Status Review of PMR Polyimides - American Chemical Society

Page 1. 2. Status Review of PMR Polyimides. TITO T. SERAFINI. National ... The purpose of this paper is to review the current status of first and seco...
0 downloads 0 Views 1MB Size
2 Status Review of PMR Polyimides TITO T. SERAFINI

Downloaded by CORNELL UNIV on September 27, 2016 | http://pubs.acs.org Publication Date: August 28, 1980 | doi: 10.1021/bk-1980-0132.ch002

National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH 44135

Until r e c e n t l y the a p p l i c a t i o n o f polymer m a t r i x composite m a t e r i a l s has been limited t o s t r u c t u r a l components having use-temperature requirements which could be met by epoxy resins. Although h i g h temperature r e s i s t a n t polymer m a t r i x composites p r o v i d e d an o p p o r t u n i t y t o design s t r u c t u r e s having n e a r l y a t w o - f o l d increase in use-temperature, the chemistry and severe p r o c e s s i n g requirements o f e a r l y technology (condensation-type) h i g h temperat u r e polymers made it i m p r a c t i c a l and difficult to fabricate high quality s t r u c t u r a l components. I n c o n t r a s t , f i b e r r e i n f o r c e d epoxy r e s i n s can easily be processed u s i n g a variety o f techniques at relatively low temperatures and p r e s s u r e s . Studies conducted at the NASA Lewis Research Center led t o the development o f a c l a s s o f p o l y i m i d e s known as PMR ( f o r in situ p o l y m e r i z a t i o n o f monomer r e a c t a n t s) p o l y i m i d e s (1,2,3,4). I n the PMR approach, the r e i n f o r c i n g f i b e r s are impregnated w i t h a solution c o n t a i n i n g a mixture o f monomers d i s s o l v e d in a low boiling p o i n t alkyl a l c o h o l s o l v e n t . The monomers are essentially unr e a c t i v e at room temperature, but react in situ at e l e v a t e d temperatures t o form a t h e r m o - o x i d a t i v e l y s t a b l e p o l y i m i d e m a t r i x . These h i g h l y p r o c è s s a b l e a d d i t i o n - t y p e p o l y i m i d e s can be p r o cessed by e i t h e r compression (5.) or autoclave (6) molding t e c h niques and are now making i t p o s s i b l e t o r e a l i z e much o f the p o t e n t i a l o f h i g h temperature polymer m a t r i x composites. Our research has i d e n t i f i e d monomer r e a c t a n t combinations f o r two PMR p o l y i m i d e s d i f f e r i n g i n chemical composition. The e a r l i est or " f i r s t generation" PMR m a t e r i a l i s designated PMR-15 and a more r e c e n t l y developed "second generation" m a t e r i a l i s designated PMR I I (j). Prepreg m a t e r i a l s employing PMR-15 are commercially a v a i l a b l e from the major s u p p l i e r s o f prepreg m a t e r i a l s . The development o f a m o d i f i e d PMR-15 has been r e p o r t e d (8). The purpose o f t h i s paper i s t o review the current s t a t u s o f f i r s t and second generation PMR p o l y i m i d e s . The f o l l o w i n g t o p i c s are reviewed: ( l ) synthesis and p r o p e r t i e s , (2) p r o c e s s i n g , and (3) a p p l i c a t i o n s .

This chapter not subject to U.S. copyright. Published 1980 American Chemical Society May; Resins for Aerospace ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

