717–726.

ACS Paragon Plus Environment

11

Page 11 of 23

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

Page 12 of 23

Page 13The of 23 Journal of Physical Chemistry

280K 300K 320K 340K 360K

2.0

gArO (r)

1 2 1.5 3 4 5 1.0 6 7 8 0.5 9 10 110.0 12 13

ACS Paragon Plus Environment

0.3

0.6 r (nm)

0.9

1.2

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

Page 14 of 23

r (nm) 1.0 1.5

Page 15The of 23 Journal of Physical Chemistry

3

v=

4π 3

2.0

3/2

hr 2 i

vP (r)

1 2 3 4 2 5 6 7 8 9 1 10 11 12 13

0.5

ACS Paragon Plus Environment

2.5

−kT log vP (r) (kcal/mol)

3

1 2 2 3 4 5 1 6 7 8 0 9 10 11 12 13

The Journal of Physical Chemistry Page 16 of 23

T = 297 K

ACS Paragon Plus Environment

0.5

1.0 1.5 r (nm)

2.0

2.5

Page 17 of 23

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Paragon Plus Environment

6

gAA (r)

1 2 3 4 4 5 6 7 2 8 9 10 11 12 0.2 13

The Journal of Physical Chemistry Page 18 of 23

360K 340K 320K 300K PC IT

ACS Paragon Plus Environment

0.4

0.6 0.8 r (nm)

1.0

1.2

2.0

Page 19The of 23 Journal of Physical Chemistry

1.8 µKr (kcal/mol)

1 2 3 1.6 4 5 6 1.4 7 8 1.2 9 10 11 1.0 12 13

(ex)

1 Kr 16 Kr

ACS Paragon Plus Environment

0.32

0.33 0.34 λ (nm)

0.35

0.36

4

theory The Journal of PhysicalLMF/EXP Chemistry Page 20 of 23

gArAr(r)

31 2 3 24 5 6 7 18 9 10 11 0.2 12 13

(0)

gArAr(r)

B2 (0) ≈ −93 cm3 /mol B2 ≈ 33 cm3 /mol ACS Paragon Plus Environment

0.4

0.6 r (nm)

0.8

Page 21 of 23

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

ACS Paragon Plus Environment

Page 22 of 23