RESINS

16

FOR AEROSPACE

Discussion Synthesis and P r o p e r t i e s . Condensation type a r y l p o l y i m i d e s a r e g e n e r a l l y s y n t h e s i z e d "by r e a c t i n g a r y l d i a m i n e s w i t h a r o m a t i c dianhydrides aromatic t e t r a c a r b o x y l i c acids o r d i a l k y l esters o f a r o m a t i c t e t r a c a r b o x y l i c a c i d s . The d i a m i n e / d i a n h y d r i d e r e a c t i o n i s p r e f e r r e d f o r p r e p a r i n g p o l y i m i d e f i l m s w h e r e a s t h e l a t t e r two reactions are generally preferred f o r preparing polyimide matrix resins. The s o l u t i o n u s e d t o i m p r e g n a t e f i b e r r e i n f o r c e m e n t m a t e ­ r i a l s i s prepared by d i s s o l v i n g t h e reactants i n a p r o t i c h i g h b o i l ­ i n g p o i n t s o l v e n t s s u c h a s Ν,N-dimethylformamide (DMF) o r N - m e t h y l 2 - p y r r o l i d o n e (NMP). D u r i n g c o m p o s i t e s f a b r i c a t i o n , v o l a t i l i z a ­ t i o n o f t h e solvent and condensation r e a c t i o n by-products r e s u l t s i n h i g h v o i d content composites having i n f e r i o r mechanical p r o ­ p e r t i e s and t h e r m o - o x i d a t i v e s t a b i l i t y . I n v e s t i g a t o r s a t t h e S y s t e m s Group o f TRW, I n c . , w o r k i n g u n d e r NASA s p o n s o r s h i p , d e v e l o p e d a n a p p r o a c h t o p r e p a r e p o l y ­ i m i d e s b y means o f a n a d d i t i o n r e a c t i o n (j?). T h e i r a p p r o a c h c o n ­ s i s t e d o f s y n t h e s i z i n g low molecular weight amide-acid prepolymers whose c h a i n ends w e r e t e r m i n a t e d , o r e n d - c a p p e d , w i t h n o r b o r n e n y l groups. A d d i t i o n p o l y m e r i z a t i o n o f t h e n o r b o r n e n y l groups o c ­ c u r r e d a t e l e v a t e d t e m p e r a t u r e s (275°-350° C)(527°-662° F ) w i t h o u t the e v o l u t i o n o f v o l a t i l e m a t e r i a l s making i t p o s s i b l e t o synthe­ s i z e l o w v o i d c o m p o s i t e s . The p r e p o l y m e r a p p r o a c h , h o w e v e r , d i d h a r e s e v e r a l s h o r t c o m i n g s . These i n c l u d e d : ( l ) t h e u s e o f DMF, (2) v a r i a b l e s o l u t i o n s t a b i l i t y , a n d (3) l e s s t h a n d e s i r a b l e t h e r m o - o x i d a t i v e s t a b i l i t y a t 316° C (600° F ) . A n o t h e r a p p r o a c h was d e v e l o p e d i n o u r l a b o r a t o r i e s f o r p r e ­ p a r i n g f i b e r r e i n f o r c e d a d d i t i o n - t y p e p o l y i m i d e s . Our a p p r o a c h e l i m i n a t e d t h e n e e d f o r p r e p o l y m e r s y n t h e s i s a n d c i r c u m v e n t e d most of t h e shortcomings a s s o c i a t e d w i t h t h e use o f prepolymers. I n our approach a d i a l k y l e s t e r o f an aromatic t e t r a c a r b o x y l i c a c i d , an a r o m a t i c d i a m i n e a n d a m o n o a l k y 1 e s t e r o f 5 ~ n o r b o r n e n e - 2 , 3 d i c a r b o x y l i c a c i d (NE), a r e d i s s o l v e d i n a low b o i l i n g p o i n t a l k y l a l c o h o l , such as methanol o r e t h a n o l , and t h e s o l u t i o n i s used t o impregnate t h e r e i n f o r c i n g f i b e r s . T h e number o f m o l e s o f e a c h monomer r e a c t a n t i s g o v e r n e d b y t h e f o l l o w i n g r a t i o :

Downloaded by CORNELL UNIV on September 27, 2016 | http://pubs.acs.org Publication Date: August 28, 1980 | doi: 10.1021/bk-1980-0132.ch002

?

n:

(n + l ) :

2

Where n , ( n + l ) a n d 2 a r e t h e number o f m o l e s o f t h e d i a l k y l e s t e r o f t h e aromatic t e t r a c a r b o x y l i c a c i d , t h earomatic diamine and NE, r e s p e c t i v e l y . I n s i t u p o l y m e r i z a t i o n o f t h e monomer r e ­ a c t a n t s (PMR) o c c u r s upon h e a t i n g t h e i m p r e g n a t e d f i b e r s . I n t h e i n i t i a l s t u d y (l) w h i c h e s t a b l i s h e d t h e f e a s b i l i t y o f t h e PMR a p p r o a c h , i t was n o t e d t h a t c o m p o s i t e s made f r o m monomer solutions containing the dimethyl ester o f 3,3 b e n z o p h e n o n e t e t r a c a r b o x y l i c a c i d (BTDE), k,h -methylenedianiline (MDA) a n d NE e x h i b i t e d a h i g h e r l e v e l o f t h e r m o - o x i d a t i v e s t a b i l ­ i t y t h a n d i d c o m p o s i t e s p r e p a r e d f r o m a monomer s o l u t i o n c o n s i s t !

f

May; Resins for Aerospace ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

2.

sERAFiNi

PMR

17

Polyimides

Downloaded by CORNELL UNIV on September 27, 2016 | http://pubs.acs.org Publication Date: August 28, 1980 | doi: 10.1021/bk-1980-0132.ch002

i n g o f t h e d i m e t h y l e s t e r o f p y r o m e l l i t i c a c i d , MDA a n d NE. The u n e x p e c t e d o b s e r v a t i o n was c o n f i r m e d i n a s u b s e q u e n t s t u d y ( l p ) and t h e optimum number o f m o l e s o f BTDE (n) w h i c h p r o v i d e d t h e best o v e r a l l balance o f p r o c e s s i n g c h a r a c t e r i s t i c s and thermoo x i d a t i v e s t a b i l i t y was f o u n d t o b e 2.087, c o r r e s p o n d i n g t o a PMR p o l y i m i d e h a v i n g a f o r m u l a t e d m o l e c u l a r w e i g h t (FMW) o f 1500. The FMW i s c o n s i d e r e d t o b e t h e a v e r a g e m o l e c u l a r w e i g h t o f i m i d i z e d p r e p o l y m e r t h a t c o u l d have b e e n f o r m e d i f a m i d e - a c i d p r e p o l y m e r had b e e n s y n t h e s i z e d . The e q u a t i o n f o r t h e FMW o f a PMR p o l y i m i d e p r e p a r e d f r o m η m o l e s o f BTDE ( n + l ) m o l e s o f MDA a n d 2 m o l e s of NE i s ;

™ *

=

N

^BTDE

+

(

N

+

1

)

M

W

MDA

+

2

W

m

~

2

(

n

+

1

]

Μ

ϋ

2

0

+

M W C

H 0H 3

Where MWgip-p-g, MWJ^Q^, e t c . , a r e t h e m o l e c u l a r w e i g h t s o f t h e monoer reactants and by-products. I t i s now common p r a c t i c e t o d e n o t e t h e s t o i c h i o m e t r y o f a PMR r e s i n b y d i v i d i n g t h e FMW b y 100. PMR m a t r i c e s e m p l o y i n g BTDE a r e r e f e r r e d t o a s " f i r s t g e n e r a t i o n " materials. The f i r s t g e n e r a t i o n PMR m a t r i x p r e p a r e d f r o m BTDE, MDA a n d NE h a v i n g a n FMW o f 1500 i s w i d e l y known a s PMR-15. Pre­ p r e g m a t e r i a l s b a s e d o n PMR-15 a r e c o m m e r c i a l l y a v a i l a b l e f r o m t h e m a j o r p r e p r e g s u p p l i e r s . The s t r u c t u r e s o f t h e monomers u s e d i n PMR-15 a r e shown i n T a b l e I . These e a r l y s t u d i e s ( 1 , 1 0 ) a l s o c l e a r l y d e m o n s t r a t e d t h e e f f i c a c y a n d v e r s a t i l i t y o f t h e PMR a p p r o a c h . B y v a r y i n g t h e chemical nature o f e i t h e r the d i a l k y l e s t e r a c i d o r aromatic d i ­ a m i n e , o r b o t h , a n d t h e monomer r e a c t a n t s t o i c h i o m e t r y , PMR m a t r i ­ ces h a v i n g a b r o a d range o f p r o c e s s i n g c h a r a c t e r i s t i c s and p r o p e r ­ t i e s c o u l d e a s i l y be s y n t h e s i z e d . A m o d i f i e d PMR-15, c a l l e d LARC160, h a s been d e v e l o p e d b y s u b s t i t u t i n g a n a r o m a t i c p o l y a m i n e f o r MDA (8). O t h e r s t u d i e s ( 11,12 ) have shown t h a t t h e PMR a p p r o a c h has e x c e l l e n t p o t e n t i a l f o r " t a i l o r m a k i n g " m a t r i x r e s i n s w i t h s p e c i f i c p r o p e r t i e s . F i g u r e 1 shows t h e e f f e c t o f FMW o n r e s i n f l o w f o r PMR/HTS g r a p h i t e f i b e r c o m p o s i t e s . I t c a n b e s e e n t h a t s i g n i f i c a n t l y h i g h e r r e s i n f l o w can b e a c h i e v e d b y r e d u c i n g t h e FMW. However, a s shown i n F i g u r e 2, t h e PMR c o m p o s i t i o n s w h i c h e x h i b i t increased r e s i n flow are l e s s thermo-oxidatively s t a b l e a t 288° C (550° F ) . The l o w e r r e s i n f l o w a n d i n c r e a s e d t h e r m o o x i d a t i v e s t a b i l i t y i n g o i n g f r o m PMR-10 t o PMR-15 c l e a r l y show the s e n s i t i v i t y o f these p r o p e r t i e s t o imide r i n g o r a l i c y c l i c contents. The r e d u c t i o n i n r e s i n f l o w w i t h i n c r e a s e d FMW a l s o s e r v e s t o quant i t a t i v e l y account f o r t h e i n t r a c t a b l e n a t u r e o f l i n e a r high molecular weight condensation polyimides. R e p l a c e m e n t o f B T D E w i t h t h e d i m e t h y l e s t e r o f k k'(hexafluoroisopropylidene)-bis ( p h t h a l i c acid) (HFDE) s i g n i f i c a n t ­ l y improved the thermo-oxidative s t a b i l i t y o f " f i r s t g e n e r a t i o n " PMR r e s i n s (12). However, t h e i n i t i a l 3l6° C (600° F ) m e c h a n i c a l p r o p e r t i e s o f HFDE/MDA/NE PMR p o l y i m i d e c o m p o s i t e s w e r e c o n s i d e r ­ a b l y l o w e r t h a n t h e c o r r e s p o n d i n g p r o p e r t i e s o f B T D E / M D A / N E PMR polyimides. G r a p h i t e f i b e r r e i n f o r c e d PMR p o l y i m i d e c o m p o s i t e s 9

May; Resins for Aerospace ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

18

RESINS

FOR

AEROSPACE

TABLE I MONOMERS

U S E D FOR

STRUCTURE

PMR 15

POLYIMIDE ABBREVIATION

NAME

ο

p h e n y l e n e d i a m i n e a n d NE a t a n FMW o f 1267 ( n = 1.67) w e r e f o u n d t o e x h i b i t s i g n i f i c a n t l y improved t h e r m o - o x i d a t i v e s t a b i l i t y and r e ­ t e n t i o n o f m e c h a n i c a l p r o p e r t i e s a t 3l6° C (600° F ) compared t o PMR-15 c o m p o s i t e s ( j ) . The HFDE-PMR c o m p o s i t i o n s a r e r e f e r r e d t o as " s e c o n d g e n e r a t i o n " m a t e r i a l s t o d i f f e r e n t i a t e t h e m f r o m t h e " f i r s t g e n e r a t i o n " BTDE-PMR m a t e r i a l s . The " s e c o n d g e n e r a t i o n " r e s i n c o n s i s t i n g o f HFDE, PPDA a n d NE w i t h η = 1.67, i s known a s PMR I I . The s t r u c t u r e o f t h e monomers u s e d i n PMR I I a r e shown i n T a b l e I I . The i n t e r l a m i n a r s h e a r s t r e n g t h o f PMR I I ( n = 1.67) and PMR-13 ( a f i r s t g e n e r a t i o n c o m p o s i t i o n w i t h η = 1.67) HTS g r a p h i t e f i b e r c o m p o s i t e s a r e compared i n F i g u r e 3. I t c a n b e s e e n t h a t t h e PMR I I c o m p o s i t e s have a t l e a s t t w i c e t h e u s e f u l 316° C (600° F ) l i f e o f t h e e a r l i e r PMR c o m p o s i t e s . PMR I I was compared t o PMR-13 b e c a u s e t h e y e a c h c o n t a i n a n i d e n t i c a l number of imide r i n g s . F u r t h e r improvement i n t h e p e r f o r m a n c e o f PMR p o l y i m i d e s a t e l e v a t e d t e m p e r a t u r e s h a s b e e n made p o s s i b l e b y t h e r e c e n t d e v e l ­ opment o f g r a p h i t e f i b e r s w i t h i m p r o v e d t h e r m o - o x i d a t i v e s t a b i l i t y . F i g u r e k compares t h e w e i g h t l o s s c h a r a c t e r i s t i c s o f PMR-15 com­ p o s i t e s made w i t h H T S - 1 , H T S - 2 , a n d C e l i o n 6000 g r a p h i t e f i b e r s a f t e r i s o t h e r m a l e x p o s u r e i n a i r a t 3l6° C (600° F ) . The HTS-1 c o m p o s i t e d a t a a r e f r o m R e f e r e n c e 10 a n d t h e HTS-2 a n d C e l i o n 6000 c o m p o s i t e a r e f r o m R e f e r e n c e 1 3 . The d a t a p r e s e n t e d i n t h e f i g u r e c l e a r l y show t h e s i g n i f i c a n t l y i m p r o v e d e l e v a t e d t e m p e r a t u r e s t a ­ b i l i t y o f t h e HTS-2 a n d C e l i o n 6000 c o m p o s i t e s compared t o t h e HTS-1 c o m p o s i t e s . F i g u r e 5 compares t h e i n t e r l a m i n a r s h e a r s t r e n g t h r e t e n t i o n a f t e r e x p o s u r e i n a i r a t 3l6° C (600° F ) o f PMR-15/HTS-1, PMR-15/ HTS-2 a n d P M R - 1 5 / C e l i o n 6000 c o m p o s i t e s . I t c a n b e s e e n t h a t b o t h t h e HTS-2 a n d C e l i o n 6000 c o m p o s i t e s e x h i b i t e d 100 p e r c e n t r e t e n ­ t i o n o f t h e i r i n i t i a l 316° C (600° F ) i n t e r l a m i n a r s h e a r s t r e n g t h d u r i n g t h e f i r s t 1000 h o u r s o f e x p o s u r e . The s h e a r s t r e n g t h t h e n s l o w l y d e c r e a s e d w i t h f u r t h e r e x p o s u r e . These m e c h a n i c a l p r o p e r t y d a t a a n d t h e c o m p o s i t e w e i g h t l o s s d a t a shown i n t h e p r e v i o u s f i g ­ u r e c l e a r l y show t h a t t h e u s e f u l l i f e o f PMR-15 c o m p o s i t e s a t 316° C (600° F ) made w i t h h i g h s t r e n g t h , i n t e r m e d i a t e modulus g r a p h i t e f i b e r s s u c h a s HTS-2 a n d C e l i o n 6000 i s a t l e a s t 1000 hours. Composites P r o c e s s i n g . High p r e s s u r e (compression) and l o w p r e s s u r e ( a u t o c l a v e ) m o l d i n g c y c l e s have been developed f o r f a b ­ r i c a t i o n o f PMR c o m p o s i t e s . A l t h o u g h t h e t h e r m a l l y i n d u c e d c r o s s l i n k i n g a d d i t i o n cure r e a c t i o n o f t h e n o r b o r n e n y l group o c c u r s a t t e m p e r a t u r e s i n t h e r a n g e o f 275° t o 350° C (527° t o 662° F ) , n e a r l y a l l o f t h e p r o c e s s e s d e v e l o p e d u s e a maximum c u r e t e m p e r a ­ t u r e o f 316° C (600° F ) . C u r e t i m e s o f 1 t o 2 h o u r s f o l l o w e d b y a f r e e s t a n d i n g p o s t - c u r e i n a i r a t 3l6° C (600° F ) f o r k t o l 6 h o u r s , a r e a l s o n o r m a l l y employed. Compression m o l d i n g c y c l e s g e n e r a l l y employ h i g h r a t e s o f h e a t i n g (5° t o 10° C/min) a n d près-

May; Resins for Aerospace ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

20

RESINS

FOR

AEROSPACE

TABLE I I MONOMERS

USED

FOR

SECOND

GENERATION

PMR

POLYIMIDES ABBREVIATION

NAME

STRUCTURE 0 C-OMe

MONOMETHYL ESTER OF 5-N0RB0RNENE-2, 3-DICARBOXYLIC ACID

NE

DIMETHYL ESTER OF 4, 4 ' (HEXAFLUOROISOPROPYLIDENE) BIS(PHTHALIC ACID)

HFDE

£-PHENYLENEDIAMINE

PPDA

n

0

0

0

Downloaded by CORNELL UNIV on September 27, 2016 | http://pubs.acs.org Publication Date: August 28, 1980 | doi: 10.1021/bk-1980-0132.ch002

MeO-C

ÇF3

HO-C

3

t

C-OH

0

0

H2N-^-NH

C-OMe

2

lfolO3

1000

400 600 TIME, HR

Figure 3. Interlaminar shear strength of PMR PI(n = 1.67)/HTS graphite fiber composites exposed and tested at 316°C (600°F): (A) BTME/MDA/NE, (O) HFDE/PPDA/NE, solid symbols denote room-temperature tests

55X10

3

11 800

Figure 4.

1200 TIME, h r

1600

2400

Weight loss of PMR 15/'graphite fiber composites exposed in air at 316°C (600°F); fiber: (·) HTS-1, (O) HTS-2, (A) Celion 6000

May; Resins for Aerospace ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

2.

sERAFiNi

PMR

21

Polyimides

s u r e s i n t h e r a n g e o f 3.^5x10^ t o 6.9x10^ N/m (500 t o 1000 p s i ) . Vacuum h a g a u t o c l a v e p r o c e s s e s a t l o w h e a t i n g r a t e s (2° t o k° C/ min) a n d p r e s s u r e s o f 1.38x10^ N/m (200 p s i ) o r l e s s h a v e "been s u c c e s s f u l l y u s e d t o f a b r i c a t e v o i d - f r e e c o m p o s i t e s . The s u c c e s s f u l a p p l i c a t i o n o f a u t o c l a v e p r o c e s s i n g m e t h o d o l o g y t o PMR p o l y imides r e s u l t s from the presence o f a t h e r m a l t r a n s i t i o n , termed " m e l t - f l o w , " which occurs over a f a i r l y broad temperature range (6). The l o w e r l i m i t o f t h e m e l t - f l o w t e m p e r a t u r e r a n g e depends on a number o f f a c t o r s i n c l u d i n g t h e c h e m i c a l n a t u r e and s t o i c h i o m e t r y o f t h e monomer r e a c t a n t m i x t u r e , and t h e p r i o r t h e r m a l h i s t o r y o f t h e PMR p r e p r e g . D i f f e r e n t i a l s c a n n i n g c a l o r i m e t r y s t u d i e s h a v e shown t h e p r e s e n c e o f f o u r t h e r m a l t r a n s i t i o n s w h i c h o c c u r d u r i n g t h e o v e r a l l c u r e o f a PMR p o l y i m i d e (ik). The f i r s t , s e c o n d and t h i r d t r a n s i t i o n s a r e e n d o t h e r m i c and a r e r e l a t e d t o the f o l l o w i n g : ( l ) m e l t i n g o f t h e monomer r e a c t a n t m i x t u r e b e l o w 100° C (212° F ) , ( 2 ) i n s i t u r e a c t i o n o f t h e monomers a t l*+0° C (28^° F ) , and ( 3 ) m e l t i n g o f t h e n o r b o r n e n y l t e r m i n a t e d p r e p o l y •mers i n t h e r a n g e o f 175° t o 250° C (3*+7° t o 1+82° F ) r e f e r r e d t o as t h e m e l t - f l o w t e m p e r a t u r e r a n g e . The f o u r t h t r a n s i t i o n , c e n t e r e d n e a r 3^0° C (6kh° F ) i s e x o t h e r m i c and i s r e l a t e d t o t h e addition crosslinking reaction. To a l a r g e e x t e n t t h e e x c e l l e n t p r o c e s s i n g c h a r a c t e r i s t i c s o f PMR p o l y i m i d e s c a n be a t t r i b u t e d t o t h e p r e s e n c e o f t h e s e w i d e l y s e p a r a t e d and c h e m i c a l l y d i s t i n c t thermal t r a n s i t i o n s . 2

Downloaded by CORNELL UNIV on September 27, 2016 | http://pubs.acs.org Publication Date: August 28, 1980 | doi: 10.1021/bk-1980-0132.ch002

2

Applications. Because o f t h e i r e x c e l l e n t p r o c e s s i n g c h a r a c t e r i s t i c s and c o m m e r c i a l a v a i l a b i l i t y , PMR-15 p o l y i m i d e m a t e r i a l s have b e e n o r a r e b e i n g u s e d i n a number o f d i v e r s e s t r u c t u r a l components. Some o f t h e s e components a r e l i s t e d i n T a b l e I I I and a b r i e f d e s c r i p t i o n o f s e v e r a l i s p r e s e n t e d . The QCSEE ( f o r Q u i e t C l e a n S h o r t H a u l E x p e r i m e n t a l E n g i n e ) i n n e r c o w l ( F i g . 6) i s f o r an e x p e r i m e n t a l t u r b o f a n e n g i n e d e v e l o p e d f o r NASA-Lewis b y Gene r a l E l e c t r i c ( 1 5 ) . The c o w l has a maximum d i a m e t e r o f a b o u t 90 cm and has s u c c e s s f u l l y u n d e r g o n e more t h a n 100 h o u r s o f g r o u n d engine t e s t s . The c o m p r e s s o r b l a d e s k i n s a r e f o r s p a r s h e l l b l a d e s h a v i n g a 30 cm c h o r d a n d a 150 cm s p a n . The o i l t a n k b r a c k e t was f a b r i c a t e d b y TRW, I n c . , u s i n g a chopped g r a p h i t e f i b e r m o l d i n g compound. The s h u t t l e o r b i t e r a f t body f l a p c u r r e n t l y b e i n g d e v e l o p e d b y B o e i n g i s a p p r o x i m a t e l y 2 m w i d e b y 6.5 m l o n g . C o n c l u d i n g Remarks The i n s i t u p o l y m e r i z a t i o n o f monomer r e a c t a n t s (PMR) a p p r o a c h i s a p o w e r f u l method f o r f a b r i c a t i n g h i g h p e r f o r m a n c e p o l y mer m a t r i x c o m p o s i t e s . The PMR a p p r o a c h o f f e r s a number o f s i g n i f i c a n t a d v a n t a g e s t o f a b r i c a t o r s and u s e r s o f p o l y i m i d e / f i b e r c o m p o s i t e s . F o r e m o s t among t h e s e a r e s u p e r i o r h i g h t e m p e r a t u r e p r o p e r t i e s and p r o c e s s i n g v e r s a t i l i t y . Because o f t h e i r e x c e l l e n t p r o c e s s a b i l i t y , h i g h p e r f o r m a n c e a n d c o m m e r c i a l a v a i l a b i l i t y , PMR

May; Resins for Aerospace ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

22

RESINS F O R

Downloaded by CORNELL UNIV on September 27, 2016 | http://pubs.acs.org Publication Date: August 28, 1980 | doi: 10.1021/bk-1980-0132.ch002

Figure 5. Interhminar shear strength of PMR 15/graphite fiber composites exposed and tested in air at 316°C (600°F); fiber: (·) HTS-1, (O) HTS-2, (A) Celion 6000

TABLE IE A P P L I C A T I O N S OF P M R - 1 5

POLYIMIDES

AGENCY

COMPONENT

CONTRACTOR

QCSEE INNER COWL

NASA-LEWIS

GENERAL ELECTRIC

SUPERSONIC WIND TUNNEL

AIR-FORCE

HAMILTON-STANDARD

NAVY

PRATT & WHITNEY/TRW

COMPRESSOR BLADE SKINS OIL TANK BRACKET FOR F100 ENGINE SHUTTLE ORIBTER AFT BODY FLAP

NASA-LANGLEY

BOEING

AUGMENTOR DUCT OF F100 ENGINE

AIR FORCE

COMPOSITES HORIZONS

FAN BLADES FOR AN ULTRA-HIGH

NASA-LEWIS

PRATT & WHITNEY/TRW

SPEED AXIAL FLOW FAN STAGE

Figure 6.

PMR 15 QCSEE

inner cowl

May; Resins for Aerospace ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

AEROSPACE

2.

SERAFiNi

PMR

23

Polyimides

p o l y i m i d e s a r e b e c o m i n g a c c e p t e d as e n g i n e e r i n g m a t e r i a l s f o r f a b ­ r i c a t i o n o f h i g h t e m p e r a t u r e r e s i n / f i b e r s t r u c t u r a l components.

Downloaded by CORNELL UNIV on September 27, 2016 | http://pubs.acs.org Publication Date: August 28, 1980 | doi: 10.1021/bk-1980-0132.ch002

Literature Cited 1.

Serafini, T. T . ; D e l v i g s , P.; L i g h t s e y , G. R. J. A p p l . Polym. Sci., 1972, 16, 905.

2.

Serafini, T. T . ; D e l v i g s , U . S . P a t . 3,745,149.

3.

Serafini, T. T . ; D e l v i g s , P . 1973, J. A p p l . Polym. A p p l . Polym. Symp., No. 22, 89.

4.

Serafini, T. T. "Proc. o f the 1975 I n t e r n a t i o n a l Conference on Composite Materials," Scala, Ε . , Ed.; American Institute o f M i n i n g , M e t a l l u r g i c a l and Petroleum Engineers: New York, 1976; V o l . 1, p . 202.

5. Cavano, P.

J.;

P.;

L i g h t s e y , G. R. J u l y 10,

1973,

Sci.,

W i n t e r s , W. E . 1976, NASA CR-135113.

6. Vannucci, R. D. 1977, NASA TM-73701. 7.

Serafini, TM-71894.

T. T . ; Vannucci, R. D . ;

Alston,

W. B . 1976, NASA

8. S t . Clair, T. L.; Jewell, R. A . " P r o c . o f Twenty-Third N a t i o n a l SAMPE Symposium and Exhibition," S o c i e t y f o r the A d ­ vancement o f M a t e r i a l and Process E n g i n e e r i n g : Azusa, Calif., 1978; p . 520. 9. Burns, E . A.; Lubowitz, H . R.; Jones, J. F . 1968 NASA CR-72460. 10. D e l v i g s , D-6877.

P.;

11.

T. T . ; Vannucci, R. D. 1975, NASA TM X-71616.

Serafini,

Serafini,

T. T . ; L i g h t s e y , G. R. 1972, NASA TN

12. Vannucci, R. D . ; A l s t o n , W. B. 1976, NASA TM X-71816. 13. D e l v i g s , P.; A l s t o n , W. B.; and Vannucci, R. D. 1979, NASA TM-79062. 14. Lauver, R. W. 1977, NASA TM-78844. 15. Ruggles, C. L . 1978, NASA CR-135279. RECEIVED April 8,

1980.

May; Resins for Aerospace ACS Symposium Series; American Chemical Society: Washington, DC, 1980.